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Abstract
Motivated from standard procedures in linear wave equations, we write the equations of
classical elastodynamics as a linear symmetric hyperbolic system in terms of the displace-
ment gradient (ux) and the velocity (ut ); this is in contrast with common practice, where
the stress tensor and the velocity are used as the basic variables. We accomplish our goal
by a judicious use of the compatibility equations. The approach using the stress tensor and
the velocity requires use of the time differentiated constitutive law as a field equation; the
present approach is devoid of this need. The symmetric form presented here is based on a
Cartesian decomposition of the variables and the differential operators that does not alter the
Hamiltonian structure of classical elastodynamics. We comment on the differences of our
approach with that using the stress tensor in terms of the differentiability of the coefficients
and the differentiability of the solution. Our analysis is confined to classical elastodynamics,
namely geometrically and materially linear anisotropic elasticity which we treat as a linear
theory per se and not as the linearization of the nonlinear theory. We, nevertheless, comment
on the symmetrization processes of the nonlinear theories and the potential relation of them
with the present approach.

Keywords Linear theory · Hyperbolicity · First order system · Elastodynamics ·
Hamiltonian structure

Mathematics Subject Classification 74B05 · 74B99 · 35L02

1 Motivation

When writing the system of classical elastodynamics as a linear symmetric hyperbolic sys-
tem ([7]) it is a common practice to use the stress tensor and the velocity field as the basic
variables. Such an approach requires the time differentiated constitutive law to be used as
a field equation ([12, 21, 22]). We here present an alternative path for writing the system
of classical elastodynamics as a linear symmetric hyperbolic system using the displacement
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gradient, ux, and the velocity, ut , as the basic variables. Our motivation stems from stan-
dard procedures in linear wave equations: in order to accomplish our goal we judiciously
use linear combinations of the compatibility equations. Our analysis is confined to classical
elastodynamics, namely geometrically and materially linear anisotropic elasticity.

In order to present our motivation and our strategy clearly we start from the classical
linear wave equation. When the unknown field u is scalar and we are limited to one space
dimension the wave equation reads ([5] p. 402)1

u,tt − a11u,11 = 0. (1)

Setting

v1 = u,1, v2 = u,t , (2)

we have from the differential equation

v2
,t − a11v1

,1 = 0, (3)

and

v1
,t − v2

,1 = 0, (4)

from the compatibility relation. The compatibility Eq. (4) is multiplied by a11 and this new
equation is used together with Eq. (3) to form a system of first order for q = (v1, v2)T in the
form

A1d-w ∂q
∂t

+ B1d-w ∂q
∂x1

= 0, (5)

with

A1d-w =
(

a11 0
0 1

)
,B1d-w =

(
0 −a11

−a11 0

)
. (6)

By this judicious multiplication of the compatibility relation with a11 the system is brought
into symmetric form ([5]): both matrices A1d-w and B1d-w are symmetric and A1d-w is positive
definite when a11 > 0.

For a scalar unknown function u in a two dimensional space the situation is analogous.
The differential equation is

u,tt −
2∑

i,j=1

aiju,ij = 0 →

u,tt − a11u,11 − a12u,12 − a21u,21 − a22u,22 = 0. (7)

Setting

v1 = u,1, v2 = u,2, v3 = u,t , (8)

1In line with common practice, time and space derivatives of a quantity () are denoted by (),t = ∂()
∂t

and

(),i = ∂()
∂xi

.
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the differential equation render

v3
,t − a11v1

,1 − a12v1
,2 − a21v2

,1 − a22v2
,2 = 0. (9)

The compatibility relations are two in this case:

v3
,1 = v1

,t , v3
,2 = v2

,t . (10)

Multiplying the first by a11 and the second by a12 (using that a12 = a21) and adding them
one obtains

a11v1
,t + a12v2

,t − a11v3
,1 − a21v3

,2 = 0. (11)

Starting from the same compatibility Eqs. (10) one can multiply the first by a12 and the
second by a22 and add them to get

a12v1
,t + a22v2

,t − a12v3
,1 − a22v3

,2 = 0. (12)

So, instead of working with Eqs. (9, 10) one may use Eqs. (9, 11, 12) and write them as a
system in terms of q = (v1, v2, v3)T of the form ([5] p. 402)

A2d-w ∂q
∂t

+
2∑

i=1

B2d-w
i

∂q
∂xi

= 0, (13)

where

A2d-w =
⎛
⎝a11 a12 0

a12 a22 0
0 0 1

⎞
⎠ ,B2d-w

1 =
⎛
⎝ 0 0 −a11

0 0 −a12

−a11 −a12 0

⎞
⎠ ,

B2d-w
2 =

⎛
⎝ 0 0 −a21

0 0 −a22

−a21 −a22 0

⎞
⎠ .

(14)

With this writing matrices A2d-w, B2d-w
1 , B2d-w

2 are symmetric. Note that a12 = a21 is impor-
tant for the symmetry of matrix A2d-w. Keep also in mind that matrix B2d-w

1 is related with
derivatives with respect to x1 while matrix B2d-w

2 with x2. One can generalize this procedure
straightforwardly to a scalar unknown function in Rn (see [5] p. 402) and a vector function
in any space dimension with similar outcomes.

What can one infer from this analysis is that by judiciously substituting the compati-
bility relations with independent sum and/or subtractions of them, the system can be put
into symmetric form. Certainly, for the examples above the used compatibility relations are
independent as linear combinations of the initial compatibility relations.

Note that this analysis is confined to the linear case; when nonlinear differential equations
are studied a similar goal is accomplished using entropy-flux pairs. Systems of conservation
laws which possess entropy functions ([4, 5, 9]) are equations (commonly of mathematical
physics) that can be written in a symmetric form which retains the conservation properties
of the system. It seems that the existence of an entropy-flux pair for a system of conserva-
tion laws for the specific case of Euler fluids starts with the work of Godunov ([10]) who
shows that a system which can be symmetrized has an entropy function (see also [1, 8]).
Conversely, Mock ([16]) shows that when a system has an entropy function then it can
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be symmetrized. In the relativistic case the symmetrization procedure is done by Ruggeri
and Sturmia ([19], see also [20]) and for the specific case of nonlinear elasticity by Boil-
lat and Ruggeri ([2], see also, [3]). For the nonlinear elastic case, symmetrization is also
accomplished in the work of Qin ([18]): the author starts from a polyconvex stored energy
function and writes the system in a symmetric hyperbolic conservation law type.

In the next two sections we put the equations of classical linear elasticity in symmet-
ric form. The strategy is very similar with the above described cases for the linear wave
equation: we seek for the right substitutes of the initial compatibility relations in order to
accomplish our goal. This is done in an inverse way: we start by writing our initial equations
as a first order system of the form

A
∂q
∂t

+
n∑

i=1

Bi

∂q
∂xi

= 0, (15)

with n = 2,3 depending on whether we are in 2 or 3 dimensions. We then check what are
the symmetric forms of matrices Bi and which combinations of the compatibility equations
should be used in order the symmetric form of matrices Bi to appear into the system. This
“symmetrization” process alters matrix A and if the resulting matrix A is symmetric our
goal is accomplished. We only have to check whether the new compatibility relations are
independent.

Compared to the classical wave equation (see e.g. [5]), the equations of elasticity are
slightly different, since the strain appears in the momentum equation which in the linear
case is related with the displacement gradient by the relation

eij = 1

2

(
ui,j + uj,i

)
. (16)

Our analysis is similar with that of [12, 21, 22] in the sense that the ultimate purpose is
to write the equations as a linear symmetric system. But there is a fundamental difference:
these authors use the stress tensor and the velocity as the basic variables, while we use the
displacement gradient and the velocity. The approach using the stress tensor instead of the
displacement gradient requires the time differentiated constitutive law to be used as a field
equation instead of the compatibility relations which are used in our approach.

Our starting point is the momentum equation which, in the absence of body forces and
with a unit density, has the form

üi = σij,j , (17)

where σ is the classical Cauchy stress tensor. Classical elasticity utilizes the energy

W = 1

2
eijCijklekl, (18)

where C are the elasticities of a generically anisotropic material which satisfy minor and
major symmetries Cijkl = Cj ikl = Cij lk = Cklij . The stress tensor is then

σij = ∂W

∂eij

= Cijklekl, (19)

so the momentum equation reads

üi = Cijklekl,j . (20)
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If one furthermore uses Eq. (16), then the momentum equation written with respect to the
displacement has the form

ui,tt = 1

2
Cijkl(uk,lj + ul,kj ) →

ui,tt − 1

2
Cijkluk,lj − 1

2
Cijklul,kj = 0. (21)

In Sects. 2 and 3 we write Eqs. (21) as a linear symmetric hyperbolic system in terms of ux

and ut in two and three space dimensions, respectively.
Writing the elasticity equations in the symmetric form of Eq. (15) essentially uses a

Cartesian decompositions of the variables and the operators which does not alter the Hamil-
tonian structure of linear elasticity ([12, 14, 15]). We comment on the Hamiltonian structure
of classical elastodynamics in Sect. 4. In Sect. 5 we compare our analysis with the one using
the stress tensor in terms of the differentiability of the coefficients and the differentiability of
the solution. In doing so, we use a standard theorem for linear symmetric hyperbolic systems
([6, 7]). In the same section we present the two alternative writings, i.e. the one using the
displacement gradient and the other using the stress tensor, in the one dimensional setting
for a non-homogeneous body, where one can see more clearly the differences that appear
in the requirements on the coefficients. In Sect. 6 we put our per se linear theory under the
perspective of the nonlinear approach by commenting on the potential relation of the linear
theory with two prominent symmetrization processes of nonlinear elasticity: that of Boillat
and Ruggeri ([2]) and that of Qin ([18]). The article ends up with some concluding remarks
in Sect. 7.

The present framework for the 2d and 3d case is valid for homogeneous materials in the
sense that the elasticity tensor, C, does not depend on the spatial coordinate. When such
a spatial dependence is introduced lower order terms should be added in the first order
systems; these terms are related with the spatial gradient of the material parameters but do
not alter the analysis (see [13] p. 48) since they remain lower order terms that have no effect
on the principal part of the first order system. Nevertheless, they play an important role in
the differentiability of the coefficients which can be better seen in the 1d case presented in
Sect. 5.

The linear theory we work with stands on its own: we develop the linear theory on its own
footing, rather as the linearization of the nonlinear theory. We do not examine the adopted
linear approach as the limit of the nonlinear theory, but as a linear theory per se. To the best
of our knowledge the symmetrization process established here is not reported in the literature
of linear elasticity, when it is treated as a linear theory per se. This, we believe, constitutes
the main novelty of our approach with respect to the existing literature of linear elasticity
when treated as a linear theory on its own. In order to promptly infer to which nonlinear
framework our linear approach corresponds one should carefully linearize the framework of
Boillat and Ruggeri ([2]) and that of Qin ([18]) and then examine to which framework our
approach corresponds.

2 Elasticity in 2d

In the two dimensional case there are two equations, one for each of the two components of
the displacement vector. Summing the dummy indices in Eq. (21) for i = 1 we get the first
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equation which reads

u1,t t − C1111u1,11 − C1211u1,12 − 1

2
(C1112 + C1121)u1,21

−1

2
(C1212 + C1221)u1,22 − 1

2
(C1121 + C1112)u2,11 − 1

2
(C1121 + C1112)u2,11

−1

2
(C1221 + C1212)u2,12 − C1122u2,21 − C1222u2,22 = 0. (22)

For i = 2 and summing all dummy indices we obtain the second equation

u2,t t − C2111u1,11 − C2211u1,12 − 1

2
(C2112 + C2121)u1,21

−1

2
(C2212 + C2221)u1,22 − 1

2
(C2121 + C2112)u2,11 − 1

2
(C2121 + C2112)u2,11

−1

2
(C2221 + C2212)u2,12 − C2122u2,21 − C2222u2,22 = 0. (23)

While in the realm of classical elasticity C has the major and minor symmetries, we choose
not to use these symmetries at this stage.

Setting

v1 = u1,1, v2 = u1,2, v3 = u1,t ,

v4 = u2,1, v5 = u2,2, v6 = u2,t , (24)

Equation (22) reads

v3
,t − C1111v

1
,1 − C1211v

1
,2 − 1

2
(C1112 + C1121)v

2
,1

−1

2
(C1212 + C1221)v

2
,2 − 1

2
(C1121 + C1112)v

4
,1

−1

2
(C1221 + C1212)u

4
,2 − C1122u

5
,1 − C1222u

5
,2 = 0, (25)

while Eq. (23) takes the form

v6
,t − C2111v

1
,1 − C2211v

1
,2 − 1

2
(C2112 + C2121)v

2
,1

−1

2
(C2212 + C2221)v

2
,2 − 1

2
(C2121 + C2112)v

4
,1

−1

2
(C2221 + C2212)u

4
,2 − C2122u

5
,1 − C2222u5,2 = 0. (26)

The compatibility relations read

v1
,t = v3

,1 v2
,t = v3

,2,

v4
,t = v6

,1 v5
,t = v6

,2. (27)
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So, as a system with respect to q = (v1, v2, v3, v4, v5, v6)T Eqs. (25-27) are of the form

A2d ∂q
∂t

+
2∑

i=1

B2d
i

∂q
∂xi

= 0, (28)

with A2d = I , the 6 by 6 unit tensor,

B2d
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0
0 0 0 0 0 0

−C1111 − 1
2 (C1112 + C1121) 0 − 1

2 (C1121 + C1112) −C1122 0
0 0 0 0 0 −1
0 0 0 0 0 0

−C2111 − 1
2 (C2112 + C2121) 0 − 1

2 (C2121 + C2112) −C2122 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29)

and

B2d
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 −1 0 0 0

−C1211 − 1
2 (C1212 + C1221) 0 − 1

2 (C1221 + C1212) −C1222 0
0 0 0 0 0 0
0 0 0 0 0 −1

−C2211 − 1
2 (C2212 + C2221) 0 − 1

2 (C2221 + C2212) −C2222 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

Keep in mind that matrices B2d
1 and B2d

2 are related with derivatives with respect to x1 and
x2, respectively.

In line with the wave equation described in the motivation section, the idea is to built the
symmetric form of the matrices B2d

1 and B2d
2 in the system by judiciously multiplying and

adding the compatibility relations. To see how this can be done we start with matrix B2d
1 : its

symmetric form is

B
2d, sym
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −C1111 0 0 −C2111

0 0 − 1
2 (C1112 + C1121) 0 0 − 1

2 (C2112 + C2121)

−C1111 − 1
2 (C1112 + C1121) 0 − 1

2 (C1121 + C1112) −C1122 0
0 0 − 1

2 (C1121 + C1112) 0 0 − 1
2 (C2121 + C2112)

0 0 −C1122 0 0 −C2122

−C2111 − 1
2 (C2112 + C2121) 0 − 1

2 (C2121 + C2112) −C2122 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(31)
In order to built the first line of B

2d, sym
1 into the system, we start from the compatibility

v1
,t = v3

,1 → C1111v
1
,t − C1111v

3
,1 = 0, (32)

which is added to

v4
,t = v6

,1 → C2111v
4
,t − C2111v

6
,1 = 0, (33)

in order to get

C1111v
1
,t + C2111v

4
,t − C1111v

3
,1 − C2111v

6
,1 = 0. (34)

When Eq. (34) replaces the compatibility relation Eq. (27)1, then the first line of B2d
1 in its

symmetric form appears in the system. This change affects the matrix A2d by changing its
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first line as

A2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 0 0 C2111 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (35)

For building the second line of the symmetric form of matrix B2d
1 into the system we start

from the compatibility

v1
,t = v3

,1 → 1

2
(C1112 + C1121)v

1
,t − 1

2
(C1112 + C1121)v

3
,1 = 0, (36)

which is added to

v4
,t = v6

,1 → 1

2
(C2112 + C2121)v

4
,t − 1

2
(C2112 + C2121)v

6
,1 = 0. (37)

When the last two equations are added we obtain

1

2
(C1112 + C1121)v

1
,t + 1

2
(C2112 + C2121)v

4
,t

−1

2
(C1112 + C1121)v

3
,1 − 1

2
(C2112 + C2121)v

6
,1 = 0, (38)

which when substitutes the compatibility relation Eq. (27)2, the second line of the symmetric
form of the matrix B2d

1 is built into the system and matrix A2d is changed into the form

A2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 0 0 C2111 0 0
1
2 (C1112 + C1121) 0 0 1

2 (C2112 + C2121) 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (39)

Now, there is an important question that appears: we substitute the compatibility relation
Eq. (27)2 by an equation which does not contain the initial variables. So, the new compat-
ibility relations are really independent? To answer this question, we finish the scheme of
producing the symmetric matrices and then check under what conditions the newly used
compatibility relations are independent.

Working in an analogous fashion for building each line of the symmetric form of B2d
1 we

arrive at a matrix A2d of the form

A2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 0 0 C2111 0 0
1
2 (C1112 + C1121) 0 0 1

2 (C2112 + C2121) 0 0
0 0 1 0 0 0

1
2 (C1121 + C1112) 0 0 1

2 (C2121 + C2112) 0 0
C1122 0 0 C2122 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (40)
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Matrix B2d
2 is related with derivatives with respect to x2, so one should do an analo-

gous procedure using the compatibility relations that contain derivatives with respect to x2,
namely

v2
t = v3

,2, v5
t = v6

,2. (41)

As an outcome of this building of the symmetric form of matrix B2d
2 , matrix A2d has the

form

A2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1211 0 C2111 C2211 0
1
2 (C1112 + C1121)

1
2 (C1212 + C1221) 0 1

2 (C2112 + C2121)
1
2 (C2212 + C2221) 0

0 0 1 0 0 0
1
2 (C1121 + C1112)

1
2 (C1221 + C1212) 0 1

2 (C2121 + C2112)
1
2 (C2221 + C2212) 0

C1122 C1222 0 C2122 C2222 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(42)
When major and minor symmetries are enforced matrix A2d has the symmetric form

A2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1211 0 C2111 C2211 0
C1112 C1221 0 C2121 C2221 0

0 0 1 0 0 0
C1112 C1212 0 C2112 C2212 0
C1122 C1222 0 C2122 C2222 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (43)

Additionally, when the matrix A2d is positive definite the system is symmetric hyperbolic.
As we claimed, we need to show that the compatibility relations used in this procedure are

independent. Since the third and sixth line of the system are the momentum equations and
all other lines are the compatibility relations, independence of the compatibility equations
used is equivalent to

det

⎡
⎢⎢⎣
C1111 C1211 C2111 C2211

C1112 C1221 C2121 C2221

C1112 C1212 C2112 C2212

C1122 C1222 C2122 C2222

⎤
⎥⎥⎦ �= 0. (44)

Essentially, these are the 24 = 16 components of C for the two dimensional case, so, Eq. (44)
equals to the invertibility of C.

Note that an alternative symmetric writing of the equations of isotropic linear elastody-
namics in 2d is presented by Morando and Serre ([17]).

3 Elasticity in 3d

In the three dimensional case, the situation is analogous; the difference lies in the fact that
there are three equations, so the first order system is a 12 by 12 system at the end. The first
of the momentum equations stems from Eq. (21) for i = 1 by summing all other indices:

u1,t t − C1111u1,11 − C1211u1,12 − C1311u1,13 − 1

2
(C1112 + C1121)u1,21
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−1

2
(C1212 + C1221)u1,22 − 1

2
(C1312 + C1321)u1,23 − 1

2
(C1113 + C1131)u1,31

−1

2
(C1213 + C1231)u1,32 − 1

2
(C1313 + C1331)u1,33 − 1

2
(C1112 + C1112)u2,11

−1

2
(C1221 + C1212)u2,12 − 1

2
(C1321 + C1312)u2,13 − C1122u2,21 − C1222u2,22

−C1322u2,23 − 1

2
(C1123 + C1132)u2,31 − 1

2
(C1223 + C1232)u2,32 (45)

−1

2
(C1323 + C1332)u2,33 − 1

2
(C1131 + C1113)u3,11 − 1

2
(C1231 + C1213)u3,12

−1

2
(C1331 + C1313)u3,13 − 1

2
(C1132 + C1123)u3,21 − 1

2
(C1232 + C1223)u3,22

−1

2
(C1332 + C1323)u3,23 − C1233u3,31 − C1233u3,32 − C1333u3,33 = 0.

The second of the momentum equations stems from Eq. (21) for i = 2 by summing all other
indices:

u2,t t − C2111u1,11 − C2211u1,12 − C2311u1,13 − 1

2
(C2112 + C2121)u1,21

−1

2
(C2212 + C2221)u1,22 − 1

2
(C2312 + C2321)u1,23 − 1

2
(C2113 + C2131)u1,31

−1

2
(C2213 + C2231)u1,32 − 1

2
(C2313 + C2331)u1,33 − 1

2
(C2112 + C2112)u2,11

−1

2
(C2221 + C2212)u2,12 − 1

2
(C2321 + C2312)u2,13 − C2122u2,21 − C2222u2,22

−C2322u2,23 − 1

2
(C2123 + C2132)u2,31 − 1

2
(C2223 + C2232)u2,32 (46)

−1

2
(C2323 + C2332)u2,33 − 1

2
(C2131 + C2113)u3,11 − 1

2
(C2231 + C2213)u3,12

−1

2
(C2331 + C2313)u3,13 − 1

2
(C2132 + C2123)u3,21 − 1

2
(C2232 + C2223)u3,22

−1

2
(C2332 + C2323)u3,23 − C2233u3,31 − C2233u3,32 − C2333u3,33 = 0.

The third of the momentum equations stems from Eq. (21) for i = 3 by summing all other
indices:

u3,t t − C3111u1,11 − C3211u1,12 − C3311u1,13 − 1

2
(C3112 + C3121)u1,21

−1

2
(C3212 + C3221)u1,22 − 1

2
(C3312 + C3321)u1,23 − 1

2
(C3113 + C3131)u1,31

−1

2
(C3213 + C3231)u1,32 − 1

2
(C3313 + C3331)u1,33 − 1

2
(C3112 + C3112)u2,11

−1

2
(C3221 + C3212)u2,12 − 1

2
(C3321 + C3312)u2,13 − C3122u2,21 − C3222u2,22
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−C3322u2,23 − 1

2
(C3123 + C3132)u2,31 − 1

2
(C3223 + C3232)u2,32 (47)

−1

2
(C3323 + C3332)u2,33 − 1

2
(C3131 + C3113)u3,11 − 1

2
(C3231 + C3213)u3,12

−1

2
(C3331 + C3313)u3,13 − 1

2
(C3132 + C3123)u3,21 − 1

2
(C3232 + C3223)u3,22

−1

2
(C3332 + C3323)u3,23 − C3233u3,31 − C3233u3,32 − C3333u3,33 = 0.

We now set

v1 = u1,1, v2 = u1,2, v3 = u1,3, v4 = u1,t ,

v5 = u2,1, v6 = u2,2, v7 = u2,3, v8 = u2,t , (48)

v9 = u3,1, v10 = u3,2, v11 = u3,3, v12 = u3,t .

So, the first of the momentum equation reads

v4,t − C1111v1,1 − C1211v1,2 − C1311v1,3 − 1

2
(C1112 + C1121)v2,1

−1

2
(C1212 + C1221)v2,2 − 1

2
(C1312 + C1321)v2,3 − 1

2
(C1113 + C1131)v3,1

−1

2
(C1213 + C1231)v3,2 − 1

2
(C1313 + C1331)v3,3 − 1

2
(C1112 + C1112)u5,1

−1

2
(C1221 + C1212)v5,2 − 1

2
(C1321 + C1312)v5,3 − C1122v6,1 − C1222v6,2

−C1322v6,3 − 1

2
(C1123 + C1132)u7,1 − 1

2
(C1223 + C1232)u7,2 (49)

−1

2
(C1323 + C1332)v7,3 − 1

2
(C1131 + C1113)v9,1 − 1

2
(C1231 + C1213)v9,2

−1

2
(C1331 + C1313)v9,3 − 1

2
(C1132 + C1123)v10,1 − 1

2
(C1232 + C1223)v10,2

−1

2
(C1332 + C1323)v10,3 − C1233u11,1 − C1233u11,2 − C1333u11,3 = 0.

The second momentum equation reads

v8,t − C2111v1,1 − C2211v1,2 − C2311v1,3 − 1

2
(C2112 + C2121)v2,1

−1

2
(C2212 + C2221)v2,2 − 1

2
(C2312 + C2321)v2,3 − 1

2
(C2113 + C2131)v3,1

−1

2
(C2213 + C2231)v3,2 − 1

2
(C2313 + C2331)v3,3 − 1

2
(C2112 + C2112)u5,1

−1

2
(C2221 + C2212)v5,2 − 1

2
(C2321 + C2312)v5,3 − C2122v6,1 − C2222v6,2

−C2322v6,3 − 1

2
(C2123 + C2132)u7,1 − 1

2
(C2223 + C2232)u7,2 (50)



536 D. Sfyris

−1

2
(C2323 + C2332)v7,3 − 1

2
(C2131 + C2113)v9,1 − 1

2
(C2231 + C2213)v9,2

−1

2
(C2331 + C2313)v9,3 − 1

2
(C2132 + C2123)v10,1 − 1

2
(C2232 + C2223)v10,2

−1

2
(C2332 + C2323)v10,3 − C2233u11,1 − C2233u11,2 − C2333u11,3 = 0.

The third momentum equation reads

v12,t − C3111v1,1 − C3211v1,2 − C3311v1,3 − 1

2
(C3112 + C3121)v2,1

−1

2
(C3212 + C3221)v2,2 − 1

2
(C3312 + C3321)v2,3 − 1

2
(C3113 + C3131)v3,1

−1

2
(C3213 + C3231)v3,2 − 1

2
(C3313 + C3331)v3,3 − 1

2
(C3112 + C3112)u5,1

−1

2
(C3221 + C3212)v5,2 − 1

2
(C3321 + C3312)v5,3 − C3122v6,1 − C3222v6,2

−C3322v6,3 − 1

2
(C3123 + C3132)u7,1 − 1

2
(C3223 + C3232)u7,2 (51)

−1

2
(C3323 + C3332)v7,3 − 1

2
(C3131 + C3113)v9,1 − 1

2
(C3231 + C3213)v9,2

−1

2
(C3331 + C3313)v9,3 − 1

2
(C3132 + C3123)v10,1 − 1

2
(C3232 + C3223)v10,2

−1

2
(C3332 + C3323)v10,3 − C3233u11,1 − C3233u11,2 − C3333u11,3 = 0.

The compatibility relations are

v1
,t = v4

,1, v2
,t = v4

,2, v3
,t = v4

,3,

v5
,t = v8

,1, v6
,t = v8

,2, v7
,t = v8

,3, (52)

v9
,t = v12

,1 , v10
,t = v12

,2 , v11
,t = v12

,3 .

Equations (49-52) is a 12 by 12 first order system in terms of q = (v1, v2, v3, v4, v5, v6, v7,

v8, v9, v10, v11, v12)T which can be written in the form

A3d ∂q
∂t

+
3∑

i=1

B3d
i

∂q
∂xi

= 0, (53)
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where matrix A3d is the identity matrix. Matrix B3d
1 is related with the derivatives with

respect to x1 and has the form

B3d
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−C1111 − 1
2 (C1112 +C1121 ) − 1

2 (C1113 +C1131 ) 0 − 1
2 (C1121 +C1112 ) −C1122 − 1

2 (C1123 +C1132 ) 0 − 1
2 (C1131 +C1113 ) − 1

2 (C1123 +C1132 ) −C1133 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−C2111 − 1
2 (C2112 +C2121 ) − 1

2 (C2113 +C2131 ) 0 − 1
2 (C2121 +C2112 ) −C2122 − 1

2 (C2123 +C2132 ) 0 − 1
2 (C2131 +C2113 ) − 1

2 (C2123 +C2132 ) −C2133 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−C3111 − 1
2 (C3112 +C3121 ) − 1

2 (C3113 +C3131 ) 0 − 1
2 (C3121 +C3112 ) −C3122 − 1

2 (C3123 +C3132 ) 0 − 1
2 (C3131 +C3113 ) − 1

2 (C3123 +C3132 ) −C3133 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

Matrix B3d
2 is related with the derivatives with respect to x2 and has the form

B3d
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−C1211 − 1
2 (C1212 +C1221 ) − 1

2 (C1213 +C1231 ) 0 − 1
2 (C1221 +C1212 ) −C1222 − 1

2 (C1223 +C1232 ) 0 − 1
2 (C1231 +C1213 ) − 1

2 (C1223 +C1232 ) −C1233 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−C2211 − 1
2 (C2212 +C2221 ) − 1

2 (C2213 +C2231 ) 0 − 1
2 (C2221 +C2212 ) −C2222 − 1

2 (C2223 +C2232 ) 0 − 1
2 (C2231 +C2213 ) − 1

2 (C2223 +C2232 ) −C2233 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0

−C3211 − 1
2 (C3212 +C3221 ) − 1

2 (C3213 +C3231 ) 0 − 1
2 (C3221 +C3212 ) −C3222 − 1

2 (C3223 +C3232 ) 0 − 1
2 (C3231 +C3213 ) − 1

2 (C3223 +C3232 ) −C3233 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(55)

Matrix B3d
3 is related with the derivatives with respect to x3 and has the form

B3d
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0

−C1311 − 1
2 (C1312 +C1321 ) − 1

2 (C1313 +C1331 ) 0 − 1
2 (C1321 +C1312 ) −C1322 − 1

2 (C1323 +C1332 ) 0 − 1
2 (C1331 +C1313 ) − 1

2 (C1323 +C1332 ) −C1333 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

−C2311 − 1
2 (C2312 +C2321 ) − 1

2 (C2313 +C2331 ) 0 − 1
2 (C2321 +C2312 ) −C2322 − 1

2 (C2323 +C2332 ) 0 − 1
2 (C2331 +C2313 ) − 1

2 (C2323 +C2332 ) −C2333 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1

−C3311 − 1
2 (C3312 +C3321 ) − 1

2 (C3313 +C3331 ) 0 − 1
2 (C3321 +C3312 ) −C3322 − 1

2 (C3323 +C3332 ) 0 − 1
2 (C3331 +C3313 ) − 1

2 (C3323 +C3332 ) −C3333 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(56)
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The symmetric form of the matrix B3d
1 is

B
3d,sym
1

= ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

0
−
C

1111
0

0
0

−
C

2111
0

0
0

−
C

3111

0
0

0
−

12
(C

1112 +
C

1121
)

0
0

0
−

12
(C

2112 +
C

2121
)

0
0

0
−

12
(C

3112 +
C

3121
)

0
0

0
−

12
(C

1113 +
C

1131
)

0
0

0
−

12
(C

2113 +
C

2131
)

0
0

0
−

12
(C

1113 +
C

1131
)

−
C

1111
−

12
(C

1112 +
C

1121
)

−
12
(C

1113 +
C

1131
)

0
−

12
(C

1121 +
C

1112
)

−
C

1122
−

12
(C

1123 +
C

1132
)

0
−

12
(C

1131 +
C

1113
)

−
12
(C

1123 +
C

1132
)

−
C

1133
0

0
0

0
−

12
(C

1121 +
C

1112
)

0
0

0
−

12
(C

2121 +
C

2112
)

0
0

0
−

12
(C

3121 +
C

3112
)

0
0

0
−
C

1122
0

0
0

−
C

2122
0

0
0

−
C

2122

0
0

0
−

12
(C

1123 +
C

1132
)

0
0

0
−

12
(C

2123 +
C

2132
)

0
0

0
−

12
(C

3123 +
C

3132
)

−
C

2111
−

12
(C

2112 +
C

2121
)

−
12
(C

2113 +
C

2131
)

0
−

12
(C

2121 +
C

2112
)

−
C

2122
−

12
(C

2123 +
C

2132
)

0
−

12
(C

2131 +
C

2113
)

−
12
(C

2123 +
C

2132
)

−
C

2133
0

0
0

0
−

12
(C

1131 +
C

1113
)

0
0

0
−

12
(C

2131 +
C

2113
)

0
0

0
−

12
(C

3131 +
C

3113
)

0
0

0
−

12
(C

1132 +
C

1123
)

0
0

0
−

12
(C

2132 +
C

2123
)

0
0

0
−

12
(C

3132 +
C

3123
)

0
0

0
−
C

1133
0

0
0

−
C

2133
0

0
0

−
C

1133

−
C

3111
−

12
(C

3112 +
C

3121
)

−
12
(C

3113 +
C

3131
)

0
−

12
(C

3121 +
C

3112
)

−
C

3122
−

12
(C

3123 +
C

3132
)

0
−

12
(C

3131 +
C

3113
)

−
12
(C

3123 +
C

3132
)

−
C

3133
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(57)
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In order to built the first line of B
3d, sym
1 into the system, we have to substitute the first

compatibility equation (Eq. (52)1) with a judicious combination of some of the compatibility

relations. We start with

v1
,t = v4

,1 → C1111v
1
,t − C1111v

4
,1 = 0, (58)

and add it to the two equations

v5
,t = v8

,1 → C2111v
5
,t − C2111v

8
,1 = 0, (59)

v9
,t = v12

,1 → C3111v
9
,t − C3111v

12
,1 = 0, (60)

to get

C1111v
1
,t + C2111v

5
,t + C3111v

9
,t

−C1111v
4
,1 − C2111v

8
,1 − C3111v

12
,1 = 0. (61)

This equation substitutes the compatibility Eq. (52)1 and affects the first line of the matrix

A3d: instead of only 1 in the first slot, now matrix A3d has three non null components. These

are C1111 in the first slot, C2111 in the fifth slot and C3111 in the ninth slot.
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Continuing in this vein, building each term of the symmetric form of matrices B3d
i , i =

1,2,3, we arrive finally at matrix A3d of the form

A
3d= ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
1111

C
1121

C
1131

0
C

2111
C

2211
C

2311
0

C
3111

C
3211

C
3311

0
12
(C

1112 +
C

1121
)

12
(C

1212 +
C

1221
)

12
(C

1312 +
C

1321
)

0
12
(C

2112 +
C

2121
)

12
(C

2212 +
C

2221
)

12
(C

2312 +
C

2321
)

0
12
(C

3112 +
C

3121
)

12
(C

3212 +
C

3221
)

12
(C

3312 +
C

3321
)

0
12
(C

1113 +
C

1131
)

12
(C

1213 +
C

1231
)

12
(C

1313 +
C

1331
)

0
12
(C

2113 +
C

2131
)

12
(C

2213 +
C

2231
)

12
(C

2313 +
C

2331
)

0
12
(C

3113 +
C

3131
)

12
(C

3213 +
C

3231
)

12
(C

3313 +
C

3331
)

0
0

0
0

1
0

0
0

0
0

0
0

0
12
(C

1121 +
C

1112
)

12
(C

1221 +
C

1212
)

12
(C

1321 +
C

1312
)

0
12
(C

2121 +
C

2112
)

12
(C

2221 +
C

2212
)

12
(C

2321 +
C

2312
)

0
12
(C

3121 +
C

3112
)

12
(C

3221 +
C

3212
)

12
(C

3321 +
C

3312
)

0
C

1122
C

1222
C

1322
0

C
2122

C
2222

C
2322

0
C

3122
C

3222
C

3322
0

12
(C

1123 +
C

1132
)

12
(C

1223 +
C

1232
)

12
(C

1323 +
C

1332
)

0
12
(C

2123 +
C

2132
)

12
(C

2223 +
C

2232
)

12
(C

2323 +
C

2332
)

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
12
(C

1131 +
C

1113
)

12
(C

1231 +
C

1213
)

12
(C

1331 +
C

1313
)

0
12
(C

2131 +
C

2113
)

12
(C

2231 +
C

2213
)

12
(C

2331 +
C

2313
)

0
12
(C

3131 +
C

3113
)

12
(C

3231 +
C

3213
)

12
(C

3331 +
C

3313
)

0
12
(C

1132 +
C

1123
)

12
(C

1232 +
C

1223
)

12
(C

1332 +
C

1323
)

0
12
(C

2132 +
C

2123
)

12
(C

2232 +
C

2223
)

12
(C

2332 +
C

2323
)

0
12
(C

3132 +
C

3123
)

12
(C

3232 +
C

3223
)

12
(C

3332 +
C

3323
)

0
C

1133
C

1233
C

1333
0

C
2133

C
2233

C
2333

0
C

3133
C

3233
C

3333
0

0
0

0
0

0
0

0
0

0
0

0
1 ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(62)
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When major and minor symmetries of C are enforced, matrix A3d takes the symmetric form

A3d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1121 C1311 0 C2111 C2211 C2311 0 C3111 C3211 C3311 0
C1112 C1212 C1312 0 C2112 C2212 C2312 0 C3112 C3212 C3312 0
C1113 C1213 C1313 0 C2113 C2213 C2312 0 C3113 C3213 C3313 0

0 0 0 1 0 0 0 0 0 0 0 0
C1121 C1221 C1321 0 C2121 C2221 C2321 0 C3121 C3221 C3321 0
C1122 C1222 C1322 0 C2122 C2222 C2322 0 C3122 C3222 C3322 0
C1123 C1223 C1323 0 C2123 C2223 C2323 0 C3123 C3223 C3323 0

0 0 0 0 0 0 0 1 0 0 0 0
C1131 C1231 C1331 0 C2131 C2231 C2331 0 C3131 C3231 C3331 0
C1132 C1232 C1332 0 C2132 C2232 C2332 0 C3132 C3232 C3332 0
C1133 C1233 C1333 0 C2133 C2233 C2333 0 C3133 C3233 C3333 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(63)
When matrix A3d is also positive definite we speak about a symmetric hyperbolic system.

Since the fourth, eighth and twelveth line of the system are the momentum equations,
independence of the compatibility relations used is equivalent to the condition

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1121 C1311 C2111 C2211 C2311 C3111 C3211 C3311

C1112 C1212 C1312 C2112 C2212 C2312 C3112 C3212 C3312

C1113 C1213 C1313 C2113 C2213 C2312 C3113 C3213 C3313

C1121 C1221 C1321 C2121 C2221 C2321 C3121 C3221 C3321

C1122 C1222 C1322 C2122 C2222 C2322 C3122 C3222 C3322

C1123 C1223 C1323 C2123 C2223 C2323 C3123 C3223 C3323

C1131 C1231 C1331 C2131 C2231 C2331 C3131 C3231 C3331

C1132 C1232 C1332 C2132 C2232 C2332 C3132 C3232 C3332

C1133 C1233 C1333 C2133 C2233 C2333 C3133 C3233 C3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�= 0. (64)

This essentially equals to the invertibility of C.

4 Hamiltonian Structure

In this section we highlight the Hamiltonian structure of linear elastodynamics; our approach
relies heavily on the fundamental works of Marsden and Hughes ([14, 15]). The classical
elastodynamics problem can be phrased as a Hamiltonian system when the linear momen-
tum p = ρ ∂u

∂t
and the strain e = 1

2 (∇u + ∇T u) are used as independent variables with the
Hamiltonian

H = 1

2

∫
�

(
1

ρ
‖p‖2 + eCe

)
d�, � ⊂ R, d = {1,2,3}. (65)

The elastodynamic problem can be rewritten as a Hamiltonian system

∂

∂t

(
p
e

)
=

(
0 div

Grad 0

)(
δpH

δeH

)
=

(
0 div

Grad 0

)(
v
σ

)
, (66)

v being the velocity, Grad = 1
2 (∇ + ∇T ) the symmetrized gradient and δα the variational

derivative with respect to α.
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The operator

J =
(

0 div
Grad 0

)
(67)

defines a Poisson bracket being a formally skew-adjoint operator. The system can be re-
written in terms of the velocity and stress as

(
ρ 0
0 C−1

)
∂

∂t

(
v
σ

)
=

(
0 div

Grad 0

)(
v
σ

)
. (68)

The Hamiltonian structure is encoded in the skew symmetry of the matrix J .
For the classical case, using the Voigt notation, for the velocity and the stress tensor, the

operator J is rewritten in the 2D case as

J =

⎡
⎢⎢⎢⎢⎣

0 0 ∂x 0 ∂y

0 0 0 ∂y ∂x

∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0

⎤
⎥⎥⎥⎥⎦ . (69)

The symmetry of this matrix implies the skew symmetry of the operator. To see this, consider
the case of the simple 1D wave equation setting all constants equal to one; then the matrix
J has the form

J =
(

0 ∂x

∂x 0

)
. (70)

The operator ∂x is formally skew adjoint: given two smooth functions with compact support
f,g ∈ C∞

c for any interval I ⊂ R of the real line it holds

∫
I

(∂xf )gdx = −
∫

I

f (∂xg)dx. (71)

In terms of the L2 inner product (∂xf, g)I = −(f, ∂xg)I , so the operator J is a formally
skew-adjoint operator and the same is true for linear elasticity. In the 2d case given above
the operator can be written in a skew symmetric form as

J =
(

0 D
−D∗ 0

)
,D =

(
∂x 0 ∂y

0 ∂y ∂x

)
, (72)

where D∗ denotes the adjoint operator defined via integration by parts as illustrated above
for ∂x .

The calculations presented above are for the classical approach using the velocity and
the stress tensor when writing the system in a first order form. When (ux,ut ) are used the
corresponding operator J is skew symmetric from its construction. For the 2d case, it has
the form

J = B
2d, sym
1

∂

∂x1
+ B

2d, sym
2

∂

∂x2
, (73)
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where B
2d, sym
1 is given by Eq. (31) and B

2d, sym
2 is the symmetrized form of the matrix

Eq. (30). A similar analysis holds for the 3d case, where again, by construction

J = B
3d, sym
1

∂

∂x1
+ B

3d, sym
2

∂

∂x2
+ B

3d, sym
3

∂

∂x3
. (74)

The symmetry of the matrices B
3d, sym
i , i = 1,2,3 implies the skew symmetry of the opera-

tor, so all in all, the Hamiltonian structure of the system is not affected when this Cartesian
decomposition of the operator J is used.

5 Comparison of the Approach Using the Displacement Gradient
Versus the One Using the Stress Tensor

In this section we compare the classical approach using the stress tensor versus the approach
presented here where the displacement gradient is used. The comparison is with respect to
the differentiability of the coefficients and the differentiability of the solutions and is based
on a theorem by Fischer and Marsden ([6]) attributed to Friedrichs ([7]). Before presenting
this comparison we give the one dimensional analogues of both approaches in the inhomo-
geneous case where the coefficients involved are presented more clearly.

5.1 Elasticity in 1d with Respect to (ut ,ux)

The starting point is the elastic energy which for the one dimensional case has the form

W(ux) = 1

2
αu2

x . (75)

The momentum equation in the absence of body forces with unit density gives

utt = σx = ∂W

∂ux

= αuxx + αxux, (76)

α being the material parameter of the model. Setting ut = v, ux = e the momentum equation
renders

vt = αex + αxe, (77)

while the compatibility equation renders

vx = et → vx − et = 0. (78)

We multiply the compatibility relation by α to obtain

αvx − αet = 0. (79)

So, as a system Eqs. (77, 79) are

vt − αex = αxe, (80)

αet − αvx = 0. (81)
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This system can be written in the form

A(ut ,ux ) ∂q
∂t

+ B(ut ,ux ) ∂q
∂x

= f (ut ,ux ), (82)

with respect to q = (v, e)T with

A(ut ,ux ) =
(

1 0
0 α

)
,B(ut ,ux ) =

(
0 −α

−α 0

)
, f (ut ,ux ) =

(
αxe

0

)
. (83)

5.2 Elasticity in 1d with Respect to (ut , σ )

Using again as a starting point the energy of Eq. (75), stress is

σ = ∂W

∂ux

= αux. (84)

Now, we need to time differentiate the constitutive law. If this is done directly in the last
equation one obtains

σ̇ = α̇ux + αu̇x. (85)

If we set ut = v then the first term in the right hand side of the last equation cannot be trans-
formed to the new system of variables, (ut , σ ). To by-pass this issue we write the constitutive
law of Eq. (84) in the form

α−1σ = ux, (86)

which requires that the material parameter α can be inverted. By time differentiating the last
equation we obtain

α−1
t σ + α−1σt = u̇x . (87)

When we set ut = v this equation can be written in the new system as

α−1
t σ + α−1σt = vx. (88)

If to this last equation we add the momentum equation we are essentially working with the
system

vt − σx = 0, (89)

α−1σt − vx = −α̇−1σ. (90)

This system can be written in the form

A(ut ,σ ) ∂q
∂t

+ B(ut ,σ ) ∂q
∂x

= f (ut ,σ ), (91)

with respect to q = (v, σ )T with

A(ut ,σ ) =
(

1 0
0 α−1

)
,B(ut ,σ ) =

(
0 −1

−1 0

)
, f (ut ,σ ) =

(
0

−α̇−1σ

)
. (92)
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5.3 Comparison with Respect to the Differentiability of the Coefficients

We compare the present approach with the classical one using the stress tensor instead of
the displacement gradient by using a theorem of Fischer and Marsden ([6], Theorem 1.1 p.
3). These authors work with a linear symmetric hyperbolic system of the form

A0,F-M(x, t)
∂u

∂t
=

n∑
i=1

Ai,F-M(x, t)
∂u

∂xi
+ BF-M(x, t)u + CF-M(x, t), (93)

and they assume that
(i) s > n/2 + 1,
(ii) A0,F-M is symmetric positive definite and t 
→ A

0,F-M
t (x) − I ≡ A0,F-M(x, t) − I is a

C1 map from R to Hs(Rn,Rm2
) and a C0 map from R to Hs+1(Rn,Rm2

), I being the
identity matrix,

(iii) Ai,F-M is symmetric, i = 1,2, . . . , n and t 
→ A
i,F-M
t (x) = Ai,F-M(x, t) is a C0 map

from R to Hs(Rn,Rm2
),

(iv) t 
→ BF-M
t (x) = BF-M(x, t) is a continuous curve from R to Hs(Rn,Rm2

),
(v) t 
→ CF-M

t (x) = CF-M(x, t) is a continuous curve from R to Hs(Rn,Rm).
Under these assumptions, for any u0 ∈ Hs there is a unique continuous curve t 
→ Hs

which is differentiable as a curve in Hs−1 and equals u0 at t = 0 and is a solution of Eq. (93).
We adopt the assumptions of this theorem and examine what effect do they have in the
differentiability of the coefficients when (ut ,ux) and (ut ,σ ) are used.

For the one dimensional case, we see that the assumptions on the differentiability of the
coefficients should be placed on terms α, αx ; namely, on the material parameter and its
spatial gradient, when (ut , ux) are used as the new variables. When (ut , σ ) are used, one
has to make the assumptions of differentiability on α−1, α̇−1. The main difference lies in
the fact that use of the writing with respect to (ut , σ ) places differentiability requirements in
the inverse of the material parameter α−1 and its temporal gradient α̇−1. When (ut , ux) are
used, the differentiability requirement should be placed on α and its spatial gradient.

So, when we are dealing with discontinuous in space material coefficients the writing
using (ut , σ ) should be preferable since it avoids problems related with discontinuous ma-
terial coefficients. On the other hand, when discontinuous in time material coefficients are
involved (e.g. aging phenomena) the writing using (ut , ux) seems to be preferrable.

In the 3d case, the differentiability requirement for the coefficients should be placed again
on C−1 when the stress is used as the new variable; to see this let us consider the approach
of Yakhno and Akmaz ([22]): in the homogeneous case, they write the system in the form

A0,Y-A(x, t)
∂u

∂t
+

3∑
i=1

Ai,Y-A(x, t)
∂u

∂xi
= 0, (94)

where

A0,Y-A =
(

I3 03×6

06×3 C−1

)
,Ai,Y-A =

(
03×3 Ā1

i

(Ā1
i )

∗ 06×6

)
. (95)

(Ā1
i ), (Ā1

i )
∗ being hard numbers, any requirement on differentiability should be placed on

C−1. In contrast to that when (ut , ux) are used the requirement of differentiability should be
placed on C and not on its inverse. Nevertheless the existence of C−1 is required from the
condition for the independence of the compatibility relations used (Eq. (64) for the 3d case).
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When the material is no longer homogeneous, in line with the 1d case, terms of the form Ċ−1

appear when the stress tensor is used, while terms of the form Cx appear when ux is used.

5.4 Comparison with Respect to the Differentiability of the Solution

Say that the assumptions (i-v) of the theorem of Fischer and Marsden described above are
met; then for the solution one has u(x, t) ∈ Hs . When (ut ,ux), are used this means that
ut ,ux ∈ Hs . When (ut ,σ ) are used it gives ut ,σ ∈ Hs . So, the first approach places restric-
tions in ux , while the second in σ . Thus, the second framework can describe discontinuities
in space since it does not involve ux at all. In the linear regime, Hooke’s law relates this two
field in a linear way: for the one dimensional case, σ = αux ; so, when α is well behaved, σ

and ux belong essentially to the same space.
This is also true in the three dimensional case, where σij = Cijklekl , when C is well be-

haved. If we worked with inhomogeneous materials, we would arrive at the fact that in
case of discontinuous in space material coefficients, use of the writing with the stress tensor
avoids the problem of discontinuities in space material coefficients. On the other hand, use
of the writing with the displacement gradient avoids the problem of discontinuous in time
material coefficients.

6 Symmetrization in the Framework of Nonlinear Elasticity

In this section we put our per se linear theory under the perspective of the nonlinear frame-
work, by commenting on two prominent symmetrization processes of the nonlinear theory.
The first uses the notion of entropy-flux pairs ([1, 3, 8, 10]) for a system of conservation
laws, while the second is the work of Qin ([18]) who starts from a polyconvex function.

6.1 Entropy-Flux Pairs in Nonlinear Elasticity

Systems of conservation laws which possess entropy functions ([4, 5, 9]) are equations (com-
monly of mathematical physics) that can be written in a symmetric form which retains the
conservation properties of the system. It seems that the existence of an entropy-flux pair for
a system of conservation laws for the specific case of Euler fluids starts with the work of
Godunov ([10]) who shows that a system which can be symmetrized has an entropy function
(see also [1, 8]). Conversely, Mock ([16]) shows that when a system has an entropy function
then it can be symmetrized. In the relativistic case the symmetrization process is done by
Ruggeri and Sturmia ([19], see also [20]) and for the specific case of nonlinear elasticity by
Boillat and Ruggeri ([2], see also, [3]).

In their fundamental paper Boillat and Ruggeri ([2]) write the equations of nonlinear elas-
ticity in symmetric form in two ways. The first one uses (ut ,F) (F being the deformation
gradient) as the basic variables. The second way of writing utilizes a Legendre transforma-
tion and uses (ut ,−T) (T being the first Piola-Kirchhoff stress tensor) as the basic variables.
This is for the nonlinear theory.

For the linear theory (as a theory per se) there are two approaches: the one presented
here using (ut ,ux) as the basic variables and the other one ([15, 21, 22]) using (ut ,σ ) as the
basic variables. In order to promptly infer to which linear way of writing the two nonlinear
ways of writing by Boillat and Ruggeri ([2]) correspond one has to carefully linearize and
examine the outcome. We, nevertheless, state that it seems our framework to be closer to the
(ut ,F) of [2], while the (ut ,−T) seems to be closer to the approaches of ([15, 21, 22]). Since
in general entropy-flux pairs are non-unique one has to carefully examine all possibilities
when linearizing the nonlinear theory.



Classical Elastodynamics in Terms of (ux,ut ) 547

6.2 The Work of Qin ([18])

Qin ([18]), in his valuable paper, starts from a polyconvex stored energy function and writes
the system in a symmetric conservation law type. He uses (F, cofF,detF,v) as the basic
variables (F being the deformation gradient of the nonlinear theory, cof the cofactor matrix,
det the determinant and v the velocity). For linearizing this framework one may use the
formula detF − 1 = divu + O(ε2) (p.30 [11]) and replace detF with divu to within first
order and F by ∇u.

It seems that, even if such an approximation is used the present framework is differ-
ent from the one of Qin conceptually: Qin uses the compatibility relations without pre-
multiplying them by a quantity and adding/subtracting them (see Eq. (3.12) in his paper); he
uses as basic equations the time derivatives of the cofactor matrix and the determinant in-
stead. We here, on the other hand, pre-multiply the compatibility equations judiciously and
add/subtract them in order to accomplish our goal. Nevertheless, in order to give a precise
answer one has to linearize Qin’s framework systematically and then check exactly what it
gives.

A comparison of Qin’s work with that of Boillat and Ruggeri ([2]) would also help in the
better understanding of the symmetric writing of the equations of nonlinear elasticity. From
these possible ways of writing the equations of nonlinear elasticity one should linearize in
order to examine under what conditions the present framework and that of [15, 21, 22] result
and if these two approaches are the only possible one’s for the linear elastic case.

7 Conclusion

The main achievement of the present approach is to offer an alternative path for writing the
system of classical elastodynamics in a symmetric linear format. Instead of the stress tensor,
the displacement gradient is considered to be the new dependent variable. Such a writing
utilizes a Cartesian decomposition of the variables and operators that does not alter the
Hamiltonian structure of classical elastodynamics. By means of the calculations, certainly,
the present approach is more laborious than the one using the stress tensor. Mixed finite ele-
ments consider the velocity and the stress tensor as independent variables to avoid problems
related with discontinuous in space material coefficients; in such cases the approach using
the stress tensor seems superior to the present approach.

All in all, what the present approach teaches us about the subject is that an alternative way
of writing the equations of classical elastodynamics exists using the displacement gradient
instead of the stress tensor. While it is not perfectly clear what use of this approach enable
us to do going forward in real calculations, it seems to be preferable when discontinuous in
time material parameters are involved.
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