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Abstract
A unified treatment of slip and twinning in Bravais lattices is given, focussing on the case
of cubic symmetry, and using the Ericksen energy well formulation, so that interfaces corre-
spond to rank-one connections between the infinitely many crystallographically equivalent
energy wells. Twins are defined to be such rank-one connections involving a nontrivial re-
flection of the lattice across some plane. The slips and twins minimizing shear magnitude
for cubic lattices are rigorously calculated, and the conjugates of these and other slips an-
alyzed. It is observed that all rank-one connections between the energy wells for the dual
of a Bravais lattice can be obtained explicitly from those for the original lattice, so that in
particular the rank-one connections for fcc can be obtained explicitly from those for bcc.
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1 Introduction

This paper gives a unified treatment of slip and twinning in Bravais lattices, focussing on the
case of cubic symmetry, and using the Ericksen energy well formulation, so that interfaces
correspond to rank-one connections between the infinitely many crystallographically equiv-
alent energy wells. Inevitably there is a considerable overlap with other such treatments,
most notably with that of Pitteri and Zanzotto [28] (especially Chap. 8).

A main contribution is that we calculate rigorously the slips and Type 1/Type 2 twins
F = 1 + a ⊗ n that minimize the shear magnitude |a| for cubic lattices, these corresponding
to well-known statements in the materials science literature. This reduces to the minimiza-
tion of products G(p)H(q) of quadratic forms, where p,q ∈ Z

3 are such that p · q = 0 for
slip and p · q = 2 for Type 1/Type 2 twins. The principle of minimizing |a| as a means of
selecting preferred slips and twins has been proposed for slips by Chalmers and Martius [8]
and for twins by Kiho [25, 26] and Jaswon and Dove [20]. In fact the Type 1/Type 2 twins
minimize the shear magnitude among all rank-one connections between the energy wells.
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We also calculate the conjugates to the minimizing slips, together with certain other slips
for bcc, showing that they are all twins. Further, we determine all the slips for cubic lattices
whose conjugates are also slips.

An apparently new observation is that all rank-one connections for the dual of a Bravais
lattice can be obtained explicitly from those for the original lattice. In particular the rank-
one connections for fcc lattices can be obtained explicitly in terms of those for bcc lattices
(and vice versa).

The plan of the paper is as follows. In Sect. 2 we review standard material on Bravais
lattices. Here and throughout the paper we use a matrix formulation, so that the lattice vec-
tors b1, b2, b3 are written as the columns of a matrix B; at least for the author this makes
calculations easier to follow. We define lattice planes and the dual lattice, largely follow-
ing Ashcroft and Mermin [1]. Then in Sect. 3 we recall the Ericksen energy-well picture,
whereby the macroscopic free-energy density inherits an infinite family of crystallograph-
ically equivalent energy wells from those of the lattice free-energy via the Cauchy–Born
rule.

In Sect. 4 we review standard results for the existence of rank-one connections as well
as establishing (Theorem 3) the correspondence between rank-one connections for Bravais
lattices and their duals. In Sect. 5 we give a characterization of slip systems in terms of
rank-one connections not involving lattice rotation (Theorem 4), and determine the slips
that minimize the shear magnitude (Theorem 5) for the simple cubic, bcc and fcc lattices.
In Sect. 6 we give a definition of twins in terms of interfaces separating nontrivially re-
flected lattices, and determine (Theorem 6) the Type 1/Type 2 twins minimizing the shear
magnitude for the simple cubic, bcc and fcc lattices. In Sect. 7 we address the problem of
determining general rank-one connections of minimum shear magnitude, showing in par-
ticular (Corollary 3) that the twins in Theorem 6 minimize the shear amplitude among all
rank-one connections. Finally in Sect. 8 we determine (Theorem 9) all slips for cubic lattices
whose conjugates are also slips, and show (Theorems 10, 11) that the conjugates of all the
specific slips discussed in Sect. 5 are twins of various types.

This paper focusses on cubic Bravais lattices, but extensions of the results to noncubic
lattices, multilattices and crystals undergoing martensitic phase transformations would be
valuable.

2 Bravais Lattices

2.1 Definitions and Basic Properties

Denote by ei the unit vector in the ith coordinate direction of R3. A Bravais lattice is an
infinite lattice of points in R

3 generated by linear combinations with integer coefficients
of three linearly independent basis vectors b1, b2, b3. Representing these basis vectors with
respect to the orthonormal basis {ei}, and letting B = (b1,b2,b3) be the matrix with columns
bi , so that Bij = bj · ei , we write the corresponding Bravais lattice as

L(B) = {m1b1 + m2b2 + m3b3 : mi ∈ Z}
= {Bm : m ∈ Z

3},
where Z denotes the set of integers. All lattice sites p ∈ L(B) are equivalent, i.e.

p +L(B) = L(B).
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We denote by R
3×3 the space of real 3 × 3 matrices, by Z

3×3 the set of 3 × 3 matrices with
integer entries, and

GL(3,R) = {F ∈R
3×3 : det F �= 0},

GL+(3,R) = {F ∈R
3×3 : det F > 0},

GL(3,Z) = {μ ∈ Z
3×3 : detμ = ±1},

GL+(3,Z) = {μ ∈ Z
3×3 : detμ = 1} = SL(3,Z),

O(3) = {Q ∈ R
3×3 : QT Q = 1},

SO(3) = {Q ∈ O(3) : det Q = 1}.

For F ∈R
3×3 we denote the Euclidean norm of F by |F| := (tr FT F)

1
2 .

The following standard theorem (see, for example, [14], [28, Proposition 3.1]) charac-
terizes the sets of basis vectors that are equivalent in the sense that they generate the same
Bravais lattice.

Theorem 1 L(B) = L(C) if and only if

C = Bμ, for some μ ∈ GL(3,Z).

Proof Let B = (b1,b2,b3), C = (c1, c2, c3). If L(B) = L(C) then bi = μjicj for some μ =
(μij ) ∈ Z

3×3, so that B = Cμ. Similarly C = Bμ′ for some μ′ ∈ Z
3×3. So μ′ = μ−1 and

μ ∈ GL(3,Z).
Conversely, if B = Cμ then bi = μjicj and so L(B) ⊂ L(C). Similarly L(C) ⊂ L(B).

�

Corollary 1 If F ∈ GL(3,R), then L(FB) = L(B) if and only if

F = BμB−1 for some μ ∈ GL(3,Z).

The point group P (B) is

P (B) = {Q ∈ O(3) : L(QB) = L(B)}
= {Q ∈ O(3) : Q = BμB−1 for some μ ∈ GL(3,Z)}. (1)

2.2 Lattice Planes and the Dual Lattice

A lattice plane is a plane Π(n) = {x ∈ R
3 : x · n = k} with unit normal n such that Π(n) ∩

L(B) contains 3 non-collinear points. Equivalently, Π(n) ∩ L(B) is a translate of a 2D
Bravais lattice of the form

{r1m1 + r2m2 : r1, r2 ∈ Z},
where m1,m2 ∈ L(B) and m1, m2 are linearly independent. (Taking without loss of gener-
ality k = 0 this can be proved by first choosing m1 to be a nonzero vector in Π(n) ∩ L(B)

of minimum length, and then m2 a nonzero vector in Π(n) ∩L(B) not parallel to m1 and of
minimum length.)
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Then, following Ashcroft and Mermin [1], there exists p ∈ L(B) with p · n > 0 such that

L(B) =
⋃

r∈Z
((L (B) ∩ Π (n)) + rp) ,

so that L(B) is the union of its intersection with a family of planes parallel to Π(n) with
interplane spacing d = p · n.

The dual (or reciprocal) lattice of L(B) is the set

{k ∈R
3 : k · p ∈ Z for all p ∈ L(B)}.

The vector k belongs to the dual lattice if and only if k · Bei ∈ Z for each i, which holds
if and only if k = ∑3

i=1 riB−T ei for r ∈ Z
3. Hence the dual lattice is the Bravais lattice

L(B−T ).

Theorem 2 (see [1, p. 90]) Π(n) = {x : x · n = 0} is a lattice plane if and only if there exists
k ∈ L(B−T )\{0} with k parallel to n, and then d−1 is the minimum length of such a vector k.

Proof We give a slightly different proof to that in [1] for the convenience of the reader. If
Π(n) is a lattice plane then d−1n · b ∈ Z for all b ∈ L(B), so that d−1n ∈ L(B−T ), and there
is no shorter such dual lattice vector.

Conversely, if k ∈ L(B−T ) \ {0} with k parallel to n then k · Bei = ni ∈ Z for each i, and
hence BT k = ∑3

i=1 niei := n ∈ Z
3. Pick m,m′ ∈ Z

3 \ {0} with m · n = m′ · n = 0 and m, m′
linearly independent, which is possible because the vectors n ∧ ei are not all parallel. Then
BT k · m = BT k · m′ = 0, so that k · Bm = k · Bm′ = 0 and Π(n) is a lattice plane. �

Remark 1 Suppose k = B−T q is parallel to n, where q = (q1, q2, q3) ∈ Z
3 \ {0}. Then the

formula for d can be rewritten as

d−1 = |B−T q|
gcd(q1, q2, q3)

, (2)

where gcd(q1, q2, q3) is the greatest common divisor of the qi . Indeed

q̄ := q
gcd(q1, q2, q3)

∈ Z
3

and the q̄i have no common factor. If q̂ ∈ Z
3 is parallel to q we have that nq̂ = mq̄ for

coprime integers n� 1 and m. Thus n = 1 and so |q̄| � |q̂| and thus |B−T q̂| � |B−T q̄|.

2.3 Cubic Lattices

As examples we consider:

(i) The simple cubic lattice, for which B = Bc, where

Bc = Q ∈ O(3). (3)

Equivalently

BT
c Bc = 1. (4)
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Fig. 1 (a) Face-centred cubic
lattice, (b) body-centred cubic
lattice

(ii) The face-centred cubic (fcc) lattice (see Fig. 1(a)) with the indicated basis vectors, for
which B = Bfcc, where

Bfcc = 1

2
Q

⎛

⎝
1 −1 0
1 1 1
0 0 1

⎞

⎠ ,Q ∈ O(3). (5)

Equivalently

BT
fccBfcc = 1

4

⎛

⎝
2 0 1
0 2 1
1 1 2

⎞

⎠ . (6)

(iii) The body-centred cubic (bcc) lattice (see Fig. 1(b)), for which one could take the basis
vectors b̂i shown, but the usual choice is B = Bbcc, where

Bbcc = 1

2
Q

⎛

⎝
−1 1 1

1 −1 1
1 1 −1

⎞

⎠ ,Q ∈ O(3), (7)

for which

BT
bccBbcc = 1

4

⎛

⎝
3 −1 −1

−1 3 −1
−1 −1 3

⎞

⎠ . (8)

Below we always take Q = 1 for these lattices.

Remark 2 It follows from Theorem 1 that for fcc or bcc lattices it is not possible to choose
lattice vectors such that B ∈ Z

3×3. Taking the case of fcc, for example, this would imply that

1

2

⎛

⎝
1 −1 0
1 1 1
0 0 1

⎞

⎠μ ∈ Z
3×3 (9)

for some μ ∈ GL(3,Z), so that 1
2μ3j ∈ Z for each j , and hence μ3j is even, implying that

detμ is even, a contradiction.

Remark 3 We have that BT
fccBbcc = 1

2ω−1, where

ω =
⎛

⎝
0 0 1
0 −1 1
1 0 0

⎞

⎠ ∈ GL+(3,Z). (10)

Hence B−T
fcc = 2Bbccω, proving the well-known result that the dual lattice to fcc is 2bcc.
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The simple cubic, bcc and fcc lattices all have the same point group P 48 consisting of
the 48 matrices Q ∈ O(3) mapping Z

3 to itself (equivalently the matrices with a single entry
±1 in each row and column). We write

P 24 = P 48 ∩ SO(3) (11)

for the 24 such matrices Q with det Q = 1.

3 The Ericksen Energy Well Picture

Suppose that the free energy per unit volume of a crystalline material with atoms at the points
of the Bravais lattice L(C), where C ∈ GL+(3,R), is given by ϕ(C)� 0. For simplicity we
assume that the temperature is constant, so that there are no phase transformations.

Natural requirements on ϕ are

(i) (frame-indifference)

ϕ(QC) = ϕ(C) for all Q ∈ SO(3),

(ii) (invariance with respect to equivalent lattices)

ϕ(Cμ) = ϕ(C) for all μ ∈ GL+(3,Z).

We assume further that ϕ(C) = 0 iff C = QBμ for Q ∈ SO(3), μ ∈ GL+(3,Z), so that the
minimum value zero is attained only for the unstrained lattice.

As is standard, we use the Cauchy–Born rule to relate the macroscopic free-energy den-
sity ψ to ϕ, thus defining an elastic free energy

I (y) =
∫

�

ψ(Dy(x)) dx

for a deformation y : � → R
3, where � ⊂ R

3 is an open reference domain.
Choosing a reference configuration in which the crystal lattice is L(B), where B ∈

GL+(3,R), we assume that

ψ(A) = ϕ(AB), for A ∈ GL+(3,R).

Thus ψ � 0 inherits from ϕ the invariances

(i) ψ(QA) = ψ(A) for all Q ∈ SO(3),
(ii) ψ(ABμB−1) = ψ(A) for all μ ∈ GL+(3,Z),

and ψ has zero set

ψ−1(0) =
⋃

μ∈GL+(3,Z)

SO(3)BμB−1. (12)

The energy wells SO(3)BμB−1 are not all distinct, because SO(3)BμB−1=SO(3)Bμ̃B−1

iff

Bμμ̃−1B−1 ∈ P (B) ∩ SO(3).

But since P (B) is finite and GL+(3,Z) is infinite, there are infinitely many distinct energy
wells.
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4 Interfaces

4.1 Rank-One Connections

We are interested in possible planar interfaces between distinct constant gradients on the
energy wells, that is in pairs of distinct matrices F,G ∈ ψ−1(0) with

F − G = a ⊗ n, a,n ∈R
3, |n| = 1. (13)

We can assume that G = 1, so that we are interested in the μ ∈ GL+(3,Z) with M =
BμB−1 /∈ SO(3) such that

1 + a ⊗ n = RM for some a,n ∈R
3, |n| = 1,R ∈ SO(3). (14)

Note that since M is independent of the scale of L(B) (that is it is the same for L(tB) for
any t �= 0) the rank-one connections are also independent of scale. If (14) holds then since
det M = 1 we have that

a · n = 0, (15)

and thus

|a|2 = |M|2 − 3. (16)

We denote by 0 < λ1 � λ2 � λ3 the eigenvalues of the positive definite symmetric matrix
MT M, which satisfy λ1λ2λ3 = 1, and by êi the corresponding orthonormal eigenvectors, so
that MT M has spectral decomposition

MT M = λ1ê1 ⊗ ê1 + λ2ê2 ⊗ ê2 + λ3ê3 ⊗ ê3. (17)

A necessary and sufficient condition for (14) to hold (see e.g. [4, Prop. 4], [2, Theorem 2.1],
[24], [3, Lemma 1]) is that λ2 = 1, or (since MT M �= 1) that MT M has an eigenvalue equal
to one. Then 0 < λ1 < 1 = λ2 < λ3 = λ−1

1 . An equivalent condition is that

|M|2 = |M−1|2, (18)

which follows from the identity

det(MT M − 1) = (det M)2 − (det M)2|M−1|2 + |M|2 − 1. (19)

(This implies in particular, as observed in [28, Remark 8.4], that there is a rank-one con-
nection to SO(3)M iff there is a rank-one connection to SO(3)M−1, which can be verified
directly.)

There are then exactly two distinct such conjugate (or reciprocal) rank-one connections

1 + a+ ⊗ n+ = R+M,

1 + a− ⊗ n− = R−M.

These can be calculated explicitly by comparing the spectral decomposition (17) with the
relation

MT M = (1 + n ⊗ a)(1 + a ⊗ n) (20)



770 J.M. Ball

that follows from (14) (see e.g. [4, Prop. 4]). A straightforward calculation then shows that
(up to a change of sign)

n± = 1√
1 + λ1

(±√
λ1ê1 + ê3), a± = 1 − λ1√

1 + λ1

(
∓ 1√

λ1
ê1 + ê3

)
. (21)

From (16) or (21) we have that |a+| = |a−|. Also n+ · n− = 1−λ1
1+λ1

, so that the planes corre-
sponding to the two rank-one connections are never orthogonal.

It also follows from (21) that if we know one rank-one connection 1 + a ⊗ n = RM then
the conjugate rank-one connection 1 + ã ⊗ ñ = R̃M is given by

ã ⊗ ñ = 1

4 + |a|2 (2n − a) ⊗ (2a + |a|2n). (22)

From (22) we have that

ã ⊗ ã = (ã ⊗ ñ)(ñ ⊗ ã) = |a|2
4 + |a|2 (2n − a) ⊗ (2n − a), (23)

from which, recalling from (15), (16) that a · n = 0 and |ã|2 = |a|2, we deduce that

2n ⊗ n − a ⊗ n = 2
ã
|ã| ⊗ ã

|ã| + ã ⊗ ñ. (24)

Hence we obtain the relations

(−1 + 2n ⊗ n)(1 + a ⊗ n) =
(

−1 + 2
ã
|ã| ⊗ ã

|ã|
)

(1 + ã ⊗ ñ), (25)

(−1 + 2ñ ⊗ ñ)(1 + ã ⊗ ñ) =
(

−1 + 2
a
|a| ⊗ a

|a|
)

(1 + a ⊗ n), (26)

where (26) is obtained from (25) by interchanging a, n and ã, ñ. Thus R̃RT can be expressed
as the product of two 180◦ rotations in the two ways

R̃RT = (−1 + 2ñ ⊗ ñ)

(
−1 + 2

a
|a| ⊗ a

|a|
)

(27)

=
(

−1 + 2
ã
|ã| ⊗ ã

|ã|
)

(−1 + 2n ⊗ n).

We will see that there are always μ such that MT M has an eigenvalue one. However this is
not true for general μ.

4.2 Correspondence Between Rank-One Connections for Bravais Lattices and
Their Duals

It turns out that the rank-one connections for the dual of a Bravais lattice can be obtained
explicitly in terms of the rank-one connections for the original lattice (and vice versa). On
account of Remark 3 this implies that the rank-one connections for fcc can be obtained
explicitly in terms of those for bcc, which are a bit easier to calculate due to the more
symmetric form of the matrix Bbcc.

Note that the energy wells for the dual lattice L(B−T ) of the Bravais lattice L(B) are
given by SO(3)B−T μT BT for μ ∈ GL+(3,Z).



Slip and Twinning in Bravais Lattices 771

Theorem 3 The rank-one connection

1 + a ⊗ n = RBμB−1, (28)

for R ∈ SO(3) and μ ∈ GL+(3,Z) holds iff

1 + RT n ⊗ RT a = RT B−T μT BT . (29)

Furthermore, if 1+ ã ⊗ ñ is the conjugate of 1+a⊗n then 1+RT ñ ⊗RT ã is the conjugate
of 1 + RT n ⊗ RT a.

Proof Taking the transpose of (28) and pre- and post-multiplying by RT and R respectively,
we see that (28) and (29) are equivalent.

The statement about the conjugates follows from (22), or more directly by noting that

(1 + ã ⊗ ñ)(1 + a ⊗ n)−1 = R ∈ SO(3), (30)

where R �= 1, implies that

(1 + RT n ⊗ RT a)−1(1 + RT ñ ⊗ RT ã) = RT RT R �= 1, (31)

as required. �

From Remark 3 we thus obtain

Corollary 2 The rank-one connection

1 + a ⊗ n = RBfccμB−1
fcc (32)

for R ∈ SO(3) and μ ∈ GL+(3,Z) holds iff

1 + RT n ⊗ RT a = RT Bbccμ̃B−1
bcc, (33)

where μ̃ = ωμT ω−1 and ω is given by (10).

5 Slip

5.1 Slip Systems and Lattice Invariant Shears

A slip system (Π(n),b) consists of a lattice plane Π(n) with unit normal n and interplane
spacing d , and a nonzero lattice vector b ∈ L(B) (the Burgers vector) with b · n = 0. If
(Π(n),b) is a slip system so is (Π(n),−b), which corresponds to an opposite direction of
shear on the same lattice plane, and when counting slip systems we identify (Π(n),b) with
(Π(n),−b).

Equivalently

L(B) = (L(B) ∩ {x · n � 0}) ∪ ((L(B) ∩ {x · n > 0}) + b),

so that if the part of L(B) in the half-space {x · n > 0} is rigidly displaced by b then L(B) is
restored.
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Theorem 4 The following are equivalent:

(i) 1 + a ⊗ n = BμB−1, where a,n ∈R
3, |n| = 1, and μ ∈ GL+(3,Z).

(ii) μ = 1 + p ⊗ q, where p,q ∈ Z
3 \ {0}, p · q = 0, and

n = τ
B−T q
|B−T q| , a = τBp|B−T q|, (34)

where τ = ±1.
(iii) (Π(n),b) is a slip system with interplane spacing d and Burgers vector b = da.

The proof uses the following lemma.

Lemma 1 The matrix c ⊗ d ∈ Z
3×3 for some c,d ∈R

3 if and only if c ⊗ d = p ⊗ q for some
p,q ∈ Z

3.

Proof We only have to prove the necessity, and may assume c ⊗ d is a nonzero matrix
of integers. Thus some ci �= 0 and cid1, cid2, cid3 are integers, so that d = 1

ci
m for some

m ∈ Z
3. Similarly c = 1

dj
r for some j and r ∈ Z

3. Hence c ⊗ d = 1
ci dj

r ⊗ m. We can write

r = kr′, m = lm′, where k, l are integers and neither (r ′
1, r

′
2, r

′
3) nor (m′

1,m
′
2,m

′
3) have

common factors. Thus

c ⊗ d = r

s
r′ ⊗ m′,

where r
s

is a rational number expressed in its lowest terms. Suppose s �= ±1, so that s

has a prime factor S. For some r ′
i , S does not divide r ′

i . Hence S divides m′
j for all j , a

contradiction. Hence s = ±1, giving the result. �

Proof of Theorem 4 (i)⇒(ii). (i) implies that 1 + B−1a ⊗ BT n = μ. Hence, by Lemma 1,
a ⊗ n = Bp ⊗ B−T q for p,q ∈ Z

3, and a · n = p · q = 0, giving (ii).
(ii)⇒(iii). We can suppose that the qi have no common factor, so that by Remark 1, n =

τB−T q/|B−T q| is the normal to a lattice plane Π(n) with interplane spacing d = 1/|B−T q|.
Also b = τBp ∈ L(B) with b · n = 0, and so b = da, giving (iii).

(iii)⇒(i). By Theorem 2 and Remark 1 we know that n = B−T q/|B−T q|, d = 1/|B−T q|,
for some q ∈ Z

3 \ {0}. Also b = Bp for some p ∈ Z
3 \ {0}, where b · n = dBp · B−T q =

dp · q = 0. Then

1 + d−1b ⊗ n = 1 + Bp ⊗ B−T q = B(1 + p ⊗ q)B−1,

giving (i). �

Thus a slip system corresponds to a lattice invariant shear giving a rank-one connection
between SO(3) and SO(3)BμB−1 without lattice rotation. The shear can correspond to a
shear band, or in the case of rigid slip to a ‘microshear’ over just one pair of adjacent lattice
planes. Note that Theorem 4 shows that the slip systems for any Bravais lattice are in 1-1
correspondence with those for the simple cubic lattice (having deformation gradient 1 +
p ⊗ q). For the use of such rank-one connections in continuum theories of plasticity see e.g.
Ortiz and Repetto [27].
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5.2 Slips of Minimum Shear Magnitude

Since if μ = 1 + p ⊗ q,

M = BμB−1 = 1 + Bp ⊗ B−T q

we have that |a|2 = d−2|b|2 = |Bp|2|B−T q|2. Hence, to minimize the shear magnitude |a|
we need to minimize |Bp|2|B−T q|2 subject to p,q ∈ Z

3 \ {0} with p · q = 0.
Minimizing the shear magnitude is the criterion proposed by Chalmers and Martius [8],

who give a heuristic justification in terms of energetics, pointing out that the criterion of
minimizing the magnitude of the Burgers vector b does not determine the preferred slip
planes. A review of different possible criteria is given in [13].

In the following theorem we give the slips of minimum shear magnitude for the simple
cubic, bcc and fcc lattices, reproducing in our framework classical results for the slip systems
for these lattices (see, for example, [17]). See below for further comments.

Theorem 5 The slips 1 + a ⊗ n minimizing |a| are given by:

(a) Simple cubic: a ⊗ n = ±ei ⊗ ej , where i �= j , for which |a|2 = 1.
(b) bcc:

a ⊗ n = 1

2
(e1 + e2 + e3) ⊗ (ej − ek),

a ⊗ n = 1

2
(ej + ek − ei ) ⊗ (ej − ek),

a ⊗ n = ±1

2
(ej + ek − ei ) ⊗ (ei + ek),

where i, j, k ∈ {1,2,3} are distinct, for which |a|2 = 3
2 .

(c) fcc:

a ⊗ n = 1

2
(ej − ek) ⊗ (e1 + e2 + e3),

a ⊗ n = 1

2
(ej − ek) ⊗ (ej + ek − ei ),

a ⊗ n = ±1

2
(ei + ek) ⊗ (ej + ek − ei ),

where i, j, k ∈ {1,2,3} are distinct, for which |a|2 = 3
2 .

Remark 4 Without loss of generality we may take for simple cubic a ⊗ n = e1 ⊗ e2, for bcc
a⊗n = 1

2 (e1 + e2 + e3)⊗ (e1 − e2), and for fcc a⊗n = 1
2 (e1 − e2)⊗ (e1 + e2 + e3), since all

the other cases are given by Pa ⊗ nP−1 for suitable P ∈ P 24, where P 24 is defined in (11).

Proof (a) Since Bc = 1 we have |a|2 = |p|2|q|2 � 1, and |a|2 = 1 for |p|2 = |q|2 = 1, giving
the result.

(b) For bcc

Bbcc = 1

2

⎛

⎝
−1 1 1

1 −1 1
1 1 −1

⎞

⎠ , B−1
bcc =

⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ ,
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and we have to minimize 1
4G(p)H(q), subject to p,q ∈ Z

3 \ {0} and p · q = 0, where

G(p) = (p2 + p3 − p1)
2 + (p3 + p1 − p2)

2 + (p1 + p2 − p3)
2,

H(q) = (q2 + q3)
2 + (q3 + q1)

2 + (q1 + q2)
2.

The minimum value of H(q) is 2, with minimizers q = ±ei and q = ei − ej , i �= j , while
the minimum value of G(p) is 3, with minimizers p = ±ei and p = ±(e1 + e2 + e3). Hence
the minimizers of 1

4 G(p)H(q), subject to p,q ∈ Z
3 \ {0} and p · q = 0 are given by

±p ⊗ q ∈ {ei ⊗ ej , ei ⊗ (ej − ek), (e1 + e2 + e3) ⊗ (ei − ej ), i, j, k distinct}.

Calculating Bbccp ⊗ B−T
bcc q for these possibilities gives the slip systems in the theorem.

(c) For fcc it suffices to note that by Corollary 2 the slips minimizing |a| are given by
1 + n ⊗ a, where 1 + a ⊗ n are the slips for bcc minimizing |a|. �

For bcc metals the experimental determination of slip planes is not straightforward. One
can ask what the slips are that give the next lowest value of |a|2, and whether such slips are
observed. Since H(q) is even, the next lowest value of G(p)H(q) is greater than or equal to
8, for which |a|2 = 2, and the value 8 is achieved with G(p) = 4, H(q) = 2 and

p ⊗ q ∈ {±(ei + ej ) ⊗ ek, (ei + ej ) ⊗ (ei − ej ), i, j, k distinct},

giving the slips

a ⊗ n ∈ {±ek ⊗ (ei + ej ), ek ⊗ (ei − ej ), i, j, k distinct}. (35)

These slips are consistent with those described by Chalmers and Martius [8], who noted that
they had not been reported experimentally; in a more recent survey Weinberger, Boyce and
Bataille [31] appear to confirm this, stating that “It is clear from numerous experiments that
slip occurs in the closest packed 〈111〉 direction and the Burgers vector is 1

2 〈111〉”. The
slips in (35) have Burgers vector magnitude |b|2 = 1, whereas those in Theorem 5(b) have
|b|2 = 3

4 .
It is often stated (see, for example, [17]) that there are up to 48 slip systems for bcc,

consisting of the 12 systems given in Theorem 5 (identifying ±a ⊗ n) together with 12
having (112) slip planes given by

a ⊗ n ∈
{
±1

2
(κ1ei + κ2ej − ek) ⊗ (κ1ei − κ2ej + 2ek), (36)

i, j, k distinct, κ1 = ±1, κ2 = ±1

}
,

with |a|2 = 9
2 , and 24 having (123) slip planes, given by

a ⊗ n ∈
{
±1

2
(ei − κ1ej − κ2ek) ⊗ (3ei + 2κ1ej + κ2ek), (37)

i, j, k distinct, κ1 = ±1, κ2 = ±1

}
,
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with |a|2 = 21
2 . That these are slips can be checked by verifying that a · n = 0 and B−1a ⊗

BT n ∈ Z
3 ⊗Z

3. These extra slip systems have the same Burgers vector magnitude |b|2 = 3
4

as those in Theorem 5(b), but considerably higher values of shear magnitude.
For further discussion of the Chalmers and Martius criterion for bcc crystals see [9].

6 Twinning

6.1 Twins

In this paper we define F = 1 + a ⊗ n to be a (mechanical) twin if the lattices L(B) and
FL(B) on either side of the interface are non-trivially reflected with respect to each other,
so that F = 1 + a ⊗ n is not a slip and satisfies for some unit vector m

FL(B) = (1 − 2m ⊗ m)L(B) = (−1 + 2m ⊗ m)L(B), (38)

where for the second equality we have used L(B) = L(−B). (Note that if F is a slip then
(38) holds for any 180◦ rotation −1 + 2m ⊗ m ∈ P (B).) By Corollary 1, (38) holds iff

F = (−1 + 2m ⊗ m)BμB−1 (39)

for some μ ∈ GL+(3,Z).
The definition given above of twins corresponds to that given by Christian [11, p. 51],

except that we require that F is not a slip, and grew out of a discussion with R.D. James [18].
It covers the cases of Type 1 and Type 2 twins in the next section, but other possibilities too;
on the other hand it is less general than that used e.g. by Pitteri and Zanzotto [28], who
give (pp 28,29) references to various different definitions. According to their terminology
‘nonconventional twins’ correspond to rank-one connections which are neither Type 1 nor
Type 2 twins. In Sect. 8 we give different examples of such ‘nonconventional twins’ which
are, and which are not, twins as defined in this paper. For a related discussion see [10].

6.2 Type 1, Type 2 and Compound Twins

We shall be interested in Type 1 twins, for which m = n, so that the lattices are non-trivially
reflected with respect to the twin plane, and thus

F = (−1 + 2n ⊗ n)BμB−1 (40)

for some μ ∈ GL+(3,Z), and in Type 2 twins, for which F satisfies (39) with m = a
|a| . From

(25) it follows that if F = 1 + a ⊗ n is a Type 1 twin, then its conjugate 1 + ã ⊗ ñ satisfies

1 + ã ⊗ ñ =
(

−1 + 2
ã
|ã| ⊗ ã

|ã|
)

BμB−1, (41)

and so (see [28, p. 254]) is a Type 2 twin (unless it is a slip, which can happen — see
Theorem 6(a)). Conversely the conjugate to a Type 2 twin, unless it is a slip, is a Type 1
twin. F is a compound twin if it is both a Type 1 and Type 2 twin, so that

F = (−1 + 2n ⊗ n)BμB−1 =
(

−1 + 2
a
|a| ⊗ a

|a|
)

BνB−1 (42)
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for some ν ∈ GL+(3,Z). This holds iff

(−1 + 2n ⊗ n)

(
−1 + 2

a
|a| ⊗ a

|a|
)

∈ P (B), (43)

or equivalently iff

B−1

(
1 − 2n ⊗ n − 2

a
|a| ⊗ a

|a|
)

B ∈ Z
3×3. (44)

We will use (44) to check for compound twins; other criteria are given in [28, Proposi-
tion 8.7], [15]. Obviously the conjugate of a compound twin is either a slip or a compound
twin.

From (40), to find the Type 1 twins (and hence their conjugate Type 2 twins) we need to
find μ, a, n such that BμB−1 /∈ SO(3) and

1 + a ⊗ n = (−1 + 2n ⊗ n)BμB−1. (45)

Equivalently μ = −1 + B−1(2n − a) ⊗ BT n, and hence, by Lemma 1,

B−1(2n − a) ⊗ BT n = p ⊗ q (46)

for some p,q ∈ Z
3, and p · q = 2. Thus we can suppose that

n = B−T q
|B−T q| , 2n − a = |B−T q|Bp, (47)

so that

|a|2 = |Bp|2|B−T q|2 − 4. (48)

It follows from (22), (47), (48) that the conjugate Type 2 twin is given by

1 + ã ⊗ ñ = 1 + Bp ⊗
(

B−T q − 2
Bp

|Bp|2
)

. (49)

6.3 Twins of Minimum Shear Magnitude

From (48), in order to minimize |a|2 we have to minimize |Bp|2|B−T q|2 among p,q ∈ Z
3

with p · q = 2 and |Bp|2|B−T q|2 > 4. In the following theorem we give the Type 1/Type
2 twins minimizing the shear magnitude for the simple cubic, bcc and fcc lattices. Note
that by Theorem 3 and Corollary 2 the Type 1 (respectively Type 2) twins for fcc are given
by 1 − n ⊗ a, where 1 + a ⊗ n are the Type 2 (respectively Type 1) twins for bcc. The
twins identified, and their shear magnitude, correspond to those given in Christian and Ma-
hajan [12, Table 1], which summarizes earlier work of Jaswon and Dove [19–21], Bilby and
Crocker [7], Bevis and Crocker [5, 6].

Theorem 6 The Type 1 and Type 2 twins 1 + a ⊗ n minimizing |a| are given by:

(a) Simple cubic: the compound twins

a ⊗ n = 1

5
(2ej − κei ) ⊗ (2κei + ej ),
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where i �= j , κ = ±1, whose conjugates are the slips ã ⊗ ñ = κei ⊗ ej in Theorem 5(a),
for which |a|2 = 1.

(b) bcc: the conjugate pairs

a ⊗ n = 1

6
(ej − ek + ei ) ⊗ (2ej + ek − ei ),

ã ⊗ ñ = 1

6
(ej + ek − ei ) ⊗ (2ej + ei − ek),

and

a ⊗ n = 1

6
(e1 + e2 + e3) ⊗ (2ei − ej − ek),

ã ⊗ ñ = 1

6
(ei − ej − ek) ⊗ (2ei + ej + ek),

where i, j , k are distinct, which are all compound twins, and for which |a|2 = 1
2 .

(c) fcc: the conjugate pairs

a ⊗ n = 1

6
(−2ej − ek + ei ) ⊗ (ej − ek + ei ),

ã ⊗ ñ = 1

6
(−2ej − ei + ek) ⊗ (ej + ek − ei ),

and

a ⊗ n = 1

6
(−2ei + ej + ek) ⊗ (e1 + e2 + e3),

ã ⊗ ñ = 1

6
(2ei + ej + ek) ⊗ (ej + ek − ei ),

where i, j , k are distinct, which are all compound twins, and for which |a|2 = 1
2 .

Proof (a) Since B = 1 we have to minimize |p|2|q|2 among p,q ∈ Z
3 subject to p · q = 2

and |p|2|q|2 > 4, since |p|2|q|2 = 4 implies a = 0. The minimum is given by |p|2|q|2 = 5
with minimizers

p ⊗ q ∈ {(2ej − κei ) ⊗ ej , ei ⊗ (2ei + κej ), i �= j, κ = ±1}.
From (47) we have that

a ⊗ n = 1

|q|2 (2q − |q|2p) ⊗ q,

which together with (22) gives the conjugate pairs in the statement. Note that a ⊗ n =
1
5 (2ej −κei )⊗(2κei +ej ) is not a slip because it does not belong to Z

3×3, and is a compound
twin by the criterion (44), since 2(ej ⊗ ej + ei ⊗ ei ) ∈ Z

3×3.
(b) For bcc (see the proof of Theorem 5(b)) we have to minimize G(p)H(q) subject to

p · q = 2 and G(p)H(q) > 16, where

G(p) = (p2 + p3 − p1)
2 + (p3 + p1 − p2)

2 + (p1 + p2 − p3)
2,

H(q) = (q2 + q3)
2 + (q3 + q1)

2 + (q1 + q2)
2.
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Since H(q) is even the minimum value is � 18 and we show that the value 18 is attained.
Also G(p) � 3, so that the possibilities are G(p) = 9, H(q) = 2, G(p) = 3, H(q) = 6. But
G(p) = 9 implies either (i) that pi +pj −pk = ±3, pi +pk −pj = pj +pk −pi = 0 for i, j ,
k distinct, so that pk = 0 and 2pi = ±3, which is impossible, or (ii) that pi + pj − pk = 2κ ,
pk + pi − pj = 2κ ′, pj + pk − pi = κ ′′ for i, j , k distinct and κ, κ ′, κ ′′ = ±1, giving 2pk =
2κ ′ + κ ′′, again impossible. Hence we need only consider the case G(p) = 3, H(q) = 6.

It is easy to check that G(p) = 3 = 12 + 12 + 12 iff

±p ∈ {ei , e1 + e2 + e3, i = 1,2,3}, (50)

and that H(q) = 6 = 22 + 12 + 12 iff

±q ∈ {ei + ej ,2ei − ej ,2ei − ej − ek, i, j, k distinct}. (51)

From (50), (51) we find that p · q = 2 iff

p ⊗ q ∈ {ei ⊗ (2ei − ej ), ei ⊗ (2ei − ej − ek), (52)

(e1 + e2 + e3) ⊗ (ei + ej ), i, j, k distinct}.
Calculating a ⊗ n from (47) for these p ⊗ q and using (22) we obtain the conjugate pairs in
the statement, none of which belong to Z

3×3 and so are not slips.
To show that the twins are compound we note that from (47) and the relations |a| = 1

2 ,
|B−T

bcc q|2 = 6, |Bbccp|2 = 3
4 that

2B−1
bcc

(
n ⊗ n + a ⊗ a

|a|2
)

Bbcc = 3G−1q ⊗ q + 24p ⊗ Gp − 8p ⊗ q − 8G−1q ⊗ Gp, (53)

where G = BT
bccBbcc. Since G−1,4G ∈ Z

3×3, the twins are compound by (44).
(c) The twins for fcc are obtained from those for bcc using Theorem 3 and Corollary 2

as described above, which also imply that the twins are compound. �

Remark 5 For the cubic lattices we consider it is not in general true that Type 1 and Type 2
twins are compound. For example, we can take p = 2e1 − e3, q = 2e1 + e2 + 2e3, so that for
the simple cubic lattice we obtain from (47)

a ⊗ n = 1

9
(−14e1 + 2e2 + 13e3) ⊗ (2e1 + e2 + 2e3),

with conjugate

ã ⊗ ñ = 1

5
(2e1 − e3) ⊗ (6e1 + 5e2 + 12e3).

Then none of

a ⊗ n, ã ⊗ ñ, 2

(
n ⊗ n + a ⊗ a

|a|2
)

belong to Z
3×3 so that, by (44), 1 + a ⊗ n, 1 + ã ⊗ ñ are a pair of Type 1/Type 2 twins

that are not compound. For the same p, q it can be checked that the corresponding pair of
conjugate bcc Type 1/Type 2 twins given by

a ⊗ n = 1

34
(57e1 − 9e2 − 45e3) ⊗ (3e1 + 4e2 + 3e3), (54)
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ã ⊗ ñ = 3

38
(−3e1 + e2 + 3e3) ⊗ (23e1 + 24e2 + 15e3),

are also not compound.

7 General Rank-One Connections Minimizing Shear Magnitude

We ask what the rank-one connections F = 1 + a ⊗ n are between 1 and ψ−1(0) =⋃
μ∈GL+(3,Z) SO(3)BμB−1 that minimize |a|2. For the simple cubic lattice we have a com-

plete answer.

Theorem 7 For the simple cubic lattice the rank-one connections 1 + a ⊗ n = Rμ, R ∈
SO(3), μ ∈ GL+(3,Z) \ SO(3) that minimize |a| are given by the slips in Theorem 5(a) and
the twins in Theorem 6(a), with the minimum value |a|2 = 1.

Proof If μ ∈ GL+(3,Z) then |μ|2 � 3 with |μ|2 = 3 iff μ ∈ SO(3) (this follows either by
noting that each row and column must contain a nonzero entry, and that if there is a single
entry = ±1 then μ is a rotation, or by use of the AM�GM inequality applied to the squares
of the singular values of μ). Since |μ|2 = 3 + |a|2 is an integer, the minimum value of |a|2
for a rank-one connection is � 1, and so by Theorems 5, 6 the minimum value is |a|2 = 1,
with |μ|2 = 4.

But |μ|2 = 4 implies that each row and column of μ contains an entry ±1 and that there
is a single additional entry ±1. Thus

μ = Q + κek ⊗ ej

for some Q ∈ P 48 with Qkj = 0 and κ = ±1. Hence

μ = Q(1 + κ ′ei ⊗ ej ),

where ei = κκ ′QT ek , κ ′ = ±1, and thus ei · ej = 0, from which it follows that det Q = 1 and
hence Q ∈ SO(3). The corresponding rank-one connections are then given by 1 + a ⊗ n =
RQ(1 + κ ′ei ⊗ ej ) and are thus those in Theorems 5, 6. �

For bcc and fcc we have the following result.

Theorem 8 For bcc and fcc the squared magnitude |a|2 for any rank-one connection 1+a⊗
n = RBμB−1 /∈ SO(3), μ ∈ GL+(3,Z) is given by |a|2 = m

2 , where m is a positive integer.

Proof By Theorem 3 it suffices to prove the result for bcc, for which we can write

Bbcc = −1 + 1

2
v ⊗ v, v = e1 + e2 + e3. (55)

Then, setting M = BbccμB−1
bcc, G = BT

bccBbcc = 1 − 1
4 v ⊗ v, and noting that G−1 = 1 + v ⊗ v,

we calculate

|M|2 = tr(G−1μT Gμ)

= |μ|2 + |μv|2 − 1

4
(|μT v|2 + (μv · v)2). (56)
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We now note that

|μT v|2 + (μv · v)2 = c2
1 + c2

2 + c2
3 + (c1 + c2 + c3)

2

= 2(c2
1 + c2

2 + c2
3 + c2c3 + c3c1 + c1c2), (57)

where ci denotes the sum of the entries in the i th column of μ. Since μ ∈ Z
3×3, v ∈ Z

3, and
|a|2 = |M|2 − 3, the result follows from (56), (57). �

Corollary 3 For bcc and fcc the twins in Theorem 6(b), (c) minimize |a|2.

Proof The twins satisfy |a|2 = 1
2 , the least possible value. �

Remark 6 Corollary 3 leaves unresolved the possibility that some other rank-one connection
for bcc or fcc also gives the value |a|2 = 1

2 . This could be decided computationally, since
there are only finitely many possibilities for μ, for each of which the existence of rank-one
connections could be checked. Indeed, if |M|2 = 3+ 1

2 = 7
2 then |μ|2 � |B−1

bcc|2|M|2|Bbcc|2 =
47.25 so that |μ|2 � 47. However we can get a better estimate by noting that (56) can be
rewritten as

|M|2 = 1

4
|μ|2 + 1

4
|μv|2 + 1

12
|3μT − μT v ⊗ v|2 + 1

12
|3μv − (μv · v)v|2.

Since μ is nonsingular we have that |μv|2 � 1. Also μT is not a rank-one matrix, so that
|3μT − μT v ⊗ v|2 � 1. Hence |μ|2 � 13 − 1

3 and so |μ|2 � 12.

8 Conjugates of Slips

We first ask when the conjugate of a slip is a slip.

Theorem 9 For simple cubic, bcc and fcc the only slips whose conjugates are slips are given
by the conjugate pairs

a ⊗ n = 2κei ⊗ ej ,

ã ⊗ ñ = (ej − κei ) ⊗ (κei + ej )

with i �= j and κ = ±1, for which |a|2 = 4.

Proof We need to find the slips 1 + a ⊗ n such that

Q = (1 + ã ⊗ ñ)(1 + a ⊗ n)−1 (58)

= 1 − 2|a|2
4 + |a|2

(
n ⊗ n + a

|a| ⊗ a
|a|

)
+ 4

4 + |a|2 (n ⊗ a − a ⊗ n) ∈ P 24,

where we have used (22) and (1 + a ⊗ n)−1 = 1 − a ⊗ n.
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For this to be the case we need that

tr Q = 12 − |a|2
4 + |a|2 = m ∈ Z, (59)

so that |a|2 = 4
(

3−m
1+m

)
, giving the possibilities m = 0,1 or 2.

The case m = 2 is impossible since no Q ∈ P 24 has tr Q = 2. The case m = 0 gives
|a|2 = 12 and

Q = 1 − 3

2
(n ⊗ n + ν ⊗ ν) +

√
3

2
(n ⊗ ν − ν ⊗ n), (60)

where ν = a
|a| . But this is a rotation about ν ∧ n through an angle ± π

3 , and there are no such

elements of P 24.
Thus we only have to consider the case m = 1, for which |a|2 = 4 and

Q = 1 − (n ⊗ n + ν ⊗ ν) + n ⊗ ν − ν ⊗ n. (61)

This is a rotation through an angle ±π/2 about ν ∧ n, and the only such rotations in P 24 are
those with axes ei , so that without loss of generality we can suppose that

Q =
⎛

⎝
0 −κ 0
κ 0 0
0 0 1

⎞

⎠ , (62)

where κ = ±1, and n = cos θ e1 + sin θ e2, ν = κ(sin θ e1 − cos θ e2). For the simple cubic
case we then require that

a ⊗ n = κ

⎛

⎝
sin 2θ 1 − cos 2θ 0

−1 − cos 2θ − sin 2θ 0
0 0 κ

⎞

⎠ ∈ Z
3×3, (63)

which holds iff 2θ = k π
2 , giving the possibilities in the statement. Similarly, for bcc we

require that B−1a ⊗ BT n ∈ Z
3×3, which again holds iff 2θ = k π

2 . �

It is interesting to calculate the conjugates to the slips in Theorem 5 and (35)-(37). For
the simple cubic case we have already seen (Theorem 6(a)) that the rank-one connections
conjugate to the slips in Theorem 5(a) are compound twins. For bcc and fcc we can without
loss of generality (using Theorem 3) take the case of bcc, when we have the following result.

Theorem 10 The conjugates of the slips in Theorem 5(b) are twins which are neither Type 1
nor Type 2.

Proof By Remark 4 we need only consider the case

1 + a ⊗ n = 1 + 1

2
(e1 + e2 + e3) ⊗ (e1 − e2), (64)

which by (22) has conjugate

1 + ã ⊗ ñ = 1 + 1

22
(e1 − 3e2 − e3) ⊗ (7e1 + e2 + 4e3), (65)
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and is not a slip by Theorem 9, since |a|2 �= 4. Then the rotation (see (27)) Q = R̃RT =
(1 + ã ⊗ ñ)(1 + a ⊗ n)−1 is given by

Q = 1

11

⎛

⎝
6 9 2

−7 6 −6
−6 2 9

⎞

⎠ , (66)

and setting m = 1√
22

(3e1 + 2e2 − 3e3) we find that

(−1 + 2m ⊗ m)Q =
⎛

⎝
0 0 −1
1 0 0
0 −1 0

⎞

⎠ ∈ P 24, (67)

so that 1 + ã ⊗ ñ is a twin by (39). It is not a Type 1 or Type 2 twin because by computation
neither (−1 + 2ñ ⊗ ñ)Q nor

(−1 + 2ã ⊗ ã/|ã|2)Q belong to P 24. �

Next we look at the conjugates of the slips for bcc mentioned in (35)–(37).

Theorem 11

(i) The conjugates of the slips for bcc with

a ⊗ n ∈ {±ek ⊗ (ei + ej ), ek ⊗ (ei − ej ), i, j, k distinct} (68)

are Type 2 twins.
(ii) The conjugates of the slips (36), (37) for bcc with (112) and (123) slip planes are twins

that are neither Type 1 nor Type 2.

Proof (i) As in Remark 4 it suffices to consider the case a ⊗ n = e3 ⊗ (e1 + e2), for which

ã ⊗ ñ = 1

3
(e1 + e2 − e3) ⊗ (2e3 + e1 + e2) (69)

and

Q = (1 + ã ⊗ ñ)(1 + a ⊗ n)−1 = 1

3

⎛

⎝
2 −1 2

−1 2 2
−2 −2 1

⎞

⎠ . (70)

Then 1 + ã ⊗ ñ is not a slip by Theorem 9, and

(
−1 + 2

ã ⊗ ã
|ã|2

)
Q =

⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ ∈ P 24, (71)

so that 1 + ã ⊗ ñ is a Type 2 twin.
(ii) For the (112) slips it suffices to consider the case

a ⊗ n = 1

2
(e1 + e2 − e3) ⊗ (e1 + e2 + 2e3), (72)

for which

ã ⊗ ñ = 1

34
(−e1 − e2 + 7e3) ⊗ (7e1 + 7e2 + 2e3) (73)
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and

Q = (1 + ã ⊗ ñ)(1 + a ⊗ n)−1 = 1

17

⎛

⎝
8 −9 −12

−9 8 −12
12 12 −1

⎞

⎠ . (74)

Then 1 + ã ⊗ ñ is not a slip by Theorem 9, and to show that it is a twin we let m = 1
34 (3e1 +

3e2 − 4e3), so that

(1 + 2m ⊗ m)Q = −1 + 2e3 ⊗ e3 ∈ P 24. (75)

It is not a Type 1 or Type 2 twin because by computation neither (−1 + 2ñ ⊗ ñ)Q nor(−1 + 2ã ⊗ ã/|ã|2)Q belong to P 24.
For the (123) slips it suffices to consider the case

a ⊗ n = 1

2
(e1 + e2 − e3) ⊗ (e1 + 2e2 + 3e3), (76)

for which

ã ⊗ ñ = 1

58
(−5e1 − 3e2 + 13e3) ⊗ (7e1 + 10e2 + 5e3) (77)

and

Q = (1 + ã ⊗ ñ)(1 + a ⊗ n)−1 = 1

29

⎛

⎝
12 −24 −11

−16 3 −24
21 16 −12

⎞

⎠ . (78)

Letting m = 1√
29

(3e1 − 4e2 − 2e3) we find that

(−1 + 2m ⊗ m)Q =
⎛

⎝
0 0 1
0 1 0

−1 0 0

⎞

⎠ , (79)

so that 1 + ã ⊗ ñ is a twin, and as for the (112) case one can check that it is not of Type 1 or
Type 2. �

Remark 7 It is not in general true that the conjugate of a slip is a twin or a slip. For example
we can take

a ⊗ n = 2(e1 + 3e2 + 5e3) ⊗ (e1 − 2e2 + e3), (80)

which is a slip for both bcc and simple cubic, albeit for a high value of |a|2. A calculation
then shows that

Q = (1 + ã ⊗ ñ)(1 + a ⊗ n)−1 = 1

211

⎛

⎝
129 114 −122

94 −177 −66
−138 −14 −159

⎞

⎠ , (81)

and QP cannot equal −1 + 2m ⊗ m for any m because the absolute values of the entries of
Q are all different, and the action of multiplying on the right by P permutes the columns of
Q with possible changes of sign.
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This shows in particular that there are rank-one connections which are neither twins nor
slips. Such rank-one connections without mirror symmetry across the interface are observed
for martensitic phase transformations, e.g. for LaNbO4 (Jian and Wayman [23], Jian and
James [22]) and for NiMnGa (Seiner et al. [29]).

Conjugates of slips are observed in ‘kink deformations’; see Inamura [16], and for earlier
work Starkey [30].
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