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Abstract

The Internet is changing the automotive industry as the traditional manufacturer and dealer structure faces increased
threats from third party e-tailers. Dynamic pricing together with the Direct-to-Customer business model can be
used by manufacturers to respond to these challenges. Indeed, by coordinating production and inventory decisions
with dynamic pricing, the automotive industry can increase profits and improve supply chain performance. To
illustrate these benefits, we discuss a strategy that incorporates pricing, production scheduling, and inventory
control under production capacity limits in a multi-period horizon. We show that under concave revenue curves, a
greedy algorithm provides the optimal solution, and we describe extensions to the model such as multiple products
sharing production capacity. Using computational analysis, we quantify the profit potential and sales variability
due to dynamic pricing, and we suggest that it is possible to achieve significant benefit with few price changes.

1. Introduction

The influence of the Internet and e-commerce on the economy in general, and supply chain
management in particular, has been tremendous. The ability to dynamically change pricing
of products is an important revolution in the retail and manufacturing industries, driven in
large part by the Internet and the Direct-to-Customer (DTC) model. This business model,
used by industry giants such as Dell Computers and Amazon.com, allows companies to
quickly and easily change prices based on parameters such as demand variation, inventory
levels, or production schedules. Further, the model enables manufacturers to collect demand
data more easily and accurately [23].
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Many examples of dynamic pricing can be found on the Internet; for example, online
auctions allow buyers to bid on everything from spare parts to final goods. However, the
integration of pricing, production and distribution decisions in retail or manufacturing
environments is still in its early stages. One recent example is Dell Computers, which uses
both dynamic pricing of products and pricing based on market segmentation [22]; the extent
to which pricing is integrated with production and inventory control decisions at Dell is
unclear. The implementation of dynamic pricing strategies in the manufacturing and retail
industries has the potential to radically improve supply chain efficiencies in much the same
way as revenue management has changed airline, hotel and car rental companies.

Our focus on dynamic pricing as a tool to improve supply chain efficiency in manufac-
turing is motivated by a collaborative effort with a manufacturer of automobiles. We focus
on the coordination of pricing, production and distribution decisions for non-perishable
products in a multi-period time horizon, where planning in advance is a key element. We
allow for periodically varying parameters such as demand curves, capacity limits, holding
costs and production costs. The individual revenue curves are concave, and the objective is
to maximize profit; general properties of the problem allow it to be solved efficiently with
the greedy algorithm. Extensions to the model include the addition of production set-up
cost and allowing multiple products to share common production capacity.

An extensive computational study with demand curves received from our industrial part-
ner demonstrates that the integration of supply chain functions such as pricing and produc-
tion may result in large benefits. The most obvious is due to an increase in profit based on
a better match between supply and demand. However, other, perhaps less obvious, benefits
can be significant as well. These benefits include reduction in demand variability seen by
the manufacturer, which in turn results in smoother production schedules, more stable or-
dering policies, etc. We consider performance measures such as profit, variability in sales,
and price variability. Our objective is to provide insight into the impact of dynamic pricing
on supply chain performance using data from the automotive industry.

1.1. Industrial motivation

The driving forces behind the interest in our industrial partner to explore dynamic pricing
strategies are the Internet and the DTC model. The DTC model offers significant benefits to
the manufacturer, including better demand information and increased flexibility in matching
supply and demand.

The use of the DTC model in the automotive retail industry has been growing. In 1999,
40% of all new vehicle buyers used the Internet during their shopping; this number is
estimated to grow to 55% in 2000 [17]. While currently most customers use the Internet
to inquire invoice prices but purchase the car from franchise dealers, there are many third
parties (www.autobytel.com or Microsoft’s CarPoint at www.carpoint.msn.com, etc.) trying
to convince customers to use their buying services. Indeed, in the last few years we have
seen an evolution in the Internet pricing arena from information sites where invoice prices
can be found, to referral sites where price quotes can be requested, and finally to sites that
post transaction prices and sometimes allow purchasing on the web.
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The growth of these developments on the Internet is of great concern to the Origi-
nal Equipment Manufacturers (OEMs) and the traditional dealers. First, disintermediation
might result in third parties rather than dealers “owning” customer relations and consumer
data. Second, if a specific third party becomes too powerful (e.g., Microsoft CarPoint), it
could dictate prices and wipe out manufacturers’ margins. Recognizing the opportunity and,
at the same time, fighting the threat of third parties, OEMs have launched their own DTC
e-commerce initiatives; General Motors even founded a new division called e-GM, and at
the time of paper publication was contracting with Autobytel for special Internet services.

These e-initiatives are aimed at building a system that will eventually allow customers to
order custom-built vehicles, and at the same time will enable manufacturers, in cooperation
with their dealers, to coordinate production and pricing. Thus, OEMs and their dealers can
simultaneously optimize system performance while balancing supply and demand.

Typically, manufacturers’ prices are driven by a number of factors including compe-
tition, capacity utilization, market share targets, and profits. Dealers’ prices are primarily
driven by automobile cost and market forces. Currently, in the automotive industry, dynamic
pricing occurs at two levels: (1) at the dealer, who negotiates with each customer, (2) at
the manufacturer, who makes extensive use of promotion and rebates, but very rarely of
price increases. In fact, competitive price pressures led to a decline of invoice prices (the
price a dealer pays to the manufacturer) by 0.7% in 1999 (J.D. Power and Associates). A
rare exception is Chrysler’s PT Cruiser whose price was raised a couple of times by the
manufacturer even before the vehicle was released for production. This, however, is a case
where the manufacturer priced the vehicle too low initially and realized that they would
not have enough capacity to satisfy demand or that customer wait-times would increase to
extraordinary lengths. A third possibility for dynamic pricing is between OEMs and dealers,
although this strategy is not currently in use.

Initial discussions with our OEM partner motivated the consideration of integrated pricing
and production policies. Subsequent discussions shaped the assumptions of the model as
well as the focus of the research. The research, however, is intentionally applicable in a
very general manufacturing setting where the manufacturer has price control, disregarding
elements specific to automotive retail such as the dealer system. The models presented
would be applicable in an Internet-based automotive retail process where price may go up
or down and customers expect to find a non-negotiable price and delivery time on the web.

In addition to the focus of the theoretical research, the collaborative effort with the OEM
greatly shaped the computational analysis presented in this paper. The analysis is based
on demand curves and production costs that were obtained from the OEM and represent
typical vehicles from its product profile. The discussions with the OEM have been of
significant benefit in determining useful questions and reasonable approaches to addressing
them.

The remainder of this paper is organized as follows. Section 2 surveys dynamic pricing
and implementations in various industries. In Section 3 we review dynamic pricing research,
outline our mathematical model and discuss efficient problem solving methods. We perform
computational analysis in Section 4 and focus on insights for practitioners. We conclude
with a short summary and suggestions for future research directions.
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2. Survey of industry practices

2.1. General overview

Dynamic pricing techniques have received much attention in recent years from companies
trying to improve profitability. These methods, which integrate pricing and inventory strate-
gies to influence market demand, provide controls for companies to improve the bottom
line. The focus of the review in this section is on implementation of these techniques in
practice. See Chan et al. [6] or Elmaghraby and Keskinocak [9] for more complete reviews
of dynamic pricing, including academic research.)

Dynamic pricing, which we define as changing prices over time without necessarily
distinguishing between different types of customers, has been employed for ages but has
traditionally been used only for sales or promotions. For example, fashion clothing retailers
may offer discounts later in the season to reduce inventory, and this discount is the same to all
customers at a given time. An exception to this is the pricing strategy that Amazon.com used
briefly in 2001, differentiating among different types of customers and providing different
prices to those customers for the same book or music item [23].

However, many of the retail techniques do not account for the capacity limitations that
exist in a manufacturing environment. In addition, many of the techniques limit the initial
supply of product or allow only limited restocking during the time horizon. In this paper,
we focus on dynamic pricing techniques based on characteristics such as inventory levels
and variability in customer demand taking into account production capacity, rather than
focusing exclusively on sales and promotions. Our model also incorporates pricing and
production decisions for all periods.

2.2. Dynamic pricing in manufacturing and E-tailing

Dynamic pricing techniques have been implemented along with new business models devel-
oped for e-commerce. E-tailing, or retailing over the Internet, lends itself well to dynamic
pricing since changing prices frequently is much more cost-effective electronically than
physically. Smith et al. [19] review empirical evidence of products online and through con-
ventional outlets that suggests Internet markets are more efficient than conventional markets
with respect to price levels and menu costs, i.e., the cost of making changes to catalogs.

Pricing techniques employed in e-tailing are not limited to those based on inventory
control or product differentiation like revenue management but include auctions, increasing
discounts based on total volume accumulated by individual consumers, etc. In addition,
companies can use the Internet distribution channel as a means to collect accurate demand
data, which can then be used to determine effective dynamic pricing strategies.

Kay [14] describes dynamic pricing at Boise Cascade Office Products, where many
products are sold on-line. Boise Cascade states that prices for the 12,000 items ordered
most frequently on-line might even change as often as daily. Evidence also suggests that
companies such as Amazon.com or Dell Computer have implemented some type of dynamic
pricing system based on inventory levels or competition. Agrawal and Kambil [1] document
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price changes on products offered at each of the companies over a long time horizon and
show that the prices are anything but fixed. Another article on Dell, Inc. [22] describes how
the company uses various pricing strategies including dynamic pricing, differential pricing
for different markets, and dynamic pricing of supplier components. The computer maker
is able to use dynamic pricing because of its direct-to-customer model, but the method of
determining prices is not described.

Many other examples of dynamic pricing in e-tailing are described by Baker et al. [3].
In one example, an electronics supplier changed prices more quickly than its competitors
and realized an additional $25 million in profit. In another case, the price of concerts and
events was adjusted to match supply and demand (Tickets.com), resulting in as much as
45% more revenue per event in some cases. In yet another, differential pricing was used
on customers who needed an electronic component immediately rather than with a more
flexible lead-time. Baker et al. suggest ways to improve pricing strategies that incorporate
the information and flexibility that is available through Internet channels.

More pertinent to the automotive industry are examples of dynamic pricing in manufac-
turing. For example, Campbell Foods installed a system to control prices based on such
factors as inventory level [14]. However, overall, documentation of manufacturers using
dynamic pricing is rare. One of the few manufacturing applications is described by Harris
and Finder [12]. In their illustration, a repair facility for industrial transformers could dif-
ferentiate prices based on whether the transformers are on scheduled maintenance or are on
“emergency order status” requiring immediate attention.

In the next section, we provide background on the automotive industry and examine the
effect of the Internet on business models in the industry.

2.3. Introduction to automotive retail

The current franchise system of automotive retail has its roots at the beginning of the century.
In fact, the first formal franchise agreement was signed in 1898 between a Pennsylvania
bicycle dealer and the Winston Motor company [15]. Franchise agreements assigned car
dealers an exclusive territory in exchange for providing “adequate service and suitable
facilities” [18]. The manufacturer promised to sell vehicles at a discount to the dealer who
would then sell the vehicle to the customer at a price predetermined by the manufacturer.
In addition, dealers would advance large sums of money to the manufacturer before the car
was even produced.

These franchise agreements allowed manufacturers to grow quickly since they received
“venture capital” from their dealers, did not have to carry any finished goods inventory, and
could invest all capital in their manufacturing systems. In addition, manufacturers could
operate their factories without paying attention to demand fluctuation since dealers absorbed
the demand variability in their inventory.

Dealers, on the other hand, also benefited from the exclusivity agreement for new prod-
ucts and aftersales services. Furthermore, dealers began to accept trade-ins when customers
wanted to buy a new model and seized the additional opportunity to sell used vehicles.
This point in time marks the end of manufacturer-determined fixed pricing since the two
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Figure 1. The North American automotive industry distribution model.

transactions (new vehicle sell and trade-in buy) could be booked separately by the dealer.
Therefore, lowering the new vehicle price could be achieved through artificially increasing
the value of the trade-in. Effectively, the dealer could now set the price for every cus-
tomer individually. As the industry grew, manufacturers became more powerful and state
legislatures passed laws to protect dealers from unfair competition by the manufacturers.
In particular, these laws prevent manufacturers from setting fixed prices (the MSRP is a
suggested retail price) and from selling new vehicles directly to customers.

Currently, the following business model is predominant in the automotive industry in
North America (see Figure 1). During production planning, OEMs determine vehicle allo-
cation to dealers based on a “turn-and-earn” system, i.e., production is sequentially allocated
to the dealer who has the smallest number of days of supply of a particular vehicle. This
system is used to ensure fair treatment of dealers, regardless of their size. When the vehicle
is released for transportation at the plant, the dealer’s account is charged. To offset outbound
transit time and time on the dealer’s lot, the OEM subsidizes the interest rate for the charged
amount for a predetermined amount of time. The amount charged to the dealer is fixed and
independent of the volume of vehicles bought. When the dealer receives the vehicle, he sets
the price, and sells it to the customer.

Until recently, the above-described distribution model (manufacturer produces, dealer
sets prices and sells) has prevailed. However, automotive distribution and retailing is now
undergoing rapid change with the advent of third parties that are trying to sell cars through
the Internet. Currently, there are 5 basic automotive Internet retail models, also displayed
in Table 1: (1) third parties generate leads (e.g. www.autobytel.com), (2) manufacturers
generate leads and search dealer inventory (e.g., www.gmbuypower), (3) customer names

Table 1. Basic automotive internet retail models and corresponding examples.

Model Customer action Response E-tail example

1 Requests quote Third party generates leads from
dealers

www.autobytel .com

2 Requests quote Manufacturer generates leads from
dealers

www.gmbuypower.com

3 Offers price bid for a desired vehicle Dealers accept or reject offer www.priceline.com
4 Offers price bid for a specific vehicle Dealers accept highest bid if meets

minimum
www.ebay.com

5 Requests vehicle at posted prices Third party buys from dealers and
resells

www.carsdirect.com
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price and dealers can accept or reject offer (e.g., www.priceline.com), (4) auctions-buyers
offer price bids for a given vehicle (e.g., www.ebay.com), (5) third parties sell vehicles on
the web at posted prices (e.g., www.carsdirect.com). Of course, in a number of the cases,
particularly models such as 1, 3, or 5, the entry of the third party may lower dealer margins
by reducing the average price paid by consumers.

In response to the competition from third parties, manufacturers are searching for ways to
sell vehicles over the Internet and move from the traditional “push” system towards a “pull”
system. The challenge is to determine who sets prices for vehicles (dealers or manufacturers),
how to move towards a customer pull system within the current dealer structure, and how
to balance supply and demand. In the following, we focus on the last challenge and present
a first attempt to address this issue. We assume a make-to-order environment in which
customers order their vehicles at a price set by the manufacturer. The vehicles are delivered
through a dealer who gets a commission for servicing the sale. Clearly, legal issues such
as antitrust laws have to be addressed before such a system could be implemented in the
automotive industry. These issues are not addressed in the current research. The models
presented here will help the manufacturer and dealers to balance supply and demand and
realize additional profit potential through dynamic pricing. However, we do not address a
number of practical issues, such as availability and pricing of options (e.g., sunroof) but
discuss these issues in the extension section.

3. The pricing problem

3.1. Pricing research review

As far as we know, Whitin [24] is the first to suggest the need to consider joint pricing
and inventory control strategies in a non-perishable environment such as retailing. In this
paper, Whitin examined a single period problem, most similar to a “newsboy” problem, and
determines a single price and supply quantity. Numerous other researchers have considered
price determination and restocking in a multi-period setting. For example, Thowsen [21],
and Zabel [25] both consider multi-period models with a convex ordering cost structure.
The retail industry, particularly fashion items with seasonality, has also seen application of
price differentiation policies and coordination of inventory control, in some cases under the
name “yield management”. For instance, Gallego and van Ryzin [11] analyzed the dynamic
adjustment of price as a function of inventory and length of remaining sales; the demand
was stochastic but restocking was not allowed. A thorough review of both single and multi-
period models combining pricing and inventory strategies can be found in Eliashberg and
Steinberg [8].

In a manufacturing environment, a dynamic pricing model must determine prices as
well as inventory levels. However, unlike retail dynamic pricing models, a manufactur-
ing model must also schedule production and account for limitations in production ca-
pacity. In the case of multiple products, the strategy must also reflect shared production
capacity among products. To date, few models have encompassed all of the necessary
requirements.
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The most notable exception, however, is the work by Federgruen and Heching [10], who
address the problem of determining optimal pricing and inventory control strategies under
demand uncertainty; their model can also be extended to cover capacity limits on production.
Indeed, their model is similar to our model, except for two important differences: Federgruen
and Heching allow for stochastic demand but require fully backlogged stockouts, i.e., a
customer purchasing an item which is out of inventory would receive the product as soon
as it becomes available. In contrast, our model is deterministic but allows for lost sales; in
addition, extensions to our model include multiple products sharing common production
capacity and the addition of production set-up cost.

Some dynamic pricing problems may also be viewed as a special case of resource alloca-
tion problems. In these problems, we are given a fixed amount of resources, e.g., production
and distribution capacity. Our objective is to allocate the resources to activities, e.g., pro-
duction and distribution, so as to maximize a certain objective function, e.g., profit. For
a comprehensive examination of resource allocation problems and algorithms, see Ibaraki
and Katoh [13].

An important algorithm for resource allocation problems is the greedy algorithm, which
is known to be optimal under certain conditions. The greedy approach assigns one unit of
resource at each iteration to the activity which contributes most favorably to the objective
until the constraint set is tight or no activity is found. This algorithm is also known as a
marginal allocation or incremental algorithm.

Chan, Simchi-Levi and Swann (CSS) [7] showed that a certain class of resource allocation
problem can be solved with the greedy algorithm. In particular, they defined a class of
functions called lightly concave, and considered problems with a polymatroid feasible
region, showing that the greedy algorithm provides the optimal solution for problems in
this class. In the following sections we will review their result and show that the pricing
problem we consider falls in the class of problems that can be solved by the greedy algorithm.

3.1.1. Preliminary notation and previous results. In order to present the pertinent results
from CSS [7], we present necessary notation below.

Consider a finite index set {1, 2, . . . , E}, also referred to as set E , and let V be a
non-negative real function denned on 2E , i.e. V : 2E → R, where 2E = {S | S ⊆ E}.

Bjorner and Ziegler [5] define a polymatroid as follows: A pair (E, V ), consisting of a
finite ground set E and a function V : 2E → R, is called a polymatroid if for all S, T ⊆ E :

1. f (∅) = 0;
2. S ⊆ T implies V (S) ≤ V (T );
3. V (S ∩ T ) + V (S ∪ T ) ≤ V (S) + V (T ).

Let F = (E, V ) be a polymatroid and f (x) be a cost function defined on x ∈ N E . We
focus on the following general resource allocation problem, referred to as Problem P( f, F):

P( f, F) : max{ f (x)|x ∈ F}. (1)

We say that x ∈ F is a global optimum of P( f, F) if and only if f (x) ≥ f (y) for all
y ∈ F.
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The main result of CSS [7] is that the greedy algorithm solves P( f, F) under certain
assumptions on the cost function f (·) and the constraint set F . This algorithm can be
described as follows:

Greedy Algorithm:

Step 0: x = 0;
Step 1: Find i ∈ E with x + ei ∈ F, f (x + ei ) ≥ f (x) and f (x + ei ) ≥ f (x + e j ) where

j ∈ E and x + e j ∈ F
Step 2: If no such i ∈ E exists, stop.
Step 3: x = x + ei and go to step 1.

CSS [7] defined a class of functions called lightly concave. A function f (·) is lightly
concave with respect to a polymatroid if it satisfies:

(L1) if y ≥ x, f (x) ≥ f (x + ei then f (y) ≥ f (y + ei ), i ∈ E
(L2) if y, x + ei ∈ F, y > x, yi = xi with f (x + ei ) ≥ f (x + e j ) for all x + e j ∈ F , then

there exists y + ei − el ∈ F such that f (y + ei − el) ≥ f (y) and yl > xl .

The main result from CSS [7] is shown in the following theorem:

Theorem 3.1 (CSS [7] Main Result). If a function f (·) is lightly concave with respect to
a polymatroid feasible region F, then the greedy algorithm generates an optimal solution
for P( f, F), defined in (1).

We will show in following sections that the pricing problem we consider falls within the
class defined by CSS [7], and thus the greedy algorithm provides an efficient method for
solving these problems.

3.2. Mathematical formulation of the pricing problem

Consider a single facility that must determine prices and production scheduling for a single
product over a finite horizon. For each period t = 1, . . . , T , let Xt , Dt , and It be the amount
of product produced, the demand satisfied, and the end of period inventory, respectively.

The facility may produce a maximum of Qt products in period t, and production cost
incurred in period t is kt per unit produced. Production costs are initially assumed to be
linear. Inventory holding cost at a rate of ht dollars per unit is charged for any inventory
carried from period t − 1 to t. All cost and capacity parameters may vary from period to
period.

We assume that demand is a non-increasing function of the price of the product, and these
demand curves may vary from period to period. Thus, by determining the satisfied demand
or sales in each period, we simultaneously determine the price of the product in each period.
In the model, there is no time lag between a price change and the corresponding change in
demand. We also assume that demand occurs in discrete units, and thus so does production.
Since in our model we allow for limits on production, it may not be possible to satisfy all
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observed demand that occurs in a period; the amount of demand that occurred but was not
satisfied is lost sales.

We allow for upper and lower limits on price or demand as well. Lower limits on demand
ensure a minimum market share of a product, and price bounds may be used to stay within
reasonable ranges compared to competitors. In addition, methods for estimating demand
curves may provide parameters that are valid only within certain ranges.

The revenue occurring in each period, Rt (Dt ), is the selling price times the amount sold,
or Pt ∗ Dt . It is assumed that the revenue function is a concave function of the sales in each
period. Linear demand curves are one example of demand-price functions that satisfy this
property. The revenue function also allows for bounds on price or demand in any period t.

The objective of the pricing problem is to maximize total profit over the T periods,
considering revenue, holding costs, and production costs in each period. Beginning inventory
is zero, and there are production capacity limits in each period. The pricing problem, referred
to as Problem PP, can be formulated as:

(PP) max
T∑

t=1

(Rt (Dt ) − ht It − kt Xt )

subject to I1 = 0
It+1 = It + Xt − Dt , t = 1, 2, . . . , T
Xt ≤ Qt , t = 1, 2, . . . , T
It , Xt , Dt integer ≥ 0, t = 1, 2, . . . , T .

Observe that in this model, the decision variables are the inventory level at the beginning
of the period, It , production level Xt , and satisfied demand Dt . Since demand is a non-
increasing function of price, demand satisfied in period t, Dt , will uniquely determine the
product price, Pt . Our objective is to maximize total revenue minus holding and production
costs. The first constraint indicates that there is no inventory at the beginning of period
1. The second set of constraints balances the inventory at each period. The third set of
constraints ensures that production capacities are not exceeded.

3.3. Theoretical results

Problem PP can be described as a min-cost network flow problem with (negative) convex
cost and thus standard network flow algorithms for convex cost flows can be applied, see
Ahuja et al. [2]. However, there are also extensions of the pricing problem which cannot
be solved by network flow algorithms, for example, certain multi-product models sharing
common components (see [20]).

In this section, we outline a proof of the following theorem. The complete proof of all
theorems and properties in this section are available in Biller et al. [4].

Theorem 3.2. If the revenue functions are concave in Problem PP, then the objective
function f (·) is lightly concave with respect to a polymatroid feasible region F.

We begin by showing that Problem PP has a polymatroid feasible region, then we show
that the objective function is lightly concave as defined in CSS [7]. Of course, the implication
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Figure 2. Network formulation of problem PP.

is that the greedy algorithm solves pricing problem PP. Furthermore, following the same
method, it is possible to show that the multi-product/multi-component problems mentioned
above can also be solved by the greedy algorithm. The specific application of the greedy
algorithm to Pricing Problem PP can be found in the Appendix of this article.

To show that that the feasible region of Problem PP is a polymatroid, we first show
it as a network-based model, see Figure 2 for a graphical depiction. For each period
t = 1, 2, . . . , T , nodes Ft , St and Ut represent the facility, production and demand satisfied,
respectively. Node F0 represents the beginning of the planning horizon, i.e., the state of the
facility at the beginning of period 1. The directed arcs (Ft−1, Ft ), (St , Ft ) and (Ft , Ut ) indi-
cate the inventory flow from the previous period, the production flow to the facility and the
flow of demand satisfied at period t , respectively. Consider the directed network G with node
set N = {F0, Ft , St , Ut t = 1, 2, . . . , T } and arc set A = {(Ft−1, Ft ), (St , Ft ), (Ft , Ut )|t =
1, 2, . . . , T }, and define the following variables:

xi j = flow on arc (i, j) ∈ A;

Dt = demand satisfied at period t, t = 1, 2, . . . , T .

To describe the feasible region of Problem PP as a network flow model, we impose the
following constraints on the network G:

0 ≤ xSt Ft < Qt , t = 1, 2, . . . , T,

xFt Ut = Dt , t = 1, 2, . . . , T,∑

l|( j,l)∈A

x jl −
∑

l|(l, j)∈A

xl j = 0, j ∈ {Ft |t = 1, 2, . . . , T },ll

X F0 F1 = 0, (2)

xi j > 0, and integer ∀(i, j) ∈ A,

Dt ≥ 0, t = 1, 2, . . . , T .
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The first set of constraints ensures that the production capacities are not exceeded, while
the second set of constraints guarantees that Dt units of demand are satisfied at each period
t. The third set of constraints is a flow conservation constraint, and zero inventory at the
beginning of period 1 is guaranteed by the fourth constraint.

Let D = (D1, D2, . . . , DT ) and x = (xi j )(i, j)∈A. Megiddo [16] showed that the set

{D ∈ N T | (D, x) satisfies the constraints in (2) for a given vector x}
is a polymatroid.

To formulate Problem PP as Problem P( f, F), we need to define a function f (·). Thus,
for any given D ∈ F ⊆ N T , let f (D) be the optimal objective value of

(PP(D)) max
x

T∑

t=1

(Rt (Dt ) − ht It − kt Xt )

subject to I1 = 0
It+1 = It + Xt − Dt , t = 1, 2, . . . , T
Xt ≤ Qt , t = 1, 2, . . . , T
It , Xt , Dt integer ≥ 0, t = 1, 2, . . . , T .

Otherwise, let f (D) = −1. Hence, Problem PP is equivalent to Problem P( f, F) with f (·)
being the function induced by the real value function f .

To show that the greedy algorithm generates an optimal solution for the pricing problem
with concave revenue functions, it remains to prove that the objective function of Problem
PP is lightly concave. To do this, we condition on the periods in which to increase demand
and production, and further subdivide cases according to the inventory levels between the
periods (see Biller et al. [4] for details).

3.4. Model extensions and limitations

There are a number of additional applications that the model covers. Below we list some
that have lightly concave cost functions over a polymatroid feasible region, and thus can be
solved with the greedy algorithm.

1. Multi-product systems The model presented in this paper may be extended to cover
supply chains with m, m ≥ 1, products each of which is assembled from a set of parts
and shares common production capacity. We assume that revenue curves exist for each
product at each time period and that there are no demand diversions among different
products.

2. Variable Leadtimes: Consider models in which a customer places an order in period
j, j = 1, 2, . . . , T, and the product is delivered within L j time periods. In this case,
Dt represents demand satisfied at time t, t = 1, 2, . . . , T . In Problem PP, the revenue
function of demand would need to be modified to account for all periods in which an
order could have been placed to be satisfied by a delivery in time period t.

3. Different Classes of Customers: In practice, customers are sometimes distinguished by
their responsiveness to different leadtimes. For instance, consider a model with two types
of customers; customers who insist on receiving the product immediately and those who
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are willing to wait up to L time periods. This problem fits in the class of problems
described in this paper if the firm has information on the demand curves by customer
type and wait time, and the revenue functions are concave.

4. Production Set-up Cost: An important extension of the model is the addition of produc-
tion set-up cost. In this case, it is possible to show that an optimal policy is consecutive.
That is, in an optimal policy, production in a specific period, say t,will be used to satisfy
demand in consecutive periods, say periods r, r + 1, r + 2, . . . , s. However, due to pro-
duction capacity limits, it is not true that production in period t will necessarily satisfy
all of the demand in periods r and s. Indeed, this observation leads to a dynamic program
where the states are the initial inventory levels in the time periods, and the greedy algo-
rithm is used within the dynamic program to determine the optimal demands satisfied
between periods r and s given the initial inventory levels of those two periods. Of course,
this algorithm is exponential and may not be efficient for large problem instances.

There are a number of limitations to the model that we consider. For example, in this
paper we consider dynamic pricing in a monopolistic scenario. Clearly a more realistic sce-
nario accounts for price competition. To date, few models have examined dynamic pricing
under systemic constraints such as production capacity while also considering competition;
this represents an ongoing area of challenge and interest. In addition, our research in this
paper does not consider strategic buying practices, where customers time their purchases
according to the price. Indeed, reality suggests that some customers will purchase strate-
gically while others purchase according to immediate need. Incorporating this behavior
in a multi-period setting is also a significant challenge but one of interest to researchers
and industry alike. Finally, the model we present assumes that customer demand behaves
according to deterministic demand curves. Adding a stochastic component to demand is
an ongoing research interest of ours; more discussion of our stochastic pricing models is
available in Swann [20].

4. Analysis for managerial insights

In this section, we try to provide insights for practitioners regarding dynamic pricing policies
in manufacturing. We quantify the effect of dynamic pricing on profit as well as identify
contributors to the change in profit. Other impacts of dynamic pricing are considered, in
particular, the effect of pricing policies on sales. We also examine the amount of variability in
price observed under an optimal dynamic pricing policy and the frequency of price changes
needed to attain the profit potential. We consider the effects that product characteristics
have on the performance of dynamic pricing, and we consider the application of dynamic
pricing to multiple products.

4.1. Computational details

To generate insights about dynamic pricing, we compare the solution from the dynamic
pricing problem PP, with the solution obtained from a fixed price problem where only a
single price is allowed for all of the periods.
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The fixed price problem, which requires a single price for all periods and integer demands,
is referred to as Problem DFP. Problem DFP has a non-linear objective and integer variables,
so we also find it useful to introduce Problem LPFP, which is the linear relaxation of Problem
DFP.

The profit potential due to dynamic pricing is defined as Z∗
P P/Z∗

DF P − 1, where Z∗ indi-
cates the optimal objective value of the problem being solved. This indicates the additional
profit that may be obtained through using a different price in every time period. However,
since Problem LDFPis much easier to solve than Problem DFP, and since we know that
Z∗

F L P ≥ Z∗
F P , we know that the profit potential due to dynamic pricing is at least as large

as Z∗
P P/Z∗

L DF P −1. We use this ratio in all computation results unless otherwise indicated.
Indeed, we solved a number of cases of Problem DFP using a non-linear integer solver
available at NEOS and found the profit potential ratios to be almost identical.

In the analysis, we examine five demand scenarios, displayed in Figure 3: two types
of seasonality, increasing mean, decreasing mean, and sawtooth. The first seasonality case
(SEAS1) is based on seasonal variability in demand experienced in the automotive industry.
Generally, there is low demand for cars in the winter, high in the late spring, etc. This scenario
incorporates quarterly seasonality factors, with some variability of demand within each of
the quarters. The second seasonality case (SEAS2) is similar, except that high demand
occurs at the beginning of the horizon. This example is applicable to some retail clothing
industries such as sporting goods; sales of ski equipment are generally high in the winter
and low in the summer.

The increasing mean scenario (INCMEAN) occurs if sales undergo a learning, or word-of-
mouth, effect, for example, a musical CD that builds in sales as satisfied customers influence
friends to buy. Demand in high technology industries-like computer manufacturing-leads
to the decreasing mean scenario (DECMEAN), where sales decline as newer products
cannibalize sales of older products. The sawtooth scenario (SAW), which contains some
randomness in the pattern, is not motivated by a particular example but was chosen as a
contrast to the other demand scenarios.

Figure 3. Demand scenarios: Variabilities represent different product types.
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The demand curve used in the analysis represents the demand of a typical mid-size car in
a monthly period. This demand curve, which is a linear function of price, is referred to as
the “standard demand curve”. Variability in customer demand is effected through changes
in the demand curve parameters and thus in the demand curve itself. For each of the demand
scenarios, the demand curve varied in each period, but the average curve over the entire 12
period horizon was the standard curve. There are no bounds on demand for the scenarios
analyzed, and therefore there were no lost sales in all cases discussed in the computational
study.

Three levels of demand variability were examined for each of the scenarios namely, low,
medium, and high; the medium variability case is displayed in Figure 3. The variability
levels correspond to the method described in the Appendix. Production cost is that of a
typical mid-size car. Capacity was set to be 75% of the demand level that maximizes profits
with no capacity constraints, or the optimal uncapacitated demand. Holding cost in each
period was 1.5% of the optimal price determined by the optimal uncapacitated demand.

4.2. Insights about dynamic pricing

In the following, we describe the impact of dynamic pricing on profit, including the sources
of the additional profit potential, as well as the impact on variability in price and variability
in sales. We also examine how much of the total additional profit potential can be achieved
through a few price changes.

4.2.1. Impact of dynamic pricing on profit The profit potential due to dynamic pricing
depends on the type of demand scenario as well as the amount of demand variability. Overall,
our analysis indicates that additional profit potential due to dynamic pricing ranges from
1–7% over and above the optimal fixed pricing profit.

Clearly, if demand is more variable, we should expect a greater potential benefit from
dynamic pricing (Figure 4). For the first seasonality scenario, low demand variability leads

Figure 4. Profit potential by scenario type and variability level.
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to 0.8% profit potential, compared to 2.7% for high demand variability. Intuitively this
makes sense, as dynamic pricing has increased flexibility in each period, allowing for a
better match between supply and demand. Put differently, with no variability in the supply
chain the optimal policy does not vary over time, and hence the profit potential due to
dynamic pricing must be insignificant.

Profit potential also depends on the type of demand variability. We find that profit potential
is largest in SEAS2 and DECMEAN. Only in those scenarios is the demand significantly
higher at the beginning of the horizon than the available production capacity. Therefore,
we conclude that dynamic pricing has its largest potential if demand is high relative to
capacity at the beginning of the horizon. This is also intuitive since the manufacturer has
the largest potential to increase profits through dynamic pricing if demand cannot be filled
out of inventory or production. On the other hand, a fixed pricing strategy performs quite
well in the SEAS1 or INCMEAN scenario because the manufacturer can build inventory
in the slow season and sell it in peak season. In addition to larger profit potential under
the DECMEAN scenario, dynamic pricing is easier to implement in this scenario, since
customers are much more accepting of price drops over time than price increases. Overall,
we conclude that the manufacturer should determine the type of demand variability before
implementing a costly dynamic pricing system.

Earlier results also indicate that the profit potential depends on the amount of available
capacity; specifically, the profit potential often increases as available capacity decreases. It
is important to point out, that in general, the automotive industry suffers from over-capacity.
However, there are particular cases where this is not true. For example, production capacity
for large trucks in general, and specific models in particular is quite limited. As described
before, Chrysler’s PT Cruiser provides an example of this, where production capacity was
much less than demand for the vehicle.

4.2.2. Sources of profit potential. The question remains as to where the increase in profits
(Figure 4) is obtained. For the case of medium variability, Figure 5 depicts the contribution
to the profit potential due to production cost, inventory cost, change in revenue due to change
in sales, and change in revenue due to change in price. The change in revenue from fixed
pricing to dynamic pricing is calculated as follows:

Revenue Change due to Sales = (Dynamic Sales − Fixed Sales) ∗ Dynamic Price

Revenue Change due to Price = Fixed Sales ∗ (Dynamic Price − Fixed Price)

where the Dynamic Price is calculated as the weighted average price over the horizon.
Indeed, the entire change in revenue from fixed to dynamic pricing is simply the sum of the
two values. Note in the figure that the total contribution to profit potential is normalized to
100%. Contributions above the x-axis indicate an increase in profit potential due to dynamic
pricing; contributions below the x-axis show a decrease in profit potential. For example,
if the contribution of inventory cost appears above 0, it implies that inventory costs for
dynamic pricing were lower than for fixed pricing.

The graph yields several insights about dynamic pricing policies. First, profit potential
is due to a number of factors, and the source of the potential is not always the same for
every scenario. For example, in SEAS1 the potential is largely due to increased revenue
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Figure 5. Sources of profit potential by scenario type.

from increased sales volume, but in the INCMEAN scenario, the potential is attributed
to a decrease in inventory costs. This suggests that rules of thumb and heuristics applied
independently of the demand structure are likely to work badly.

While the source of profit potential is not the same in every scenario, in most cases
revenue due to sales volume shows a positive profit contribution. This implies that sales
volume, and hence market share, is generally higher for dynamic pricing than for fixed
pricing. Of course, an increase in sales volume is accompanied by an increase in production
cost and a decrease in price (due to the structure of the demand curve).

4.2.3. Variability of sales. As mentioned above, the automotive industry is moving to a
build-to-order environment and dynamic pricing is a potential tool to match supply and
demand. However, to evaluate dynamic pricing in a build-to-order environment, it is also
important to consider the variability of sales because sales variability may lead to increased
costs throughout the supply chain and increased variability in cash flow.

Figure 6 shows sales over time under a fixed pricing policy for each of the demand
scenarios with medium variability. In contrast, Figure 7 depicts sales over time for the
optimal dynamic pricing solution. Clearly, dynamic pricing reduces the sales variability
significantly in all demand scenarios and can, therefore, be an effective tool when inventory
buffers are not available to absorb demand variability. Similarly, dynamic pricing reduces
production variability and therefore the Bull whip Effect.

4.2.4. Variability in price Customers may not readily accept large changes in price for the
same products. Thus, another important performance measure for dynamic pricing is the
variability in price that results from the optimal policy.
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Figure 6. Variability of sales under fixed pricing policy.

Figure 7. Variability of sales under dynamic pricing policy.

Figure 8 depicts the optimal dynamic price over time, as a percentage of the optimal
fixed price for the medium variability case. Prices vary by as much as 11% over time. Since
it is very difficult to get customers to accept price increases, it would be most difficult to
implement dynamic pricing in the INCMEAN scenario, and the easiest in the DECMEAN
scenario. Fortunately, the benefits of dynamic pricing are the largest in the DECMEAN and
the smallest in the INCMEAN scenario. For the scenario relevant to the automotive industry
(SEAS1), price varies by as much as 8% with the peak in the spring. This reflects a variability
of up to $1200 on a typical midsize car—an amount similar to typical incentives. We
conclude therefore that dynamic pricing is an implementable alternative in the automotive
industry.

The figure depicting the optimal dynamic price over time also suggests guidelines for de-
termining prices according to the type of scenario. For instance, in the DECMEAN scenario
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Figure 8. Variability of optimal prices under dynamic pricing policy.

demand over time decreases, and so does the optimal price over time. This combination of
demand and price behavior are seen for products like fashion clothing or laptop computers.
In the SEAS1 scenario, where demand begins low, increases, and decreases again over the
horizon, the optimal price follows a similar pattern (low, high, low). Similar structures of
optimal prices can be determined for the other scenarios.

4.2.5. Frequency of price changes In addition to being sensitive to price changes, cus-
tomers may also be sensitive to the frequency of price changes, in particular for expensive
items such as cars. However, it is possible to gain a significant profit potential from dynamic
pricing without changing the price frequently. To illustrate this point, observe that in the
previous analyses, we allowed price changes in any of the 12 periods (11 changes). In this
section, we compare this scenario to scenarios with 1, 2, 3, and 5 price changes for the
medium demand variability case. Note that 0 price changes constitutes fixed pricing and
11 price changes refers to our previous scenario, which we will refer to as “total dynamic
pricing”.

Our model requires that the price changes be evenly spaced. That is, if we allow 1 price
change during the 12 periods of a year, this price change has to occur after six months. This
clearly limits the flexibility of our model. Thus, our results in this section are lower bounds
on the profit potential that can be achieved.

For each demand scenario, we determine the percentage of the profit potential due to
dynamic pricing relative to the profit potential that can be achieved through total dynamic
pricing. The results are shown in Figure 9. The graph shows that a significant additional
profit can be obtained with a few price changes. Most of the time, a price change every 3
periods results in 80% or more of the profit potential.

Unlike the other scenarios, in Sawtooth significant profit potential was not obtained until
5 or even 11 price changes over the horizon. One likely reason for this is depicted in Figure
10, which shows the actual profit potential achieved by each of the price changes. In the
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Figure 9. Percentage of potential profit increase due to number of price changes.

Figure 10. Profit potential due to number of price changes.

Sawtooth scenario there was simply less potential profit to attain (0.4% for the case with
medium variability). Additionally, the nature of that scenario (demand alternating up and
down) leads to the intuition that price changes are needed in every period to match supply
and demand most efficient.

The graph also indicates that, when evenly spaced, more frequent price changes do not
always result in higher profit potential. For example, for SEAS1, 3 price changes achieves
90% of the profit potential, but 5 price changes only obtains 87% of the potential. This is
because of the aforementioned characteristic of our model, where pricing is required to be
evenly spaced over the horizon. Price changes that are evenly spaced are not necessarily able
to match the variability in demand when it occurs. If the 5 price changes in this example
occurred during any periods, then additional profit potential would have been obtained.
However, even considering this limitation, we conclude that in our scenarios, most benefits
of dynamic pricing can be achieved through a few price changes.
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4.2.6. Multiple products Many firms manage portfolios with numerous products; thus
the performance of dynamic pricing as the number of products increases is important to
assess. In the analysis of multiple products, we assume that all products experience the same
seasonality effects and that production capacity is shared among products. We also assume
that there are no diversions among products. That is, a change in the price for one product
does not affect the demand for another product. In this scenario, demand curves represent
vehicles that appeal to various consumer market segments, such as luxury car, SUV, small
pickup, etc.

The formulation of this problem is a simple extension of the single product pricing
problem. Each of the decisions: demand or price, production, and inventory, must now be
made for each product. We assume that the products share common production capacity in
each period, so the production capacity constraint applies to the sum of all products in a
period. The demand curves for each product are independent of each other. A full outline
of a general multiple product problem is provided in Swann [20].

As described in Section 3.4, the dynamic pricing multiple product problem without
demand diversions may be solved using a greedy algorithm. Alternatively, if the demands
are large, a linear model will be quite close to the optimal integer solution. For the test
cases that follow, we solve the problems using AMPL with the MINOS solver. The multiple
product problem with a fixed price over time for each product was solved in a similar
way.

The results of dynamic pricing on a multiple product portfolio are shown in Figure 11.
In general, the profit potential from dynamic pricing tends to decreases with the number
of products. Observe that in the DECMEAN1 scenario, the profit potential is highest when
there is one product and lower when there are 18 products. This suggests that balancing
the mix of products in the portfolio may be as important or more important than tweaking
the price of individual products. In the case with many products competing for capacity, a
fixed pricing strategy can use the mix of products to achieve much of the same profit as the
dynamic pricing case. The trends relating profit potential to number of products hold for

Figure 11. Profit Potential for Multiple Products Sharing Capacity.
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cases with increased variability as well; to see this, compare SEAS1 with the same demand
scenario except with higher demand variability (SEAS1, high var).

Of course, this trend does not hold true in all cases. Most notably, dynamic pricing on
two or three products sometimes has a better performance than dynamic pricing on only
one product. One possible explanation for this is that a little flexibility (here, the ability to
choose the ratio of products in a portfolio), may have a significant effect. It is interesting
to note that this effect may depend on the type of product characteristics. For this example,
SEAS1 has highest profit potential from dynamic pricing with two products, whereas for
DECMEAN, the highest profit potential is with one product.

The scenario called DECMEAN2 is another exception to the trend of decreased profit
potential. In particular, dynamic pricing performs better on the 3-product case than in the 2-
product case. This scenario is similar to DECMEAN1, except that the order of the products
that are added (from 1 to 18) is reversed. The reversed portfolio shows that the relative
profitability of the products that are added to the portfolio also affects the profit potential
due to dynamic pricing.

Although the profit potential from dynamic pricing tends to decrease with the number
of products, the graph also indicates that the profit potential for a particular scenario may
stabilize. As described before, intuition suggests this result is due to the nature of seasonality
of different products and the level of variability of the customer demand.

5. Summary and future directions

In this paper, we describe the current competitive threats to OEMs and the traditional dealer
franchise system. We present a dynamic pricing model that can be applied in a manufacturing
environment, incorporating capacity limitations and inventory holding costs. The model led
to the following insights: (1) profit potential from dynamic pricing can be significant, (2)
dynamic pricing is a useful lever to absorb demand variability, (3) the potential benefits
of dynamic pricing depend on the type of demand variability, (4) in our scenarios, price
changes may be as high as about 10% of fixed price, and (5) a significant profit potential
may be attained with a few price changes. Although these conclusions are based on the
linear demand curve representing a typical mid-size car, computational experiments with
other linear demand curves yield similar insights (see [20]).

The results obtained so far suggest a number of directions for future studies. For example,
in the multiple product case, adding demand diversions among products may lead to further
insights. In addition, we would like to extend our research to general multi-product/multi-
component problems, where multiple products share production capacity and a limited
supply of common parts.

The problem of strategic behavior is also one of considerable interest. Although our
model does not account for it, customers are likely to exhibit strategic behavior in dy-
namic pricing environments, where they plan their buying purchases based on their ex-
pectation of price changes over time. The easiest way to incorporate this is to measure
demand functions in situations where customers are strategizing their purchases; the result
will be higher sensitivity to price changes (in the form of higher demand elasticities for
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instance). However, a more explicit way to model this is to allow demand in each period
to depend on the prices in all of the periods. The impact of this behavior is to reduce
profit relative to what is indicated by our results. This is true since in a model that captures
strategic behavior, customers will plan their purchases so as to buy product at times of low
prices.

We also would like to take the opportunity to discuss future directions from the automotive
industry’s standpoint-however, these extensions could be applied to other manufacturing
industries as well. We see three major areas of interest to the automotive industry: (1)
extending dynamic pricing to options (e.g., sunroof), (2) assessing benefits of revenue
management in the automotive industry, and (3) exploring the consequences of dynamic
pricing in a hybrid make-to-order make-to-stock environment. In the following, we describe
these extensions.

We presented models that integrated production, inventory, and pricing decisions for a
single product. While these models demonstrate the benefits of dynamic pricing on the
vehicle level, it would be desirable to extend those models to dynamic pricing of op-
tions. We suspect that pricing vehicles and options simultaneously while using dynamic
pricing as a lever to smooth demand for vehicles and options would increase profits
significantly.

In addition, we would like to encourage work to explore the impact of service differen-
tiation in the manufacturing industry. For more than two decades, revenue management,
combining dynamic pricing with inventory control and service differentiation, has been a
major contributor to the airlines’ profits. We believe that the manufacturing industry could
benefit tremendously from applying revenue management techniques to increase revenues
through service differentiation. Specifically, applying revenue management to the car in-
dustry suggests that customers who are willing to wait longer to get a vehicle will pay a
lower price than customers who want to get their vehicle immediately. Another possibility
for revenue management in the automotive industry is to differentiate based on demograph-
ics such as car ownership history, where the amount and timeframe of the discount are the
decision variables.

Finally, we are interested in the effects of dynamic pricing on a hybrid make-to-order
make-to-stock environment. It is crucial for a manufacturer to know how much production
should be allocated to replenishing dealer inventory and how much should be allocated to
orders to maximize profits. In addition, we would be interested in models that consider
two-agent (manufacturer and dealer) pricing models for vehicles and options. The inter-
actions in a hybrid distribution system become much more complex and, at this point,
it is even unclear whether a vehicle in stock should be more expensive (since the cus-
tomer gets faster service) or less expensive (since the dealer tries to keep high inventory
turns).

While it is obvious that the models presented here are too simplistic to be used in the
actual pricing of automobiles, we hope that the analysis demonstrates to both practitioners
and researchers of the value of such models to gain insight into actual pricing decisions. In
addition, we hope that we have stimulated interest in the arena of dynamic pricing and look
forward to the continued applications of OR techniques in an e-tailing environment.
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Appendix A: Application of the greedy algorithm to the pricing problem

In the following we consider the specific application of the greedy algorithm to the pricing
problem, Problem PP.

• Let D = (0, 0, . . . , 0), X = (0, 0, . . . , 0) and f (D) = 0.
• Begin loop: For all i, i = 1, 2, . . . , T :

– Given i , consider D + ei and solve Problem PP(D + ei ) (e.g., using a network flow
model) with f (D +ei ) as its optimal solution value. Let X +e j be the new production
plan, corresponding to demand D + ei .

– Calculate the marginal profit contribution of one unit increase of demand: M P D
i =

f (D + ei ) − f (D).

• Choose the period k which maximizes the profit contribution, that is, choose k such that
M P D

k is positive and is the maximum over all periods. If no such period exists, stop the
algorithm. X + e j is the production plan associated with D + ek .

• Determine the maximum increase in demand possible in period k.

– Begin loop: Let D = D + ek and X = X + e j .
– Calculate M P D

k , the marginal profit of the additional unit of demand.
– Stop loop when one of following occurs:

* Production is greater than maximum capacity, X j > Q j ,
* The marginal profit in a period other than kis higher than the marginal profit at this

level of demand: M P D
k < M P D

i for some period i,
* The marginal profit is negative, M P D

k < 0.

– After loop ends, let D = D − ek and X = X − e j , the last values before this loop.

• Return to the loop above, over all periods.

The greedy algorithm may also be modified to take into account lower and upper bounds
on demand and price.

Appendix B: Details of demand curves

The demand curve used in the analysis is linear, and it is a function of the following three
paramaters: the base price pbase the base demand or volume vbase, and the demand elasticity,
E . The demand elasticity is the percentage change in quantity/percentage change in price.
The curves are determined by the following equation, where V new and pnew are the actual
demand and price, respectively:

V new = vbase + E ∗ (vbase/pbase) ∗ (Pnew − Pbase)
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As described before, the data representing a typical mid-sized car establishes the standard
demand curve. Let the base demand and demand elasticity that determine the standard
demand curve be referred to as the standard parameters. To obtain the variable demand
curves, the base demand and demand elasticity in each period vary as a percentage of the
standard values. In certain scenarios, namely INCMEAN and DECMEAN, only the base
demand varies over the horizon.

For the analysis, three levels of demand variability are considered: low, medium, and high.
The corresponding percent variation levels of base demand as a function of the standard
base demand are 90–110%, 75–125%, and 60–140%. The specific percentages used for
each scenario are available in Swann (2001). To ensure that demand elasticity values were
realistic, the variation was half as much as the base demand. Specifically, the demand
elasticity varied as a percentage of the standard elasticity within the following ranges: 95–
105%, 87.5–112.5%, and 80–120%. The periodic variation was determined according to
the five demand scenarios described in the paper. In all scenarios, the average base demand
elasticity over the horizon were equal to the standard parameters.
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