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Abstract
There are many situations where groundwater flow has high flow rates, causing large seepage
forces. Examples are flows around highly conductive fractures and tunnels. We present a
new analytic element for a tunnel in an elastic medium. We combined the analytic element
method for groundwater flow with that for linear elasticity, and include the seepage force
as a body force in the linearly elastic model. We represent tunnels and fractures as analytic
elements. The solution for the case considered is limited to steady state flow and fluid-to-
solid coupling. We present examples of the computed seepage forces around a tunnel and a
fracture as well as a comparison with another numerical model.

Keywords Analytic element method · Linear elasticity · Seepage forces · Tunnels ·
Fractures · Complex variables

Mathematics Subject Classification 30K15 · 74B05 · 30C20

1 Introduction

Flowing groundwater exerts a force, the seepage force, which is proportional to the gradient
of the hydraulic head, which may cause a loss of stability if the gradient is large. High
gradients occur near tunnels; their draining effect increases if highly conductive fractures
are nearby.

We handle seepage forces by considering groundwater flow and linear elasticity as a
coupled process, which can either be coupled in one way or in two ways [16]. [10], and
[17] state that there exist four types of couplings between rock and groundwater that can
be divided into two types, direct and indirect. We consider a fluid-to-solid coupling where
the seepage forces affect the stresses and strains but not the reverse. We limit the analysis to
fractures and tunnels.
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Numerous formulations exist for the effect of seepage forces on the stability of a tunnel
face. [2] used a limit equilibrium method which was later improved by [9]. [7] included
the seepage force as a body force acting on the rock mass in three dimensions. Furthermore,
[7] employed a numerical model for the groundwater flow and implemented the interpolated
hydraulic head in a kinematical approach of limit analysis. [8] present an analytic description
of the seepage forces on a circular tunnel, for both zero pressure and constant head along the
tunnel lining. [8] mapped the half-space with a circular tunnel onto a disk in a transformed
plane. The analytic solution they present applies to steady state and shows that the seepage
force on the tunnel lining greatly increases with the tunnel depth.

When considering the combined effect of seepage forces and pressurized fractures, it is
common to study fracture propagation. Some consider only the flow within the fracture,
e.g. [5], while others study the fracture and seepage, e.g. [18]. [19] studied seepage forces
in a fractured rock system with water injection. [19] show how the seepage forces vary
over time and how they propagate around fractures. As expected, the seepage force is high
close to fractures that draw water from the rock matrix. [4] and [3] studied the effects of
loading a pressurized fracture on the normal stress and the pore pressure. Accounting for
the pressure in both the pore space and the fracture, they studied the transient effects on the
stress intensity factor and the fluid leak-off.

The objective of this paper is to further develop the linear elastic analytic element model
developed by [13] and [14] to include the body force due to seepage and to develop the
analytic element for a tunnel in a linearly elastic medium in plane strain. The main objective
is to create an analytic element model that couples the groundwater flow model with the
linearly elastic one. This results in a model where the seepage forces are known at every
point in the medium, allowing us to investigate with high resolution the behavior at points in
the vicinity of singularities. It also allows us to investigate the importance of seepage forces
on tunnels relative to the effect of gravity. The model has no theoretical limit on the number
of elements that can be included.

We consider the components of the contributions of the seepage force to both the dis-
placement vector and the stress tensors, using the terms for a body force in the governing
equation. We include the gravitational body force in the same terms. We express the seepage
force in terms of the complex discharge potential obtained from the groundwater model. We
assume that the groundwater model is not affected by the elastic deformations, so that the
complex discharge potential remains fixed throughout the domain. This assumption does not
limit us in our primary engineering objective, determining the importance of the effect of
flow singularities on the stability of tunnel walls. The effect of the flow singularities on the
stresses in the tunnel wall appears, somewhat surprisingly, to be minor.

We present solutions for tunnels, single and intersecting fractures; first separately for
flow and deformations and then combined, using superposition. We observe the impact of
seepage forces near singular points and as a function of distance to the element. We use
this to determine where seepage forces should be considered and how much impact they
have depending on the situation. A comparison of the simulated seepage forces from the
presented AEM model and a COMSOL Multiphysics® model is presented for a case of a
tunnel in fractured rock.

2 Equations for Linear Elasticity

We follow the notation in [13] for linear elasticity with body forces for the displacement
vector and stress tensor in terms of complex functions � and � and the body force B1 and
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B2. The complex displacement for linear elasticity with body forces is:

w = ux − iuy = 1

4G

{−z̄�′(z) + κ�̄(z̄) + �(z) − 2(1 − 2ν)B̄2(z̄)
}

(1)

where z = x + iy, and ux and uy are the components of the displacement vector in Cartesian
(x, y)-space. We express the contra-variant components of the stress tensor in non-Cartesian
(z̄, z)-space as:

τ 11 = z̄�′′(z) − � ′(z) (2)

and

τ 12 = −�′(z) − �̄′(z̄) + B̄1(z̄) + B1(z). (3)

The expressions for τ 11 and τ 12 in terms of the Cartesian components, σxx , σxy , and σyy , of
the stress tensor are

τ 11 = σxx − σyy − 2iσxy (4)

and

τ 12 = σxx + σyy. (5)

[13] presents expressions for the traction components in terms of τ 11 and τ 12 along a plane
at an angle α to the x-axis:

ts − itn = −1

2
i
[
τ 11e2iα − τ 12

]
. (6)

3 The Body Force

The body force consists of the seepage force plus gravity. The components of the seepage
force are

sx = −ρwg
∂φ

∂x
, sy = −ρwg

∂φ

∂y
, (7)

where ρw is the density of water, g is the gravitational acceleration and φ is the hydraulic
head. We write the seepage force in complex form as

S = sx − isy = −ρwg

(
∂φ

∂x
− i

∂φ

∂y

)
= −2ρwg

∂φ

∂z
. (8)

We obtained the trailing expression from the chain rule and ∂x/∂z = 1/2, ∂y/∂z = 1/(2i).
We express the complex body force B0 in terms of its Cartesian components:

B0 = βx − iβy, (9)

and add to βy the contribution of gravity,

B0 = iρg − 2ρwg
∂φ

∂z
. (10)
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We follow [12] and restrict the groundwater flow to divergence-free irrotational flow, so that
φ is a harmonic function of position that we write as the real part of a complex potential,

∗,

2
∂φ

∂z
= 1

k

d
∗

dz
(11)

and

B0 = iρg − ρwg

k

d
∗

dz
. (12)

We introduce a holomorphic complex potential 
 that represents both the gravity and
seepage forces:


 = iρgz − ρwg

k

∗ = ρg

[
iz − ρw

ρ

1

k

∗

]
, (13)

where 
 is a function of z only, i.e., does not depend on z̄. We write (10) as

B0 = d


dz
= ρg

[
i − ρw

ρ

1

k

d
∗

dz

]
, (14)

and integrate to obtain an expression for B1:

B1 = ρg

[
iz − ρw

ρ

1

k

∗

]
= 
. (15)

We integrate again for B2

B2 =
∫


dz = ρg

[
1

2
iz2 − ρw

ρ

1

k

∫

∗dz

]
. (16)

The body forces are included in the global component of the traction rather than in individual
analytic elements.

4 An Analytic Element for a Circular Tunnel

We derive the expression for an analytic element for a circular tunnel with a constant at-
mospheric pressure acting against its wall. We present the analytic element for a constant
pressure tunnel for groundwater flow in Appendix A. The tunnel is in an infinite domain, has
a radius rt , and is centered at zt . We create the analytic element such that it can be combined
with other analytic elements.

4.1 The Tractions

Both traction components are zero along the tunnel wall so that the two components of the
transformed stress tensor, τ 11 and τ 12, are zero as well. The other two components of the
stress tensor are the complex conjugates of the first two and need not be considered. The
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latter tensor components are given by (2) and (3). We replace the body force B1(z) in (3) by

(z):

τ 12 = − [
�′(z) + �̄′(z̄)

] + 
̄(z̄) + 
(z). (17)

The complex potential 
 is the sum of the gravitational and seepage forces. We introduce a
dimensionless variable Z = X + iY :

Z = z − zt

rt

(18)

with its inverse

z = Zrt + zt , (19)

and express τ 11 in terms of Z:

τ 11 = Z̄rt�
′′(z) + z̄t�

′′(z) − � ′(z). (20)

We introduce a function �(z) via its derivative as

� ′(z) =
[ rt

Z
+ z̄t

]
�′′(z) + ψ ′(z), (21)

and include this in the expression for τ 11

τ 11 = Z̄rt�
′′(z) + z̄t�

′′(z) − rt

Z
�′′(z) − z̄t�

′′(z) − ψ ′(z) (22)

or

τ 11 = rt

(
Z̄ − 1

Z

)
�′′(z) − ψ ′(z). (23)

We use (6) to write the traction components in terms of τ 11 and τ 12. The first term in (23)
vanishes, because ZZ̄ = 1 along the boundary of the tunnel,

ts − itn = −1

2
i
[−ψ ′(z)e2iα + �′(z) + �̄′(z̄) − (
(z) + 
̄(z̄))

]
, ZZ̄ = 1 (24)

where α, shown in Fig. 1, is the angle between an increment dZ that points in a counter-
clockwise direction along the tunnel wall; α = θ + π/2 so that, with Z = eiθ

ts − itn = −1

2
i
[−ψ ′(z)e2iθ eiπ + �′(z) + �̄′(z̄) − (
(z) + 
̄(z̄))

]
, ZZ̄ = 1. (25)

Z is a point on the circle; e2iα = e2iθ+iπ = −Z2, and

ts − itn = −1

2
i
[
ψ ′(z)Z2 + �′(z) + �̄′(z̄) − (
(z) + 
̄(z̄))

]
, ZZ̄ = 1. (26)

We introduce a function � as:

� = ψ ′(z)Z2 (27)
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Fig. 1 The angle α along the
tunnel wall

and use it in (26):

ts − itn = −1

2
i
[
�(z) + 2��′(z)

] + 1

2
i[
(z) + 
̄(z̄)], ZZ̄ = 1. (28)

We introduce additional functions P (z) and Q(z),

�Q = 1

2
�� + ��′ (29)

and

�P = 1

2
��. (30)

We use (28) to express the tractions in terms of Q, P and 


ts − itn = −i�Q(z) + �P (z) + 1

2
i[
(z) + 
̄(z̄)], ZZ̄ = 1 (31)

or

�P = ts , ZZ̄ = 1 (32)

and

�Q = tn + 1

2
[
(z) + 
̄(z̄)], ZZ̄ = 1. (33)

The functions P (z) and Q(z) are holomorphic outside the unit circle; we expand each in
terms of an asymptotic series:

P =
∞∑

n=0

anZ
−n, ZZ̄ = 1 (34)

and

Q =
∞∑

n=0

bnZ
−n, ZZ̄ = 1. (35)
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We determine the unknown coefficients from the conditions that the tractions due to both
the tunnel element and the other elements are zero along the tunnel wall.

We follow an approach similar to that explained in [12]. We use the functions P and Q

to create shear and normal tractions along the tunnel wall that cancel the values contributed
by the other elements. We employ the method of holomorphic matching explained in [11]
to determine the coefficients an and bn in (34) and (35). Through holomorphic matching,
we derive a relationship between the unknown coefficients an and bn and a set of known
coefficients given by a holomorphic function that is represented by its own Taylor series.
Although an arbitrary function such as ts or tn, cannot be written in terms of a single complex
variable everywhere, it can be done along a single line or curve. The method of achieving
this is holomorphic matching.

The tractions ts and tn are not harmonic functions and cannot be represented in terms of
real or imaginary parts of the complex Taylor series. However, the expressions for ts and tn
do not have singularities inside the circular tunnel boundary. Therefore ts and tn can each be
viewed as the boundary values of some holomorphic function. We represent these functions
as R and S, with

ts
other

= �R(Z), ZZ̄ = 1 (36)

and

tn
other

= �S(Z), ZZ̄ = 1. (37)

The components of the body forces are included in the expression for tn
other

. We expand both

R and S in terms of a Taylor series about Z = 0,

R =
∞∑

n=0

λnZ
n (38)

and

S =
∞∑

n=0

μnZ
n. (39)

We use Cauchy integrals to determine λn and μn:

λn = i

π

∫ 2π

0
ts

other
e−inθ dθ (40)

and

μn = 1

π

∫ 2π

0
tn

other
e−inθ dθ. (41)

Representing ts and tn as these series is valid only along the boundary ZZ̄ = 1.
We express ts as the real part of R,

ts
other

= 1

2i

∞∑

n=0

[
λnZ

n − λ̄nZ̄
n
]
. (42)
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The shear stress due to the combination of the tunnel element and the other elements must
vanish for ZZ̄ = 1:

ts = 1

2i

∞∑

n=0

[
λnZ

n − λ̄nZ̄
n + anZ

−n − ānZ̄
−n

] = 0, ZZ̄ = 1. (43)

We apply holomorphic matching along the tunnel wall by replacing the non-holomorphic
term Z̄ by 1/Z:

ts = 0 = 1

2i

∞∑

n=0

[
(λn − ān)Z

n + (an − λ̄n)Z
−n

]
. (44)

This condition is satisfied if, for all n,

λn = ān n = 0,1, . . . ,∞. (45)

We apply a similar approach to tn, which gives

μn = −b̄n n = 0,1, . . . ,∞. (46)

We express the functions involved in the tunnel element in terms of P , Q, and 
. We
apply (30) to determine � from

�P = 1

2i
(P − P̄ ) = 1

4i
(� − �̄), (47)

so that:

� = 2P. (48)

We use (29) to obtain an expression with �′:

�Q = 1

2
(Q + Q̄) = 1

4
(� + �̄) + 1

2
(�′ + �̄′) (49)

or

�′ = Q − P, (50)

so that

�′ = Q − P =
∞∑

n=0

(bn − an)Z
−n. (51)

We find ψ ′ from (27)

ψ ′ = 2PZ−2 = 2
∞∑

n=0

anZ
−(n+2). (52)

We use

dZ

dz
= 1

rt

(53)
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when differentiating �′ with respect to Z,

�′′ = − 1

rt

∞∑

n=0

n(bn − an)Z
−(n+1). (54)

4.2 The Displacements

The equation for complex displacement is given in (1). A constant, w∞, can be added such
that the displacements are symmetrical relative to the origin. We integrate � ′:

� =
∫

rt

Z
�′′dz + z̄t�

′ + ψ, (55)

where

∫
rt

Z
�′′dz = −

∫ ∞∑

n=0

n(bn − an)Z
−(n+2)dz =

∞∑

n=0

n
bn − an

n + 1
Z−(n+1) (56)

and

ψ = −2
∞∑

n=0

an

n + 1
Z−(n+1). (57)

We integrate �′ as well

� = rt

[

(b0 − a0)Z + (b1 − a1) ln(Z) +
∞∑

n=2

bn − an

1 − n
Z−(n−1)

]

. (58)

5 An Analytic Element for a Fracture in Groundwater Flow

We modify the analytic element function for a fracture/crack, presented in [14] to include
body forces. A more extensive derivation of the resulting stress tensor is in [14].

5.1 The Tractions

We write the expression for the stress tensor components for a fracture at an angle γ and of
length L as

τ 11 = −1

2
L(Z − Z̄)φ′′(z) − e−iγ φ′(z) − e−iγ ψ ′(z) (59)

and

τ 12 = −eiγ φ′(z) − e−iγ φ̄′(z̄) + (
̄(z̄) + 
(z)), (60)

where, as in [14] (equations: (27) and (28)), φ = e−iγ �. The real part of the complex poten-
tial, and thus the hydraulic head, is in the expression for τ 12 and directly affects the isotropic
stress. The traction along the element is

T 1

γ
= ts

γ
− itn

γ
= −1

2
i
[
τ 11e2iγ − τ 12

]
. (61)
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We use (59) and (60):

ts
γ

− itn
γ

= −1

2
i

[(
−1

2
L(Z − Z̄)φ′′(z) − e−iγ φ′(z) − e−iγ ψ ′(z)

)
e2iγ (62)

+eiγ φ′(z) + e−iγ φ̄′(z̄) − (
̄(z̄) + 
(z))

]

,

where Z = Z̄ along the element, so that

ts
γ

− itn
γ

= 1

2
i
[
eiγ φ′(z) + eiγ ψ ′(z) − eiγ φ′(z) − e−iγ φ̄′(z̄) + (
̄(z̄) + 
(z))

]
(63)

or

ts
γ

− itn
γ

= 1

2
i
[
eiγ ψ ′(z) − e−iγ φ̄′(z̄) + (
̄(z̄) + 
(z))

]
. (64)

We write the functions φ and ψ in terms of asymptotic expansions, which converge
outside the unit circle in the χ -plane:

φ =
∞∑

n=1

αnχ
−n, (65)

ψ =
∞∑

n=1

βnχ
−n. (66)

The derivative of these equations are in [14], and are

φ′ = dφ

dz
= −

∞∑

n=1

nαn

χ−(n−1)

χ2 − 1

4

L
e−iγ , (67)

ψ ′ = dψ

dz
= −

∞∑

n=1

nβn

χ−(n−1)

χ2 − 1

4

L
e−iγ , (68)

and

φ′′ = d2φ

dz2
=

∞∑

n=1

nαn

16

L2
e−2iγ χ2−n

(χ2 − 1)3

[
(n + 1)χ2 − n + 1

]
. (69)

We insert these in (64),

ts
γ

− itn
γ

= −1

2
i

[

eiγ

( ∞∑

n=1

nβn

χ−(n−1)

χ2 − 1

4

L
e−iγ

)

(70)

−e−iγ

( ∞∑

n=1

nᾱn

χ̄−(n−1)

χ̄2 − 1

4

L
eiγ

)

− (
̄(z̄) + 
(z))

]

,
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and simplify to give

ts
γ

− itn
γ

= −1

2
i

[
4

L

∞∑

n=1

(
nβnχ

−n χ

χ2 − 1
− nᾱnχ̄

−n χ̄

χ̄2 − 1

)
− (
̄(z̄) + 
(z))

]

. (71)

We have χχ̄ = 1 along the crack,

χ̄

χ̄2 − 1
= χ

1 − χ2
= − χ

χ2 − 1
, (72)

which gives

ts
γ

− itn
γ

= −1

2
i

[
4

L

χ

χ2 − 1

∞∑

n=1

n
(
βnχ

−n + ᾱnχ
n
)
]

+ 1

2
i(
̄(z̄) + 
(z)). (73)

5.2 Continuity of Tractions

As in [14] we use the condition of continuity of tractions; the tractions must be continuous
across the fracture, to find αn and βn:

ts
γ

+ − itn
γ

+ −
(

ts
γ

− − itn
γ

−
)

=

−1

2
i

{[
4

L

χ

χ2 − 1

∞∑

n=1

n
(
βnχ

−n + ᾱnχ
n
) − (
̄(z̄) + 
(z))

]

−
[

4

L

χ̄

χ̄2 − 1

∞∑

n=1

n
(
βnχ̄

−n + ᾱnχ̄
n
) − (
(z) + 
̄(z̄))

]}

, χχ̄ = 1. (74)

We simplify, using that χ̄ = χ−1,

[
4

L

χ

χ2 − 1

∞∑

n=1

n
(
βnχ

−n + ᾱnχ
n
) − (
̄(z̄) + 
(z))

]

+
[

4

L

χ

χ2 − 1

∞∑

n=1

n
(
βnχ

n + ᾱnχ
−n

) + (
̄(z̄) + 
(z))

]

, χχ̄ = 1, (75)

and combine terms:

4

L

χ

χ2 − 1

∞∑

n=1

n
{
βn

(
χn + χ−n

) + ᾱn

(
χn + χ−n

)}
. (76)

The tractions are continuous across the crack, provided that

αn = −β̄n. (77)

The relationship between αn and βn is identical to that in [14]. The normal traction tn is also
a function of the body force (73), but otherwise the solution for βn is the same. We follow
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Table 1 General properties for
rock mass and groundwater k = 10−7 m/day, hydraulic conductivity of rock

T = kbb = 10−3 m2/day, transmissivity of fractures

ρ = 2520 kg/m3, density of rock

ρw = 1000 kg/m3, density of water

[14] and express the unknown coefficients along the unit circle, using χ = eiθ , as:

ts
γ

= − 2

L sin(θ)

∞∑

n=1

n�βn sin(nθ) (78)

and

tn
γ

= − 2

L sin(θ)

∞∑

n=1

n�βn sin(nθ). (79)

The body forces are included in the contribution of all the other elements on tn
γ

.

The value for the hydraulic pressure p in the fracture is given by the groundwater pressure

p = (φ − �z)ρwg. (80)

The complex potential 
∗ is given by either the exact solution of flow with a single fracture
or [15] for intersecting fractures. In order to plot the displacements please use the integral
of the complex potential for intersecting fractures, from [15], in Appendix B.

6 Results

The general properties chosen for the rock mass and groundwater are given in Table 1; the
values are based on [6] and [20].

We present in Fig. 2 the effect of the two components of the body force on the isotropic
stress τ 12 as a function of depth. We also present the flow net for a tunnel at a given depth in
a field of vertically downward uniform flow. For this and all other flow nets, the blue lines
represent the stream lines, and the red lines the equipotentials. There is a branch cut because
there is a net flow into the tunnel represented by the logarithm of the tunnel element, which
causes a horizontal discontinuity in the stream function. The values of the two components
of the body force are the mean values along the tunnel wall. We observe that the effect of
gravity is consistently higher than that of the seepage force and this effect increases with the
depth of the tunnel. When considering large depths the seepage force is negligible compared
to gravity.

We plot in Fig. 3 the flow net for a fracture in uniform flow and the effect of the two
components of the body force on the isotropic stress τ 12 as a function of distance in terms of
fracture length projected onto the x-axis, beginning the plot at from the upper right fracture
tip. We added a constant hydraulic head to the groundwater solution, a situation that could
occur for a fracture beneath a lake. As mentioned, a constant head adds a constant compo-
nent to the isotropic stress. We observe that close to the fracture tip the contribution of the
seepage force changes rapidly with position due to the large gradient, see the small box in
Fig. 3 (right). Gravity force is a function of elevation plus a constant. The shape of the plot
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Fig. 2 The flow net for a tunnel in a field of uniform flow (left) and the contribution of the two body force
components, seepage force (blue) and gravity (red), on the isotropic stress as a function of depth (right)

Fig. 3 Flow net for a fracture in uniform flow (left) and the contribution of the two body force components,
seepage force (blue) and gravity force (red), on the isotropic stress as a function of distance computed along
a line parallel to the x-axis beginning at the upper right fracture tip parallel to the x-axis (right)

is highly dependent on the elevation of the fracture tip, the hydraulic head, and the uniform
flow. For a case with a lower added hydraulic head or a lower fracture, gravity would be the
dominating term. Contours of constant major principal stress are presented in Fig. 4.

We present a comparison between the presented AEM model and a COMSOL
Multiphysics® model. The comparison concerns a tunnel in a fracture network under a
constant gradient. The boundary conditions and flow net are presented in Fig. 5 and Table 1.
To limit the far-field flow the model is bounded by a box that has two vertical impermeable
sides and two horizontal constant head boundaries, each side is 500 m away from the tunnel
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Fig. 4 Contours of constant major principal stress for the fracture presented in Fig. 3 (left) and a zoomed plot
for the area bounded by the dotted line on the left panel (right)

center. The tunnel has a radius of 7 m and a zero hydraulic head along the tunnel wall.
The COMSOL Multiphysics® model simulates the groundwater flow using finite elements,
based on Darcy’s law [1]; the seepage force is calculated using (7). As for the AEM model,
the flow in the COMSOL Multiphysics® model is calculated at steady state conditions prior
to the calculation of the seepage force. The comparison of the seepage forces along the
tunnel wall for the two models is presented in Fig. 6.

The relative difference between the two models is calculated using

�sj =
∣∣∣∣
sj,AEM − sj,COMSOL

sj,COMSOL

∣∣∣∣ , (81)

where j = x, y, and sj,AEM and sj,COMSOL are the seepage forces in the AEM model and the
COMSOL Multiphysics® model respectively. The results show that the difference is gener-
ally less than 0.1%. There are peaks in the relative difference where the seepage force is close
to zero. This is because the AEM model is almost zero while the COMSOL Multiphysics®

model is much higher, e.g. for χ = eiπ : sy,AEM ≈ 0.22 N/m3 and sy,COMSOL ≈ 2000 N/m3,
which means that (81) is equal to one. This further demonstrates that the AEM model accu-
rately simulates the seepage force.

The accuracy of the AEM model improves as the number of coefficients increases, as in
[14] and [15]. Because the AEM model approaches the exact solution, the AEM model and
the COMSOL Multiphysics® model will never agree exactly.

7 Conclusion

We developed an analytic element model capable of including seepage forces as a body force
within a linearly elastic medium in plane strain. We computed the effects of both seepage
force and gravity force in a single expression. We illustrate how the effect of seepage forces
varies with distance from the element and how it behaves near singularities. These insights
are important when considering the effect of seepage forces and deciding when to include
them.
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Fig. 5 Illustration of the far field boundary conditions (left) and the flow net (right) for the area bounded by
the dotted line on the left panel

Fig. 6 Comparison (left) and difference (right) of the computed seepage forces along the tunnel wall for the
two models. The locations for 0 → 2π along the tunnel wall are marked on the right panel in Fig. 5

We compare the effect of seepage force and gravity. The effects of the two are highly
dependent on both elevation and constant hydraulic head. Without an additional constant
hydraulic head, gravity will in almost all cases be dominating.

We compared the presented model with a COMSOL Multiphysics® model and found that
the difference between them is minimal. The difference in the compared case is less than
0.1%, except for points where the seepage force is close to zero. The results demonstrate
that the presented model provides an accurate model for seepage forces.

We have shown that it is possible to combine the analytic element method for ground-
water with that for linear elasticity. This hydro-mechanical model is limited to fluid-to-solid
coupling and does not consider changes in the transmissivity of fractures due to stresses.
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This limitation is acceptable as we limit the study to steady state conditions, and do not
expect any changes in the groundwater properties after the steady state is reached.

Appendix A: An Analytic Element for Flow to a Circular Tunnel with
Constant Pressure

We consider a tunnel centered at zt with a radius of rt . We map the exterior of the tunnel
onto the exterior of the unit circle in the Z-plane using

Z = z − zt

rt

, z = Zrt + zt . (82)

We modify the analytic element for a constant head circular boundary from [12] and
change it into a circular analytic element for a constant pressure. The complex discharge
potential retains its form and is


∗ =
∞∑

n=1

cn

1

Zn
+ Q

2π
ln

(
Z

Zfar

)
(83)

where Zfar is the location of the reference point z0 in the Z-plane, i.e. the contribution from
the discharge of the tunnel is zero at the reference point.

We solve for the unknown coefficients, c, using a Cauchy Integral

cn = 1

π

∫ 2π

0
��e−inθ dθ n = 1, . . . , (84)

where

�� = �
other

− �{z − zt }k (85)

or

�� = �
other

− sin(θ)rtk. (86)

We integrate 
∗ to get the components of B2:


∗
1 =

∫

∗dz = c1 ln(Z) +

∞∑

n=2

cn

1

1 − n

1

Zn−1
+ Q

2π

[
Zrt ln

(
Z

Zfar

)
− z

]
. (87)

Appendix B: Integral of the Complex Potential for Flow with
Intersecting Fractures

The integral of the complex potential, defined as 
∗
1 is:


∗
1 =

∫

∗dz =

∫

∗
crack

dz

dZ

dZ

dχ
dχ +

∫

∗
uni

dz, (88)
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where


∗
crack

= 1

2π

M∑

m=0

bmFm, (89)

dz

dZ

dZ

dχ
= eiγ L

4

(
1 − 1

χ2

)
. (90)

The far-field expansion of Fm is

Fm =
∞∑

j=1

m
αj

1

χj
. (91)

We combine and integrate:

∫

∗
crack

dz = L

4
eiγ

∫

∗
crack

(
1 − 1

χ2

)
dχ

= L

8π
eiγ

⎡

⎣
∫ M∑

m=1

bm

∞∑

j=1

m
αj

1

χj

(
1 − 1

χ2

)
dχ

⎤

⎦

= L

8π
eiγ

⎡

⎣
∫ M∑

m=1

bm

∞∑

j=1

m
αjχ

−j dχ −
∫ M∑

m=1

bm

∞∑

j=1

m
αjχ

−(j+2)dχ

⎤

⎦

= L

8π
eiγ

⎡

⎣
M∑

m=1

bm

⎛

⎝m
α1 ln(χ) +

∞∑

j=2

m
αj

χ−(j−1)

1 − j

⎞

⎠

−
M∑

m=1

bm

∞∑

j=1

m
αj

χ−(j+1)

−(j + 1)

⎤

⎦ . (92)

We use the far-field expansion everywhere except for points on the element, where we use
the near-filed function

Fn =
[
χn + 1

χn

]
ln

χ − 1

χ + 1
+ 2βn + 2

n−1∑

j=1

βn−j

[
χj + 1

χj

]
. (93)

The integral of the uniform flow is

∫
zW

uni
dz = 1

2
z2W

uni
. (94)
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