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Abstract
In this paper, we present a comprehensive investigation of stress propagation in a two-
dimensional elastic circular disk. To accurately describe the displacements and stress fields
within the disk, we employ a scalar and vector potential approach, representing them as
sums of Bessel functions. The determination of the coefficients for these expansions is ac-
complished in the Laplace space, where we compare the boundary conditions. By convert-
ing the inverse Laplace transforms into complex integrals using residue calculus, we suc-
cessfully derive explicit expressions for the displacements and stress fields. Notably, these
expressions encompass primary, secondary, and surface waves, providing a thorough char-
acterization of the stress propagation phenomena within the disk. Our findings contribute to
the understanding of mechanical behavior in disk-shaped components and can be valuable
in the design and optimization of such structures across various engineering disciplines.

Keywords Linear elasticity · Navier–Cauchy equation · Shock propagation · Laplace
transform, residue

Mathematics Subject Classification 74B05 · 74H05 · 74M20

1 Introduction

The comprehension of stress propagation within structural components stands as a
paramount endeavor, as it not only facilitates the prognostication of mechanical behavior
but also assures the secure and resourceful design of engineering systems [1–3]. In par-
ticular, the meticulous examination of stress distribution phenomena in a two-dimensional
elastic disk under diametric loading has garnered considerable scholarly attention in recent
research endeavors, owing to its pertinence across diverse engineering applications [4–7].

Prior investigations have delved into various facets of stress distribution analysis [5–11].
Primarily, researchers have scrutinized the determination of internal static stress distribution
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within a singular photoelastic material, employing principles rooted in elasticity theory [1,
2, 12–14]. Through the application of elasticity principles, it becomes conceivable to dissect
stress distribution within a material, accounting for its mechanical attributes and external
loading conditions [6, 7].

Moreover, scholars have explored the nexus between stress distribution analysis and civil
engineering, as well as other pertinent domains, such as concrete [15, 16]. Boussinesq’s so-
lution has been wielded to fathom stress distributions induced by applied loads on concrete
structures [2]. Leveraging this solution, researchers gain valuable insights into the intricate
stress states within concrete elements, thereby augmenting their grasp of structural comport-
ment.

Furthermore, elasticity theory has manifestly emerged as a potent and versatile analytical
tool in stress distribution analysis. Its efficacy transcends static scenarios, enabling the ana-
lytical resolution of dynamic predicaments, including stress propagation within semi-infinite
spaces. Cagniard-de Hoop and Green’s function methodologies have been harnessed to scru-
tinize stress propagation and other dynamic phenomena, capitalizing on the underpinnings
of elasticity theory [2, 3].

However, in finite systems, attaining analytical solutions becomes progressively ardu-
ous. The intricacies introduced by finite boundaries and varying material attributes present
formidable hurdles [17]. As a consequence, analytical solutions for stress distribution analy-
sis in finite cases remain circumscribed, with only a select few specific systems having been
successfully addressed [17–20].

While the Finite Element Method (FEM) analysis has emerged as a sanguine alterna-
tive, it is not devoid of limitations [21–23]. FEM analysis bestows the capacity to simulate
stress distributions and behavior numerically across a spectrum of structures and materials.
Nevertheless, the pragmatic application of FEM analysis poses challenges, particularly in
accurately capturing and dissecting the behavior of diverse wave types and dynamic phe-
nomena. Indeed, some papers [24–26] indicate non-negligible discrepancies in stress distri-
bution proximate to the point of load application, which comes from the fact that the number
of meshes is insufficient. This underscores the imperative for numerical methods to undergo
rigorous benchmarking. Furthermore, modern structures exhibit increasingly intricate ge-
ometries, rendering a plethora of benchmark tests highly desirable.

Hence, notwithstanding the mathematical exigencies entailed in theoretical analysis, a
compelling impetus endures to advance the analytical comprehension of stress distribution.
Through the refinement of theoretical frameworks and methodologies, researchers can sur-
mount the constraints of extant approaches, thereby attaining deeper insights into stress dis-
tributions within intricate systems. This is vital as it enables a discourse on the underlying
causes of observed behavior, which complements the perspectives offered by experiments
and numerical computations.

In this exposition, we revisit the propagation of stress within a two-dimensional elastic
circular disk. It is noteworthy that the framework itself was adopted in a prior study [18].
However, a reexamination of this approach is warranted. Foremost, their solutions harbor
several discrepancies. For instance, the static solution deviates from the classically estab-
lished solution [1]. Moreover, the time-evolving solutions are documented to diverge at the
origin, a patently unphysical behavior. Furthermore, the assorted wave types, such as P-
and S-waves, constituting stress waves, have not been distinctly classified. To rectify these
issues, a reevaluation of this problem is imperative.

The organization of this manuscript unfolds as follows. In the ensuing section, we provide
a succinct elucidation of the model and setup under consideration. Section 3 expounds on
the derivation of displacement and stress within the framework of linearized elastodynamics,
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Fig. 1 Schematic picture of our
system. The stress acts on a
circular disk whose diameter is a

in the scenario where two forces act diametrically. Subsequently, we expound upon the
explicit formulations of the static and dynamic solutions in Sects. 4 and 5, respectively. The
acquired findings are elucidated and visually represented in Sect. 6. In Sect. 7, a synthesis
of our results is presented, accompanied by a thorough discussion. Appendix A provides
concise insights into techniques employed in deriving the solution. Appendix B delineates
the interrelationship between stress in Cartesian and polar coordinates. Lastly, Appendix C
furnishes the derivation of the speed of the Rayleigh wave.

2 Model and Setup

Let us consider a two-dimensional circular disk whose radius is given by a as shown in
Fig. 1. We also assume that the mass density, shear modulus, and Poisson’s ratio of the disk
are, respectively, given by ρ, G, and ν. Here, we fix ν = 0.3 throughout this paper. In this
paper, we try to solve the time evolution of the stress when two identical but diametric loads
act on the outer edge of the disk at t = 0. Without loss of generality, we put the magnitude
of the loads as P0 and their angles as θ = 0 and π . Then, the boundary conditions of the
stress components are written by

σrr |r=a = −P (θ)�(t), (1a)

σrθ |r=a = 0, (1b)

with

P (θ) = P0

a
[δ(θ) + δ(θ − π)]

= 2P0

πa

[
1

2
+

∑
m=2,4,...

cos(mθ)

]
, (2)

where δ(x) is the delta function. In the next section, we solve the linearized elastodynamic
equation under this boundary condition.

3 Equations in Linearized Elastodynamics

In this section, we derive the equations of the displacement and stress in the framework of
the linearized elastodynamics. Now, we consider a situation under plane stress. Under this
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situation, we solve the following Navier-Cauchy equation [2]:

ρ
∂2

∂t2
u = G∇2u + G

1 + ν

1 − ν
∇ (∇ · u) . (3)

From the Helmholtz’s theorem, let us write the displacement vector u in terms of scalar
and vector potentials (φ and A = (0,0,A)T ) as

u = ∇φ + ∇ × A. (4)

We substitute Eq. (4) into Eq. (3), then we can rewrite Eq. (3) in terms of φ and A. It is well
known that Eq. (3) are satisfied when the scalar and the vector potential satisfy

∇2φ = 1

v2
L

∂2φ

∂t2
, ∇2A = 1

v2
T

∂2A

∂t2
, (5)

respectively [2], where we have introduced the sound speeds of the longitudinal (vL) and the
transverse wave (vT) as

vL ≡
√

2

1 − ν

G

ρ
, vT ≡

√
G

ρ
. (6)

Using φ and A, each component of the strain and the stress in the polar coordinates is written
as

ur = ∂φ

∂r
+ 1

r

∂A

∂θ
, (7a)

uθ = 1

r

∂φ

∂θ
− ∂A

∂r
, (7b)

σrr

2G
= −1

r

∂φ

∂r
− 1

r2

∂2φ

∂θ2
+ ∂

∂r

(
1

r

∂A

∂θ

)
+ 1

1 − ν
∇2φ, (7c)

σrθ

2G
= −∂2A

∂r2
+ ∂

∂r

(
1

r

∂φ

∂θ

)
+ 1

2
∇2A, (7d)

σθθ

2G
= 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2
− ∂

∂r

(
1

r

∂A

∂θ

)
+ ν

1 − ν
∇2φ, (7e)

Now, it is convenient to consider the Laplace transforms of φ and A as

φ(s) ≡
∫ ∞

0
φe−stdt, A(s) ≡

∫ ∞

0
Ae−stdt, (8)

where we regard f as the Laplace transform of f . Assuming that the system remains still
for t < 0, Eqs. (5) become

∇2φ = s2

v2
L

φ, ∇2A = s2

v2
T

A, (9)

in the Laplace space. Equations (9) can be solved by separation of variables as

φ(s) =
∞∑

m=0

am(s)Im

(
r

vL
s

)
cos(mθ), (10a)
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A(s) =
∞∑

m=1

bm(s)Im

(
r

vT
s

)
sin(mθ), (10b)

where the coefficients am(s) and bm(s) should be determined to satisfy the boundary condi-
tions (1a)–(1b), and Im(r) is the modified Bessel function of the first kind defined by [27]

Im(r) =
∞∑

n=0

1

n!�(n + m + 1)

( r

2

)2n+m

. (11)

We note that we do not consider solutions that diverge at the origin, i.e., the modified Bessel
function of the second kind Km(r) because the system should be kept finite in the whole
range.

To determine am and bm, we first write the Laplace transforms of the displacement and
the stress in the polar coordinates. Substituting Eqs. (10a)–(10b) into Eqs. (7a)–(7e), we get

ar∗ur =
∞∑

m=0

[−Fm,0(r
∗z)am(s) + mIm(μr∗z)bm(s)

]
cos(mθ), (12a)

ar∗uθ =
∞∑

m=1

[−mIm(r∗z)am(s) + Fm,0(μr∗z)bm(s)
]

sin(mθ), (12b)

a2

2G
r∗2σ rr =

∞∑
m=0

[
Fm,1(r

∗z)am(s) − Fm,2(μr∗z)bm(s)
]

cos(mθ), (12c)

a2

2G
r∗2σ rθ =

∞∑
m=1

[
Fm,2(r

∗z)am(s) − Fm,3(μr∗z)bm(s)
]

sin(mθ), (12d)

a2

2G
r∗2σ θθ =

∞∑
m=0

[
Fm,4(r

∗z)am(s) + Fm,2(μr∗z)bm(s)
]

cos(mθ), (12e)

respectively, where we have introduced

Fm,0(z) ≡ −mIm(z) − zIm+1(z), (13a)

Fm,1(z) ≡
[
m(m − 1) + z2

1 − ν

]
Im(z) − zIm+1(z), (13b)

Fm,2(z) ≡ −m(m − 1)Im(z) − mzIm+1(z), (13c)

Fm,3(z) ≡
[
m(m − 1) + z2

2

]
Im(z) − zIm+1(z), (13d)

Fm,4(z) ≡
[
−m(m − 1) + νz2

1 − ν

]
Im(z) + zIm+1(z), (13e)

and the following dimensionless quantities for simplicity:

r∗ ≡ r

a
, z ≡ sa

vL
, t∗ ≡ vLt

a
, μ ≡ vL

vT
=

√
2

1 − ν
(> 1). (14)



198 Y. Sato et al.

From the boundary conditions (1a)–(1b), the coefficients am(s) and bm(s) become

am(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− P0a
2

2πGvL

1

zF0,1(z)
(m = 0),

− P0a
2

πGvL

Fm,3(μz)

zDm(z)
(m = 2,4, . . .),

0 (m = 1,3, . . .),

(15a)

bm(s) =
⎧⎨
⎩

0 (m = 1,3, . . . ),

− P0a
2

πGvL

Fm,2(z)

zDm(z)
(m = 2,4, . . .),

(15b)

respectively, where we have introduced

Dm(z) ≡ Fm,1(z)Fm,3(μz) − Fm,2(z)Fm,2(μz). (16)

Using these coefficients, the displacement and the stress become⎧⎨
⎩

ũr

σ̃rr

σ̃θθ

⎫⎬
⎭ =

∞∑
m=0,2,4,...

⎧⎨
⎩

ũ(m)
r

σ̃ (m)
rr

σ̃
(m)
θθ

⎫⎬
⎭ cos(mθ),

{
ũθ

σ̃rθ

}
=

∞∑
m=2,4,...

{
ũ

(m)
θ

σ̃
(m)
rθ

}
sin(mθ), (17)

where we have introduced the scaled displacement and stress as

ũα ≡ πG

P0
uα, σ̃αβ ≡ πa

P0
σαβ, (18)

with

ũ(0)
r = 1

2r∗
1

2πi

∫
Br

F0,0(r
∗z)

zF0,1(z)
et∗zdz, (19a)

σ̃ (0)
rr = − 1

r∗2

1

2πi

∫
Br

F0,1(r
∗z)

zF0,1(z)
et∗zdz, (19b)

σ̃
(0)
θθ = − 1

r∗2

1

2πi

∫
Br

F0,4(r
∗z)

zF0,1(z)
et∗zdz, (19c)

and

ũ(m)
r = 1

r∗
1

2πi

∫
Br

Fm,0(r
∗z)Fm,3(μz) − mIm(μr∗z)Fm,2(z)

zDm(z)
et∗zdz, (20a)

ũ
(m)
θ = 1

r∗
1

2πi

∫
Br

mIm(r∗z)Fm,3(μz) − Fm,0(μr∗z)Fm,2(z)

zDm(z)
et∗zdz, (20b)

σ̃ (m)
rr = − 2

r∗2

1

2πi

∫
Br

Fm,1(r
∗z)Fm,3(μz) − Fm,2(μr∗z)Fm,2(z)

zDm(z)
et∗zdz, (20c)

σ̃
(m)
rθ = − 2

r∗2

1

2πi

∫
Br

Fm,2(r
∗z)Fm,3(μz) − Fm,3(μr∗z)Fm,2(z)

zDm(z)
et∗zdz, (20d)

σ̃
(m)
θθ = − 2

r∗2

1

2πi

∫
Br

Fm,4(r
∗z)Fm,3(μz) + Fm,2(μr∗z)Fm,2(z)

zDm(z)
et∗zdz, (20e)
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for m = 2,4, . . ., respectively. Here,
∫

Br = ∫ γ+i∞
γ−i∞ is known as the Bromwich integral to

calculate the inverse Laplace transforms, where γ (> 0) should be larger than the real part
of any pole in the integrands of Eqs. (19a)–(19c) and (20a)–(20e). These calculations can be
done by using the fast Fourier transform method, while its numerical cost is not small [28].
In the next section, on the other hand, we show a different method to evaluate these quantities
by using the residue theorem [18, 19]. We note that we consider the scaled displacement ũα

and stress σ̃αβ from now on.

4 Static Solution Under Diametric Loads

In this section, we solve a static problem. Because we are interested in the steady states, that
is, the long time limits of the above quantities, it is useful to use the final value theorem of
the Laplace transform, i.e., limt→∞ f (t) = lims→0[sf (s)]. After some calculations, the final
values are, respectively, given by

lim
t→∞ ũ(0)

r = −1 − ν

1 + ν

r∗

2
, lim

t→∞ σ̃ (0)
rr = lim

t→∞ σ̃
(0)
θθ = −1, (21a)

lim
t→∞

{
ũ(m)

r

ũ
(m)
θ

}
=

{−
+
}

m

2

(
r∗m−1

m − 1
− r∗m+1

m + 1

)
−

⎧⎪⎨
⎪⎩

1 − ν

1 + ν
2

1 + ν

⎫⎪⎬
⎪⎭

r∗m+1

m + 1
(m = 2,4, . . .),

(21b)

lim
t→∞

⎧⎨
⎩

σ̃ (m)
rr

σ̃
(m)
rθ

σ̃
(m)
θθ

⎫⎬
⎭ =

⎧⎨
⎩

−
+
+

⎫⎬
⎭mr∗m−2(1 − r∗2) − 2r∗m

⎧⎨
⎩

1
0
1

⎫⎬
⎭ (m = 2,4, . . .), (21c)

(the detailed derivations are given in Appendix A). Here, we have used the relation μ2 −1 =
(1 + ν)/(1 − ν).

Summing up each of Eqs. (21a)–(21c) over m, we can obtain

ũ(st)
r ≡ lim

t→∞
∑

m=0,2,4,...

ũ(m)
r cos(mθ) = 1

2

1 − ν

1 + ν
r∗ + 1

2
sin θ1 sin(θ + θ1) + 1

2
sin θ2 sin(θ − θ2)

− 1

1 + ν
cos θ log

r∗
2

r∗
1

− 1 − ν

1 + ν

θ1 + θ2

2
sin θ, (22a)

ũ
(st)
θ ≡ lim

t→∞
∑

m=2,4,...

ũ
(m)
θ sin(mθ) = 1

2
sin θ1 cos(θ + θ1) + 1

2
sin θ2 cos(θ − θ2)

+ 1

1 + ν
sin θ log

r∗
2

r∗
1

− 1 − ν

1 + ν

θ1 + θ2

2
cos θ, (22b)

σ̃ (st)
rr ≡ lim

t→∞
∑

m=0,2,4,...

σ̃ (m)
rr cos(mθ) = 1 − 2 cos θ1 cos2(θ + θ1)

r∗
1

− 2 cos θ2 cos2(θ − θ2)

r∗
2

, (22c)

σ̃
(st)
rθ ≡ lim

t→∞
∑

m=2,4,...

σ̃
(m)
rθ sin(mθ) = cos θ1 sin[2(θ + θ1)]

r∗
1

+ cos θ2 sin[2(θ − θ2)]
r∗

2

, (22d)
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Fig. 2 Contour plots of the scaled displacement ũ ≡ (πG/P0)u and (scaled) principal stress difference
σ̃1 − σ̃2 ≡ (πG/P0)(σ1 − σ2) for ν = 0.3

σ̃
(st)
θθ ≡ lim

t→∞
∑

m=0,2,4,...

σ̃
(m)
θθ cos(mθ) = 1 − 2 cos θ1 sin2(θ + θ1)

r∗
1

− 2 cos θ2 sin2(θ − θ2)

r∗
2

, (22e)

respectively (see the detailed derivation in Appendix A), where we have introduced

r∗
1 ≡ r1

a
=

√
1 + r∗2 − 2r∗ cos θ, r∗

2 ≡ r2

a
=

√
1 + r∗2 + 2r∗ cos θ, (23a)

θ1 ≡ tan−1 r∗ sin θ

1 − r∗ cos θ
, θ2 ≡ tan−1 r∗ sin θ

1 + r∗ cos θ
, (23b)

(see Fig. 1). Here, the superscript (st) is attached to indicate a steady solution. These ex-
pressions are equivalent to those derived by the geometrical discussions [1]. In this sense,
we have successfully reformulate the results from the long time limit of the elastodynamic
equation. Figure 2 shows the evolution of the magnitude of the (scaled) displacement ũ and
the (scaled) principal stress difference σ̃1 − σ̃2 as [1]

ũ ≡
√

ũ2
r + ũ2

θ , σ̃1 − σ̃2 =
√

(̃σrr − σ̃θθ )2 + 4σ̃ 2
rθ . (24)

We can also the expressions of the stress components in the Cartesian coordinates from
those in the polar coordinates as discussed in Appendix B. This shows that the extensional
stress (σ̃yy ) is constant along the line parallel to the loadings. We note that this fact is the
fundamental basis of the Brazillian test [29, 30].

5 Dynamic Solution Under Diametric Loads

In this section, we solve a dynamic problem. In the following, we focus on ur to make the
discussion simpler. To calculate the above integrals, it is useful to use the residue theorem
by closing the contour. Now, the adding contour should be in the region of convergence.

Let us discuss which contours C2 and C ′
2 in Fig. 3 should be chosen depending on the

time and the position. For |z| → ∞, the integrand of Eq. (19a) and the first one of Eq. (20a),
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Fig. 3 Integral paths for two
cases: (i) C ≡ C1 + C2 and (ii)
C′ ≡ C1 + C′

2 depending on the
integrand. Points represent poles
of the integrand

and the second one of Eq. (20a) behave as e(r∗−1+t∗)z/z and e(μ(r∗−1)+t∗)z/z, respectively. De-
pending on the relationship between r∗ and t∗, the results changes as shown in the following
subsections.

5.1 Region I (t∗ < 1 − r∗)

First, let us consider the case for t∗ < 1− r∗. In the following, we call this region as region I,
and we put the subscript I to the quantities. In this region, both terms converge to zero if we
choose the right half-plane, which means that the Bromwich integral can be converted to the
integral with the path C1 + C2. Because there are no pole of the integrand in this path, this
integral becomes zero. This corresponds to a situation where neither P- nor S-wave arrives
at the position r∗ at time t∗. Therefore, we get

ũ
(m)

r,I = 0, (25)

for m ≥ 0.

5.2 Region II (1 − r∗ ≤ t∗ < μ(1 − r∗))

Next, let us consider the case for 1 − r∗ ≤ t∗ < μ(1 − r∗), which we call region II. Because
only the P-wave arrives in this region, we put the subscript II to the quantities. The former
and the latter converge to zero in the left (C2 in Fig. 3) and the right half-plane (C ′

2), respec-
tively. In this case, only the former survives, which means that only the P-wave arrives at
this position. Then, we can obtain

ũ
(m)

r,II =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=0

Res
z=z

(0)
n

F0,0(r
∗z)

2r∗zF0,1(z)
et∗z (m = 0),

∞∑
n=0

Res
z=z

(m)
n

Fm,0(r
∗z)Fm,3(μz)

r∗zDm(z)
et∗z (m = 2,4, . . .),

(26)

where Resz=af (z) represents a residue at z = a. As far as we have investigated, both
F0,1(r

∗, z) and Dm(z) have only pure imaginary roots. Figure 4 shows the values of ω∗
m,n

for m = 0, 10, and 50 when we fix ν = 0.3. Once we fix the Poisson’s ratio ν, we can nu-
merically obtain a list of ω∗

m,n up to an arbitrary number of n by using the Newton-Raphson
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Fig. 4 Plots of ωm,n/n against n

for m = 0, 10, and 50 when we
fix ν = 0.3

method [28]. In addition, it is easy to show that z = −iy is also a solution of either of them if
z = +iy is its solution. Now, we put these roots as ±iω∗

m,n (n = 0,1,2, . . . ,ω∗
m,n < ω∗

m,n+1),
where we have regarded ω∗

m,0 = 0. Then, after some calculations, we get

ũ
(m)

r,II = ũ
(m,0)

r,P (r∗, t∗) +
∞∑

n=1

ũ
(m)

r,P (r∗,ω∗
m,n) cos(ω∗

m,nt
∗), (27)

with

ũ
(m,0)

r,P (r∗, t∗) =

⎧⎪⎨
⎪⎩

Resz=0
F0,0(r

∗z)
2r∗zF0,1(z)

et∗z (m = 0),

Resz=0
Fm,0(r

∗z)Fm,3(μz)

r∗zDm(z)
et∗z (m = 2,4, . . .),

(28a)

ũ
(m)

r,P (r∗,ω∗) =

⎧⎪⎨
⎪⎩

f0,0(r
∗ω∗)

r∗ω∗g0,1(ω∗)
(m = 0),

2fm,0(r
∗ω∗)fm,3(μω∗)

r∗ω∗dm(ω∗)
(m = 2,4, . . .),

(28b)

where we have introduced

fm,j (y) ≡ i−mFm,j (iy), (29a)

gm,j (y) ≡ i−(m−1)F ′
m,j (iy), (29b)

dm(y) ≡ i−(2m−1)D′
m(iy), (29c)

(j = 0,1, . . . ,5), where their explicit expressions are presented in Table 1. After some cal-
culations, one obtains

ũ(tr)
r ≡

∑
m=0,2,4,...

ũ
(m,0)

r,P cos(mθ)

= 1

2

1 − ν

1 + ν
r∗ + 1 − ν

1 + ν

1 − r∗2

2r∗r∗
1 r∗

2

cos(θ1 − θ2) − 1 − ν

1 + ν

2r∗t∗2

r∗2
1 r∗2

2

cos[2(θ + θ1 − θ2)]
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Table 1 Expressions of fm,i (y), gm,i (y), n
(P)
m,i

(y), n
(S)
m,i

(y) (i = 0–4), and dm(y) that appear in the main
text

fm,0(y) −mJm(y) + yJm+1(y)

fm,1(y)

[
m(m − 1) − y2

1 − ν

]
Jm(y) + yJm+1(y)

fm,2(y) −m(m − 1)Jm(y) + myJm+1(y)

fm,3(y)

[
m(m − 1) − y2

2

]
Jm(y) + yJm+1(y)

fm,4(y)

[
−m(m − 1) − νy2

1 − ν

]
Jm(y) − yJm+1(y)

gm,0(y) −m2 − y2

y
Jm(y)

gm,1(y)
1

y

[
m2(m − 1) − m + 1 + ν

1 − ν
y2

]
Im(z) −

(
m2 − y2

1 − ν

)
Jm+1(y)

gm,2(y) −m

y
[m(m − 1) − y2]Jm(y) − mJm+1(y)

gm,3(y)
m

y

[
m(m − 1) − y2

2

]
Jm(y) −

(
m2 − y2

2

)
Jm+1(y)

gm,4(y) − 1

y

[
m2(m − 1) + 1 + ν + mν

1 − ν
y2

]
Jm(y) +

(
m2 + ν

1 − ν
y2

)
Jm+1(y)

dm(y) gm,1(y)fm,3(μy) + μfm,1(y)gm,3(μy) − gm,2(y)fm,2(μy) − μfm,2(y)gm,2(μy)

− 2(3 − ν) + (1 − ν2)r∗2

4(1 + ν)2

1

r∗2

[
cos θ log

r∗
2

r∗
1

+ (θ1 + θ2) sin θ

]

− 5 − 2ν + ν2

2(1 + ν)2

1

r∗3

[
cos(2θ) log(r∗

1 r∗
2 ) − (θ1 − θ2) sin(2θ)

]
, (30)

where the derivation is similar to ũ(st)
r given in Appendix A.

5.3 Region III (t∗ ≥ μ(1 − r∗))

Third, let us consider the case for t∗ ≥ μ(1 − r∗). In this case, both the P- and S-waves
arrives at the position (r, θ). For simplicity, we put the subscript PS. In this case, both terms
converges to zero in the left half-plane, and can be evaluated by the residue theorem. Inter-
estingly, the poles obtained in the previous subsection are also poles in this region. Using
the similar procedure as that in the previous subsection, we find that u(0)

r is equivalent to
Eq. (27) and ũ(m)

r (m ≥ 1) becomes

ũ
(m,0)

r,III = Resz=0
Fm,0(r

∗z)Fm,3(μz) − mIm(μr∗z)Fm,2(z)

zDm(z)
et∗z, (31)

ũ
(m,n)

r,III = ũ
(m,n)

r,P − mJm(μr∗y)fm,2(y)

ω∗
m,ndm(ω∗

m,n)
. (32)

Here, it is straightforward to obtain that
∑

m=0,2,4,... ũ
(m,0)

r,PS cos(mθ) is equivalent to the static
solution obtained in the previous section.

Let us summarize our findings:

ũr = �P(1 − �S)̃u
(tr)
r (r∗, θ, t∗) + �Sũ

(st)
r (r∗, θ)
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+
∑

m=0,2,4,...

∞∑
n=1

[
�Pũ

(m)

r,P (r∗,ω∗
m,n) + �Sũ

(m)

r,S (r∗,ω∗
m,n)

]
cos(mθ) cos(ω∗

m,nt
∗), (33a)

ũθ = �P(1 − �S)̃u
(tr)
θ (r∗, θ, t∗) + �Sũ

(st)
θ (r∗, θ)

+
∑

m=2,4,...

∞∑
n=1

[
�Pũ

(m)

θ,P (r∗,ω∗
m,n) + �Sũ

(m)

θ,S (r∗,ω∗
m,n)

]
sin(mθ) cos(ω∗

m,nt
∗), (33b)

σ̃rr = �P(1 − �S)̃σ
(tr)
rr (r∗, θ, t∗) + �Sσ̃

(st)
rr (r∗, θ)

+
∑

m=0,2,4,...

∞∑
n=1

[
�Pσ̃

(m)

rr,P(r
∗,ω∗

m,n) + �Sσ̃
(m)

rr,S(r
∗,ω∗

m,n)
]

cos(mθ) cos(ω∗
m,nt

∗), (33c)

σ̃rθ = �P(1 − �S)̃σ
(tr)
rθ (r∗, θ, t∗) + �Sσ̃

(st)
rθ (r∗, θ)

+
∑

m=2,4,...

∞∑
n=1

[
�Pσ̃

(m)

rθ,P(r
∗,ω∗

m,n) + �Sσ̃
(m)

rθ,S(r
∗,ω∗

m,n)
]

sin(mθ) cos(ω∗
m,nt

∗), (33d)

σ̃θθ = �P(1 − �S)̃σ
(tr)
θθ (r∗, θ, t∗) + �Sσ̃

(st)
θθ (r∗, θ)

+
∑

m=0,2,4,...

∞∑
n=1

[
�Pσ̃

(m)

θθ,P(r
∗,ω∗

m,n) + �Sσ̃
(m)

θθ,S(r
∗,ω∗

m,n)
]

cos(mθ) cos(ω∗
m,nt

∗), (33e)

where �P and �S are, respectively, abbreviations of

�P ≡ �
(
t∗ − (1 − r∗)

)
, (34a)

�S ≡ �
(
t∗ − μ(1 − r∗)

)
. (34b)

Here, the detailed expressions are listed in Tables 2 and 3. We note that �P(1 − �S) in
Eqs. (33a)–(33e) stands for that this term only survives after the P-wave arrives but the
S-wave does not.

Figure 5 shows the profiles of ũ(m)
r (r∗,ω∗

m,n) for various sets of (m,n). For larger m

and n, the values converge to zero, which means that the truncation of Eq. (33a)–(33e) up
to Mmax and Nmax with respect to m and n, respectively, also converge when we choose
sufficient large values of Mmax and Nmax. In the actual calculations, we use Mmax = Nmax =
200.

6 Results

This section presents the results obtained from the theory in the previous section.
Figure 6 shows the evolution of the magnitude of the strain u and the principal stress

difference σ1 − σ2, calculating from Eq. (24). In the early stage of time evolution, the P-
and S-waves propagate with speed vL and vT, respectively, after the loading acts on the disk
as shown in Fig. 6 [31]. When we focus on the principal stress difference (Fig. 6(d)–(f)),
the Rayleigh waves can also be observed on the surface, slightly delayed by the S-wave.
In addition, reflected waves (called the von Schmidt waves) appear from the intersections
of the P-wave and the surface, which asymptotically approach the S-wave. These behaviors
are similar to those observed in the case of a semi-infinite space [2]. As time goes on, on
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Table 2 Expressions of ũ
(tr)
α , ũ

(st)
α , ũ

(m)
α,P , and ũ

(m)
α,S in Eqs. (33a) and (33b)

ũ
(tr)
r

1

2

1 − ν

1 + ν
r∗ + 1 − ν

1 + ν

1 − r∗2

2r∗r∗
1 r∗

2
cos(θ1 − θ2) − 1 − ν

1 + ν

2r∗t∗2

r∗2
1 r∗2

2

cos[2(θ + θ1 − θ2)]

− 2(3 − ν) + (1 − ν2)r∗2

4(1 + ν)2
1

r∗2

[
cos θ log

r∗
2

r∗
1

+ (θ1 + θ2) sin θ

]

− 5 − 2ν + ν2

2(1 + ν)2
1

r∗3

[
cos(2θ) log(r∗

1 r∗
2 ) − (θ1 − θ2) sin(2θ)

]
ũ
(st)
r

1

2

1 − ν

1 + ν
r∗+ 1

2
sin θ1 sin(θ +θ1)+ 1

2
sin θ2 sin(θ −θ2)− 1

1 + ν
cos θ log

r∗
2

r∗
1

− 1

2

1 − ν

1 + ν
(θ1 +θ2) sin θ

ũ
(m)
r,P

⎧⎪⎪⎨
⎪⎪⎩

f0,0(r∗ω∗)

r∗ω∗g0,1(ω∗)
(m = 0)

2fm,0(r∗ω∗)fm,3(μω∗)

r∗ω∗dm(ω∗)
(m ≥ 2)

ũ
(m)
r,S

⎧⎨
⎩

0 (m = 0)

− 2mJm(μr∗ω∗)fm,2(ω∗)

r∗ω∗dm(ω∗)
(m ≥ 2)

ũ
(tr)
θ − 1 − ν

1 + ν

1 − r∗2

2r∗r∗
1 r∗

2
sin(θ1 − θ2) + 1 − ν

1 + ν

2r∗t∗2

r∗2
1 r∗2

2

sin[2(θ + θ1 − θ2)]

+ 2(3 − ν) + (1 − ν2)r∗2

4(1 + ν)2
1

r∗2

[
− sin θ log

r∗
2

r∗
1

+ (θ1 + θ2) cos θ

]

− 5 − 2ν + ν2

2(1 + ν)2
1

r∗3

[
sin(2θ) log(r∗

1 r∗
2 ) + (θ1 − θ2) cos(2θ)

]
ũ
(st)
θ

1

2
sin θ1 cos(θ + θ1) + 1

2
sin θ2 cos(θ − θ2) + 1

1 + ν
sin θ log

r∗
2

r∗
1

− 1

2

1 − ν

1 + ν
(θ1 + θ2) cos θ

ũ
(m)
θ,P

2mJm(r∗ω∗)fm,3(μω∗)

r∗ω∗dm(ω∗)
ũ
(m)
θ,S − 2fm,0(μr∗ω∗)fm,2(ω∗)

r∗ω∗dm(ω∗)

the other hand, a lot of reflected waves appear because the system is finite. When the waves
reach the surface, they produce both P- and S-waves as reflected waves. This means that the
number of waves increases rapidly with time [31]. Then, the system converges to a static
solution (22a)–(22e) in the long-time limit. In the following, we discuss each point.

The speed of the Rayleigh waves is understood as follows: When we assume a flat sur-
face, the propagation speed c of the Rayleigh wave should satisfy [2]

(
c

cT

)6

− 8

(
c

cT

)4

+ 8(2 + ν)

(
c

cT

)2

− 8(1 + ν) = 0. (35)

Solving numerically this equation, we get c/cT 
 0.916 for ν = 0.3. Although this analysis
is for the case of a flat system, the result is almost the same in this system.

Next, let us consider the reflected waves from the intersections of the P-wave and the
surface. For simplicity, we only consider the wave propagating from (r, θ) = (a,0) to the
direction θ > 0. At time t ′ (0 ≤ t ′ < t ), the wavefront is at

(xA, yA) =
(

1 − 1

2

(
vLt ′

)2
, vLt ′

√
1 − 1

4
(vLt ′)2

)
a, (36)

in the dimensionless form. From this point, the reflected P- and S-waves propagate with
speed vL and vT, respectively. At the time t , the wavefronts of these reflected waves are,
respectively, given by

(x − xA)2 + (y − yA)2 =
{

v2
L(t − t ′)2 (P − wave),

v2
T(t − t ′)2 (S − wave).

(37)
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Table 3 Expressions of σ̃
(tr)
αβ , σ̃

(st)
αβ , σ̃

(m)
αβ,P, and σ̃

(m)
αβ,S in Eqs. (33c)–(33e)

σ̃
(tr)
rr 1 −

(
1 − 3 − 2ν + 3ν2

2(1 + ν)2
1

r∗2

)
2

r∗
1 r∗

2
cos(θ1 − θ2) + 1 − ν

1 + ν

2r∗2(1 − r∗2)

r∗2
1 r∗2

2

cos[2(θ + θ1 − θ2)]

− 1 − ν

1 + ν

4t∗2

r∗3
1 r∗3

2

[
cos(2θ + 3θ1 − 3θ2) + 3r∗2 cos(4θ + 3θ1 − 3θ2)

]

+ 2(3 − ν)

(1 + ν)2
1

r∗3

[
cos θ log

r∗
2

r∗
1

+ (θ1 + θ2) sin θ

]

+ 3(5 − 2ν + ν2)

(1 + ν)2
1

r∗4

[
cos(2θ) log(r∗

1 r∗
2 ) − (θ1 − θ2) sin(2θ)

]
σ̃

(st)
rr 1 − 2 cos θ1 cos2(θ + θ1)

r∗
1

− 2 cos θ2 cos2(θ − θ2)

r∗
2

σ̃
(m)
rr,P

⎧⎪⎪⎨
⎪⎪⎩

− 2f0,1(r∗ω∗)

r∗2ω∗g0,1(ω∗)
(m = 0)

− 4fm,1(r∗ω∗)fm,3(μω∗)

r∗2ω∗dm(ω∗)
(m ≥ 2)

σ̃
(m)
rr,S

⎧⎨
⎩

0 (m = 0)

4fm,2(μr∗ω∗)fm,2(ω∗)

r∗2ω∗dm(ω∗)
(m ≥ 2)

σ̃
(tr)
rθ − 3 − 2ν + 3ν2

(1 + ν)2
1

r∗2r∗
1 r∗

2
sin(θ1 − θ2) − 1 − ν

1 + ν

2r∗2(1 − r∗2)

r∗2
1 r∗2

2

sin[2(θ + θ1 − θ2)]

+ 1 − ν

1 + ν

4t∗2

r∗3
1 r∗3

2

[
sin(2θ + 3θ1 − 3θ2) + 3r∗2 sin(4θ + 3θ1 − 3θ2)

]

− 2(3 − ν)

(1 + ν)2
1

r∗3

[
− sin θ log

r∗
2

r∗
1

+ (θ1 + θ2) cos θ

]

+ 3(5 − 2ν + ν2)

(1 + ν)2
1

r∗4

[
sin(2θ) log(r∗

1 r∗
2 ) + (θ1 − θ2) cos(2θ)

]
σ̃

(st)
rθ

cos θ1 sin[2(θ + θ1)]
r∗
1

+ cos θ2 sin[2(θ − θ2)]
r∗
2

σ̃
(m)
rθ,P − 4fm,2(r∗ω∗)fm,3(μω∗)

r∗2ω∗dm(ω∗)
σ̃

(m)
rθ,S

4fm,3(μr∗ω∗)fm,2(ω∗)

r∗2ω∗dm(ω∗)

σ̃
(tr)
θθ 1 −

(
1 + 3 − 2ν + 3ν2

2(1 + ν)2
1

r∗2

)
2

r∗
1 r∗

2
cos(θ1 − θ2) − 1 − ν

1 + ν

2r∗2(1 − r∗2)

r∗2
1 r∗2

2

cos[2(θ + θ1 − θ2)]

+ 1 − ν

1 + ν

4t∗2

r∗3
1 r∗3

2

[
cos(2θ + 3θ1 − 3θ2) + 3r∗2 cos(4θ + 3θ1 − 3θ2)

]

− 2(3 − ν)

(1 + ν)2
1

r∗3

[
cos θ log

r∗
2

r∗
1

+ (θ1 + θ2) sin θ

]

− 3(5 − 2ν + ν2)

(1 + ν)2
1

r∗4

[
cos(2θ) log(r∗

1 r∗
2 ) − (θ1 − θ2) sin(2θ)

]
σ̃

(st)
θθ 1 − 2 cos θ1 sin2(θ + θ1)

r∗
1

− 2 cos θ2 sin2(θ − θ2)

r∗
2

σ̃
(m)
θθ,P

⎧⎪⎪⎨
⎪⎪⎩

− 2f0,4(r∗ω∗)

r∗2ω∗g0,1(ω∗)
(m = 0)

− 4fm,4(r∗ω∗)fm,3(μω∗)

r∗2ω∗dm(ω∗)
(m ≥ 2)

σ̃
(m)
θθ,S

⎧⎨
⎩

0 (m = 0)

− 4fm,2(μr∗ω∗)fm,2(ω∗)

r∗2ω∗dm(ω∗)
(m ≥ 2)

As the envelopes of these waves (t ′ ≤ t ), reflected waves can be observed as shown in Fig. 7.
This is the origin of the von Schmidt waves. It is noted that the reflected P-waves are rarely
observed until the P-waves reach halfway past the disk. This is because the envelope of the
reflected P-wave is the P-wave itself. After the halfway point, on the other hand, the reflected
P-waves become observable due to geometrical reasons, as shown in Fig. 7(b). Of course,
reflected waves are also generated by other waves travelling along the surface, e.g., S-waves.
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Fig. 5 Plots of ũ
(m)
r (r∗,ω∗

m,n) against r∗ for (a) various n with fixed values of m and (b) various m with
n = 1. Here, we fix ν = 0.3

Fig. 6 Density plots of (top) the magnitude of the (dimensionless) displacement ũ and (bottom) the (dimen-
sionless) principal stress difference σ̃1 − σ̃2 for ν = 0.3 at (a, d) t∗ = 0.85, (b, e) 1.2, and (c, f) 2.2

However, the smaller the amplitude of the wave, the smaller the amplitude of the reflected
wave. The same discussion as the above treatment can be obtained, but this is not done here.

To understand the convergence of the waves, let us consider the tensile stress σyy . This
stress is known to be constant (P0/(πa)) along the load axis under a static condition as
discussed in Sect. 4. Figure 8 shows the time evolution of σyy along the load axis (0 ≤ r ≤ a,
θ = 0). In the early stage, the number of waves is small, therefore, the peaks of those waves
stand out. As time goes on, the number of reflected waves increases as discussed before.
Then, the magnitude of each peak becomes lower. The waves are uniform in the long-time
limit, where the number of waves becomes infinite. This indicates, in other words, that
tensile stress becomes many times larger than that predicted by the static solution before the
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Fig. 7 Density plots of the magnitude of the principal stress difference σ̃1 − σ̃2 at (a) t∗ = 1.50 and (b) 1.90,
respectively. We also plot Eq. (37) for some values of t ′∗

Fig. 8 Plots of the dimensionless
stress σ̃yy for ν = 0.3 at t∗ = 3.5,
5.5, and 100.5. Here, the solid
line represents the static solution

σ̃
(st)
yy = 1

long-time limit is satisfied. In this respect, the obtained analytical solutions quantitatively
show that it is important to consider the safety factor in actual design.

This behavior can be observed well when we fix a point. Figure 9(a) shows the evolution
of the (dimensionless) radial stress at a point (r∗, θ) = (0.5,0). As shown in Fig. 9, the
magnitude of the radial stress becomes large at every time P- or S-waves arrives at the
point. We can also observe that the stress converges to the long-time limit as shown in
Fig. 9(a). As time goes on, the peak at which a wave arrives becomes smaller. However, a
large peak is occasionally observed, at which two waves arrive almost simultaneously (e.g.,
t∗ 
 2.5). Furthermore, not only direct waves, but also waves reflected and generated at
(r∗, θ) = (1,±π/2) bring peaks. This is most noticeable in the peak at time t∗ 
 3.3, which
is the peak created by the S-waves produced by the reflection of the P-waves at (r∗, θ) =
(1,±π/2). This is clearly observed in Fig. 9(b).

7 Conclusion and Discussion

In this study, we undertook a thorough investigation into the dynamic response of a loaded
disk, culminating in the derivation of analytical solutions. Our findings elucidate the initial
propagation of P- and S-waves through the disk, concomitant with the discernible presence
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Fig. 9 (a) Evolution of the (dimensionless) radial stress σ̃rr at (r∗, θ) = (0.5,0). The horizontal solid line
represents the long-time limit obtained by Eqs. (21a)–(21c). The solid and dotted vertical lines mean the
times when the P- and S-waves arrive, respectively. The dashed line is the time when S-waves generated by
reflection of P-waves at (r∗, θ) = (1,±π/2) arrive at (r∗, θ) = (0.5,0). (b) Density plot of the magnitude of
the dimensionless principal stress difference at that time

of Rayleigh waves at the surface. Notably, at the intersections of the P-wave and the sur-
face, we observed the emergence of reflected waves, known as von Schmidt waves. Over
time, owing to the finite nature of the system, the count of these reflected waves surges. We
conducted a meticulous analysis of this phenomenon, revealing that reflected P-waves are a
seldom occurrence until they traverse halfway across the disk. In the asymptotic long-time
limit, the waves converge to a static solution.

Now, let us turn our attention to the convergence properties of the summations presented
in Eq. (17). As deduced from Eq. (20c) in conjunction with Eq. (16), it becomes appar-
ent that the ratio of the numerator to the denominator in σ̃ (m)

rr approaches unity in close
proximity to the disk’s edge (r∗ → 1). This implies an imperative for substantially elevated
values of Mmax and Nmax. It is worth noting that this condition extends to other parame-
ters, given that the components of displacement and stress are intrinsically intertwined. This
characteristic not only necessitates a substantial temporal investment but also introduces
potential challenges in maintaining computational precision. From this vantage point, Fi-
nite Element Method (FEM) analysis may offer a synergistic approach to complement our
analytical scrutiny.

Our work constitutes a revisitation of the seminal research conducted by Jingu et al. [18].
We have provided explicit and rigorously accurate expressions for solutions that were previ-
ously inadequately derived in their work. Additionally, we embarked upon a comprehensive
discourse regarding the diverse waveforms encompassed within these solutions.

While we concentrated our efforts on scenarios involving point forces applied to a disk,
it is crucial to underscore that our methodology transcends this specific configuration. By
modulating the boundary conditions at the surface, our approach readily extends to systems
subject to arbitrary boundary conditions. A similar adaptability holds true for the consid-
eration of initial conditions, underscoring the versatility and applicability of our analytical
framework.
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Appendix A: Derivation of Eq. (22a)–(22e)

In this Appendix, let us give the detailed derivations of the expressions of the static val-
ues (22a)–(22e). Because we are only interested in the static values, we omit limt→∞ in
Eq. (20a)–(20e) in this Appendix. Now, we focus on σ̃ (m)

rr . To calculate the summation∑
m=2,4,... σ̃

(m)
rr cos(mθ), it is convenient to use the following identity:

∑
m=2,4,...

r∗m cos(mθ) = �
∑

m=2,4,...

r∗meimθ = � 1

1 − r∗2e2iθ

= � 1

r∗
1 r∗

2

ei(θ1−θ2) = 1

r∗
1 r∗

2

cos(θ1 − θ2), (38)

where � represents the real part, and we have introduced r1, r2, θ1, and θ2 as shown in Fig. 1
in the second line of Eq. (38). From this identity, the following is also obtained:

∑
m=2,4,...

mr∗m cos(mθ) = � 2r∗2e2iθ(
1 − r∗2e2iθ

)2 = � 2r∗2

r∗2
1 r∗2

2

e2i(θ+θ1−θ2)

= 2r∗2

r∗2
1 r∗2

2

cos[2(θ + θ1 − θ2)]. (39)

Using Eqs. (38) and (39), one gets

∑
m=2,4,...

σ̃ (m)
rr cos(mθ) = 1 −

(
1 − r∗2

)2 [
1 − 2r∗2 − r∗4 + 2 cos(2θ)

]
[
1 + r∗4 − 2r∗2 cos(2θ)

]2 . (40)

Now, from the definition of r∗1, r∗2, θ1, and θ2 in Eqs. (23a)–(23b), we can easily obtain

cos θ1 cos2(θ + θ1)

r∗
1

+ cos θ2 cos2(θ − θ2)

r∗
2

− 1

2
(41)

=
(
1 − r∗2

)2 [
1 − 2r∗2 − r∗4 + 2 cos(2θ)

]
2
[
1 + r∗4 − 2r∗2 cos(2θ)

]2 . (42)

From Eqs. (40) and (42) with Eq. (21a), we can reach Eq. (22c). After the similar calcula-
tions, we can also derive Eqs. (22a)–(22e).

Appendix B: Stress Components in the Cartesian Coordinates

In this Appendix, we present the expressions of the stress components in the Cartesian co-
ordinates. Once we obtain the expressions in the polar coordinates, it is straightforward to
obtain those in the Cartesian coordinates as [1]

σ̃xx = σ̃rr + σ̃θθ

2
+ σ̃rr − σ̃θθ

2
cos(2θ) − σ̃rθ sin(2θ), (43a)

σ̃yy = σ̃rr + σ̃θθ

2
− σ̃rr − σ̃θθ

2
cos(2θ) + σ̃rθ sin(2θ), (43b)
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σ̃xy = σ̃rθ cos(2θ) + σ̃rr − σ̃θθ

2
sin(2θ). (43c)

Substituting Eqs. (22a)–(22e) into Eqs. (43a)–(43c), we can obtain

σ̃xx = 1 −
(

2 cos3 θ1

r1
+ 2 cos3 θ2

r2

)
, (44a)

σ̃yy = 1 −
(

2 cos θ1 sin2 θ1

r1
+ 2 cos θ2 sin2 θ2

r2

)
, (44b)

σ̃xy = 2 cos2 θ1 sin θ1

r1
− 2 cos2 θ2 sin θ2

r2
, (44c)

respectively [1]. This shows that σ̃yy becomes constant (σ̃yy = 1) along the line parallel to
the loading (θ1 = θ2 = 0).

Appendix C: Derivation of the Speed of the Rayleigh Wave

In this Appendix, we derive the speed of the Rayleigh wave. The Rayleigh waves are pro-
duced by P- and S-waves, and propagate over the surface of the disk. Let c be the speed of
the Rayleigh wave. Now, it is convenient to have the origin on the surface of the disc, that
is,

r ′ ≡ r − a, (45)

and use the coordinate system (r ′, θ). Then, we assume that both the scalar and vector po-
tentials are described by

φ = AL(r ′) exp

[
iω

(
t − aθ

c

)]
, (46a)

A = AT(r ′) exp

[
iω

(
t − aθ

c

)]
, (46b)

respectively. Substituting Eq. (46a) into the wave equation, the amplitude AL should satisfy

∂2AL(r ′)
∂r ′2 + 1

a

∂AL(r ′)
∂r ′ −AL(r ′)

ω2

c2c2
L

(c2
L − c2) = 0. (47)

We should choose a solution, which does not diverge for r � 0. After this choice, the scalar
potential is written as

φ = C1 exp

[
r ′

2a

(√
1 + 4a2

ω2

c2c2
L

(c2
L − c2) − 1

)]
exp(iωt) exp

(
− iωaθ

c

)
. (48)

Similarly, the vector potential is given by

A = C2 exp

[
r ′

2a

(√
1 + 4a2

ω2

c2c2
T

(c2
T − c2) − 1

)]
exp(iωt) exp

(
− iωaθ

c

)
, (49)
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where C1 and C2 are constants. If the second terms in the root of Eqs. (46a) and (49) is much
smaller than unity, we can rewrite them as

φ = C1 exp

[
r ′a

(ω

c

)2
(

1 − c2

c2
L

)]
exp(iωt) exp

(
− iωaθ

c

)
, (50a)

A = C2 exp

[
r ′a

(ω

c

)2
(

1 − c2

c2
T

)]
exp(iωt) exp

(
− iωaθ

c

)
. (50b)

This solution needs to satisfy the boundary condition (1a)–(1b). After some calculations, the
quantity X ≡ c2/c2

T should satisfy the following equation:

X
(
X3 − 8X2 + 8(2 + ν)X − 8(1 + ν)

) = 0. (51)

This is nothing but Eq. (35) in the main text.
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