
Journal of Elasticity
https://doi.org/10.1007/s10659-024-10086-5

R E S E A R C H

Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder

Alexander Suvorov1

Received: 5 February 2024 / Accepted: 29 August 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
In this paper a porous fluid-saturated cylinder subjected to a finite twist deformation is an-
alyzed. The material of the skeleton of the porous cylinder is hyperelastic of Ogden-type
and assumed nearly incompressible. The twist is applied to the cylinder in a fast rate so that
the fluid pressure develops in the pores of the cylinder. The main objective of this paper is
to study the stresses and the fluid pressure in the cylinder over a short period of time after
the twist has been applied, or to study the initial response. The analytical expressions for
the stress components and the fluid pressure are derived for Ogden material with arbitrary
material parameters. The quantitative picture for the stress state is given and the signs of the
normal stresses are explained. The stress arising in some imaginary fibers that were initially
parallel to the axis of the cylinder is obtained. The present problem is similar to the torsion
problem of a totally incompressible and nonporous cylinder in a sense that the total stresses
are identical in both problems. But decomposition of the total stresses into the fluid pressure
and the effective stresses, which is specific for the fluid-saturated body, can be found only
using the present analysis.

Keywords Ogden material · Hyperelastic · Torsion · Twisting · Fluid-saturated · Cylinder ·
Fluid pressure · Stresses

Mathematics Subject Classification 74

1 Introduction

The mictostructure of the porous cylinder considered in this paper consists of the matrix
phase (solid phase) and the fluid that fills in the pores. Both the solid and the fluid phases
are assumed incompressible. The fluid can move within the pore space and can flow out
of the body or it can flow into the body. When the latter happens the volume of the body
changes although the individual phases are incompressible.

The fluid can experience stress under the load so there is a quantity called the fluid
pressure. When the fluid leaves the body, in the long term the fluid pressure usually goes
to zero.
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When the fluid pressure is small (or when the pores are empty), one can refer to the
remaining structure consisting of the voids and the solid phase as the skeleton. The skeleton
itself is usually considered as a compressible material since the volume of the pores should
decrease, for example, when the fluid flows out of the body.

Ogden material model for incompressible materials is introduced in [1]. In this model the
strain energy of the material is assumed to be a function of strain invariants (λα

1 +λα
2 +λα

3 −
3)/α, where α is one of the material parameters and λi are principal stretches. In particular,
if α = 1, Varga material is recovered, and if α = 2, the neo-Hookean material is obtained.

Many strain energy functions can be used to describe elastic behavior of the compress-
ible skeleton of the poroelastic body. The most famous one is neo-Hookean strain energy
function (with α = 2). For this case the shear modulus μ and the compressibility parameter
D are the two remaining elastic parameters that need to be specified. In this paper we focus
on Ogden strain energy function, which can be considered as the generalization of the neo-
Hookean material. In addition to two material constants μ and D, there is a third parameter
α.

In the recent paper by Selvadurai and Suvorov [2] the large twist deformation of a porous
fluid-saturated cylinder was considered. The twist is assumed to be applied to the cylinder
within a relatively short interval of time so that the rate effects associated with the fluid
motion are present. In [2] the authors assumed the neo-Hookean material model for the
skeleton.

Two distinct responses of the poroelastic body can usually be identified in the situation
when the deformation is applied suddenly (in a fast rate). The first one is the short-term
response or instantaneous response. The second one is the long-term response.

In the instantaneous response the fluid cannot move relative to the skeleton of the poroe-
lastic body. Thus, it cannot leave the body and the volume of the cylinder remains un-
changed. Furthermore, any point which had the radial coordinate R will have the same
radial coordinate after the deformation. Due to this simple geometrical description of the
deformation, studying the instantaneous response is usually much simpler than the analysis
of the long-term response.

In the long-term response the role of the fluid in supporting the overall stress is usually
small, the pressure in the fluid is small. This process of fluid pressure reduction is often
referred to as fluid pressure dissipation. However, the volume of the cylinder has now been
changed due to the fluid migration. In this case the radial coordinate of a point after the
deformation r will not be equal to the initial radial coordinate R of this point.

This paper focuses only on the instantaneous response of the cylinder subjected to the
suddenly applied large twist deformation. The material of the skeleton is assumed to be of
Ogden type. It should be noted that the analysis presented in this paper can also be applied
to a homogeneous incompressible cylinder subjected to the finite twist deformation.

Horgan and Murphy [3] considered in detail pure torsion of an incompressible (and ho-
mogeneous) cylinder with Ogden-type strain energy function. They obtained closed form
expressions for the axial force and twisting moment for a prescribed amount of twist (angle
of rotation) of the cylinder. Since the cylinder is a simple homogeneous material, there is
no fluid pressure in it. In contrast this paper does not include the results for the axial force
and the twisting moment, but rather presents expressions for the stresses and fluid pressure
in the cylinder subjected to a twist.

As was mentioned above studying the long-term response of the poroelastic body (or the
transient response) is more difficult and usually involves finite element simulations. Certain
analytical results, however, can be obtained if the skeleton is assumed to be only slightly
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Fig. 1 Initial and deformed configurations of the cylinder when the upper cross-section is rotated by an angle
equal π/2 and π

compressible. Small et al [4] solved the problem of finite torsion of fluid-saturated poroelas-
tic cylinder for this case. They obtained analytical results for slightly compressible hypere-
lastic skeleton using the perturbation techniques and verified the solution using the FEBio
finite element software.

Possible application areas for which the present theory of large torsional deformations is
relevant include: torsion of rock specimens in laboratory described in [5], torsion of marine
cables and their buckling due to torsional instability studied in [6] and [7], supercoiling of
long DNA molecules in a cell ([7]), torsion of biological tissues both in normal condition
and in pathological condition. Torsional instability of solid cylinders was studied in [8] and
[9].

Finally, it is important to mention, that except torsion problem, Selvadurai and Su-
vorov studied application of many other deformation modes to porous fluid-saturated bodies
with hyperelastic skeleton. For example in [10] they studied compression of porous fluid-
saturated 1D column and a sphere. Their another paper [11] is devoted to inflation of fluid-
saturated cylindrical shell (tube).

2 General Equations for a Twisted Cylinder

Consider a cylinder with radius A and length L cccupying the region 0 ≤ R ≤ A, 0 ≤ Z ≤ L.
Each point has the coordinates R, �, Z in the cylindrical coordinate system.

When the cylinder is twisted each cross-section of the cylinder is rotated by a certain
angle. We assume that the angle of rotation is linearly changing along the length of the
cylinder. Define τ as the difference in angles of rotation of the cross-sections of the cylinder
at a unit distance apart from each other. Then, the deformed coordinates of the cylinder r ,
θ , z (in the cylindrical coordinate system) can be described by the following functions

r = r(R), θ = � + τZ, z = Z. (1)

If the cylinder volume does not change, as in case of the short-term response of the cylinder
subjected to a sudden twist, then r = R.

In Fig. 1 we show the initial and twisted configurations of the cylinder and also some
imaginary fibers that are initially vertical. For the example shown in the figure, in the twisted
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state the upper cross-section is rotated by an angle π/2 (or π ), the cross-section at mid-
length is rotated by an angle twice smaller and so on. For the geometry shown in the picture
with L/A = 3.2, τA = 0.491 for the middle cylinder and τA = 0.9817 for the right cylinder.

Taking into account (1), the deformation gradient tensor is given by

F =
⎛
⎝

1 0 0
0 1 τR

0 0 1

⎞
⎠ . (2)

Therefore, if we take a vector parallel to the Z-axis with the coordinates (0,0,1)T lying
on a lateral surface of the cylinder R = A and observe how it deforms, after the deformation
it will have the coordinates (0, τA,1)T (according to the third column of the tensor F). The
last two coordinates are measured on the lateral surface of the cylinder R = A along the
axes � and Z. Also, the vector tangent to the circumferential direction with the coordinates
(0,1,0)T transforms to (0,1,0)T according to the second column of the tensor F (see also
Fig. 3).

The deformation gradient can be represented as the product of a symmetric stretch tensor
V and some rotation matrix R, i.e., F =VR. Let the eigenvalues of the stretch tensor V be
denoted by λ1, λ2, λ3. These are so-called principal stretches. The eigenvectors are called
principal directions.

The left Cauchy-Green strain tensor B is defined as B =FFT and thus is given by

B =
⎛
⎝

1 0 0
0 1 + τ 2R2 τR

0 τR 1

⎞
⎠ . (3)

We can find eigenvalues and eigenvectors of the tensor B. It is clear that the eigenvalues
of the tensor B are the squares of the eigenvalues of the tensor V, i.e., the squares of the
principal stretches λ2

1, λ2
2, λ2

3. The eigenvectors of the tensor B and the tensor V are the
same, and thus also the principal directions.

By solving the eigenvalue problem for the tensor B, it can be shown that the principal
stretches can be found as

λ1 = λr = 1,

λ2 = 1

2
(τR +

√
4 + τ 2R2),

λ3 = λ−1
2 = 1

2
(−τR +

√
4 + τ 2R2). (4)

Also

λ2
2 = 1 + 1

2
(τ 2R2 + τR

√
4 + τ 2R2),

λ2
3 = 1 + 1

2
(τ 2R2 − τR

√
4 + τ 2R2). (5)

The following connections hold between the principal stretches

λ2 − 1

λ2
= τR, λ3 − 1

λ3
= −τR. (6)
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Fig. 2 Principal stretch λ2(A) as a function of τA

Also

λ2
2 − λ2

3 = τR
√

4 + τ 2R2, λ2
2 + λ2

3 = 2 + τ 2R2, λ2
2λ

2
3 = 1. (7)

Figure 2 shows dependence of the principal stretch λ2 on parameter τA for the surface
R = A, as given by (5). We note that when τA → ∞, the principal stretch is well approxi-
mated by τA. When τA → 0, λ2 is well approximated by 1

2τA + 1.
In addition, it can be shown that in cylindrical coordinate system (r, θ, z) the principal

directions have the following vector representation

n1 = (1,0,0)T , n2 = (0, n,m)T , n3 = (0,−m,n)T , (8)

where m2 + n2 = 1 and m, n can be found from

m2 = 2

4 + τ 2R2 + τR
√

4 + τ 2R2
= 1

λ2
2 + 1

,

n2 = 2

4 + τ 2R2 − τR
√

4 + τ 2R2
= 1

λ2
3 + 1

. (9)

Figure 3 shows deformed shapes of a rectangle lying on unfolded θZ-plane for the values
of twist τA equal to 0.5, 1, 1.5 and 2 (with a solid line). Direction of the vertical side
of the rectangle after the specified deformation was found using the third column of the
deformation gradient tensor (2). This inclined side of the deformed rectangle coincides with
the direction of the fiber, shown in Fig. 1. Note also that the tangent of the angle that this
fiber makes with the horizontal axis is equal to 1/τA.

Along with that, this figure shows principal directions (dashed line) corresponding to the
principal stretch λ2 for the same values of τA. The principal direction n2 was found using
(9). It can be observed that if τA is small, then the principal direction is close to the main
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Fig. 3 Deformed rectangle lying on a θZ - surface (solid line) and the principal direction n2 (dashed line)
for τA = 0.5,1,1.5 and 2

diagonal of the deformed rectangle, but when τA becomes larger, the principal direction is
more aligned with the side of the deformed rectangle.

In a poroelastic body the total normal stresses are usually represented as the sum of the
stresses supported by the skeleton of the body and the stresses in the fluid. If we define the
fluid pressure p as the stress in the fluid multiplied by −1, then this decomposition for all
the normal stresses takes the form

σnormal = σ ′
normal − p, σshear = σ ′

shear . (10)

Here the stresses with the prime sign are the effective stresses or the stresses supported by
the skeleton. The stresses without prime are the total stresses. The fluid pressure affects only
the normal stresses.

Similar decomposition can be written down for homogeneous and incompressible cylin-
der, separating the total stresses into two components σ ′

normal and −p but in this case it is not
easy to find the physical meaning for p (for example, it is called an arbitrary scalar field in
[3]) and for the stresses with prime sign. For convenience, we would still refer to the stresses
with prime as effective stresses.

The effective normal stresses along the principal directions are called the principal
stresses and denoted by σ ′

1, σ ′
2, σ ′

3. Since the first principal direction is coincident with the
radial direction, σ ′

1 = σ ′
rr .

With the knowledge of the principal directions and principal stresses, the effective
stresses in the cylindrical coordinate system can be derived by using usual transformation
rules as

σ ′
rr = σ ′

1,

σ ′
θθ = n2σ ′

2 + m2σ ′
3 = 1

λ2
3 + 1

σ ′
2 + 1

λ2
2 + 1

σ ′
3,
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σ ′
zz = m2σ ′

2 + n2σ ′
3 = 1

λ2
2 + 1

σ ′
2 + 1

λ2
3 + 1

σ ′
3. (11)

Here n is the cosine of the angle between the principal direction n2 and the θ -axis. Similarly,
it can be treated as the cosine of the angle between the principal direction n3 and the z-axis.

Therefore, the effective normal stress along an arbitrary direction defined by an angle β

with respect to the principal direction n2 can be evaluated as

σ ′
d = cos2 βσ ′

2 + sin2 βσ ′
3. (12)

Similarly, if β is the angle between the desired direction and the principal direction n3, then
the normal stress along the desired direction is given by

σ ′
d = sin2 βσ ′

2 + cos2 βσ ′
3. (13)

Note that for large τ , λ2 → ∞ and λ3 → 0, and thus σ ′
θθ → σ ′

2 and σ ′
zz → σ ′

3.
Consider now equilibrium equation in the radial direction. The equilibrium equation in

terms of the total stresses can be written as

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0, (14)

and we can assume again that r = R. On the other hand, this equation can be written in
terms of the effective stresses

dσ ′
rr

dr
+ 1

r
(σ ′

rr − σ ′
θθ ) − dp

dr
= 0. (15)

On the external surface of the cylinder R = A, the total radial stress is assumed zero

σrr (A) = 0. (16)

Therefore, from (14) the total radial stress can be found as

σrr =
∫ A

R

σ ′
rr − σ ′

θθ

R
dR, (17)

where we have used the fact that σrr − σθθ = σ ′
rr − σ ′

θθ due to definition of the effective
stress.

Therefore, for evaluation of the radial stress we need first to evaluate

σ ′
rr − σ ′

θθ = σ ′
1 − 1

λ2
3 + 1

σ ′
2 − 1

λ2
2 + 1

σ ′
3 = σ ′

1 − λ2
2

λ2
2 + 1

σ ′
2 − 1

λ2
2 + 1

σ ′
3, (18)

where we have used (11).
The fluid pressure is then found using the definition of the effective radial stress

p = σ ′
rr − σrr = σ ′

rr −
∫ A

R

σ ′
rr − σ ′

θθ

R
dR. (19)

Note that the fluid pressure does not have to be zero at the external surface for the short-term
response of the cylinder to the sudden twist.
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After finding the fluid pressure, the axial and hoop stresses can be found as

σzz = σ ′
zz − p = 1

1 + λ2
2

σ ′
2 + 1

1 + λ2
3

σ ′
3 − p = 1

1 + λ2
2

σ ′
2 + 1

1 + λ2
3

σ ′
3 − σ ′

rr + σrr ,

σθθ = σ ′
θθ − p = 1

1 + λ2
3

σ ′
2 + 1

1 + λ2
2

σ ′
3 − p = 1

1 + λ2
3

σ ′
2 + 1

1 + λ2
2

σ ′
3 − σ ′

rr + σrr . (20)

The shear stress is easier to find than the normal stresses. Using the transformation rules
for stress tensor components, similar to (11), and the fact that there is no shear stress on the
principal planes, the shear stress σθz can be found as

σθz = nmσ ′
2 − nmσ ′

3 = nm(σ ′
2 − σ ′

3). (21)

From (9) it can be shown that

nm = 1√
4 + τ 2R2

. (22)

3 Specializing Results to Ogden Material

Assume now that the skeleton of the poroelastic cylinder is a nearly incompressible material
of Ogden type. Its strain energy is given in terms of the principal stretches as

W1 = 2μ

α2
(J

−α/3
3 (λα

1 + λα
2 + λα

3 ) − 3) + 1

D
(J3 − 1)2, (23)

where μ, D, α are the material constants and J3 = λ1λ2λ3. Due to the fact that the volume of
the twisted cylinder does not change, J3 = 1. If α = 2, we recover the case of neo-Hookean
material.

The effective principal stresses (the stresses in the skeleton) are derived from the strain
energy function as

σ ′
1 = λ1

J

dW

dλ1
, σ ′

2 = λ2

J

dW

dλ2
, σ ′

3 = λ3

J

dW

dλ3
. (24)

Therefore, for the skeleton with the strain energy function W1 we can find the effective
principal stresses as

σ ′
1 = σ ′

rr = 2μ

α2
(−α

3
(1 + λα

2 + λα
3 ) + α),

σ ′
2 = 2μ

α2
(−α

3
(1 + λα

2 + λα
3 ) + αλα

2 ),

σ ′
3 = 2μ

α2
(−α

3
(1 + λα

2 + λα
3 ) + αλα

3 ). (25)

We have derived these equations by substituting the strain energy (23) into (24). We have
also taken into account the fact that λ1 = 1, λ2λ3 = 1. From (25) it follows that all effective
stresses are equal to zero at the center of the cylinder R = 0 since at the center λ1 = λ2 =
λ3 = 1 and all the stretches are equal to 1.
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In case of a totally incompressible and homogeneous material, the strain energy of Ogden
type is given by

W0 = 2μ

α2
(λα

1 + λα
2 + λα

3 − 3). (26)

When the strain energy function W0 is used, the effective stresses can be obtained from (24)
as

σ ′
1 = σ ′

rr = 2μ

α
, σ ′

2 = 2μ

α
λα

2 , σ ′
3 = 2μ

α
λα

3 . (27)

Note that these effective stresses are not equal to zero at the center of the cylinder R = 0.
We now proceed to evaluation of the total radial stress σrr . When substituting the princi-

pal stresses σ ′
2, σ ′

3 for the Ogden material from (25) into (18)

σ ′
rr − σ ′

θθ = σ ′
1 − λ2

2

λ2
2 + 1

σ ′
2 − 1

λ2
2 + 1

σ ′
3,

we find that the terms than contain (1 +λα
2 +λα

3 ) cancel out. After a few simplifications and
using the fact that λ2λ3 = 1, we can obtain

σ ′
rr − σ ′

θθ = −2μ

α

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)
. (28)

The total radial stress can then be obtained by integration of σ ′
rr − σ ′

θθ as follows

σrr =
∫ A

R

σ ′
rr − σ ′

θθ

R
dR =

− 2μ

α

∫ A

R

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)

dR

R
. (29)

Note that this expression for the total radial stress is also valid for a totally incompressible
material of Ogden type with the strain energy function W0.

To compute this integral, the change of variables R → λ2 must be made. Using the fact
that (see [3])

λ2 − λ−1
2 = τR,

we can easily find that

dR = 1

τ
(1 + 1

λ2
2

)dλ2, (30)

and consequently

dR

R
= 1 + λ2

2

λ2
2 − 1

dλ2

λ2
. (31)

Therefore, after the change of variables under the sign of the integral, we obtain the radial
stress as

σrr = −2μ

α

∫ λ2(A)

λ2(R)

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)

1 + λ2
2

λ2
2 − 1

dλ2

λ2
=
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− 2μ

α

∫ λ2(A)

λ2(R)

(1 − λα
2 )(1 − λ2+α

2 )

λα+1
2 (λ2

2 − 1)
dλ2. (32)

Here the limits of integration are the stretches λ2 evaluated at the location R and at the
external surface R = A for a given twist τ

λ2(R) = 1

2
(τR +

√
4 + τ 2R2), λ2(A) = 1

2
(τA +

√
4 + τ 2A2). (33)

For α which is an even integer, i.e., α = 2,4,6 . . ., the integral defined as

I =
∫

(1 − λα
2 )(1 − λ2+α

2 )

λα+1
2 (λ2

2 − 1)
dλ2 (34)

can be evaluated as

α = 2 : 1

2
(λ2

2 + 1

λ2
2

),

α = 4 : 1

2
(λ2

2 + 1

λ2
2

) + 1

4
(λ4

2 + 1

λ4
2

),

α = 6 : 1

2
(λ2

2 + 1

λ2
2

) + 1

4
(λ4

2 + 1

λ4
2

) + 1

6
(λ6

2 + 1

λ6
2

),

α = 8 : 1

2
(λ2

2 + 1

λ2
2

) + 1

4
(λ4

2 + 1

λ4
2

) + 1

6
(λ6

2 + 1

λ6
2

) + 1

8
(λ8

2 + 1

λ8
2

), (35)

and so on. For α which is an odd integer, i.e., α = 1,3,5 . . ., the integral takes the form

α = 1 : (λ2 + 1

λ2
) + ln

λ2

(1 + λ2)2
,

α = 3 : (λ2 + 1

λ2
) + 1

3
(λ3

2 + 1

λ3
2

) + ln
λ2

(1 + λ2)2
,

α = 5 : (λ2 + 1

λ2
) + 1

3
(λ3

2 + 1

λ3
2

) + 1

5
(λ5

2 + 1

λ5
2

) + ln
λ2

(1 + λ2)2
,

α = 7 : (λ2 + 1

λ2
) + 1

3
(λ3

2 + 1

λ3
2

) + 1

5
(λ5

2 + 1

λ5
2

) + 1

7
(λ7

2 + 1

λ7
2

) + ln
λ2

(1 + λ2)2
, (36)

and so on.
For example, if α = 6, the radial stress can be computed as

σrr (R) = −μ

3
[1

2
λ2

2(A) − 1

2
λ2

2(R) + 1

4
λ4

2(A) − 1

4
λ4

2(R) + 1

6
λ6

2(A) − 1

6
λ6

2(R)+
1

2λ2
2(A)

− 1

2λ2
2(R)

+ 1

4λ4
2(A)

− 1

4λ4
2(R)

+ 1

6λ6
2(A)

− 1

6λ6
2(R)

]. (37)

Note that the radial stress is negative since the terms like 1
nλn

2 (A)
− 1

nλn
2 (R)

are small, and

(λn
2(A) − λn

2(R))/n are positive.
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Significant simplifications are possible if α = 2 and α = 4. This is true due to the fact
that

λ2
2 + 1

λ2
2

= 2 + τ 2R2, (λ2
2 + 1

λ2
2

)2 = λ4
2 + 1

λ4
2

+ 2.

For these cases, it can be shown that

α = 2 : σrr = −μ

∫ A

R

τ 2R2 dR

R
= −μ

2
τ 2A2(1 − (

R

A
)2),

α = 4 : σrr = −μ

2

∫ A

R

[τ 4R4 + 3τ 2R2]dR

R
=

− 3μ

4
τ 2A2(1 − (

R

A
)2) − μ

8
τ 4A4(1 − (

R

A
)4). (38)

Note that the radial stress is negative.
After finding the radial stress, the fluid pressure can be found as

p = σ ′
rr − σrr = σ ′

1 −
∫ A

R

σ ′
rr − σ ′

θθ

R
dR. (39)

Using (20) the axial stress can be expressed in terms of the principal stresses as follows

σzz = σ ′
zz − p = 1

1 + λ2
2

σ ′
2 + 1

1 + λ2
3

σ ′
3 − p = 1

1 + λ2
2

σ ′
2 + 1

1 + λ2
3

σ ′
3 − σ ′

rr + σrr .

The term 1
1+λ2

2
σ ′

2 + 1
1+λ2

3
σ ′

3 −σ ′
rr can be found by substituting the expressions for the principal

stresses for the Ogden material (25). After a few simplifications one can again show that all
the terms containing (1 + λα

2 + λα
3 ) disappear and we have

1

1 + λ2
2

σ ′
2 + 1

1 + λ2
3

σ ′
3 − σ ′

rr = 2μ

α

(1 − λ−α
2 )(λα

2 − λ2
2)

1 + λ2
2

. (40)

Therefore, the axial stress is given by

σzz = 2μ

α

(1 − λ−α
2 )(λα

2 − λ2
2)

1 + λ2
2

+ σrr =

2μ

α

(1 − λ−α
2 )(λα

2 − λ2
2)

1 + λ2
2

− 2μ

α

∫ A

R

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)

dR

R
. (41)

Similarly, one can derive the hoop stress as

σθθ = 2μ

α

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)
+ σrr =

2μ

α

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)
− 2μ

α

∫ A

R

(1 − λα
2 )(1 − λ2+α

2 )

λα
2 (λ2

2 + 1)

dR

R
. (42)

After the radial stress has been found, evaluation of these stress components should not
cause any problems.



A. Suvorov

It is important to note that the expressions for the total stresses are also valid for a totally
incompressible and homogeneous cylinder with the strain energy function W0. This is true
due to the fact that in all our derivations for the total stresses in the porous cylinder (with
nearly incompressible skeleton) all the terms (1+λα

2 +λα
3 ) present in the expressions for the

principal stresses in the skeleton disappear. But these terms are the only ones that distinguish
these stresses from the stresses in the material with the strain energy function W0.

Since the total stresses presented here for porous cylinder are the same as for homoge-
neous incompressible cylinder, the overall axial force N and the overall twisting moment
M will also be the same. The expressions for the axial force and twisting moment were
obtained by Horgan and Murphy [3] and will not be repeated here.

The shear stress can be found using (21) as

σθz = nmσ ′
2 − nmσ ′

3 = nm(σ ′
2 − σ ′

3) = 1√
4 + τ 2R2

(σ ′
2 − σ ′

3).

For the Ogden material from (25)

σ ′
2 − σ ′

3 = 2μ

α
(λα

2 − λα
3 ). (43)

Therefore,

σθz = 2μ

α

1√
4 + τ 2R2

(λα
2 − λα

3 ) = 2μ

α

τR

λ2
2 − λ2

3

(λα
2 − λα

3 ), (44)

and no integration is needed to find the shear stress. Significant simplifications are possible
for several values of α. For example, in case α = 2

σθz = μτR, (45)

and if α = 4

σθz = μ

2
τR(2 + τ 2R2), (46)

due to the fact that

λ2
2 + λ2

3 = 2 + τ 2R2.

4 Discussion of the Stress State

Before presenting numerical results, it is useful to give the qualitative picture for the total
stresses induced in the porous fluid-saturated cylinder subjected to a sudden twist or in a
totally incompressible and homogeneous cylinder. We have shown that for these two cases
the total stresses will be identical.

Consider a set of fibers shown in Fig. 1 as vertical in the initial configuration. For conve-
nience, we number these fibers as 0,1,2, . . . starting from the fiber in the center. It is clear
that the fiber 0 does not rotate or move during the twist. During the deformation, fiber 1 is
wrapped around fiber 0 causing some normal stress at the surface of contact between these
fibers. This contact stress is obviously compressive and coincides with the direction of the
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radial stress. Now the second fiber is wrapped around the first two fibers. This will increase
the existing contact stress on the surface of contact between the 0-th and the first fibers, and
create the new contact stress between the first and the second fibers.

Continuing this procedure, we will eventually obtain the final stress field as a superposi-
tion of all normal contact stresses at the fibers’ surfaces. This stress can be identified as the
radial stress in the cylinder; obviously, the radial stress will be maximum at the center and
zero on the external surface.

Recall now the equilibrium equation in the radial direction

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0.

The central fiber is very thin and thus the radial stress can be assumed uniform inside this
fiber, i.e., dσrr

dr
= 0. Therefore, the hoop stress σθθ must be equal to the radial stress in

the center, and thus the hoop stress is negative at R = 0. Closer to the external surface
R = A, the radial stress becomes smaller but the gradient of the radial stress gets larger.
Since the radial stress is compressive (negative) and decreasing in magnitude towards the
external surface, the gradient of the radial stress must be a positive quantity. From the same
equilibrium equation, given that dσrr

dr
> 0 and large but σrr < 0 and small, it follows that the

hoop stress σθθ at the external surface must be a positive quantity, and thus, it is tensile.
Having determined the signs for the radial and hoop stresses, we move on to the axial

stress determination σzz. It is the most difficult part of the stress state. Since in our picture
the external fibers are wrapped around the internal ones, we can expect that these fibers will
experience tensile stress along their respective axes, and this tensile stress will be the most
significant for the external fibers, and the least significant for the fibers closer to the center.
But we also note that the direction of the fibers’ axes after the twist is not exactly coincident
with the z-axis and therefore, the tensile stress in these fibers will not be exactly equal to the
axial stress σzz.

On the other hand, when the external fibers are wrapped around the internal ones, some
Poisson’s ratio effect is expected to arise in the internal fibers since the internal fibers will
tend to elongate in the direction of the z-axis when they are acted upon the compressive
contact stresses equal to σrr . Since the fibers are actually constrained in the direction of the
z-axis, the negative component of the stress σzz will be induced, especially closer to the
center. Of course, when the Poisson’s coefficient is small, this negative component of the
axial stress is also small, but for incompressible body the Poisson’s ratio is the largest.

The final axial stress can be viewed as a superposition of the positive and negative com-
ponents described above. But we expect that at the center the axial stress is more likely to
be compressive, and closer to the external surface the axial stress is probably tensile. But
this is not always true, and for example, for α = 2, the axial stress remains compressive and
never becomes tensile at the external surface (it is equal to zero on the external surface (see
Fig. 4)).

Let us evaluate the normal stress along the axes of the fibers that were vertical in the
initial configuration. Denote this stress as σf . It was already noted that the angle βf that the
fiber makes with the θ -direction after the deformation can be evaluated from

tanβf = 1

τr
, (47)

where r is the coordinate of the fiber in the radial direction. Using now usual transformation
rules for the stresses when changing coordinate systems, we can obtain the desired fiber
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stress as

σf = cos2 βf σθθ + sin2βf σzz + 2 cosβf sinβf σθz. (48)

For example, for new-Hookean material, with α = 2, the stress components are given by

σθθ = 1

2
μτ 2(3r2 − A2), σzz = 1

2
μτ 2(r2 − A2), σθz = μτr. (49)

Substituting (49) into (48) and using the fact that

cos2 βf = τ 2r2

1 + τ 2r2
, sin2 βf = 1

1 + τ 2r2
, (50)

we can obtain, after some simplifications, that the fiber stress is

σf = 1

2
μτ 2(3r2 − A2) + μ

τ 2r2

1 + τ 2r2
= σθθ + μ

τ 2r2

1 + τ 2r2
. (51)

Thus, the fiber stress is found to be even larger than the hoop stress σθθ , and therefore, it is
strongly tensile for the external fibers, as expected, but remains compressive for the fibers
in the center.

5 Numerical Results

Figure 4 shows the total stresses σRR , σθθ , σZZ , σθZ and fluid pressure p in the poro-
hyperelastic cylinder evaluated at three points along the radius of the cylinder: R = 0 (shown
with the largest circles), R = A/2, and R = A (the smallest circles). The twist is prescribed
by τA = 0.6. The stresses and the fluid pressure are normalized with respect to the shear
modulus μ. All quantities are shown for the values of the material parameter α equal to 2,
4, 6 and 8 (the value of α is increased from left to right in each group). For plotting this
graph, the radial stress must be found first using an expression similar to (37), given for
α = 6. Then the fluid pressure is found from (39). The axial and hoop stresses are obtained
from (41) and (42), respectively. The shear stress is determined from (44). The expression
for the principal stretch λ2 in terms of R, given by (4), is used in evaluation of all stress
components.

Plotting the stress distributions in this simplified form is possible due to the fact that
all the stresses and the fluid pressure are monotonous functions of R, i.e., the maximum or
minimum occur either at the external surface of the cylinder R = A, or at the center R = 0.
For example, the maximum value for the shear stress σθZ is found at external surface, R = A,
and the minimum of the shear stress (zero) is at the center.

Note that all the stresses and the fluid pressure grow in magnitude with the increase in
the material’s parameter α. Also note that among all normal stresses the magnitude of the
hoop stress σθθ is actually the largest; the hoop stress at the external surface is always large
and tensile.

The axial stress σZZ is always compressive at the center but becomes actually tensile on
the external surface for α = 4,6,8. For large values of α this tensile stress at the surface will
be larger in absolute value than the compressive stress at the center. This eventually leads
to the negative Poynting’s effect discovered for the materials with large α by Horgan and
Murphy [3].
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Fig. 4 Normalized stresses σRR , σZZ , σθθ , σθZ and fluid pressure p at the center R = 0 (largest circles), at
the external surface R = A (smallest circles) and in the middle of the radius R = A/2 (circles of middle size)
for τA = 0.6. Parameter α = 2,4,6,8

Figure 5 shows how the value of the total normal stress changes as a function of the angle
β that this stress makes with the hoop direction (or θ direction) in the θz-plane on the surface
of the cylinder, R = A. Thus, the horizontal axis of this plot, where β = 0, corresponds to
the hoop stress, σθθ , and the vertical axis, where β = π/2, corresponds to the axial stress,
σzz. As before, τA = 0.6 and parameter α equal to 2, 4, 6 and 8. The normal stress in a given
direction is evaluated using the usual transformation rules between the stresses, i.e.,

σ(β) = cos2 βσθθ + sin2βσzz + 2 cosβ sinβσθz. (52)

As before, the stresses shown on the graph are normalized with respect to the shear modulus
μ. The pale circles mark the specific values of the normal stress equal to -0.5, 0, 0.5, 1 and
so on.

Dotted lines show the principal directions and it is apparent that the principal directions
are the same for all values of α. The larger principal stress is always tensile and grows
rapidly with the parameter α. The smaller principal stress is always compressive and of
much smaller magnitude, between -0.5 and 0.

Figure 6 shows detailed distribution of the fluid pressure p along the radius of the cylin-
der 0 ≤ R/A ≤ 1 for the amount of twist τA = 0.6. The fluid pressure is found from (39).
The maximum, minimum values of this distribution are also shown in Fig. 4. It is seen that
the fluid pressure is a monotonous function reaching its positive maximum at the center of
the cylinder. At the external surface the fluid pressure has a negative sign.

Figures 7, 8 and 9 show distributions of the effective radial, hoop and axial stresses,
respectively, along the radius of the cylinder for the twist τA = 0.6. The effective stresses
can be found by adding the fluid pressure to the total stresses, which have been already
found. Recall that the effective stresses are supported by the skeleton of the poroelastic body.
The effective stress are all equal to zero at the center of the cylinder since the compressive
stress at the center is supported by the fluid. The effective radial stress is always compressive
along the radius, the effective hoop stress is always tensile, and the axial stress is mostly
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Fig. 5 Normalized normal
stresses on the θz-plane versus
the angle between the θ (hoop)
direction and direction of the
stress evaluated at the surface of
the cylinder R = A for τA = 0.6.
Parameter α = 2,4,6,8

Fig. 6 Normalized fluid pressure p along the radius of the cylinder for τA = 0.6. Parameter α = 2,4,6,8

compressive but may change the sign for large α. Note that the magnitude of the effective
axial stress gets smaller compared to the effective radial or hoop stresses as the parameter α

increases.

6 Conclusions

In this paper we have derived analytical expressions for the stresses and the fluid pressure
arising in the porous fluid-saturated cylinder subjected to a sudden twist of large magnitude.
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Fig. 7 Effective radial stress σ ′
rr along the radius of the cylinder for τA = 0.6. Parameter α = 2,4,6,8

Fig. 8 Effective hoop stress σ ′
θθ along the radius of the cylinder for τA = 0.6. Parameter α = 2,4,6,8

We have shown that for large twists, not only the usual shear stress emerges in the cylinder,
but the normal stresses and fluid pressure as well. Since the behavior of the porous fluid-
saturated body is usually time-dependent, we have concentrated only on the initial stress
state in the cylinder, existing only for a short period of time after the twist was applied.

Material of the skeleton of this poroelastic cylinder is assumed hyperelastic of Ogden
type and nearly incompressible. In addition to two usual material parameters, the shear
modulus μ and compressibility parameter D, the Ogden material also has the third material
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Fig. 9 Effective axial stress σ ′
zz along the radius of the cylinder for τA = 0.6. Parameter α = 2,4,6,8

parameter α. This material was chosen because the analytical expressions for the stresses
due to a finite twist deformation were not available for arbitrary value of α.

In particular, we have obtained that, for example, when α = 6, the total radial stress in
the cylinder can be found as

σrr (R) = −μ

3
[1

2
λ2

2(A) − 1

2
λ2

2(R) + 1

4
λ4

2(A) − 1

4
λ4

2(R) + 1

6
λ6

2(A) − 1

6
λ6

2(R)+
1

2λ2
2(A)

− 1

2λ2
2(R)

+ 1

4λ4
2(A)

− 1

4λ4
2(R)

+ 1

6λ6
2(A)

− 1

6λ6
2(R)

].

Consequently, the fluid pressure for this material can be determined from

p = μ

9
(2 − λ6

2(R) − 1

λ6
2(R)

)+

μ

3
[1

2
λ2

2(A) − 1

2
λ2

2(R) + 1

4
λ4

2(A) − 1

4
λ4

2(R) + 1

6
λ6

2(A) − 1

6
λ6

2(R)+
1

2λ2
2(A)

− 1

2λ2
2(R)

+ 1

4λ4
2(A)

− 1

4λ4
2(R)

+ 1

6λ6
2(A)

− 1

6λ6
2(R)

].

Analytical expression for the shear stress for arbitrary value of α was obtained as well,

σθz = 2μ

α

τR

λ2
2 − λ2

3

(λα
2 − λα

3 ).

We have given a qualitative picture for the total stresses induced in the twisted cylin-
der. By following the deformation of some imaginary fibers that were vertical in the initial
configuration, we have explained why the total radial stress in the twisted cylinder is com-
pressive, the hoop stress on the external surface is tensile and the axial stress in the center
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is likely to be compressive. Moreover, we have derived the expression for the normal stress
along the axes of the fibers after the deformation. In particular, for α = 2, we have shown
that this fiber stress is larger than the hoop stress by some positive quantity.

We have also investigated the effective stresses, arising in the skeleton of the poroelastic
body, and established that all of them are equal to zero at the center. The effective radial
stress is always compressive along the radius of the cylinder, and the effective hoop stress is
always tensile; they increase in magnitude as the parameter α increases.

It appears that even if the skeleton of the fluid-saturated cylinder is assumed to be totally
incompressible, to find the effective stresses and the fluid pressure in this cylinder, one must
still use the strain energy function for a nearly incompressible material (corresponding to
that incompressible material). It is only when one is interested solely in the total stresses,
then it suffices to use the strain energy function of a totally incompressible material W0. In
the latter case, when using W0, separation of the total stress field into the effective stress and
the scalar field p has no clear physical interpretation.
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