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Abstract
A new scheme for hyperelastic material is developed based on applying the argument of
calculus variation to two-factor multiplicative decomposition of the deformation gradient.
Then, Piola–Kirchhoff stress is coupled with internal balance equation. Strain energy func-
tion is expressed in terms of principal invariants of the deformation gradient decomposed
counterparts. Recent work introduces a strain energy function in terms of principal stretches
of the deformation gradient multiplicatively decomposed counterparts directly. Hence, a new
reformulation of Piola–Kirchhoff stress and internal balance equation are provided. This
work focuses on developing the mathematical framework to calculate the elasticity tensor
for material model formulated in terms of decomposed principal stretches. This paves the
way for future implementation of these classes of material model in FE formulation.

Keywords Principal stretches · Internal balance · Elasticity tensor

Mathematics Subject Classification 74B20

1 Introduction

Hyperelastic material develops its constitutive framework in terms of a strain energy func-
tion W(F) where F = ∂x/∂X is the deformation gradient. Here x = χ(X) is the mapping
from the reference configuration X to the current configuration x. More general treatment
that models elastic and inelastic effects can be expressed in terms of deformation gradient F
multiplicative decompositions [1–3] such as

F = F̂ F̆ , (1)

where F̂ models elastic response and it is associated to the rules of variational calculus while
F̆ models inelastic response usually by means of a time dependent evolution law or balance
principles. This treatment has been applied in plasticity [4–6], viscoelasticity [7–9], and
shape memory alloys [10–12].
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It is worth to mention that elastic and inelastic effects may prevail all aspects of a complex
physical processes. Therefore, the decomposition sequences in which elastic and inelastic
factors alternate with each other need to be considered [13]. This motivates the consideration
of (1) in a context where both F̂ and F̆ are associated with a separate purely elastic type of
effect. A theory of internally balanced incompressible elastic materials emerges under such
considerations [14, 15] that is extended to model compressible hyperelastic materials in
[16].

Now, strain energy function may depend on F and its decomposed counterparts F̂ and
F̆. By virtue of (1), any one of F, F̂ and F̆ can be eliminated in terms of the other two.
Eliminating F̂ gives W as a function of F and F̆. To satisfy the requirement of material
frame indifference [14], W is formulated in terms of C = FTF and C̆ = F̆TF̆. The internal
energy of the system is obtained by integrating W over the whole body.

The decomposition of F can be determined by a variety of ways. This work applies en-
ergy minimization to obtain the decomposition of F. Energy minimization with respect to C̆
generates the internal balance equation which distinguishes the internally balanced material
theory from the conventional hyperelasticity. This additional principle can be interpreted as
requiring that the internal variable itself gives rise to a balanced internal configuration at
all time. Keep in mind that energy minimization with respect to C generates stress equa-
tion of equilibrium. Clearly, this internally balanced hyperelastic procedure has connections
with similar approaches found in literature considering for example the work presented in
[17–19].

Special internally balanced Blatz–Ko material models have been introduced in [20–22].
These models are formulated in terms of principal invariant of Ĉ = F̂TF̂ and C̆. Nothing
that tensors C̆ and Ĉ are second order symmetric tensors that are defined in analogy with
C. Then, Second Piola–Kirchhoff stress and internal balance tensor become functions of C
and C̆. A recent work demonstrates reformulation of this internally balanced compressible
scheme in terms of principal stretches of tensors Ĉ and C̆ [23]. This provides significant
simplification for the representation of second Piola Kirchhoff stress and internal balance
tensor.

It essential to calculate elasticity tensor to perform finite element analysis. The internal
balance treatment requires to calculate four tensors in order to determine a condensed form
of elasticity tensor [24]. For principal invariant formulation, these tensors are fourth order
tensors and functions of C and C̆. The focus of this work is to illustrate the mathematical
procedure that is needed to achieve condensed elasticity tensor for strain energy function
based on principal stretches of Ĉ and C̆.

2 Continuum Mechanics

Strain energy function W for isotropic hyperelastic material can be expressed using principal
invariants I1, I2, I3 of tensor C. Second Piola–Kirchhoff PK2 stress S can be written as

S = ∂W

∂E
= 2

(∂W

∂I1
I + ∂W

∂I2

(
I1I − C

) + ∂W

∂I3
I3C−1

)
. (2)

where E is the Green–Lagrange strain that is defined as 2E = C− I and I is the second order
identity tensor. The fourth order material elasticity tensor C is obtained by

C = ∂S
∂E

= ∂2W

∂E∂E
, (3)

a detailed definition for C in terms of principal invariants can be found in [25].
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Also, W can be written in term of principal stretches λa which the square root of the
eigenvalues λ2

a of tensor C. The subscript a will always set to a = 1,2,3 in this manuscript.
The superscript P indicates that the tensor is expressed in principal directions. Now, EP =
Ea Na ⊗ Na where Ea = (λ2

a − 1)/2 is the eigenvalues of E and Na is eigenvectors of tensor
C. The PK2 stress in principal directions SP becomes

SP =
3∑

a=1

∂W

∂λa

∂λa

∂EP
=

3∑
a=1

Sa Na ⊗ Na, (4)

with Sa defined as principal PK2 stress components

Sa = 1

λa

∂W

∂λa
. (5)

The derivative of λa with respect to EP is given as

∂λa

∂EP
= 2

∂λa

∂CP
= λ−1

a Na ⊗ Na , (6)

further details about the derivatives of λa can be found in [25, 26].
In this work, the procedure of Crisfield [27] to determine the elasticity tensor is used be-

cause it simplifies the demonstration of internal balance treatment in the following sections.
The reader is recommended to review appendix A to get familiar with the notation. Briefly,
Green–Lagrange strain and PK2 stress are coaxial i.e. both tensors have the same principal
directions. They are expressed in principal directions as

EP = Q Diag(Ea)QT, (7a)

SP = Q Diag(Sa)QT, (7b)

where Q consists of eigenvectors Na such as [Q] = [N1, N2, N3]. The derivative of Green–
Lagrange strain and PK2 stress w.r.t. time in base frame are given

Ė = QTĖPQ = Ḋiag(Ea) + �Diag(Ea) − Diag(Ea)�T , (8a)

Ṡ = QTṠPQ = Ḋiag(Sa) + �Diag(Sa) − Diag(Sa)�T , (8b)

here � is an antisymmetric tensor as defined in (A.15). In Voigt notation, they are written as

ĖV =
[
ĖD

ĖO

]
and ṠV =

[
ṠD

ṠO

]
, (9)

where the diagonal components are

[ĖD] = [
Ė11 Ė22 Ė33

]T = [
Ė1 Ė2 Ė3

]T
, (10a)

[ṠD] = [
Ṡ11 Ṡ22 Ṡ33

]T = [
Ṡ1 Ṡ2 Ṡ3

]T
, (10b)

and the off–diagonal components are

[ĖO] = [
2Ė12 2Ė23 2Ė13

]T
, (11a)
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[ṠO] = [
Ṡ12 Ṡ23 Ṡ13

]T
. (11b)

Using chain rule, [ṠD] is related to [ĖD] via

[ṠD] = [Sa,Ea ] [ĖD] , (12)

where [Sa,Ea ] is the partial derivatives of Sa with respect to Ea,

[Sa,Ea ] =

⎡
⎢⎢⎢⎢⎢⎣

∂S1

∂E1

∂S1

∂E2

∂S1

∂E3
∂S2

∂E1

∂S2

∂E2

∂S2

∂E3
∂S3

∂E1

∂S3

∂E2

∂S3

∂E3

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1

λ1

∂S1

∂λ1

1

λ2

∂S1

∂λ2

1

λ3

∂S1

∂λ3
1

λ1

∂S2

∂λ1

1

λ2

∂S2

∂λ2

1

λ3

∂S2

∂λ3
1

λ1

∂S3

∂λ1

1

λ2

∂S3

∂λ2

1

λ3

∂S3

∂λ3

⎤
⎥⎥⎥⎥⎥⎦

. (13)

Note that the above equation makes use of ∂λa/∂Ea = 1/λa. The off–diagonal components
of Ṡ can be defined based on Ea, Sa and EO as

[ṠO] = [�Sa/�Ea] [ĖO] , (14)

where

[�Sa/�Ea] =

⎡
⎢⎢⎢⎢⎢⎣

S1 − S2

2(E1 − E2)
0 0

0
S2 − S3

2(E2 − E3)
0

0 0
S1 − S3

2(E1 − E3)

⎤
⎥⎥⎥⎥⎥⎦

. (15)

The material elasticity tensor in principal directions using Voigt notation CP
V can be formed

by

ṠV = CP
V ĖV ⇒ [CP

V] =
[ [Sa,Ea ] 0

0 [�Sa/�Ea]
]

. (16)

As a fourth order tensor, the component of CP are

CP
aabb = ∂Sa

∂Eb
= 1

λb

∂Sa

∂λb
, (17a)

CP
abab = CP

abba = CP
baab = Sa − Sb

2(Ea − Eb)
= Sa − Sb

λ2
a − λ2

b

(a �= b) . (17b)

The elastcity tensor in base frame C is related CP via

Cijkl = Qia Qjb Qkc Qld CP
abcd . (18)

3 Internal Balance: Principal Invariants

A new scheme of viewing compressible hyperelastic material response is introduced in [16].
The arguments of variational calculus are applied to both portions of the deformation gra-
dient decomposition. The decomposition itself is determined on the basis of an additional
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internal balance equation that emerges naturally from the variational treatment. The mathe-
matical formulation is demonstrated using strain energy function based on principal invari-
ant of tensors Ĉ and C̆ which are Î1, Î2, Î3 and Ĭ1, Ĭ2, Ĭ3, respectively. The PK2 stress S is
obtained as consequence of applying the argument of variation with respect to E at fixed Ĕ.
Tensor Ĕ is defined in analogy with E such as 2Ĕ = C̆ − I. Then, PK2 stress is written as

S = ∂W

∂E
= 2

(∂W

∂Î1

C̆−1 + ∂W

∂Î2

(Î1C̆−1 − M) + ∂W

∂Î3

Î3 C−1
)
, (19)

where M = C̆−1C C̆−1. The decomposition of the deformation gradient is found by solving
an internal balance equation that arises from the variation with respect to Ĕ at fixed E. The
internal balance equation is � = 0 where � is an internal balance tensor

� = ∂W

∂Ĕ
= �̂ + �̆, (20)

with

�̂ = 2
(

− ∂W

∂Î1

M + ∂W

∂Î2

(
Î3 C−1 − Î2C̆−1

) − ∂W

∂Î3

Î3 C̆−1
)
, (21a)

�̆ = 2
(∂W

∂Ĭ1

I + ∂W

∂Ĭ2

(
Ĭ1I − C̆

) + ∂W

∂Ĭ3

Ĭ3 C̆−1
)

. (21b)

Further details about these individual derivatives can be found in [16, 21]. For conventional
hyperelasticity treatment, the equations of equilibrium in absence of body and inertia forces
is governed by Div P = 0 where P is the first Piola–Kirchhoff stress that is related to S via
P = FS where S is given as a function of E (2). In contrast, it is reformulated in the internal
balance treatment as Div P = 0 coupled with � = 0 where S and � are given as functions
of E and Ĕ as defined in (19) and (20), respectively. This requires to determine Ĕ by solving
� = 0 for given E then S can be obtained.

The finite element formulation of internally balanced compressible hyperelastic material
is demonstrated in [24]. It is based on calculating a condensed fourth order elasticity tensor
Ccon that is defined as

Ccon = CE − CĔ : �−1
Ĕ

: �E . (22)

The tensors CE and CĔ are obtained by differentiating PK2 stress (19) with respect to E and
Ĕ respectively

CE = ∂S
∂E

and CĔ = ∂S

∂Ĕ
. (23)

The tensors � Ĕ and �E are obtained by differentiating internal balance tensor (20) with
respect to E and Ĕ respectively

�E = ∂�

∂E
and � Ĕ = ∂�

∂Ĕ
. (24)

Note that these tensors CE, CĔ, � Ĕ and �E are fourth-order tensors.
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4 Internal Balance: Principal Stretches

Principal stretches of the deformation gradient can be multiplicatively decomposed as

λa = λ̂aλ̆a , (25)

where λ̂a and λ̆a are the principal stretches of F̂ and F̆, respectively. Now, the strain energy
can have the form of W(λ̂a, λ̆a) [23, 28]. Then, PK2 stress using (19)1 becomes

SP =
3∑

a=1

∂W

∂λ̂a

∂λ̂a

∂EP
=

3∑
a=1

Sa Na ⊗ Na , (26)

where

Sa = λ̂a

λ2
a

∂W

∂λ̂a

, (27)

and the derivative of λ̂a with respect to EP is given as

∂λ̂a

∂EP
= λ̂a

λ2
a

Na ⊗ Na . (28)

The individual parts of the internal balance tensor defined in (20) now becomes

�̂
P =

3∑
a=1

∂W

∂λ̂a

∂λ̂a

∂ĔP
and �̆

P =
3∑

a=1

∂W

∂λ̆a

∂λ̆a

∂ĔP
; (29)

here, ĔP = ĔaN̆a ⊗ N̆a where Ĕa = (λ̆2
a − 1)/2 are the eigenvalues of Ĕ and N̆a are the

eigenvectors of C̆. The derivatives of principal stretches λ̂a and λ̆a with respect to ĔP are
given as

∂λ̂a

∂ĔP
= − λ̂a

λ̆2
a

N̆a ⊗ N̆a and
∂λ̆a

∂ĔP
= 1

λ̆a

N̆a ⊗ N̆a . (30)

Back substituting (30) into (29), respectively, and then substituting the results of that into
(20) gives

�P =
3∑

a=1

�aN̆a ⊗ N̆a , (31)

where �a is the principal internal balance scalar components

�a = 1

λ̆a

∂W

∂λ̆a

− λ̂a

λ̆2
a

∂W

∂λ̂a

. (32)

Further details about these formulations can be found in [23].
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5 Classes of Material

This work focuses on particular classes of material where Ĕ and Green–Lagrange strain E
are coaxial i.e. Na coincides with N̆a. Two classes of material are presented to demonstrate
this coaxiality. The analysis is carried out using principal invariants for simplicity. Note that
Ĕ and E are not coaxial in general. Then, it is required to calculate the derivative of N̆a with
respect to time for linearization procedure. This is not the scope of this paper.

5.1 W(Î1, Î3, Ĭ1, Ĭ2, Ĭ3)

The internal balance equation of this material model is achieved by (20) as

w0 C̆−1C C̆−1 + w1 C̆−1 + w2 I + w3 C̆ = 0 , (33)

where

w0 = ∂W

∂Î1

, w1 = ∂W

∂Î3

Î3 − ∂W

∂Ĭ3

Ĭ3,

w2 = −
(∂W

∂Ĭ1

+ ∂W

∂Ĭ2

Ĭ1

)
, w3 = ∂W

∂Ĭ2

. (34)

Premultiplying and post multiplying (33) by C̆ gives

w0 C + w1 C̆ + w2 C̆2 + w3 C̆3 = 0. (35)

Then multiplying the above equation with N̆a and making use of (A.5) gives

C N̆a = −
(w1 λ̂2

a + w2 λ̂4
a + w3 λ̂6

a

w0

)
N̆a; (36)

note that the term inside the bracket is scalar and, hence, that N̆a is an eigenvector of C and
E.

5.2 W(Î2, Î3, Ĭ1, Ĭ2, Ĭ3)

Substituting the form of this material into (20) leads to

w4 C−1 + w5 C̆−1 + w6 I + w7 C̆ = 0, (37)

where

w4 = ∂W

∂Î2

Î3, w5 = −
(∂W

∂Î2

Î2 + ∂W

∂Î3

Î3 + ∂W

∂Ĭ3

Ĭ3

)
,

w6 = ∂W

∂Ĭ1

+ ∂W

∂Ĭ2

Ĭ1, w7 = −∂W

∂Ĭ2

. (38)

Multiplying (38) by N̆a and applying (A.5) gives

C−1 N̆a = −
(w5 λ̂−2

a + w6 + w7 λ̂2
a

w4

)
N̆a , (39)

the term inside the bracket is a scalar and, hence, N̆a is an eigenvector of C and E for this
material model as well.
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6 Linearization

Following the leads of Crisfield procedure [27] for conventional hyperelasticity, the internal
balance formulation can be expressed in principal directions as

EP = Q Diag(Ea)QT, (40a)

ĔP = Q Diag(Ĕa)QT, (40b)

SP = Q Diag(Sa)QT, (40c)

�P = Q Diag(�a)QT. (40d)

Tensors E, Ĕ, S and � are coaxial considering the material classes presented in Sect. 5.
Their derivative w.r.t. time in base frame are given by

Ė = QTĖPQ = Ḋiag(Ea) + �Diag(Ea) − Diag(Ea)�T , (41a)

˙̆E = QT ˙̆EPQ = Ḋiag(Ĕa) + �Diag(Ĕa) − Diag(Ĕa)�T , (41b)

Ṡ = QTṠPQ = Ḋiag(Sa) + �Diag(Sa) − Diag(Sa)�T , (41c)

�̇ = QT�̇
P
Q = Ḋiag(�a) + �Diag(�a) − Diag(�a)�T , (41d)

where � is defined in (A.15). In Voigt notation, ĖV and ṠV have same representation as in

(9). Similarly, ˙̆EV and �̇V is written in Voigt notation as

˙̆EV =
[ ˙̆

ED˙̆
EO

]
and �̇V =

[
�̇D

�̇O

]
, (42)

where the diagonal components are

[ ˙̆
ED] =

[ ˙̆
E11

˙̆
E22

˙̆
E33

]T =
[ ˙̆
E1

˙̆
E2

˙̆
E3

]T
, (43a)

[�̇D] = [
�̇11 �̇22 �̇33

]T = [
�̇1 �̇2 �̇3

]T
, (43b)

and off–diagonal components are

[ ˙̆
EO] =

[ ˙̆
E12

˙̆
E23

˙̆
E13

]T
, (44a)

[�̇O] = [
�̇12 �̇23 �̇13

]T
. (44b)

6.1 Diagonal Components

In view of (27) and (41c), [ṠD] can be related to [ĖD] and [ ˙̆
ED] using the chain rule. This

yields

[ṠD] = [Sa,Ea ] [ĖD] + [Sa,Ĕa
] [ ˙̆

ED], (45)
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where [Sa,Ea ] is partial derivative of Sa w.r.t. Ea at fixed Ĕa

[Sa,Ea ] =

⎡
⎢⎢⎢⎢⎢⎣

∂S1

∂E1

∂S1

∂E2

∂S1

∂E3
∂S2

∂E1

∂S2

∂E2

∂S2

∂E3
∂S3

∂E1

∂S3

∂E2

∂S3

∂E3

⎤
⎥⎥⎥⎥⎥⎦

(46a)

=

⎡
⎢⎢⎢⎢⎢⎣

1

λ1

∂S1

∂λ1

1

λ2

∂S1

∂λ2

1

λ3

∂S1

∂λ3
1

λ1

∂S2

∂λ1

1

λ2

∂S2

∂λ2

1

λ3

∂S2

∂λ3
1

λ1

∂S3

∂λ1

1

λ2

∂S3

∂λ2

1

λ3

∂S3

∂λ3

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ̂1

λ2
1

∂S1

∂λ̂1

λ̂2

λ2
2

∂S1

∂λ̂2

λ̂3

λ2
3

∂S1

∂λ̂3

λ̂1

λ2
1

∂S2

∂λ̂1

λ̂2

λ2
2

∂S2

∂λ̂2

λ̂3

λ2
3

∂S2

∂λ̂3

λ̂1

λ2
1

∂S3

∂λ̂1

λ̂2

λ2
2

∂S3

∂λ̂2

λ̂3

λ2
3

∂S3

∂λ̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (46b)

and [Sa,Ĕa
] is partial derivative of Sa w.r.t. Ĕa at fixed Ea

[Sa,Ĕa
] =

⎡
⎢⎢⎢⎢⎢⎣

∂S1

∂Ĕ1

∂S1

∂Ĕ2

∂S1

∂Ĕ3
∂S2

∂Ĕ1

∂S2

∂Ĕ2

∂S2

∂Ĕ3
∂S3

∂Ĕ1

∂S3

∂Ĕ2

∂S3

∂Ĕ3

⎤
⎥⎥⎥⎥⎥⎦

(47a)

=

⎡
⎢⎢⎢⎢⎢⎣

1

λ̆1

∂S1

∂λ̆1

1

λ̆2

∂S1

∂λ̆2

1

λ̆3

∂S1

∂λ̆3
1

λ̆1

∂S2

∂λ̆1

1

λ̆2

∂S2

∂λ̆2

1

λ̆3

∂S2

∂λ̆3
1

λ̆1

∂S3

∂λ̆1

1

λ̆2

∂S3

∂λ̆2

1

λ̆3

∂S3

∂λ̆3

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ̂1

λ̆2
1

∂S1

∂λ̂1

λ̂2

λ̆2
2

∂S1

∂λ̂2

λ̂3

λ̆2
3

∂S1

∂λ̂3

λ̂1

λ̆2
1

∂S2

∂λ̂1

λ̂2

λ̆2
2

∂S2

∂λ̂2

λ̂3

λ̆2
3

∂S2

∂λ̂3

λ̂1

λ̆2
1

∂S3

∂λ̂1

λ̂2

λ̆2
2

∂S3

∂λ̂2

λ̂3

λ̆2
3

∂S3

∂λ̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (47b)

The above equations make use of

∂λa

∂Ea
= 1

λa
,

∂λ̂a

∂Ea
= λ̂a

λ2
a

,
∂λ̆a

∂Ĕa

= 1

λ̆a

,
∂λ̂a

∂Ĕa

= − λ̂a

λ̆2
a

. (48)

Viewing (31) and (41d), [�̇D] can be related to [ĖD] and [ ˙̆
ED] using the chain rule and (48).

For instance,

[�̇D] = [�a,Ea ] [ĖD] + [�a,Ĕa
] [ ˙̆

ED], (49)

where [�a,Ea ] is partial derivative of �a w.r.t. Ea at fixed Ĕa,

[�a,Ea ] =

⎡
⎢⎢⎢⎢⎢⎣

∂�1

∂E1

∂�1

∂E2

∂�1

∂E3
∂�2

∂E1

∂�2

∂E2

∂�2

∂E3
∂�3

∂E1

∂�3

∂E2

∂�3

∂E3

⎤
⎥⎥⎥⎥⎥⎦

(50a)



264 A. Hadoush

=

⎡
⎢⎢⎢⎢⎢⎣

1

λ1

∂�1

∂λ1

1

λ2

∂�1

∂λ2

1

λ3

∂�1

∂λ3
1

λ1

∂�2

∂λ1

1

λ2

∂�2

∂λ2

1

λ3

∂�2

∂λ3
1

λ1

∂�3

∂λ1

1

λ2

∂�3

∂λ2

1

λ3

∂�3

∂λ3

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ̂1

λ2
1

∂�1

∂λ̂1

λ̂2

λ2
2

∂�1

∂λ̂2

λ̂3

λ2
3

∂�1

∂λ̂3

λ̂1

λ2
1

∂�2

∂λ̂1

λ̂2

λ2
2

∂�2

∂λ̂2

λ̂3

λ2
3

∂�2

∂λ̂3

λ̂1

λ2
1

∂�3

∂λ̂1

λ̂2

λ2
2

∂�3

∂λ̂2

λ̂3

λ2
3

∂�3

∂λ̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (50b)

and [�a,Ĕa
] is partial derivative of �a w.r.t. Ĕa at fixed Ea,

[�a,Ĕa
] =

⎡
⎢⎢⎢⎢⎢⎣

∂�1

∂Ĕ1

∂�1

∂Ĕ2

∂�1

∂Ĕ3
∂�2

∂Ĕ1

∂�2

∂Ĕ2

∂�2

∂Ĕ3
∂�3

∂Ĕ1

∂�3

∂Ĕ2

∂�3

∂Ĕ3

⎤
⎥⎥⎥⎥⎥⎦

(51a)

=

⎡
⎢⎢⎢⎢⎢⎣

1

λ̆1

∂�1

∂λ̆1

1

λ̆2

∂�1

∂λ̆2

1

λ̆3

∂�1

∂λ̆3
1

λ̆1

∂�2

∂λ̆1

1

λ̆2

∂�2

∂λ̆2

1

λ̆3

∂�2

∂λ̆3
1

λ̆1

∂�3

∂λ̆1

1

λ̆2

∂�3

∂λ̆2

1

λ̆3

∂�3

∂λ̆3

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ̂1

λ̆2
1

∂�1

∂λ̂1

λ̂2

λ̆2
2

∂�1

∂λ̂2

λ̂3

λ̆2
3

∂�1

∂λ̂3

λ̂1

λ̆2
1

∂�2

∂λ̂1

λ̂2

λ̆2
2

∂�2

∂λ̂2

λ̂3

λ̆2
3

∂�2

∂λ̂3

λ̂1

λ̆2
1

∂�3

∂λ̂1

λ̂2

λ̆2
2

∂�3

∂λ̂2

λ̂3

λ̆2
3

∂�3

∂λ̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (51b)

6.2 Off–Diagonal Components

The off–diagonal components ṠO and �̇O are related to ĖO only because both S and � are
coaxial with E. Then, they are expressed as

[ṠO] = [�Sa/�Ea] [ĖO], (52a)

[�̇O] = [��a/�Ea] [ĖO], (52b)

where

[�Sa/�Ea] =

⎡
⎢⎢⎢⎢⎢⎣

S1 − S2

2(E1 − E2)
0 0

0
S2 − S3

2(E2 − E3)
0

0 0
S1 − S3

2(E1 − E3)

⎤
⎥⎥⎥⎥⎥⎦

, (53a)

[��a/�Ea] =

⎡
⎢⎢⎢⎢⎢⎣

�1 − �2

2(E1 − E2)
0 0

0
�2 − �3

2(E2 − E3)
0

0 0
�1 − �3

2(E1 − E3)

⎤
⎥⎥⎥⎥⎥⎦

. (53b)

Note that the representation of [�Sa/�Ea] for the internal balance treatment (53a) is similar
to its representation in conventional hyperelasticty (13) because this term is related to time
derivative of eigenvectors Na and it has nothing to do with decomposition of the deformation
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gradient but Sa is defined by internal balance treatment (27). Care has to be taken during the
calculation of [�Sa/�Ea] and [��a/�Ea] to avoid dividing zero by zero which can be
achieved by applying l’Hôpital rule.

6.3 Condensed Elasticity

The main task now is to determine elasticity tensor in similar manner to (16). Up to this end,
Ṡ expressed in (41c) can be reformed by the virtue of (9), (41d)1, (45) and (52a) such as

ṠV =
[
ṠD

ṠO

]
=

[ [Sa,Ea ] 0
0 [�Sa/�Ea]

][
ĖD

ĖO

]
+

[ [Sa,Ĕa
] 0

0 0

][ ˙̆
ED˙̆
EO

]
, (54)

therefore it is required to eliminate the dependency of ṠV upon [ ˙̆
ED]. Starting from (41d),

the internal balance condition �̇ = 0 gives

Ḋiag(�a) = −�Diag(�a) + Diag(�a)�T . (55)

It is worth to notice the equivalency of Ḋiag(�a) and [�̇D], the components �̇a are formed
in matrix representation using Ḋiag(�a) as in (A.6) and in vector representing using [�̇D]
as in (43b). By the virtue of (49), (52b) and (55), the term [ ˙̆

ED] can be expressed as

[�a,Ea ] [ĖD] + [�a,Ĕa
] [ ˙̆

ED] = −[��a/�Ea] [ĖO] ⇒
[ ˙̆
ED] = −[�a,Ĕa

]−1
(
[�a,Ea ] [ĖD] + [��a/�Ea] [ĖO]

)
, (56)

where [�a,Ĕa
]−1 is the inverse of matrix [�a,Ĕa

]. Substituting (56)2 into (54) gives in Voigt
notation

ṠV = CP
Con,V ĖV ⇒ [CP

Con,V] =
[
CP

Con,D 0
0 CP

Con,O

]
, (57)

where

CP
Con,D = [Sa,Ea ] − [Sa,Ĕa

][�a,Ĕa
]−1[�a,Ea ] , (58a)

CP
Con,O = [�Sa/�Ea] − [Sa,Ĕa

][�a,Ĕa
]−1[��a/�Ea] . (58b)

The condensed fourth order elasticity tensor in principal direction CP
Con is related to con-

densed elasticity in base frame CCon via (18). Note that CCon is introduced previously in
terms of principal invariants [24] and it is presented again here in (22).

7 Blatz–Ko Model

A special case of the generalized Blatz–Ko [29, 30] in conventional hyperelasticity has the
form of

W(I1, I3) = μ(I1 + 2I
−1/2
3 − 5)/2 , (59)
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and it can be reformulated in term of principal stretches by the use of (A.4) such as

W(λ1, λ2, λ3) = μ

2

(
λ2

1 + λ2
2 + λ2

3 + 2

λ1λ2λ3
− 5

)
, (60)

where μ is the shear modulus. Substituting (60) into (5) gives the principal PK2 stress com-
ponent

S1 = μ
(

1 − 1

λ3
1λ2λ3

)
, S2 = μ

(
1 − 1

λ1λ
3
2λ3

)
, S3 = μ

(
1 − 1

λ1λ2λ
3
3

)
. (61)

In analogy with (59), an internal balance Blatz–Ko material model is defined in [16] as

W(Î1, Î3, Ĭ1, Ĭ3) = μ̄

2
(Î1 + 2Î

−1/2
3 − 5) + μ̄

2β
(Ĭ1 + 2Ĭ

−1/2
3 − 5) . (62)

where μ̄ = μ(β + 1). The positive material parameter β quantifies the contribution of
two–factor multiplicative decomposition (1). The limits β → 0 and β → ∞ retrieve the
hyperelastic behavior in full nonlinear strain range [16]. Note that (62) has the form of
W(Î1, Î3, Ĭ1, Ĭ2 = 0, Ĭ3), therefore tensors E and Ĕ are coaxial as concluded by (35). Using
principal stretches of Ĉ and C̆, equation (62) is re-written as

W(λ̂1, λ̂2, λ̂3, λ̆1, λ̆2, λ̆3) = μ̄

2

(
λ̂2

1 + λ̂2
2 + λ̂2

3 + 2

λ̂1λ̂2λ̂3

− 5
)

+ μ̄

2β

(
λ̆2

1 + λ̆2
2 + λ̆2

3 + 2

λ̆1λ̆2λ̆3

− 5
)
. (63)

The principal PK2 stress components are obtained by substituting (63) into (27)

S1 = μ̄ L̂1

λ2
1

, S2 = μ̄ L̂2

λ2
2

, S3 = μ̄ L̂3

λ2
3

. (64)

Substituting (63) into (32) gives the principal internal balance components

�1 = μ̄
(M̆1

β
− L̂1

λ̆2
1

)
, �2 = μ̄

(M̆2

β
− L̂2

λ̆2
2

)
, �3 = μ̄

(M̆3

β
− L̂3

λ̆2
3

)
, (65)

where

L̂1 = λ̂2
1 − 1/Ĵ , L̂2 = λ̂2

2 − 1/Ĵ , L̂3 = λ̂2
3 − 1/Ĵ , Ĵ = λ̂1λ̂2λ̂3 ,

M̆1 = 1 − 1

λ̆3
1λ̆2λ̆3

, M̆2 = 1 − 1

λ̆1λ̆
3
2λ̆3

, M̆3 = 1 − 1

λ̆1λ̆2λ̆
3
3

. (66)

The condensed elasticity tensor in principal direction CP
Con,V as expressed in (57) depends

on several 3 × 3 matrices (58a)–(58b) that are determined by the following procedure. Sub-
stituting (64) into (46b) and (47b), respectively, gives

[Sa,Ea ] = μ̄

Ĵ

⎡
⎣

3/λ4
1 1/(λ2

1λ
2
2) 1/(λ2

1λ
2
3)

1/(λ2
1λ

2
2) 3/λ4

2 1/(λ2
2λ

2
3)

1/(λ2
1λ

2
3) 1/(λ2

2λ
2
3) 3/λ4

3

⎤
⎦ , (67)
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[Sa,Ĕa
] = −μ̄

⎡
⎣

N̂1/(λ
2
1λ̆

2
1) 1/(λ2

1λ̆
2
2Ĵ ) 1/(λ2

1λ̆
2
3Ĵ )

1/(λ2
2λ̆

2
1Ĵ ) N̂2/(λ

2
2λ̆

2
2) 1/(λ2

2λ̆
2
3Ĵ )

1/(λ2
3λ̆

2
1Ĵ ) 1/(λ2

3λ̆
2
2Ĵ ) N̂3/(λ

2
3λ̆

2
3)

⎤
⎦ , (68)

where

N̂1 = 2λ̂2
1 + 1/Ĵ , N̂2 = 2λ̂2

2 + 1/Ĵ , N̂3 = 2λ̂2
3 + 1/Ĵ . (69)

Substituting (65) into (50b) and (51b), respectively, gives

[�a,Ea ] = −μ̄

⎡
⎣

N̂1/(λ
2
1λ̆

2
1) 1/(λ2

2λ̆
2
1Ĵ ) 1/(λ2

3λ̆
2
1Ĵ )

1/(λ2
1λ̆

2
2Ĵ ) N̂2/(λ

2
2λ̆

2
2) 1/(λ2

3λ̆
2
2Ĵ )

1/(λ2
1λ̆

2
3Ĵ ) 1/(λ2

2λ̆
2
3Ĵ ) N̂3/(λ

2
3λ̆

2
3)

⎤
⎦ , (70)

[�a,Ĕa
] = μ̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2L̂1

λ̆4
1

+ 3

βλ̆5
1λ̆2λ̆3

1

βλ̆3
1λ̆

3
2λ̆3

1

βλ̆3
1λ̆2λ̆

3
3

1

βλ̆3
1λ̆

3
2λ̆3

2L̂2

λ̆4
2

+ 3

βλ̆1λ̆
5
2λ̆3

1

βλ̆1λ̆
3
2λ̆

3
3

1

βλ̆3
1λ̆2λ̆

3
3

1

βλ̆1λ̆
3
2λ̆

3
3

2L̂3

λ̆4
3

+ 3

βλ̆1λ̆2λ̆
5
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ μ̄

⎡
⎣

N̂1/λ̆
4
1 1/(λ̆2

1λ̆
2
2Ĵ ) 1/(λ̆2

1λ̆
2
3Ĵ )

1/(λ̆2
1λ̆

2
2Ĵ ) N̂2/λ̆

4
2 1/(λ̆2

2λ̆
2
3Ĵ )

1/(λ̆2
1λ̆

2
3Ĵ ) 1/(λ̆2

2λ̆
2
3Ĵ ) N̂3/λ̆

4
3

⎤
⎦ . (71)

Next, [�a,Ĕa
]−1 has to be calculated in order to determine CP

Con,D as in (58a). Finally, CP
Con,O

as in (58b) is determined after calculating [�Sa/�Ea] and [��a/�Ea] in (53a) and (53b).

8 Verification I: Uniaxial Loading

The elasticity tensor for uniaxial loading is caculated using principal stretches formulation as
expressed in (57)2. It is essential to perform this verification task because the eigenvectors of
C and C̆ coincide with the directions of the base frame unit vectors during uniaxial loading.
The deformation gradient for uniaxail loading is given as F = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 +
λ3 e3 ⊗ e3. The principal component Sa in conventional hyperelasticity treatment is obtained
by (61). Applying lateral traction free condition S2 = S3 = 0 gives λ2 = λ3 = λ

−1/4
1 . This

leads to S1 = μ(1 − λ−5/2).
For internal balance treatment, Sa and �a are coupled with each other and are obtained

by (64) and (65), respectively. Applying lateral traction free condition S2 = S3 = 0 gives
λ̂2 = λ̂3 = λ̂

−1/4
1 . The internal balance scalar equations �2 = �3 = 0 provide that λ̆2 = λ̆3 =

λ̆
−1/4
1 . By the virtue of (25), it can be shown that λ2 = λ3 = λ

−1/4
1 . Now, S1 and �1 = 0 are

simplified such as

S1 = μ(1 + β) L̆1

λ2
1

= μ(1 + 1/β)M̆1λ̆
2
1

λ2
1

, (72a)

M̆1 − βL̆1

λ̆2
1

= M̆1

β
− L̆1

λ̆2
1

= 0, (72b)
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where L̆ = λ2
1λ̆

−2
1 − λ

−1/2
1 λ̆2

1 and M̆ = 1 − λ̆
−5/2
1 . The value of λ̆1 has to be determined by

solving (72b) for given value of β and λ1 in order to calculate S1 as expressed in (72a). If
β → 0 then (72b)1 gives M̆1 → 0 i.e. λ̆1 → 1 then (72a)1 becomes S1 = μ(1 − λ−5/2). If
β → ∞ then (72b)2 gives L̆1 → 0 i.e. λ̆1 → λ1 then (72a)2 becomes S1 = μ(1 − λ−5/2).
Note that the calculated stress S1 by internal balance treatment for both special cases β → 0
and β → ∞ retrieve the conventional hyperelastic response. If β = 1, an analytical solution
can be achieved for (72b) such as λ̂a = λ̆a = λ

1/2
a . This special case represents an equal con-

tribution of multiplicative decomposition counterparts to the stored energy function. Now,
the uniaxial stress (72a) become S1 = 2μ(λ−1

1 −λ
−9/4
1 ). If β is not one of these special cases

then λ̆1 has to determined numerically for given β and λ1. The Reader can find more detail
about uniaxial loading using internal balance material models in [16, 22].

Consider the special case of β = 1, the individual matrices in (58a) for uniaxial loadining
become

[Sa,Ea ] = 2μ

⎡
⎣

3λ
−17/4
1 λ

−7/4
1 λ

−7/4
1

λ
−7/4
1 3λ

3/4
1 λ

3/4
1

λ
−7/4
1 λ

3/4
1 3λ

3/4
1

⎤
⎦ , (73a)

[Sa,Ĕa
] = −2μ

⎡
⎣

c1 λ−2
1 λ−2

1

λ
−3/4
1 3λ

1/2
1 λ

1/2
1

λ
−3/4
1 λ

1/2
1 3λ

1/2
1

⎤
⎦ , (73b)

[�a,Ea ] = −2μ

⎡
⎣

c1 λ
−3/4
1 λ

−3/4
1

λ−2
1 3λ

1/2
1 λ

1/2
1

λ−2
1 λ

1/2
1 3λ

1/2
1

⎤
⎦ , (73c)

[�a,Ĕa
] = 4μ

⎡
⎣

c2 λ−1
1 λ−1

1

λ−1
1 3λ

1/4
1 λ

1/4
1

λ−1
1 λ

1/4
1 3λ

1/4
1

⎤
⎦ , (73d)

[�a,Ĕa
]−1 = 1

8c3μ

⎡
⎣

4λ
9/4
1 −λ1 −λ1

−λ1 c4λ
−1/4
1 −λ1

−λ1 −λ1 c4λ
−1/4
1

⎤
⎦ , (73e)

now CP
Con,D becomes

CP
Con,D =

⎡
⎣

c5 1/λ
7/4
1 1/λ

7/4
1

1/λ
7/4
1 3λ

3/4
1 λ

3/4
1

1/λ
7/4
1 λ

3/4
1 3λ

3/4
1

⎤
⎦ , (74)

where

c1 = 2λ−2
1 + λ

−13/4
1 , c2 = 2λ−1

1 + λ
−9/4
1 , c3 = 4λ

5/4
1 + 1,

c4 = 3λ
5/4
1 + 1, c5 = (5 − 2λ

5/4
1 )/λ

17/4
1 . (75)

The calculation of [�Sa/�Ea] and [��a/�Ea] require the use of l’Hôpital rule to avoid
the case of 0/0. This is observed in two cases because of S2 = S3 = 0, �2 = �3 = 0 and
E2 = E3. Applying l’Hôpital rule for both cases gives

S2 − S3

2(E2 − E3)
= 1

2

( ∂S2

∂E2
− ∂S3

∂E2

)
= 2μλ

3/4
1 , (76a)
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�2 − �3

2(E2 − E3)
= 1

2

(∂�2

∂E2
− ∂�3

∂E2

)
= −2μλ

1/2
1 . (76b)

The remaining components [�Sa/�Ea] and [��a/�Ea] are calculated by direct substitu-
tion such as

S1 − S2

2(E1 − E2)
= S1 − S3

2(E1 − E3)
= 2μ(λ1 − λ

−1/4
1 )

λ2
1(λ

2
1 − λ

−1/2
1 )

= 2μ(λ1 − λ
−1/4
1 )

λ2
1(λ1 − λ

−1/4
1 )(λ1 + λ

−1/4
1 )

= 2μ

λ3
1 + λ

7/4
1

, (77a)

�1 − �2

2(E1 − E2)
= �1 − �3

2(E1 − E3)
= 0. (77b)

The final achieved results are

[�Sa/�Ea] =

⎡
⎢⎢⎢⎢⎣

2μ

λ3
1 + λ

7/4
1

0 0

0 2μλ
3/4
1 0

0 0
2μ

λ3
1 + λ

7/4
1

⎤
⎥⎥⎥⎥⎦

, (78a)

[��a/�Ea] =
⎡
⎣

0 0 0
0 −2μλ

1/2
1 0

0 0 0

⎤
⎦ . (78b)

Now, CP
Con,O is achieved by substituting (78a)–(78b), (73b) and (73e) into (58b) to give

CP
Con,O = μ

⎡
⎢⎢⎢⎢⎣

2

λ3
1 + λ

7/4
1

0 0

0 λ
3/4
1 0

0 0
2

λ3
1 + λ

7/4
1

⎤
⎥⎥⎥⎥⎦

; (79)

then, CP
Con,V is obtained by substituting (74) and (79) into (57)2 to give

[CP
Con,V] =

[
CP

Con,D 0
0 CP

Con,O

]
= μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c5 1/λ
7/4
1 1/λ

7/4
1 0 0 0

1/λ
7/4
1 3λ

3/4
1 λ

3/4
1 0 0 0

1/λ
7/4
1 λ

3/4
1 3λ

3/4
1 0 0 0

0 0 0 c6 0 0
0 0 0 0 λ

3/4
1 0

0 0 0 0 0 c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (80)

where c6 = 2/(λ3
1 + λ

7/4
1 ). Note that CP

Con,V as calculated in (80) is identical to CCon,V (B.2)

that is calculated using principal invariants because principal directions of C and C̆ coincide
with the direction of the base frame unit vectors.
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9 Verification II: Numerical Example

A general deformation is presented in this verification to ensure the correctness of the new
procedure. It is given as

F =
⎡
⎣

2.0 0 0
1.5 1.0 2.0
3.1 3.4 2.5

⎤
⎦ , C =

⎡
⎣

15.86 12.04 10.75
12.04 12.56 10.50
10.75 10.50 10.25

⎤
⎦ . (81)

The eigenvalues and eignenvectors of C are

λ2
1 = 0.84136, λ2

2 = 2.4873, λ2
3 = 35.341, (82a)

N1 = −1.0592 × 10−2 e1 + 0.67330 e2 − 0.73930 e3, (82b)

N2 = 0.76997 e1 − 0.46623 e2 − 0.43564 e3, (82c)

N3 = 0.63800 e1 + 0.57385 e2 + 0.51348 e3 . (82d)

The material parameter β is set to one to get an analytical solution of the internal balance
equation � = 0 such as C̆ = √

C leading to

λ̂1 = λ̆1 = λ
1/2
1 = 0.95774,

λ̂2 = λ̆2 = λ
1/2
2 = 1.2558,

λ̂3 = λ̆3 = λ
1/2
3 = 2.4382. (83)

Setting μ = 1, then the individual matrices in (58a) become

[Sa,Ea ] = 10−3

⎡
⎣

2890.2 325.89 22.936
325.89 330.71 7.7583
22.936 7.7583 1.6381

⎤
⎦ , (84a)

[Sa,Ĕa
] = 10−2

⎡
⎣

−563.79 −51.396 −13.635
−29.892 −178.20 −4.6122
−2.1038 −1.2236 −11.643

⎤
⎦ , (84b)

[�a,Ea ] = 10−2

⎡
⎣

−563.79 −29.892 −2.1038
−51.396 −178.20 −1.2236
−13.635 −4.6122 −11.643

⎤
⎦ , (84c)

[�a,Ĕa
] =

⎡
⎣

10.343 0.94287 0.25014
0.94287 5.6209 0.14548
0.25014 0.14548 1.3843

⎤
⎦ , (84d)

[�a,Ĕa
]−1 = 10−2

⎡
⎣

9.8544 −1.6113 −1.6113
−1.6113 18.103 −1.6113
−1.6113 −1.6113 72.699

⎤
⎦ , (84e)

then, CP
Con,D is calculated

CP
Con,D = 10−3

⎡
⎣

−182.98 162.94 11.468
162.94 −234.25 3.8792
11.468 3.8792 −8.1542

⎤
⎦ . (85)
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The component Sa and Ea are

S1 = 1.3698, S2 = 0.99394, S3 = 0.31713, (86)

E1 = −7.9318 × 10−2, E2 = 0.74365, E3 = 17.171, (87)

while the internal balance equation � = 0 → �a = 0 hence [��a/�Ea] = 0. Consequently,
(58b) is simplified to CP

Con,O = [�Sa/�Ea] and it is given as:

CP
Con,O = [�Sa/�Ea] = 10−2

⎡
⎣

−22.837 0 0
0 2.0601 0
0 0 −3.0513

⎤
⎦ ; (88)

CP
Con,V as presented in (57) is assembled using (85) and (89):

CP
Con,V = 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

−182.98 162.94 11.468 0 0 0
162.94 −234.25 3.8792 0 0 0
11.468 3.8792 −8.1542 0 0 0

0 0 0 −228.37 0 0
0 0 0 0 20.601 0
0 0 0 0 0 −30.513

⎤
⎥⎥⎥⎥⎥⎥⎦

. (89)

Now, CCon as expressed in base frame is achieved by transforming CP
Con from principal di-

rections via (18) such as

[CCon,V] = 10−2

⎡
⎢⎢⎢⎢⎢⎢⎣

−10.174 2.4533 4.0158 4.7388 −6.8516 4.1830
2.4533 −12.760 8.6890 5.9487 3.1511 −7.5777
4.0158 8.6890 −14.263 −7.9974 2.9696 5.8854
4.7388 5.9487 −7.9974 −9.9987 3.8526 4.3129

−6.8516 3.1511 2.9696 3.8526 −9.7281 4.8045
4.1830 −7.5777 5.8854 4.3129 4.8045 −10.892

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(90)

Note that [CCon,V] that is calculated by the new approach (90) is identical to [CCon,V] as
presented in (C.5) that is calculated based on the principal invariants formulation [24].

10 Conclusions

A new scheme for hyperelastic material is developed based on applying the argument of cal-
culus variation to two-factor multiplicative decomposition of the deformation gradient. This
work develops the procedure to calculate the elasticity tensor for material model formulated
in terms of decomposed principal stretches. Focus is given for special classes of material
model that grant the coaxiality of S, � , E and Ĕ. The new procedure is demonstrated us-
ing two loading scenarios namely uniaxial loading and general deformation. The calculated
elasticity tensor by the new procedure is verified by the elasticity tensor that is calculated
based on principal invariant formulations that has been introduced in [24].
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Appendix A: Essentials and Notation

Let A be a second order symmetric tensor that is defined in the undeformed configuration
using base frame {e1, e2, e3}. The principal invariants of A are

I1 = tr(A), I2 = 1

2

[
(tr(A))2 − tr(A2)

]
, I3 = det(A) , (A.1)

and their partial derivatives with respect to A

∂I1

∂A
= I,

∂I2

∂A
= I1I − A,

∂I3

∂A
= I3A−1 . (A.2)

Tensor A can be expressed in principal directions using its eigenvalues Aa and unit eigen-
vectors Na pairs such as

AP = AaNa ⊗ Na , (A.3)

where a = 1,2,3. Principal invariants and eigenvalues are related via

I1 = A1 + A2 + A3, I2 = A1A2 + A2A3 + A1A3, I3 = A1A2A3. (A.4)

It is important to know that

Aα Na = Aα
a Na , (A.5)

where α = ±1,±2, . . ..
Following the notation of Crisfield in [31], AP is expressed such as

AP = Q Diag(Aa)QT = A1 N1 ⊗ N1 + A2 N2 ⊗ N2 + A3 N3 ⊗ N3 , (A.6)

where tensor Q is orthogonal tensor QQT = QTQ = I. The matrix representation of Q and
Diag(Aa) are

[Q] = [N1,N2,N3]1×3 , (A.7)

[Diag(Aa)] =
⎡
⎣

A1 0 0
0 A2 0
0 0 A3

⎤
⎦

3×3

. (A.8)

In order to perform (A.6), [Q] has the size of 1 × 3 and [Diag(Aa)] has the size of 3 × 3.
Tensors AP and A are related via

A = QT AP Q . (A.9)

To calculate (A.9), Q must have the following order

[Q] =
⎡
⎣

N1(1) N1(2) N1(3)

N2(1) N2(2) N2(3)

N3(1) N3(2) N3(3)

⎤
⎦

3×3

, (A.10)

where each eigenvector Na has three components {Na(1),Na(2),Na(3)} e.g. the first eign-
vector N1 is written as N1 = N1(1) e1 + N1(2) e2 + N1(3) e3. Keep in mind that Q is often
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expressed by sorting each eigenvector as a column (not as a row) then A = Q AP QT however
this notation is not used to avoid confusion with the representation of Crisfield in [31].

Tensor A is considered here as function of Green–Lagrange strain E. Also, A and E are
coaxial i.e. have same eigenvectors Na. The derivative of AP with respect to time ȦP is given
as

ȦP = Q Ḋiag(Aa)QT + Q̇ Diag(Aa)QT + Q Diag(Aa) Q̇T , (A.11)

where the matrix representation of Ḋiag(Aa) is

[Ḋiag(Aa)] =
⎡
⎣

Ȧ1 0 0
0 Ȧ2 0
0 0 Ȧ3

⎤
⎦ . (A.12)

Subsituting (A.11) into (A.9) gives Ȧ as

Ȧ = Ḋiag(Aa) + 	Diag(Aa) − Diag(Aa)� , (A.13)

where the derivative of Q w.r.t. time is given by antisymmetric � tensor

�P = Q̇QT , � = QTQ̇ = −Q̇TQ , (A.14)

that can be defined by mixed combination of components related Green–Lagrange strain and
its derivative w.r.t. to time such as

[�] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
Ė12

E2 − E1

Ė13

E3 − E1
Ė12

E1 − E2
0

Ė23

E3 − E2
Ė13

E1 − E3

Ė23

E2 − E3
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.15)

Now, Ȧ can be written as

[Ȧ] =
⎡
⎣

Ȧ11 Ȧ11 Ȧ13

Ȧ21 Ȧ2 Ȧ23

Ȧ31 Ȧ32 Ȧ33

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ȧ1
(A1 − A2)Ė12

E1 − E2

(A1 − A3)Ė13

E1 − E3
(A1 − A2)Ė12

E1 − E2
Ȧ2

(A2 − A3)Ė23

E2 − E3
(A1 − A3)Ė13

E1 − E3

(A2 − A3)Ė23

E2 − E3
Ȧ3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A.16)

The above equation make use of (A.8), (A.12) and (A.15). The Voigt notation can be used
to reform Ȧ into ȦV

[ȦV] = [
Ȧ11 Ȧ22 Ȧ33 Ȧ12 Ȧ23 Ȧ13

]T =
[
ȦD

ȦO

]
, (A.17)

here ȦD is the diagonal components of Ȧ

[ȦD] = [
Ȧ11 Ȧ22 Ȧ33

]T = [
Ȧ1 Ȧ2 Ȧ3

]T
, (A.18)
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and ȦO is the off–diagonal components of Ȧ

[ȦO] = [
Ȧ12 Ȧ23 Ȧ13

]T
. (A.19)

Using chain rule, ȦD can be expressed as

[ȦD] = [Aa,Ea ] [ĖD] , (A.20)

where

[ĖD] = [
Ė11 Ė22 Ė33

]T = [
Ė1 Ė2 Ė3

]T
, (A.21)

[Aa,Ea ] =

⎡
⎢⎢⎢⎢⎢⎣

∂A1

∂E1

∂A1

∂E2

∂A1

∂E3
∂A2

∂E1

∂A2

∂E2

∂A2

∂E3
∂A3

∂E1

∂A3

∂E2

∂A3

∂E3

⎤
⎥⎥⎥⎥⎥⎦

. (A.22)

The off–diagonal components of Ȧ can be written as

[ȦO] = [�Aa/�Ea][ĖO] , (A.23)

where

[ĖO] = [
2Ė12 2Ė23 2Ė13

]T
, (A.24)

[�Aa/�Ea] =

⎡
⎢⎢⎢⎢⎢⎣

A1 − A2

2(E1 − E2)
0 0

0
A2 − A3

2(E2 − E3)
0

0 0
A1 − A3

2(E1 − E3)

⎤
⎥⎥⎥⎥⎥⎦

. (A.25)

In case Ea = Eb and Aa = Ab, then l’Hôpital rule is applied to obtained

lim
Ea→Eb

Aa − Ab

Ea − Eb
= ∂Aa

∂Ea

− ∂Ab

∂Ea

. (A.26)

Extensive explanations of these derivatives can be found in [27, 31].

Appendix B: Uniaxial Loading: Principal Invariants

Consider the uniaxial loading of internally balanced material model (59) with β = 1. Then,
C = λ2

1 e1 ⊗e1 +λ
−1/2
1 e2 ⊗e2 +λ

−1/2
1 e3 ⊗e3 and C̆ = λ1 e1 ⊗e1 +λ

−1/4
1 e2 ⊗e2 +λ

−1/4
1 e3 ⊗

e3. The individual fourth order tensors in (22) are determined by equations (59a)–(59d) in
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[24]. In Voigt notation, they are expressed as

CE,V = 2μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3λ
−17/4
1 λ

−7/4
1 λ

−7/4
1 0 0 0

λ
−7/4
1 3λ

3/4
1 λ

3/4
1 0 0 0

λ
−7/4
1 λ

3/4
1 3λ

3/4
1 0 0 0

0 0 0 λ
−7/4
1 0 0

0 0 0 0 λ
3/4
1 0

0 0 0 0 0 λ
−7/4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1a)

CĔ,V = −2μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1 λ−2
1 λ−2

1 0 0 0
λ

−3/4
1 3λ

1/2
1 λ

1/2
1 0 0 0

λ
−3/4
1 λ

1/2
1 3λ

1/2
1 0 0 0

0 0 0 λ
−3/4
1 0 0

0 0 0 0 λ
1/2
1 0

0 0 0 0 0 λ
−3/4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1b)

ψE,V = −2μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1 λ
−3/4
1 λ

−3/4
1 0 0 0

λ−2
1 3λ

1/2
1 λ

1/2
1 0 0 0

λ−2
1 λ

1/2
1 3λ

1/2
1 0 0 0

0 0 0 λ
−3/4
1 0 0

0 0 0 0 λ
1/2
1 0

0 0 0 0 0 λ
−3/4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1c)

ψ Ĕ,V = 4μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c2 λ−1
1 λ−1

1 0 0 0
λ−1

1 3λ
1/4
1 λ

1/4
1 0 0 0

λ−1
1 λ

1/4
1 3λ

1/4
1 0 0 0

0 0 0 c7λ
−1
1 /2 0 0

0 0 0 0 λ
1/4
1 0

0 0 0 0 0 c7λ
−1
1 /2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.1d)

ψ−1
Ĕ,V

= 1

8c3μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4λ
9/4
1 −λ1 −λ1 0 0 0

−λ1 c4λ
−1/4
1 −λ1 0 0 0

−λ1 −λ1 c4λ
−1/4
1 0 0 0

0 0 0 4c3λ1/c 0 0
0 0 0 0 2c3λ

−1/4
1 0

0 0 0 0 0 4c3λ1/c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B.1e)

Now, Ccon as in (22) becomes

CCon,V = μ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c5 1/λ
7/4
1 1/λ

7/4
1 0 0 0

1/λ
7/4
1 3λ

3/4
1 λ

3/4
1 0 0 0

1/λ
7/4
1 λ

3/4
1 3λ

3/4
1 0 0 0

0 0 0 c6 0 0
0 0 0 0 λ

3/4
1 0

0 0 0 0 0 c6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B.2)

where c6 = 2/(λ3
1 + λ

7/4
1 ) and c7 = λ

5/4
1 + 1 while c1, c2, c3, c4 and c5 are defined in (75).
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Appendix C: Numerical Example: Principal Invariant

Consider the general deformation given in (81) then I3 = J 2 = 73.96. Setting β = 1 for
internal balance material model (59) to obtain an analytical solution of � = 0 such as C̆ =√

C

C̆ =
⎡
⎣

3.3549 1.6038 1.4257
1.6038 2.7163 1.6154
1.4257 1.6154 2.3681

⎤
⎦ , (C.1)

with Ĭ3 = J̆ 2 = I
1/2
3 = 8.6. The inverse of tensors C and C̆ is

C−1 =
⎡
⎣

0.25000 −0.14244 −0.11628
−0.14244 0.63551 −0.50162
−0.11628 −0.50162 0.73337

⎤
⎦ , (C.2)

C̆−1 =
⎡
⎣

0.44450 −0.17381 −0.14904
−0.17381 0.68744 −0.36432
−0.14904 −0.36432 0.76055

⎤
⎦ . (C.3)

Set μ = 1, then the individual fourth order tensors in (22) are determined by equations
(59a)–(59d) in [24]. In Voigt notation, they are expressed as

CE,V = 10−3

⎡
⎢⎢⎢⎢⎢⎢⎣

127.87 136.03 143.48 −72.858 −62.934 −59.476
136.03 826.32 661.07 −185.21 −652.23 47.063
143.48 661.07 1100.4 8.3162 −752.67 −174.47

−72.858 −185.21 8.3162 136.03 47.063 −62.934
−62.934 −652.23 −752.67 47.063 661.07 8.3162
−59.476 47.063 −174.47 −62.934 8.3162 143.48

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(C.4a)

CĔ,V = 10−2

⎡
⎢⎢⎢⎢⎢⎢⎣

−86.610 −23.804 −21.852 33.866 −4.1502 29.040
−31.349 −218.83 −86.054 55.326 115.97 −18.869
−31.117 −87.474 −269.41 −13.026 129.05 52.795
35.221 54.471 −14.331 −68.843 4.2880 25.759
4.8446 123.70 136.85 1.8811 −143.57 10.479
30.024 −19.877 51.372 25.828 12.689 −73.237

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(C.4b)

ψE,V = 10−2

⎡
⎢⎢⎢⎢⎢⎢⎣

−86.610 −31.349 −31.117 35.221 4.8446 30.024
−23.804 −218.83 −87.474 54.471 123.70 −19.877
−21.852 −86.054 −269.41 −14.331 136.85 51.372
33.866 55.326 −13.026 −68.843 1.8811 25.828

−4.1502 115.97 129.05 4.2880 −143.57 12.689
29.040 −18.869 52.795 25.759 10.479 −73.237

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(C.4c)
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ψ Ĕ,V =

⎡
⎢⎢⎢⎢⎢⎢⎣

3.8255 0.41679 0.46111 −0.80061 −0.22088 −0.68652
0.41679 6.1441 0.71313 −0.85821 −1.7989 −0.13975
0.46111 0.71313 6.8733 −0.18030 −1.8352 −0.75077

−0.80061 −0.85821 −0.18030 2.3051 −0.21171 −0.69330
−0.22088 −1.7989 −1.8352 −0.21171 3.0770 −0.27355
−0.68652 −0.13975 −0.75077 −0.69330 −0.27355 2.4404

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(C.4d)

ψ−1
Ĕ,V

= 10−2

⎡
⎢⎢⎢⎢⎢⎢⎣

32.672 2.6699 1.7599 17.940 7.5979 15.834
2.6699 22.984 3.4653 14.097 17.474 9.0970
1.7599 3.4653 19.542 8.0582 15.314 10.711
17.940 14.097 8.0582 66.374 21.534 29.603
7.5979 17.474 15.314 21.534 55.672 20.208
15.834 9.0970 10.711 29.603 20.208 59.923

⎤
⎥⎥⎥⎥⎥⎥⎦

. (C.4e)

Now, Ccon as in (22) becomes

CCon,V = 10−2

⎡
⎢⎢⎢⎢⎢⎢⎣

−10.174 2.4533 4.0158 4.7388 −6.8516 4.1830
2.4533 −12.760 8.6890 5.9487 3.1511 −7.5777
4.0158 8.6890 −14.263 −7.9974 2.9696 5.8854
4.7388 5.9487 −7.9974 −9.9987 3.8526 4.3129

−6.8516 3.1511 2.9696 3.8526 −9.7281 4.8045
4.1830 −7.5777 5.8854 4.3129 4.8045 −10.892

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(C.5)
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10. Dunić, V., Slavković, R.: Implicit stress integration procedure for large strains of the reformulated shape
memory alloys material model. Contin. Mech. Thermodyn. 32, 1287–1309 (2020)

11. Zhao, W., Liu, L., Leng, J., Liu, Y.: Thermo-mechanical behavior prediction of shape memory polymer
based on the multiplicative decomposition of the deformation gradient. Mech. Mater. (2019). https://doi.
org/10.1016/j.mechmat.2019.103263

12. Wang, J., Gu, X., Xu, Y., Zhu, J., Zhang, W.: Thermomechanical modeling of nonlinear internal hystere-
sis due to incomplete phase transformation in pseudoelastic shape memory alloys. Nonlinear Dyn. 103,
1393–1414 (2021)

13. Goriely, A., Amar, M.B.: On the definition and modeling of incremental, cumulative, and continuous
growth laws in morphoelasticity. Biomech. Model. Mechanobiol. 6, 289–296 (2007)

14. Demirkoparan, H., Pence, T.J., Tsai, H.: Hyperelastic internal balance by multiplicative decomposition
of the deformation gradient. Arch. Ration. Mech. Anal. 214, 923–970 (2014)

15. Zamani, V., Demirkoparan, H., Pence, T.J.: Material swelling with partial confinement in the inter-
nally balanced generalization of hyperelasticity. Math. Mech. Solids (2022). https://doi.org/10.1177/
10812865221092377

16. Hadoush, A., Demirkoparan, H., Pence, T.J.: A constitutive model for an internally balanced compress-
ible hyperelastic material. Math. Mech. Solids 22, 372–400 (2015)

17. Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for
affine microstructure. Modelling, existence of minimizers, identification of moduli and computational
results. J. Elast. 87, 239–276 (2007)

18. Owen, D.R.: Elasticity with gradient-disarrangements: a multiscale perspective for strain-gradient theo-
ries of elasticity and of plasticity. J. Elast. 127, 115–150 (2017)

19. Zdunek, A.: On purely mechanical simple kinematic internal constraints. J. Elast. 139, 123–152 (2020)
20. Hadoush, A., Demirkoparan, H., Pence, T.J.: Simple shearing and azimuthal shearing of an internally

balanced compressible elastic material. Int. J. Non-Linear Mech. 79, 99–114 (2016)
21. Hadoush, A.: Finite element formulation of internally balanced blatz–ko material model. Jordan J. Mech.

Ind. Eng. 14(2), 215–221 (2020)
22. Hadoush, A.: Effect of Poisson’s ratio on internally balanced blatz–ko material model. Acta Mech. Sin.

(2023). https://doi.org/10.1007/s10409-022-22350-x
23. Hadoush, A.: Internally balanced hyperelastic constitutive model in terms of principal stretches. Mech.

Res. Commun. (2023). https://doi.org/10.1016/j.mechrescom.2023.104057
24. Hadoush, A., Demirkoparan, H., Pence, T.J.: Finite element analysis of internally balanced elastic mate-

rials. Comput. Methods Appl. Mech. Eng. 322, 373–395 (2017)
25. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, England (2005)
26. Kuhl, E.: Continuum Mechanics, lecture notes edn. University of Stanford, Stanford (2008)
27. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics. Wiley,

Chichester (1991)
28. Hadoush, A., Demirkoparan, H., Pence, T.J.: Modeling of soft materials via multiplicative decomposition

of deformation gradient. In: USNCTAM (2014)
29. Blatz, P.J., Ko, W.L.: Application of finite elasticity to the deformation of rubbery materials. Trans. Soc.

Rheol. 6, 223–251 (1962)
30. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissues–with

examples. Appl. Mech. Rev. 40, 1699–1734 (1987)
31. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures: Essentials. Wiley, Chich-

ester (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a pub-
lishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1007/s00419-022-02273-4
https://doi.org/10.1016/j.mechmat.2022.104235
https://doi.org/10.1016/j.mechmat.2019.103263
https://doi.org/10.1016/j.mechmat.2019.103263
https://doi.org/10.1177/10812865221092377
https://doi.org/10.1177/10812865221092377
https://doi.org/10.1007/s10409-022-22350-x
https://doi.org/10.1016/j.mechrescom.2023.104057

	Internally Balanced Elasticity Tensor in Terms of Principal Stretches
	Abstract
	Introduction
	Continuum Mechanics
	Internal Balance: Principal Invariants
	Internal Balance: Principal Stretches
	Classes of Material
	W(Î1,Î3,Ĭ1,Ĭ2,Ĭ3)
	W(Î2,Î3,Ĭ1,Ĭ2,Ĭ3)

	Linearization
	Diagonal Components
	Off--Diagonal Components
	Condensed Elasticity

	Blatz--Ko Model
	Verification I: Uniaxial Loading
	Verification II: Numerical Example
	Conclusions
	Appendix A: Essentials and Notation
	Appendix B: Uniaxial Loading: Principal Invariants
	Appendix C: Numerical Example: Principal Invariant
	Acknowledgements
	References


