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Abstract
Propagation of Rayleigh-type waves is investigated in a half-space composed of nonlocal
micropolar thermoelastic material containing void pores. Dispersion relation is derived for
a mechanically stress-free and thermally insulated boundary surface of the half-space. The
particle motion during the propagation of the waves is found to follow elliptical path. Nu-
merical computations for a specific material are performed to analyze the characteristics of
propagating Rayleigh-type waves in detail. Comparison between the phase speed and cor-
responding attenuation coefficient in some particular cases is also carried out. The effect of
various parameters on the characteristics of waves in question is also studied.

Keywords Nonlocal · Micropolar · Thermoelastic · Voids · Phase speed · Attenuation ·
Rayleigh wave

Mathematics Subject Classification 74B15 · 74B20 · 74F05 · 74J15

1 Introduction

Eringen [1] was the first who developed the theory of micropolar elasticity and presented
governing equations for a uniform micropolar elastic material. Micropolar theory of elas-
ticity is a generalization of classical theory of elasticity and a special class of the theory
of micromorphic solids. In classical theory of elasticity, the particles of elastic body un-
dergo translation during the deformation and the interaction between two adjacent portions
of the body is governed by a force stress only. In micropolar theory of elasticity, the parti-
cles of the body are allowed to undergo rotation about their center of mass, in addition to
the translation. And the interaction between two adjacent portions of the micropolar body
is governed not only by a force stress, but also by a couple stress. The micropolar theory of
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elasticity is found to be adequate for the bodies having granular sized particles, that is, the
bodies whose particles are dumb-bell shaped. The microstructure of such bodies is found
to affect the propagation of elastic waves particularly in the vibrational problems of high
frequency and/or small wavelength. The development of micropolar theory of elasticity is
of great importance in the field of continuum mechanics. Parfitt and Eringen [2] studied the
possibility of plane wave propagation in micropolar elastic medium and found that there
exist four basic waves propagating with distinct speeds comprising of a longitudinal dis-
placement wave, an independent longitudinal micro-rotational wave and two sets of coupled
transverse waves. Each set of coupled transverse waves consist of a transverse displacement
wave and a transverse micro-rotation wave perpendicular to it. They have also studied the
reflection phenomenon of these plane waves from the stress-free flat boundary surface of
a micropolar elastic solid half-space. Later, Tomar and Gogna [3–5] studied the reflection
and transmission of plane waves at the interface of two dissimilar micropolar elastic solid
half-spaces.

The classical theory of elasticity was also extended by Cowin and his co-worker [6, 7]
by incorporating a uniform distribution of voids and developing the nonlinear and linear
theories of elastic materials with voids. Elastic materials with voids are porous materials,
in which the voids (pores) are small vacuous pores containing nothing of mechanical and
energetic significance and these pores are not interconnected. The underlying idea of their
theory was stemmed from the theory of granular material developed by Goodman and Cowin
[8]. They have derived the constitutive relations and equations of motion for a uniform
elastic materials with voids. Later, Puri and Cowin [9] studied the propagation of plane
waves in elastic materials with voids and found that there exist three basic waves, two of
them are coupled longitudinal waves and the third one is a lone transverse wave. The coupled
longitudinal waves depend on void parameters and one of these waves arises in the medium
due to the presence of voids. Whereas, the lone transverse wave is not influenced by the
presence of voids and propagates with the speed of classical transverse wave. Iesan [10]
developed the linear theory of thermoelastic elastic materials with voids and studied the
acceleration waves. Later, Iesan [11] also presented the theory of micropolar elastic material
with voids and studied shock waves. The interaction between the two adjacent portions of
micropolar elastic body containing voids is governed by the force stress, couple stress and
equilibrated stress. Following Lebon [12] law of heat conduction, Passarella [13] introduced
a theory of micropolar thermoelasticity for materials with voids and obtained the constitutive
relations and equations of motion. Ciarletta et al. [14] developed basic equations of the linear
theory of micropolar thermoelasticity for isotropic and homogeneous materials with voids
by taking into account the thermal relaxation time and studied plane waves and vibrations.
They have also studied some existence theorems concerning the non-trivial solutions of
interior homogeneous boundary value problems.

Eringen [15] developed the theory of nonlocal elasticity and presented the constitutive
relations for nonlocal anisotropic elastic material. The underlying idea of nonlocal theory of
elasticity is that it integrates long range forces between the atoms of the continuum. There-
fore, in the continuum body, the stress at a point x not only depends on the strain at that
point, but also on the strains at all the surrounding points x′ of that point. According to Erin-
gen [15], the nonlocal constitutive relation incorporates the classical constitutive relation in
a weighted integral taken over the entire volume V of the body as

τ (x) =
∫

V

k(x′,x, ζ )D e(x′)dV (x′), ∀ x′,x ∈ V.

The weight function k(x′,x, ζ ) is called nonlocal kernel function, which describes the influ-
ence of nonlocality and a measure for the dependence of stresses τ (x) to the strains e(x′).
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The quantity D is a matrix of constitutive coefficients. In isotropic elastic medium, the ker-
nel function k(x′,x, ζ ) is a distance function k(|x′ − x|, ζ ), which is chosen such that (i) it
reached to maximum at x′ = x, (ii) attenuates to the large distances between x′ and x, (iii)
behaves analogous to Dirac delta function. The quantity ζ is a ratio of the internal character-
istic length (l), e.g., lattice parameter, size of the particle/void, to the external characteristic
length (L), e.g., wavelength, size of the sample of the material. When L is sufficiently large
than l, then the results obtained using classical theory are found to be adequate with those
obtained experimentally. But when these lengths are comparable, that is, L ≈ l, then the
classical theory fails to yield the satisfactory results. In elastic solids possessing micropolar-
ity and/or voids, the external and internal characteristic lengths are comparable and hence,
the nonlocal theory can be best suitable model for the elastic solids possessing micropolarity
and/or voids. In view of the suitability of micropolar elastic solids, Eringen [16] developed
the nonlocal theory of micropolar elasticity and derived the constitutive relations and equa-
tions of motion. He has also obtained the dispersion relation for the propagation of plane
waves in the nonlocal mocropolar elastic medium. Later, Singh et al. [17] developed the
nonlocal theory of elastic materials with voids within the context of Eringen’s theory of
nonlocal elasticity. They have obtained the constitutive relations and equations of motion
for an isotropic material. They have also studied the propagation of plane waves and found
that there exist three plane waves propagating in the medium, whose speeds depend on the
nonlocality parameter. Sarkar and Tomar [18] developed the theory of nonlocal thermoe-
lastic materials with voids and derived the constitutive relations and equations of motion.
Kumar and Tomar [19] developed the theory of nonlocal micropolar thermoelastic mate-
rial with voids and studied the possibility of plane wave propagation within the context of
Lord-Shulman theory of generalized thermoelasticity [20]. They found that there exist five
waves propagating in the medium, out of which three are coupled longitudinal waves and
remaining two are coupled transverse waves. Kumar and Tomar [21] have also studied the
reflection phenomenon of coupled plane waves from the stress-free boundary surface of the
half-space composed of nonlocal micropolar thermoelastic material with voids. Following
Iesan [11] and Eringen [22], they assumed that there is no interaction of micro-rotation with
the void and thermal parameters, and postulated the reflection of four waves comprising of
two coupled longitudinal waves and two coupled transverse waves when a set of coupled
waves is made incident against the stress-free boundary surface of the half-space. Some
other papers in the pertinent area of research are given by Khurana and Tomar [23], Sarkar
et al. [24], Biswas [25], Mondal and Sarkar [26] and Singh et al. [27].

Lord Rayleigh [28] was the first who discovered the existence of a type of waves prop-
agating near the boundary surface of a Cauchy elastic half-space and go on decaying very
fast with the distance away from the surface. Since then these waves are known as Rayleigh
waves in the literature. The study of these waves are found to be of great importance in the
field of earthquake sciences and in several other areas. Using the theory of elastic mate-
rial with voids, Chandrasekharaiah [29] explored the possibility of propagation of Rayleigh
surface waves in the elastic half-space having uniform distribution of void pores and in-
vestigated the effect of void parameters on Rayleigh waves. Kaur et al. [30] also studied
the Rayleigh-type surface waves in nonlocal elastic half-space with voids and noticed the
effect of nonlocality together with void parameters on the speed of propagating Rayleigh-
type surface waves. Khurana and Tomar [31] have studied Rayleigh-type surface waves in
nonlocal micropolar elastic half-space and found that there exist two modes of Rayleigh-
type surface waves. Kumar et al. [32] investigated the propagation of Rayleigh-type surface
waves in nonlocal generalized thermoelastic half-space for isothermal and thermally insu-
lated boundaries. Some other papers on the propagation of Rayleigh-type surface waves in
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different models are given by Singh [33], Kumar et al. [34], Biswas [35] and Abd-Alla et al.
[36] including others.

In the present work, the propagation of Rayleigh-type waves is studied in a half-space
composed of nonlocal micropolar thermoelastic materials containing voids within the con-
text of Lord-Shulman theory of generalized thermoelasticity. Dispersion relation is derived
by assuming that the boundary surface of the half-space is mechanically stress-free and
thermally insulated. The path followed by the particles during the propagation of surface
waves are found to be elliptical. Dispersion relations for the propagation of Rayleigh-type
surface waves in nonlocal elastic material with voids and in nonlocal micropolar thermoe-
lastic material with voids are obtained as special cases of the present formulation. Numer-
ical calculations have been carried out with the help of MATLAB software and the speed
of Rayleigh-type surface waves is studied for a particular model. The obtained results are
shown graphically against different parameters like angular frequency and nonlocal param-
eter. The comparison between the speed of Rayleigh-type surface waves in different models
have also been shown through graphs and explained. A lone mode of Rayleigh-type wave is
found to propagate in the considered model. It is observed that the various parameters such
as nonlocality, thermal properties, and micropolarity significantly affect the phase speed and
corresponding attenuation coefficient of propagating Rayleigh-type wave. It is also found
that in the dissipative medium, the major axis of the ellipse described by the particles during
the propagation of Rayleigh-type wave aligns with the coordinate axis.

2 Governing Relations and Equations

Following Kumar and Tomar [19], the stress tensor (tij ), the couple stress tensor (mij ),
the equilibrated stress vector (hi), the equilibrated body force (g) and the entropy (η) for
nonlocal micropolar thermoelastic materials containing void pores are given by

(
1 − ε2∇2

)
tij = tLij = [λ′ekk(x) + e′φ(x) − d ′θ(x)]δij + (μ′ + K ′)eij (x) + μ′eji(x), (1)

(
1 − ε2∇2

)
mij = mL

ij = α′γkk(x)δij + β ′γij (x) + γ ′γji(x), (2)

(
1 − ε2∇2

)
hi = hL

i = c′φ,i(x), (3)

(
1 − ε2∇2

)
g = gL = −τ ′φ̇(x) − ξ ′φ(x) − e′eii(x) + G′θ(x), (4)

(
1 − ε2∇2

)
ρη = ρηL = ζ ′θ(x) + d ′eii(x) + G′φ(x), (5)

where eij = uj,i − εijmψm is the distortion tensor, γij = ψi,j is the curvature tensor, ui is
the displacement vector, ψi is the microrotation vector, εijm is the permutation symbol,
φ = ν(x, t)− νR is the change in void volume fraction from the reference void volume νR , θ

is the change in temperature from the ambient temperature T0 and related with the heat flux
vector (Qi ) through the relation

(1 − ε2∇2)Qi = Kθ,i ,

ρ is the mass density, δij is the Kronecker delta symbol, K is the coefficient of thermal con-
ductivity, ε(= e0a), is the nonlocality parameter, a being the internal characteristic length
and e0 is the material constant. The symbols λ′, μ′, e′, K ′, α′, β ′, γ ′, c′, τ ′, ξ ′, G′, ζ ′ and d ′
are the local constitutive coefficients. The superscript L on the various symbols represents
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the local effect, a comma in the subscript denotes the spatial derivative and an over dot de-
notes the derivative with respect to time variable t . Other symbols have their usual meaning.
Here, we have assumed that during the deformation processes, the micro-rotation shall re-
main independent of voids and thermal effects as supported by Iesan [11] and Eringen [22].
Furthermore, there is need to have some extra conditions to be imposed on the nonlocal
stresses given by (see Anh and Vinh [37] and Anh et al. [38])

{tLij ,mL
ij , h

L
i , gL, ηL} ≡ 0 =⇒ {tij ,mij , hi, g, η} ≡ 0 in V. (6)

Mechanically, these conditions state that if there is no strain in the body everywhere,
then there is no stress in the body everywhere. Mathematically, these conditions ensure
the uniqueness of various nonlocal stresses, as a solution of (1)-(5), for the given local
stresses. Hence, these conditions make the present problem well-posed and the operator
L ≡ (

1 − ε2∇2
)

to be invertible.
Following Kumar and Tomar [19], the equations of motion for the considered nonlocal

micropolar thermoelastic materials containing uniform distribution of voids are given by

(
λ′ + μ′)∇ (∇ · u) + (

μ′ + K ′)∇2u + e′∇φ − d ′∇θ + K ′∇ × ψ + ρL (f − ü) = 0, (7)

(
α′ + β ′)∇ (∇ · ψ) + γ ′∇2ψ + K ′∇ × u − 2K ′ψ + ρL

(
l − j ψ̈

) = 0, (8)

c′∇2φ − τ ′φ̇ − ξ ′φ − e′∇ · u + G′θ + ρL
(
l − χφ̈

) = 0, (9)

K∇2θ =
(

1 + τ0
∂

∂t

)(
ρCeθ̇ + d ′T0∇ · u̇ + G′T0φ̇ − ρLR

)
, (10)

where f is the body force, l is the body couple, l is the extrinsic equilibrated body force, χ

is the equilibrated inertia and j is the micro-inertia, τ0 is the thermal relaxation time, R is
the extrinsic heat supply and Ce is the specific heat at fixed strain such that ρCe = ζ ′ T0.

3 Surface Wave Propagation

Consider a half-space H composed of a nonlocal micropolar thermoelastic materials con-
taining uniform distribution of voids. With reference to a rectangular Cartesian coordinate
system, let the x − y plane defines the boundary surface of the half-space while z-axis di-
rects vertically downwards into the half-space. The region occupied by the half-space is thus
defined by

H = {(x, y, z) : −∞ < x,y < ∞, 0 ≤ z < ∞}.
We shall discuss a two-dimensional problem in x − z plane so that

u = (u1,0, u3)(x, z, t), ψ = (0,ψ,0)(x, z, t), φ = φ(x, z, t), θ = θ(x, z, t).

Introducing the scalar potential q and solenoidal vector potential U through Helmholtz de-
composition theorem for the displacement vector u, the components of displacement vector
are given by

u1 = q,x − U,z, u3 = q,z + U,x, (11)
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where U is the y-component of the vector potential U. In view of these consideration, the
equations of motion (7)-(10) are reduced to

(
λ′ + 2μ′ + K ′)∇2q + e′φ − d ′θ = ρ

(
1 − ε2∇2

)
q̈, (12)

c′∇2φ − τ ′φ̇ − ξ ′φ − e′∇2q + G′θ = ρχ
(
1 − ε2∇2

)
φ̈, (13)

K∇2θ =
(

1 + τ0
∂

∂t

)(
ρCeθ̇ + d ′T0∇2q̇ + G′T0φ̇

)
, (14)

(
μ′ + K ′)∇2U + K ′ψ = ρ

(
1 − ε2∇2

)
Ü , (15)

γ ′∇2ψ − K ′∇2U − 2K ′ψ = ρj
(
1 − ε2∇2

)
ψ̈. (16)

Note that the equations (12)-(14) are coupled through the potentials q , φ and θ , whereas the
equations (15) and (16) are coupled through the potentials U and ψ .

For time harmonic steady state wave propagating with speed v, the quantities q , φ, θ , U

and ψ can be taken in the form as

{q,φ, θ,U,ψ} = {q̄, φ̄, θ̄ , Ū , ψ̄} exp{−ιωt}, (17)

where q̄ , φ̄, θ̄ , Ū and ψ̄ are the amplitudes, ω is the angular frequency of the propagating
wave related with the wavenumber k through the relation ω = kv. Here, the wavenumber
k may be real or complex valued, while the angular frequency ω will be taken as a real
positive quantity. It is expected that (i) when k is real valued, then the speed v will also be
real valued, (ii) when k is complex valued, then the speed v will also be complex valued.

Inserting the relation (17) into (12)-(16), one can obtain

(
A1∇6 + ω2A2∇4 + ω4A3∇2 + ω6A4

)
q̄ = 0, (18)

(
B1∇4 + ω2B2∇2 + ω4B3

)
Ū = 0, (19)

where

A1 = k4c2c4ω
2, A2 = ω2c4(d1d2 − c2 − k4) − k4c2c5 + e1e2k4,

A3 = −[e1(e2 + g1d2) + d1(e2g2 + d2c5) − ω2c4 − k4c5 + c2(g1g2 − c5)],

A4 = ω4(g1g2 − c5), B1 = ω2(ε2ω2 − γ1)(ε
2ω2 − c2

t − k1), B3 = ω2 − 2k2,

B2 = −[ω2(ε2ω2 − γ1) + (ω2 − 2k2)(ε
2ω2 − c2

t − k1) − k1k2],

c2 = ε2ω2 − c2
l − k1, c4 = ε2ω2 − c1, c5 = ω2 − ξ1 + ιωτ1, e1 = e′/ρ, c1 = c′/ρχ,

d1 = d ′/ρ, e2 = e1/χ, g1 = G′/ρχ, d2 = d1T0/Ce, g2 = g1χT0/Ce,

k4 = −k3/τ2, ω2τ2 = τ0ω
2 + ιω, γ1 = γ ′/ρj, k1 = K ′/ρ, k2 = k1/j,

k3 = K/ρCe, ξ1 = ξ ′/ρχ, τ1 = τ ′/ρχ, c2
l = (λ′ + 2μ′)/ρ, c2

t = μ′/ρ.
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The general solution of equations (18) and (19) can be written as

q̄ =
3∑

i=1

qi and Ū =
5∑

j=4

Uj , (20)

where each qi and Uj satisfies the following Helmholtz equations

(
∇2 + ω2

v2
i

)
qi = 0 and

(
∇2 + ω2

v2
j

)
Uj = 0. (21)

The quantities v2
i and v2

j in equations under (21) are respectively the roots of equations

A4v
6 − A3v

4 + A2v
2 − A1 = 0 and B3v

4 − B2v
2 + B1 = 0. (22)

For the waves propagating along positive direction of x-axis, the form of potentials qi and
Uj can be taken as

{qi,Uj } = {q̄i (z), Ūj (z)}eιkx, (23)

where the amplitudes q̄i (z) and Ūj (z) are functions of z. Inserting (23) into (21), the expres-
sions of q̄i (z) and Ūj (z) representing the surface wave solutions are given by

{q̄i (z), Ūj (z)} = {A′
ie

−miz,B ′
j e

−mj z}, (24)

where A′
i and B ′

j are the arbitrary constants and the quantities mi and mj given by

mi = k

√
1 − v2

v2
i

and mj = k

√
1 − v2

v2
j

,

must be real and positive. So, we must have

v2 < {v2
i , v

2
j }.

Thus, the complete solutions representing Rayleigh-type surface wave propagating in a pos-
itive x-axis direction are given by

[{q,φ, θ}, {U,ψ}] =
⎡
⎣ 3∑

i=1

A′
i{1,Mi,Ni}e−miz,

5∑
j=4

B ′
j {1,Qj }e−mj z

⎤
⎦ eιk{x−vt}, (25)

where M ′
is, N ′

i s and Q′
j s obtained from equations (12)-(16) are given by

Mi = (k2 − m2
i )(e2d1 + g1c2) + g1ω

2

d1c4m
2
i − c4d1k2 − c5d1 − e1g1

, (26)

Ni = 1

d1

(
ω2 − c2m

2
i + c2k

2 + e1Mi

)
, (27)

Qj = (ε2ω2 − c2
t − k1)(m

2
j − k2) − ω2. (28)
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Here, it can be easily noticed that while using (11) and (25) into (1)-(5), the vanishing of
local stresses implies that all the A′

i , (i = 1,2,3) and B ′
j , (j = 4,5) must vanish, which

results in vanishing of nonlocal stresses. In the following section, we shall obtain the disper-
sion relation for the propagation of Rayleigh-type waves in question.

4 Dispersion Relation

We assumed that the boundary surface of the half-space is mechanically-stress free and
thermally insulated. Therefore, the relevant nonlocal stress components shall vanish at the
boundary surface z = 0. These boundary conditions can be written in mathematical form as:
At z = 0, we have

tzx = tzz = hz = mzy = Qz = 0. (29)

The nonlocal stresses can be obtained in term of local stresses by implementing the operator
L on both side of (1)-(5). Since the operator L is considered to be invertible, therefore
L−1 ≡ (1 − ε2∇2)−1 exist. Expanding (1 − ε2∇2)−1 by means of Binomial theorem and
assuming that the nonlocal parameter (ε) is so small such that ε3 and its higher powers are
negligible, we obtain (1−ε2∇2)−1 ≈ (1+ε2∇2) (see, Eringen [39]). With this, the boundary
conditions (29) in terms of potentials are written as

(1 + ε2∇2)
[
(2μ′ + K ′)q,xz + μ′U,xx − (μ′ + K ′)U,zz − K ′ψ

] = 0, (30)

(1 + ε2∇2)
[
λ′q,xx + (λ′ + 2μ′ + K ′)q,zz + (2μ′ + K ′)U,xz + e′φ − d ′θ

] = 0, (31)

γ ′(1 + ε2∇2)ψ,z = 0, (32)

c′(1 + ε2∇2)φ,z = 0, (33)

(1 + ε2∇2)θ,z = 0. (34)

Using the expressions of potentials given in (25) into the boundary conditions (30)-(34), we
obtained a system of five homogeneous equations in five unknown, namely, Ai (i = 1,2,3)

and Bj (j = 4,5). The condition for non-trivial solution of this homogeneous system yields
the following dispersion relation given by

5∏
n=1

[
1 + ε2(m2

n − k2)
] [

k2(2μ′ + K ′)2
5∏

n=1

mn

[
(Q5 − Q4){M1(N2 − N3)

+ M2(N3 − N1) + M3(N1 − N2)}
] + [

m4m5(μ
′ + K ′)(Q4m5 − Q5m4)

+ μ′k2(Q4m4 − Q5m5) + K ′Q4Q5(m4 − m5)
][

m2m3(M2N3 − M3N2)

{λ′(m2
1 − k2) + (2μ′ + K ′)m2

1 + e′M1 − d ′N1} + m1m3(M3N1 − M1N3)

{λ′(m2
2 − k2) + (2μ′ + K ′)m2

2 + e′M2 − d ′N2} + m1m2(M1N2 − M2N1)

{λ′(m2
3 − k2) + (2μ′ + K ′)m2

3 + e′M3 − d ′N3}
]] = 0. (35)
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Equation (35) is the dispersion relation for Rayleigh-type surface waves propagating in the
half-space composed of nonlocal micropolar thermoelastic materials containing voids. It can
be seen that this dispersion relation provides two equations, one of which, namely,

5∏
n=1

[
1 + ε2(m2

n − k2)
] = 0,

does not lead to any propagating wave, whereas the other one is expected to yield the speed
of a propagating wave. Note that it is not easy to solve the equation (35) analytically due
to its complex valued coefficients, but these coefficients are clearly dependent on frequency,
nonlocality, void, thermal and micropolar parameters. Thus, one can conclude that the speed
of relevant surface wave obtained from (35) shall be dispersive and attenuating in nature.

5 Particle Motion

In this section, we shall determine the nature of path followed by the particles of the medium
during the propagation of Rayleigh-type surface waves in the considered half-space. First,
we shall obtain the expression of real part of the displacement components u1 and u3 by
inserting the potentials q and U given in (25) into (11) as

{�(u1),�(u3)} = −{|uo
1| sin θ1, |uo

3| cos θ2}e−�(k)x, (36)

where

θ1 = arg(uo
1) + �(k)x − ωt, θ2 = arg(uo

3) + �(k)x − ωt,

uo
1 =

3∑
i=1

kA′
ie

−miz −
5∑

j=4

ιmjB
′
j e

−mj z, uo
3 =

3∑
i=1

miA
′
ie

−miz −
5∑

j=4

ιkB ′
j e

−mj z.

From (36), we obtain

A0[�(u1)]2 − B0�(u1)�(u3) + C0[�(u3)]2 = 1, (37)

where

A0 = 1

|uo
1|2D2

0

, B0 = 2 sin θ3

|uo
1||uo

3|D2
0

, C0 = 1

|uo
3|2D2

0

, D0 = (cos θ3)e
−�(k)x, θ3 = arg

(
uo

1

uo
3

)
.

Equation (37) gives the locus of the path traced by the particle during the propagation of
Rayleigh-type surface wave. This is an equation of conic in standard form, whose discrimi-
nant is given by

− 4

|uo
1|2|uo

3|2D4
0

(
1 − sin2 θ3

)
, (38)

which is negative for all values of θ3, except at θ3 = π/2. Therefore, for all values of θ3 =
π/2, the equation (37) represents an ellipse. Thus, the particle traces elliptical path during
the propagation of Rayleigh-type surface waves in half-space.
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Next, we shall obtain the tilt angle at which the particle follows the elliptical motion with
respect to the vertical axis. For this purpose, we transform equation (37) into standard form
of the ellipse by rotating the co-ordinate axis through an angle θ4. The relevant transforma-
tion is given by

[�(u1)

�(u3)

]
=

[
cos θ4 − sin θ4

sin θ4 cos θ4

][�(u′
1)

�(u′
3)

]
, (39)

where the angle θ4 is given by

tan 2θ4 =
{
B0/(C0 −A0), for A0 = C0

∞, for A0 = C0
. (40)

Hence, the plane of the ellipse is inclined through an angle θ4 from the vertical axis.

6 Special Cases

In this section, we shall reduce the dispersion relation (35) to corresponding dispersion
relation of Rayleigh-type wave propagation in specific media. These particular cases are
discussed as follows.

6.1 Nonlocal Thermoelastic Material with Voids

If we neglect micropolar parameters from the model, one would be left with the nonlocal
thermoelastic material with voids. It can be observed that in the absence of micropolarity,
one of the coupled transverse waves disappears from the medium. Let us consider that the
wave propagating with speed v5 disappears from the medium together with the micropolar
constitutive coefficients, namely, α′, β ′, γ and K ′. The vanishing of v5 implies that the pa-
rameter m5 and the coupling coefficient Q5 approach to infinity. With these considerations,
the dispersion relation (35) reduces to

4∏
n=1

[
1 + ε2(m2

n − k2)
] [

4k2μ′2
4∏

n=1

mn{M1(N2 − N3) + M2(N3 − N1) + M3(N1 − N2)}

+ μ′(m2
4 + k2)[m2m3(M2N3 − M3N2){λ′(m2

1 − k2) + 2μ′m2
1 + e′M1 − d ′N1}

+ m1m3(M3N1 − M1N3){λ′(m2
2 − k2) + 2μ′m2

2 + e′M2 − d ′N2}
+ m1m2(M1N2 − M2N1){λ′(m2

3 − k2) + 2μ′m2
3 + e′M3 − d ′N3}]

] = 0. (41)

Equation (41) represents dispersion relation for Rayleigh-type surface waves propagating
in the half-space composed of nonlocal thermoelastic material containing voids. Singh [33]
has also obtained the dispersion relation for Rayleigh-type surface waves by using local
boundary conditions in a nonlocal thermoelastic half-space containing voids for thermally
insulated boundary surface, whereas we have obtained the dispersion relation for thermally
insulated case by using nonlocal boundary conditions. It can be noticed that the reduced
dispersion relation (41) is dependent on void, thermal and nonlocal parameters.
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6.2 Nonlocal Micropolar Elastic Material with Voids

To achieve this model, we shall ignore the thermal parameters from the considered model.
Setting the thermal parameters, namely, d ′, f ′, G′ and ζ ′ to zero, we observe that one of the
coupled longitudinal waves disappears from the medium. This means that one of the speeds,
say, v3 of coupled longitudinal waves vanishes. We further notice that in this case, the pa-
rameter m3 and the coupling coefficient N3 approach to infinity. With these considerations,
the dispersion relation (35) reduces to

{1+ε2(m2
1 − k2)}{1 + ε2(m2

2 − k2)}{1 + ε2(m2
4 − k2)}{1 + ε2(m2

5 − k2)}
[
k2K2

1 m1m2m4m5(Q5 − Q4)(M2 − M1) + [m4m5(μ
′ + K ′)(Q4m5 − Q5m4)

+μ′k2(Q4m4 − Q5m5) + K ′Q4Q5(m4 − m5)][m2M2{λ′(m2
1 − k2)

+ K1m
2
1 + e′M1} − m1M1{λ′(m2

2 − k2) + K1m
2
2 + e′M2}]

] = 0, (42)

where

K1 = 2μ′ + K ′ and Mi = 1

e1

[
c2(m

2
i − k2) − ω2

]
, (i = 1,2).

Equation (42) is the dispersion relation for Rayleigh-type surface waves propagating in the
half-space composed of nonlocal micropolar elastic material containing voids, which is new
and not obtained hitherto. It can be seen that this dispersion relation is dependent on various
void, micropolar and nonlocal parameters, therefore, the corresponding speed of Rayleigh-
type surface wave is also dependent on these parameters.

6.3 Nonlocal Micropolar Thermoelastic Material

In the absence of void parameters, namely, e′, b′, c′, τ ′, ξ ′ and G′, one of the coupled
longitudinal waves shall disappear from the medium. Let the wave propagating with speed
v2 disappears in the absence of void parameters. Also, the parameter m2 and the coupling
coefficient M2 shall approach to infinity in this case. With these consideration, the dispersion
relation (35) reduces to

∏
n=1,3,4,5

{1 + ε2(m2
n − k2)}

[
k2K2

1 m1m3m4m5(Q5 − Q4)(N3 − N1)

+[m4m5(μ
′ + K ′)(Q4m5 − Q5m4)

+μ′k2(Q4m4 − Q5m5) + K ′Q4Q5(m4 − m5)][m3N3{λ′(m2
1 − k2)

+ K1m
2
1 − d ′N1} − m1N1{λ′(m2

3 − k2) + K1m
2
3 − d ′N3}]

] = 0, (43)

where

Ni = 1

d1

[
ω2 − c2(m

2
i − k2)

]
, (i = 1,3).

Equation (43) is the dispersion relation for Rayleigh-type surface wave propagating in the
half-space composed of nonlocal micropolar thermoelastic material. The relation (43) is
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new in the relevant nonlocal theory of elasticity, which contains frequency, thermal and
various material parameters. The speed of Rayleigh-type wave obtained from relation (43)
is therefore dispersive, attenuating and dependent on various material parameters.

6.4 Nonlocal Thermoelastic Material

To achieve the relevant dispersion relation in this model, we shall set the micropolar param-
eters, namely, α′, β ′, γ and K ′ to zero in the dispersion relation (43) obtained in Sect. 6.3.
It can be noticed that in the absence of micropolarity, one of the coupled transverse waves
disappears from the medium. As discussed in Sect. 6.1, the vanishing of one of the speeds of
coupled transverse waves, say, v5 implies that the parameter m5 and the coupling coefficient
Q5 approach to infinity. With these consideration, the dispersion relation (43) reduces to

∏
n=1,3,4

{1 + ε2(m2
n − k2)}[4k2μ′m1m3m4(N3 − N1) − (m2

4 + k2)[m3N3{λ′(m2
1 − k2)

+2μ′m2
1 − d ′N1} − m1N1{λ′(m2

3 − k2) + 2μ′m2
3 − d ′N3}]

] = 0, (44)

where

Ni = 1

d1

[
ω2 − (ε2ω2 − c2

l )(m
2
i − k2)

]
, (i = 1,3).

Equation (44) is the dispersion relation for Rayleigh-type surface wave propagating in the
half-space composed of nonlocal thermoelastic material. For the local boundary conditions,
the dispersion relation (44) matches with the dispersion relation (24) obtained by Kumar et
al. [32] apart from notations and representations.

6.5 Nonlocal Elastic Material with Voids

In the absence of micropolar and thermal parameters, the dispersion relation (35) reduces to

{1 + ε2(m2
1−k2)}{1 + ε2(m2

2 − k2)}{1 + ε2(m2
4 − k2)}

[
4k2μ′2m1m2m4(M2 − M1) − μ′(m2

4 + k2)[m2M2{λ′(m2
1 − k2)

+ K1m
2
1 + e′M1} − m1M1{λ′(m2

2 − k2) + K1m
2
2 + e′M2}]

] = 0, (45)

where M ′
is are exactly the same as given in Section-6.2.

Equation (45) is the dispersion relation for Rayleigh-type surface waves propagating in
the half-space composed of nonlocal elastic material with voids. The form of dispersion
relation (45) is not exactly the same analytically as obtained earlier by Kaur et al. [30] for
the corresponding problem. The reason for not achieving exactly the same form of dispersion
relation is because they consider the local stresses vanish at the boundary of the half-space,
while we have considered the nonlocal stresses vanish at the boundary of the half-space.
Therefore, there is slight difference between the dispersion relation of the two formulations.

6.6 Classical Cauchy Continuum

In the absence of nonlocal, micropolar, thermal and void parameters, the dispersion relation
(35) reduces to

(
2 − v2

c2
t

)2

= 4

√
1 − v2

c2
l

√
1 − v2

c2
t

. (46)
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Table 1 Numerical value of material parameters

Symbol Value Unit Symbol Value Unit

λ′ 7.5 × 109 Pa μ′ 1.896 × 109 Pa

K ′ 1.3234 × 105 Pa α′ 8.3255 × 101 N

β ′ 0.10282 × 103 N γ ′ 3.3349 × 103 N

e′ 1 × 1010 Pa ξ ′ 12 × 109 Pa

c′ 8 × 109 N τ ′ 1.5 × 106 Pa s

a 0.5 × 10−9 m j 1.96 × 10−7 m2

χ ′ 0.16 m2 τ0 0.02 s

d ′ 4 × 10−3 Pa deg−1 G′ 5 × 10−3 Pa deg−1

K 0.016 × 10−3 W m−1 deg−1 Ce 3 × 10−9 J kg−1 deg−1

ρ 2192 kg m−3 e0 0.39 -

T0 273 K - - -

Equation (46) is the dispersion relation for Rayleigh-type surface waves propagating in a
half-space composed of Cauchy elastic medium, which exactly match with the well-known
relation for Rayleigh wave in classical elasticity [29].

7 Numerical Results and Discussion

To study the behavior of propagating Rayleigh-type surface wave in the nonlocal micropolar
thermoelastic half-space with voids, we shall consider a specific model with specific values
of relevant material parameters as listed in Table-1 (Refs. [11, 40]). Using these values, the
speed v is computed numerically from the dispersion relation given in (35) using MATLAB
software. It is found that the speed of propagating Rayleigh-type surface waves is complex
valued as was expected beforehand. The phase speed and the corresponding attenuation
coefficient are computed by using the formulae given in Borcherdt [41]

Vr = (�(v))2 + (�(v))2

�(v)
and Qr = −ω�(v)

(�(v))2 + (�(v))2
. (47)

The computations have been kept up to the forty decimal places in the output format in order
to have best possible accuracy.

We have shown the behavior of phase speed and corresponding attenuation coefficient
of Rayleigh-type surface wave graphically against the angular frequency (ω) in low and
high-frequency ranges.

Figures 1 & 2 depict the behavior of the phase speed (Vr ) and corresponding attenua-
tion (Qr ) of Rayleigh-type surface wave against angular frequency (ω) in the low-frequency
range: 0 < ω ≤ 12 × 104. It is found that the phase speed increases monotonically in the fre-
quency range: 0 < ω ≤ 1.7 × 103, to achieve its maxima and then decreases with increase of
frequency in the range 1.7 × 103 < ω ≤ 4.1 × 104. Thereafter, Rayleigh-type surface wave
propagates with constant phase speed in the rest of the considered range of frequency. From
Fig. 2, it can be seen that the attenuation coefficient is very small in magnitude throughout
the considered range of frequency. The wave is attenuating in the initial range of frequency:
0 < ω ≤ 1.5 × 104 and then non-attenuating for further increase in frequency. From Figs. 1
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Fig. 1 Variation of phase speed
(Vr ) against angular frequency
(ω) (low-frequency range)

Fig. 2 Variation of attenuation
coefficient (Qr ) against angular
frequency (ω) (low-frequency
range)

& 2, we conclude that the speed of Rayleigh-type surface wave is dispersive and attenu-
ating in the initial range of frequency, but it becomes non-dispersive and non-attenuating
for further increase of frequency in the low-frequency range considered. Also, in the high-
frequency range, the Rayleigh-type wave is highly dispersive and attenuating. Note that the
dispersive behavior of Rayleigh-type surface wave can be noticed only in the half-space with
nonlocality.

Figures 3 & 4 depict the variation of phase speed and corresponding attenuation coef-
ficient of Rayleigh-type surface wave against frequency in high frequency range: 0 ≤ ω ≤
4.8×1012. In this considered high-frequency range, the phase speed decreases continuously
and finally die out. The corresponding attenuation coefficient also increases continuously
with the increase of frequency. Hence, from Figs. 3 & 4, we conclude that the Rayleigh-type
surface wave is highly dispersive and attenuating in high-frequency range. The real part of
the speed of propagating wave vanishes at a very high value of angular frequency.

Figures 5 & 6 show the comparison of phase speeds of Rayleigh-type surface wave and
that of the transverse wave having speed v4 (counterpart of the classical transverse wave) in
the low-frequency range: 0 ≤ ω ≤ 12 × 104 as well as in the high-frequency range: 0 ≤ ω ≤
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Fig. 3 Variation of phase speed
(Vr ) against angular frequency
(ω) (high-frequency range)

Fig. 4 Variation of attenuation
coefficient (Qr ) against angular
frequency (ω) (high-frequency
range)

4.8 × 1012, respectively. It can be noticed that the transverse wave propagates with a faster
speed than the speed of Rayleigh-type surface wave, which is similar to the well-establish
fact about Rayleigh wave in Cauchy elastic half-space. The phase speed of both the waves
approaches to zero at the same value of frequency, namely, ωc1 = (ct + k1)/ε, after which
both Rayleigh-type and transverse waves disappear. From these figures, we conclude that
the behavior of Rayleigh-type surface wave and that of the counterpart of the transverse
wave is similar.

Figures 7 & 8 show the comparison of phase speed and corresponding attenuation coef-
ficient of Rayleigh-type surface wave, respectively, propagating in the half-space composed
of nonlocal micropolar thermoelastic materials with voids (NMTEMV), nonlocal microp-
olar elastic materials with voids (NMEMV), nonlocal thermoelastic materials with voids
(NTEMV), nonlocal elastic material (NEM) and classical elastic material (CEM) in low-
frequency range. From Fig. 7, it can be noticed that in the absence of micropolar param-
eters, the phase speed of Rayleigh-type surface wave propagates slower than that of in the
medium with non-zero micropolar parameters. Also, due to the presence of void parameters,
the phase speed of Rayleigh-type surface wave increases, whereas it propagates with a con-
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Fig. 5 Comparison of phase
speeds of the counterpart of
classical transverse wave and
Rayleigh-type surface wave
against angular frequency (ω)
(low-frequency range)

Fig. 6 Comparison of phase
speeds of the counterpart of
classical transverse wave and
Rayleigh-type surface wave
against angular frequency (ω)
(high-frequency range)

stant speed in the absence of void parameters in the frequency range: 0 ≤ ω ≤ 3.5 × 103. In
low-frequency range, the phase speed of surface wave is independent of nonlocal parameter
(ε). Also, the thermal parameters have almost negligible effect on the speed of propagating
surface wave. This is because the wave with and without thermal parameters propagates
with the same phase speed, as shown in Fig. 7. The variation of the attenuation coefficient
against the frequency has been depicted on logarithmic scale to have a clear comparison
with those in other mediums. From Fig. 8, it can be seen that the Rayleigh-type surface
wave is attenuating in low-frequency range: 0 ≤ ω ≤ 1.1 × 104, except that in classical elas-
tic medium. This is because in the classical elastic medium, the Rayleigh-type surface wave
is non-attenuating and propagates with real speed. The comparison of the attenuation coef-
ficients of Rayleigh-type wave in NEM and in other media is not shown here because the
attenuation coefficient in NEM is also found to be nil for all values of frequency considered.
Hence, from Figs. 7 & 8, we conclude that the micropolar parameters enhances the speed
of Rayleigh-type wave, while in the presence of void parameters, the Rayleigh-type surface
wave becomes dispersive and attenuating in low-frequency range. Also, due to the presence
of micropolar parameters, the surface wave is less dispersive as compared to that in the
medium without micropolar parameters. It can be noticed that the nonlocal parameter (ε)
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Fig. 7 Comparison of phase
speeds in different media against
angular frequency (ω)
(low-frequency range)

Fig. 8 Comparison of
attenuation coefficients in
different media against angular
frequency (ω) on logarithmic
scale (low-frequency range)

has a negligible effect on the speed of Rayleigh-type surface wave in low-frequency range.
Furthermore, it is noticed that in NEM and CEM models, the Rayleigh-type surface wave
propagates with real speeds.

Figures 9 & 10 show the comparison of the phase speeds of Rayleigh-type surface wave
and their corresponding attenuation coefficients, respectively, in different media under very
high-frequency range. From Fig. 9, it can be noticed that the phase speed of Rayleigh-
type surface wave decreases with increase of angular frequency in nonlocal medium and
vanishes at a particular value of frequency. This value of frequency is equal to ωc1 for the
medium with micropolarity and ωc2 = ct/ε for the medium without micropolarity. However,
in Fig. 9, it is not clearly seen because the difference between these two frequencies is very
less in comparison to the number of points on the horizontal axis. The Rayleigh-type sur-
face wave propagates with constant phase speed in the medium without nonlocality. From
Fig. 10, it is noticed that the attenuation coefficient of Rayleigh-type surface wave increases
in the medium with thermal parameters, whereas in the absence of thermal parameters, the
attenuation coefficient remains constant in high-frequency range. The surface wave is atten-
uating in NMTEMV and NTEMV media, beyond the frequency values ω ≥ 4.2 × 1012 and
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Fig. 9 Comparison of phase
speeds in different media against
angular frequency (ω)
(high-frequency range)

Fig. 10 Comparison of
attenuation coefficients in
different media against angular
frequency (ω) (high-frequency
range)

ω ≥ 3.77 × 1012, respectively. Hence, from these figures, we conclude that due to the pres-
ence of nonlocality, the Rayleigh-type surface wave is highly dispersive in high-frequency
range and the wave ceases to propagate beyond a particular value of frequency. In the high-
frequency range, the surface wave is highly attenuating in the thermoelastic medium and
non-attenuating in the medium without thermal effects. Hence, thermal parameters have
significant effect on the attenuation coefficients of the Rayleigh-type surface wave.

Figures 11 & 12 depict the variation of the phase speeds and corresponding attenuation
coefficients of Rayleigh-type surface wave, respectively, against the non-dimensional non-
local parameter ε̄(= ε2ω2

0/c
2
l ), ω0 = 2π × 2000 s−1 is the standard angular frequency for a

fixed value of frequency ω = 2π ×5000 s−1. It is found that the phase speed and correspond-
ing attenuation of Rayleigh-type surface wave decreases with increase of non-dimensional
nonlocal parameter ε̄. However, the phase speed decreases from 925 ms−1 to 907 ms−1

approximately and the rate of decrease of attenuation coefficient is very less (almost neg-
ligible) in the considered range of nonlocal parameter ε̄. From these figures, we conclude
that the phase speed of Rayleigh-type wave is significantly affected, while its attenuation
coefficient is hardly affected by the non-locality parameter.
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Fig. 11 Variation of phase speed
(Vr ) against nonlocal parameter
(ε̄)

Fig. 12 Variation of attenuation
coefficient (Qr ) against nonlocal
parameter (ε̄)

The tilt angle (θ4) is obtained from the relation (40) in terms of displacement components,
namely, u1 and u3. Figure 13 depicts the variation of (θ4) against the angular frequency on
logarithmic scale at origin and time t = 0 for dissipative and non-dissipative media. The
coefficients A′

2, A′
3, B ′

4 and B ′
5 are obtained in terms of coefficient A′

1, which is taken one
unit. From Fig. 13, it can be seen that for the dissipative medium, the tilt is very small (almost
nil), whereas for non-dissipative medium, it increases in the initial range of frequency up to
ω ≤ 352 and then decreases after a certain value of frequency ω = 352 and approaches to
zero ultimately. From this figure, we conclude that the axis of ellipse traced by the particle
during the propagation of Rayleigh-type wave almost coincides with the coordinate axis in
the dissipative medium.

8 Conclusions

In the present paper, we have explored the possibility of propagation of Rayleigh-type sur-
face waves in a half-space composed of nonlocal micropolar thermoelastic solid containing
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Fig. 13 Variation of tilt angle
(θ4) against angular frequency
(ω) on logarithmic scale

uniform distribution of voids. Only one Rayleigh-type wave is found to propagate in the
considered model. From the present study, following conclusions can be inferred:

1. Only one Rayleigh-type surface wave can propagate, which is dispersive and attenuat-
ing in nature. The dispersive behavior is due to voids present in the medium under low
frequency range, whereas, it is due to the nonlocality present in the medium under high-
frequency range.

2. There exist two cut-off frequencies, one for nonlocal medium with micropolarity and
other for nonlocal medium without micropolarity, beyond which the surface wave ceases
to propagate.

3. The surface wave propagates with a slower speed than that of the transverse wave in the
considered medium.

4. The micropolarity enhances the speed of Rayleigh-type surface wave, but decreases its
dispersiveness in the low frequency range.

5. The nonlocality decreases the phase speed of surface wave, but does not affect the atten-
uation coefficient.

6. The path traced out by the particle of the medium during the propagation of Rayleigh-
type surface wave is found to be elliptical.
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