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D. Ieşan1 · R. Quintanilla2

Received: 2 February 2023 / Accepted: 10 May 2023 / Published online: 22 May 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
This paper is concerned with a linear theory of thermoelasticity without energy dissipa-
tion, where the second gradient of displacement and the second gradient of the thermal
displacement are included in the set of independent constitutive variables. In particular, in
the case of rigid heat conductors the present theory leads to a fourth order equation for
temperature. First, the basic equations of the second gradient theory of thermoelasticity are
presented. The boundary conditions for thermal displacement are derived. The field equa-
tions for homogeneous and isotropic solids are established. Then, a uniqueness result for the
basic boundary-initial-value problems is presented. An existence theorem is established for
the first boundary value problem. The problem of a concentrated heat source is investigated
using a solution of Cauchy-Kowalewski-Somigliana type.

Keywords Second gradient theory · Constitutive equations · Boundary conditions ·
Isotropic solids · Existence and uniqueness

Mathematics Subject Classification 35L57 · 74A15 · 74F05 · 74H20 · 74H25

1 Introduction

Green and Naghdi [1, 2] developed a thermomechanical theory of deformable continua that
relies on an entropy balance law rather than an entropy inequality. The linear theory of ther-
moelasticity based on the new entropy balance law has been established in [3]. This theory
does not sustain energy dissipation and permits the transmission of heat as thermal waves
at finite speed. An account of the development of the subject as well as references to var-
ious contributions may be found in various works (see, e.g., [4–6] and references therein).
The deformation of non-simple materials was extensively studied. The equations and the
boundary conditions of the nonlinear strain gradient theory of elastic solids were first estab-
lished by Toupin [7, 8]. The linear theory has been developed by Mindlin [9] and Mindlin
and Eshel [10]. The interest in the gradient theory of elasticity is stimulated by the fact that
this theory is adequate to investigate problems related to size effects and nanotechnology
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[11]. The gradient theories of thermomechanics have been studied in various papers (see,
e.g., [4, 6, 12] and references therein). The motivations for introducing temperature gradient
effects in thermomechanics were presented in [12].

This paper is concerned with a linear theory of thermoelasticity without energy dissipa-
tion where the second displacement gradient and the second thermal displacement gradient
are included in the set of independent constitutive variables. In the first part of the paper we
establish the basic equations of the theory. Following Toupin [8] we derive the boundary
conditions for thermal displacement. In the case of homogeneous and isotropic solids we
present the field equations and show that the present theory leads to a fourth order equation
for temperature. Then, we establish a uniqueness result for the basic boundary-initial-value
problems. In the case of the first boundary-initial-value problem, an existence result is es-
tablished. The solution of the concentrated heat source problem is presented using a solution
of Cauchy-Kowalewski-Somigliana type.

2 Basic Equations

In this section we establish the basic equations of the second gradient theory of thermoe-
lasticity. We consider a body that at time t0 occupies the region B of Euclidean three-
dimensional space. The motion of the body is referred to the reference configuration B and
to a fixed system of rectangular cartesian axes Oxj , (j = 1,2,3). We shall employ the usual
summation and differentiation conventions: Latin subscripts, unless otherwise specified, are
understood to range over the integers (1,2,3), whereas Greek subscripts are confined to
range (1,2); summation over repeated subscripts is implied and subscripts preceded by a
comma denote partial differentiation with respect to the corresponding cartesian coordinate.
Boldface characters stand for tensors of an order p ≥ 1 and if v has the order p, we write
vij ...k (p subscripts) for the components of v in the cartesian coordinate frame. We denote
by ∂B the boundary of B . We assume that the boundary ∂B consists in the union of a finite
number of smooth surfaces, smooth curves (edges) and points (corners). Let C be the union
of edges. In what follows, we use a superposed dot to denote partial differentiation with
respect to the time t .

Green and Naghdi [1, 3], presented a treatment of thermomechanical theory of de-
formable media which differs from the usual one and, in particular, makes use an entropy
balance. Let P be an arbitrary material volume in the continuum, bounded by a surface ∂P
at time t . We suppose that P is the corresponding region in the reference configuration B ,
bounded by a surface ∂P . In [1] the authors postulated an entropy balance in the form

∫
P

ρη̇dv =
∫

P

ρ(s + ξ)dv +
∫

∂P

σda, (1)

for all regions P of B and every time. Here, we have used the following notations: ρ is
the reference mass density, η is the entropy per unit mass, σ is internal flux of entropy per
unit area; s is the external rate of supply of entropy per unit mass; ξ is the internal rate of
production of entropy per unit mass. Using the well-known method, from (1) we obtain

σ = �jnj , (2)

and

ρη̇ = �k,k + ρ(s + ξ), (3)
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where nj is the outward normal of ∂P and �j is called entropy flux vector.
Following Green and Naghdi [1, 3] we introduce the thermal displacement α by

α̇ = θ, (4)

where θ is the absolute temperature.
Following [1, 8], we postulate an energy balance in the form
∫

P

ρ(üi u̇i + ė)dv =
∫

P

ρ(fiu̇i + sα̇)dv +
∫

∂P

(ti u̇i + μjiu̇i,j + σ α̇ + Hj α̇,j )da, (5)

for all regions P of B and every time. Here we have used the notations: uj is the displace-
ment vector, e is the internal energy per unit mass fi is the body force per unit mass, ti is
a part of the stress vector associated with the surface ∂P but measured per unit area of ∂P .
Each of terms μjiu̇i,j and Hj α̇j is a rate of work per unit mass. According to Green and
Rivlin [13], μji is a dipolar surface force and Hj is a monopolar entropy flux, per unit area.
In [9], μji is called double force per unit area. We assume that the dipolar body force and
the spin inertia per unit mass are absent (see [8]). From (5) we obtain

∫
P

ρüidv =
∫

P

ρfidv +
∫

∂P

tida, (6)

for all regions P of B . Under suitable continuity assumptions, this conservation law yields
Cauchy’s relations

ti = tj inj , (7)

and the equations of motion

tj i,j + ρfi = ρüi, (8)

where tij is the stress tensor. In view of (2), (3), (7) and (8), the relation (5) becomes
∫

P

ρėdv =
∫

P

[tj i u̇i,j + �j α̇,j + ρ(η̇ − ξ)α̇]dv +
∫

∂P

(μji u̇i,j + Hj α̇,j )da. (9)

From (9) we obtain

(μji − μkjink)u̇i,j + (Hj − Hkjnk)α̇,j = 0, (10)

where μijk is the dipolar stress tensor and Hkj is the entropy flux tensor. If we use the relation
(10) and the divergence theorem, then from (9) we find the local form of energy balance

ρė = τji u̇i,j + �j α̇,j + Hij α̇,ij + ρ(η̇ − ξ)α̇, (11)

where

τji = tj i + μkji,k,�j = �j + Hkj,k. (12)

Let us consider a motion of the body which differs from the given motion by a superposed
uniform rigid body angular velocity, and assume that ρ, ė, τij , μijk , �j , Hij and θ are not
affected by such motion. From (11) we get [13]

τij = τji . (13)
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It is usual in the current literature to obtain an equation for balance of energy in terms of the
Helmholtz free energy ψ introduced by

ψ = e − θη. (14)

We consider the following strain tensors from the linear theory (Mindlin and Eshel [10])

2eij = ui,j + uj,i , κijk = uk,ij . (15)

The relation (11) can be written in the form

ρ(ψ̇ + ηα̈) + ρα̇ξ = τij ėij + μkji κ̇kj i + �j α̇,j + Hij α̇,ij . (16)

We require constitutive equations for ψ , τij , μijk , η, �j , Hkj and ξ and assume that these
are functions of the set of variables A = (eij , κijk, θ,α,j , α,kj ). For simplicity, we regard the
material to be homogeneous and assume that there is no kinematical constraint. If we take
into account the relations

ψ = ψ̂(A), τij = τ̂ij (A), . . . , ξj = ξ̂j (A), (17)

then the equation (16) implies that

(
∂U

∂eij

− τij

)
ėij +

(
∂U

∂κijk

− μijk

)
κ̇ijk +

(
∂U

∂α̇
+ ρη

)
α̈

+
(

∂U

∂α,j

− �j

)
α̇,j +

(
∂U

∂α,ij

− Hij

)
α̇,ij + ρα̇ξ = 0, (18)

where we have introduced the notation U = ρψ̂ . Using the method in [3], we find that the
necesary and sufficient conditions for equation (18) to be satisfied according to the consti-
tutive assumptions above are

τij = ∂U

∂eij

,μijk = ∂U

∂κijk

, ρη = −∂U

∂α̇
,

�j = ∂U

∂α,j

,Hij = ∂U

∂α,ij

, ξ = 0. (19)

For a given deformation, u̇i,j and α̇,j in (10) can be chosen arbitrarily so that, on the basis
of the constitutive equations, we get

μji = μkjink,Hj = Hkjnk. (20)

We denote

α(x, t0) = α0, α̇(x, t0) = T0, (21)

and assume that α0 and T0 are given constants. Let us introduce the notations

T = θ − T0, ϕ =
∫ t

t0

T dt. (22)
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From (21) and (22) we get

α = ϕ + T0(t − t0) + α0, α,j = ϕ,j , ϕ̇ = T . (23)

In what follows we assume that uj = εu′
j , ϕ = εϕ′, where ε is a constant small enough for

squares and higher power to be neglected, and u′
j and ϕ′ are independent of ε. In the linear

theory, we assume that U is a quadratic form of the variables eij , κijk , ϕ̇, ϕ,j and ϕ,ij . In the
case of materials possessing a center of symmetry we have

2U = Aijrseij ers + Bijkpqrκijkκpqr + 2Cijrseijϕ,rs

+ Dijrsϕ,ijφ,rs + 2Eijksκijkϕ,s + Kijϕ,iϕ,j

− aϕ̇2 − 2bij eij ϕ̇ − 2cijϕ,ij ϕ̇. (24)

The coefficients from (24) have the following properties

Aijrs = Ajirs = Arsij ,Bijkpqr = Bpqrijk = Bjikpqr ,Cijrs = Cjirs = Cijsr ,

Dijrs = Djirs = Drsij ,Eijrs = Ejirs,Kij = Kji, bij = bji, cij = cji . (25)

From (19), (23), and (24) we find that

τij = Aijrsers + Cijrsϕ,rs − bij ϕ̇,

μijk = Bijkpqrκpqr + Eijksϕ,s,

ρη = bij eij + cijϕ,ij + aϕ̇, (26)

�i = Epqriκpqr + Kijϕ,j ,

Hij = Crsij ers + Dijrsϕ,rs − cij ϕ̇.

In view of (12) and (19), the equations (3) and (8) can be written in the form

τji,j − μkji,kj + ρfi = ρüi,

�j,j − Hkj,kj + ρs = ρη̇. (27)

The linear theory is characterized by the following system: the equations of motion (27),
the constitutive equations (26) and the geometric equations (15). To derive the form of the
boundary conditions we use the method of Toupin [8]. In view of (2), (7), (12) and (23), the
surface integral from (5) can be written in the form

∫
∂P

(ti u̇i + μjiu̇i,j + σ ϕ̇ + Hj ϕ̇,j )da =
∫

∂P

[(τki − μski,s)u̇i + μkji u̇i,j

+ (�k − Hsk,s)ϕ̇ + Hkj ϕ̇,j ]nkda. (28)

In the last integral from (28), ui,j is not independent of u̇i , on ∂B; only its normal component
Dui = ui,jnj is independent. If we introduce the surface gradient Di = (δij − ninj )∂/∂xj ,
then we get

μkji u̇i,j nk = μkjinknjDu̇i − u̇iDj (μkjink) + Dj(μkjinku̇i),

Hki ϕ̇,ink = HkjnknjDϕ̇ − ϕ̇Dj (Hkjnk) + Dj(Hkjnkϕ̇). (29)
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Following [8] we obtain

∫
∂P

(ti u̇i + μjiu̇i,j + σ ϕ̇ + Hj ϕ̇,j )da =
∫

∂P

(Piu̇i + RiDu̇i + �ϕ̇ + �Dϕ̇)da

+
∫

C

(Ziu̇i + Y ϕ̇)ds, (30)

where we have used the notation

Pi = (τji − μkji,k)nj − Dj(μkjink) + (Djnj )μpqinpnq,

Ri = μrsinrns,Zi =< μpqinpyq >,

� = (�j − Hkj,k)nj + (Djnj )Hkpnknp − Dj(Hkjnk),

� = Hijninj , Y =< Hkjnkyj >,yj = εjrinisr .

(31)

In this equation, εijk is the alternating symbol, sk are the components of the unit vector
tangent to C, and < f > denotes the difference of limits of f from the both sides of C. The
first boundary-initial-value problem is characterized by the following boundary conditions

ui = ũi , Dui = ω̃i , ϕ = ϕ̃, Dϕ = τ̃ , on ∂B × I, (32)

where ũi , ω̃i , ϕ̃ and τ̃ are given functions, and I = (0,∞). In the case of the second
boundary-initial-value problem the boundary conditions are

Pi = P̃i ,Ri = R̃i ,� = �̃,� = �̃ on ∂B × I, Zi = Z̃i , Y = Ỹ on C × I, (33)

where P̃i , R̃i , �̃, �̃, Z̃i , Ỹ are prescribed functions. The initial conditions are

ui(x,0) = u0
i (x), u̇i(x,0) = v0

i (x), ϕ(x,0) = ϕ0(x), ϕ̇(x,0) = χ0(x), x ∈ B, (34)

where the functions u0
i , v0

i , ϕ0 and χ0 are prescribed. We assume that: (i) fi and s are
continuous; (ii) ρ is a prescribed positive constant; (iii) the constitutive coefficients satisfy
the symmetry relation (25); (iv) ũi and ϕ̃ are continuous on ∂B × I ; (v) ω̃i , τ̃ , P̃i , R̃i , �̃,
�̃ are continuous in time and piecewise regular on ∂B × I ; (vi) Z̃i and Ỹ are continuous in
time and piecewise regular on C × I ; (vii) u0

i , v0
i , ϕ0 and χ0 are continuous on B .

In the case of homogeneous and isotropic solids the constitutive equations become [10]

τij = λerrdij + 2μeij − bϕ̇δij + β1δij�ϕ + 2β2ϕ,ij ,

μijk = 1

2
α1(κrriδjk + 2κkrrδij + κrrj δik) + α2(κirrδjk + κjrrδik) + 2α3κrrkδij

+ 2α4κijk + α5(κkji + κkij ) + γ1δijϕ,k + γ2(δjkϕ,i + δikϕ,j ),

ρη = berr + aϕ̇ + c�ϕ,

�i = γ1κssi + 2γ2κiss + kϕ,i,

Hij = β1δij err + 2β2eij + d1δij�ϕ + d2ϕ,ij − cϕ̇δij ,

(35)

where � is the Laplacian, δij is the Kronecker’s delta and λ, μ, a, b, c, k, αm, (m =
1,2, . . . ,5), βρ , γρ , dρ are constitutive coefficients. If we use (16) and (29), then we can
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express the equations (27) in terms of unknown functions uj and ϕ. The resulting equations
are

(μ − v1�)�ui + (λ + μ − v2�)uj,ji + (β − γ )�φ,j − bϕ̇,i + ρfi = ρüi,

d��ϕ − k�ϕ + (β − γ )�uj,j + aϕ̈ + bu̇j,j = ρs, (36)

where we have used the notation

v1 = 2(α3 + α4), v2 = 2(α1 + α2 + α5),

β = β1 + 2β2, γ = γ1 + 2γ2, d = d1 + d2. (37)

The second equation in (36) implies the following coupled heat equation

d��T − k�T + (β − γ )�u̇j,j + aT̈ + büj,j = ρṡ. (38)

In the case of rigid heat conductors we obtain a fourth order equation for temperature.

3 Uniqueness

In this section we present a uniqueness result in the context of the dynamic theory. By an
admissible process p = {ui, ϕ, eij , κijk, τij ,μijk, η,�j ,Hij } we mean an ordered array of
functions ui , ϕ, eij , κijk , τij , μijk , η, �j and Hij defined on B × [0,∞) with the following
properties: (i) ui ∈ C4,2; ϕ ∈ C4,2; eij , κijk ∈ C2,0; τij ,�j ,Hji ∈ C1,0; μijk ∈ C2,0; η ∈ C0,1

on B × I ; (ii) ui , u̇i , üi , ϕ, ϕ̇, ϕ̈, ui,j , ui,jk , ϕ,ij , τij , τij,i , μijk , μijk,ij , �j , �j,j , Hij , Hij,i ,
η and η̇ are continuous on B × [0,∞). By a solution of the first boundary-value problem
we mean an admissible process which satisfies the equations (15), (26) and (27) on B × I ,
the boundary conditions (32) and the initial conditions (34). Similarly, we can define the
solution of the second boundary-initial-value problem.

We define the functions W and E by

2W = Aijrseij ers + Bijkpqrκijkκpqr + 2Cijrseijϕ,rs

+ 2Eijkrκijkϕ,r + Kijϕ,iϕ,j + Dijrsϕ,ijϕ,rs , (39)

E = 1

2

∫
B

(ρu̇i u̇i + aϕ̇2 + 2W)dv.

Theorem 1 Assume that

(i) ρ and a are strictly positive;
(ii) the relations (25) hold;

(iii) W is a positive semidefinite quadratic form.

Then, the boundary-initial-value problems have at most one solution.

Proof Let us denote

F = τij ėij + μijkκ̇ijk + ρη̇ϕ̇ + �j ϕ̇,j + Hjiϕ̇,ij . (40)
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By using (25), (26), and (39) we obtain

F = 1

2

∂

∂t
(aϕ̇2 + 2W). (41)

On the other hand, by (15) and (27) we get

F = [(τjk −μjik,i)u̇k +μijku̇k,i +�j ϕ̇ +Hij ϕ̇,i −Hji,i ϕ̇],j +ρ(fj u̇j + sϕ̇)−ρüi u̇i . (42)

From (12), (41) and (42) we find that

1

2

∂

∂t
(aϕ̇2 + 2W) = [tjku̇k + μjki u̇i,k + �j ϕ̇ + Hkj ϕ̇,k],j + ρ(fj u̇j + sϕ̇) − ρüi u̇i . (43)

If we integrate the relation (43) over B and use the divergence theorem and the relations (2),
(7), (20) and (39) then we obtain

Ė =
∫

∂B

(ti u̇i + μjiu̇i,j + σ ϕ̇ + Hj ϕ̇,j )da +
∫

B

ρ(fj u̇j + sϕ̇)dv. (44)

With the help of (30) we arrive at

Ė =
∫

∂B

(Piu̇i +RiDu̇i +�ϕ̇ +�Dϕ̇)da +
∫

C

(Ziu̇i +Y ϕ̇)ds +
∫

B

ρ(fj u̇j + sϕ̇)dv. (45)

Suppose that there are two solutions. Then, their difference p∗ = {u∗
i , ϕ

∗, e∗
ij , κ

∗
ijk, τ

∗
ij ,μ

∗
ijk,

η∗,�∗
j ,H

∗
ij } corresponds to null data, so that

P ∗
i u̇∗

i + R∗
i Du̇∗

i + �∗ϕ̇∗ + �∗Dϕ̇∗ = 0 on ∂B × I, Z∗
i u̇

∗
i + Y ∗ϕ̇∗ = 0, on C × I, (46)

and

u∗
i (x,0) = 0, u̇∗

i (x,0) = 0, ϕ∗(x,0) = 0, ϕ̇∗(x,0) = 0 on x ∈ B. (47)

The functions W and E associated with process p∗ will be denoted by W ∗ and E∗, respec-
tively. The conditions (47) imply the following relations

e∗
ij (x,0) = 0, κ∗

ijk(x,0) = 0, ϕ∗
,i (x,0) = 0, ϕ∗

,ij (x,0) = 0. (48)

It follows from (39) and (48) that

W ∗(x,0) = 0. (49)

With the help of (39), (47) and (49) we get

E∗(0) = 0. (50)

From (45), (46) and (50) we obtain

E∗(t) = 0, t ∈ I. (51)

By using the hypotheses of the theorem we find that u̇∗
i = 0 and ϕ̇∗ = 0 on B × I . Since u∗

i

and ϕ∗ vanish initially we conclude that u∗
i = 0 and ϕ∗ = 0 on B × I . �
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4 Existence Theorem

In this section we provide an existence theorem of solutions for the problem determined by
equations (15), (26) and (27) with the initial conditions (34) and the boundary conditions

ui = 0, Dui = 0, ϕ = 0, Dϕ = 0 on ∂B × I. (52)

In this section we assume that conditions (i) and (ii) of Theorem 1 are maintained and
instead of condition (iii) we assume that:

(iii’) The function W defined at (39) is strictly positive definite.

We will transform our problem into an abstract Cauchy problem on the Hilbert space H
defined by:

H = W2,2
0 (B) × L2(B) × W

2,2
0 (B) × L2(B), (53)

where W2,2
0 (B) = [W 2,2

0 (B)]3 and L2(B) = [L2(B)]3. Here W
2,2
0 (B) and L2(B) are the

usual Sobolev spaces. Then, we will show the existence of a semigroup of linear operators
defining the solutions of the problem (see [14]). This kind of arguments are usual in the
study of well posed thermoelastic problems.

An element in this Hilbert space has the form (u,v, ϕ, θ). In this space we consider the
inner product associated with the norm

||(u,v, ϕ, θ)||2 = 1

2

∫
B

(
ρvivi + aθ2 + 2W

)
dv. (54)

It is clear that (54) defines a norm which is equivalent to the usual one in the Hilbert
space. We define the operator

A

⎛
⎜⎜⎝

u
v
ϕ

θ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

vi

Mi

θ

N

⎞
⎟⎟⎠ (55)

where Mi and N are given by

Mi = ρ−1[(Aijrsur,s + Cijrsϕ,rs − bij θ),j − (Bkjipqrur,pq + Ekjisϕ,s),kj ],
and

N = a−1[(Epqriur,pq + Kijϕ,j − bij v,j ),i − (Crskjur,s + Dkjrsϕ,rs),kj ].
It is worth noting that v ∈ W2,2

0 (B), θ ∈ W
2,2
0 (B), (Mi) ∈ L2(B), N ∈ L2(B). It is clear

that the domain of the operator is a dense subspace of the Hilbert space.
We can write the basic equations and initial conditions as

dU

dt
= AU +F(t), U(0) = (u0,v0, ϕ, θ0), (56)

where F is given by

F =

⎛
⎜⎜⎝

0
fi

0
s

⎞
⎟⎟⎠ .
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Now, we will prove that the operator defines a contractive semigroup of linear operators
and the existence, uniqueness and continuous dependence of solutions will be concluded.

Lemma 1 For every U = (u,v, ϕ, θ) at the domain of the operator (A), the following equal-
ity

< AU,U >= 0,

holds.

Proof If we apply the definition of the operator and the boundary conditions, after the use
of the divergence theorem we obtain the desired equality. �

Lemma 2 Zero belongs to the resolvent of the operator A.

Proof Let us consider (g1,g2, g3, g4) an element in our Hilbert space. We have to solve the
system

v = g1, M = g2, θ = g3, N = g4.

We can obtain v and θ directly. Then, we obtain the system

(Aijrsur,s + Cijrsϕ,rs),j − (Bkjipqrur,pq + Ekjisϕ,s),kj = ρg2i + bijg3,j ,

(Epqriur,pq + Kijϕ,j − bij vj ),i − (Crskjur,s + Dkjrsϕ,rs),kj = ag4 + bijg1i,j

To solve this system we can apply the Lax-Milgram lemma (see [15]). To this end, we define
the bilinear form

B[(u,v, ϕ, θ), (u∗,v∗, ϕ∗, θ∗)] =
∫

B

Idv.

where I is given by

I = Aijrsui,j u
∗
r,s + Bijkpqruk,ij u

∗
r,pq + Cijrs(ui,j ϕ

∗
,rs + u∗

i,j ϕ,rs)

+ Eijkr (uk,ij ϕ
∗
,r + u∗

k,ij ϕ,r ) + Kijϕ,iϕ
∗
,j + Dijrsϕ,ijϕ

∗
,rs .

It is clear that B is bounded on W2,2
0 × W

2,2
0 and, in view of the assumption (iii’), it is

coercive in this space. On the other side, it is clear that

(ρg2i + bij g3,j , ag4 + bij g1i,j )

belongs to W−2,2 × W−2,2. The Lax-Milgram lemma allow us to conclude the existence of
solutions. Indeed we can obtain that the solutions (u,v, ϕ, θ) satisfies the estimate

||(u,v, ϕ, θ)|| ≤ K||(g1,g2, g3, g4)||,
where K is independent of the solution. Therefore, we have proved the lemma. �

Thus, we have

Theorem 2 The operator A generates a contractive semigroup on the Hilbert space.
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Theorem 3 Assume that (f, s) are smooth on L2(B) and continuous in W 2,2(B) and that
U0 belongs to the domain of the operator. Then, there exists a solution U(t) to the Cauchy
problem which is smooth in the Hilbert space and takes values in the domain of the operator.

Since the solutions are defined by means of a semigroup of contractions we can conclude
the estimate

||U(t)|| ≤ ||U(0)|| +
∫ t

0
||(f(τ ), s(τ ))||L2dτ.

This inequality gives the continuous dependence on the solutions with respect to initial
data and supply terms. Therefore, under our assumptions the problem of the second strain
gradient thermoelasticity without energy dissipation is well posed in the sense of Hadamard.

The results presented in this section extend those established in [4] for the strain gradient
theory in the case that we do not consider high order effects in the thermal displacement.

5 General Solution of the Field Equations

In this section we establish a solution of the field equations that is analogous to Cauchy-
Kowalewski-Somigliana solution in the dynamic theory of classical elasticity [16]. In the
case of isothermal elasticity, the solutions of Galerkin type in the context of strain gradient
elasticity have been presented in [9, 17]. The field equations for isotropic and homogeneous
materials can be expressed in terms of the functions uj and ϕ in the form

L1�u + L2grad divu + L3 gradϕ + ρf = ρü,

L4divu + L5ϕ = ρs, (57)

where we have used the notations

L1 = μ − ν1�,L2 = λ + μ − ν2�,L3 = (β − γ )� − b
∂

∂t
,

L4 = (β − γ )� + b
∂

∂t
,L5 = d�� − k� + a

∂2

∂t2
. (58)

Let us introduce the notation

A1 = L1� − ρ
∂2

∂t2
,A2 = L3L4� − L5A3,A3 = (L1 + L2)� − ρ

∂2

∂t2
. (59)

Theorem 4 Let

u = −A2F + (L3L4 − L2L5)grad divF + L3 gradG,

ϕ = −A1L4divF − A3G, (60)

where the fields Fj of class C12 and G of class C8 on B × I satisfy the equations

A1A2F = ρf , A2G = ρs. (61)

Then u and ϕ satisfy the equations (57).
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Proof A straightforward calculation yields

L2A2 + L3L4A1 = A3(L3L4 − L2L5), (L1 + L2)� − A3 = ρ
∂2

∂t2
,

A2 + L5A1 = (L3L4 − L2L5)�. (62)

If we substitute u and ϕ given by (60) into the equations (57) and use (58) and (62), we
obtain

L1�u + L2 grad divu + L3 gradϕ − ρü = −L1A2�F + A2ρF̈

+ {(L3L4 − L2L5)A3 − L2A2 − L3L4A1}grad divF

+ L3[L1� + L2� − A3 − ρ
∂2

∂t2
]gradG (63)

= −A1A2F ,

L4divu + L5ϕ = L4[(L3L4 − L2L5)� − A2 − L5A1]divF + (L3L4� − L5A1)G = A2G.

If we use (61) and (63), then we obtain the desired result. �

The solutions of Galerkin type are used to study the deformations produced by concen-
trated loads [9, 16].

6 Effects of a Concentrated Heat Supply

In this section we use the solution (60) to investigate the effects of a concentrated external
heat source in an infinite space. We consider an isotropic and homogeneous solid subjected
to the following loads

f = 0, ρs = Q(r, t), (64)

where r = [(xj − yj )(xj − yj )]1/2, y is a fixed point, and Q is a given function. The condi-
tions at infinity are given by

ui → 0, ui,j → 0, ui,jk → 0, ϕ → 0, ϕ,j → 0, ϕ,jk → 0 for r → ∞.

In view of (61) and (64) we can take F = 0 and G = χ(r, t), where χ satisfies the equation

A2χ = Q. (65)

In what follows we consider the case of steady vibrations. We assume that

Q = Re[Q∗(r) exp(−iωt)], (66)

where ω is the frequency of vibration, i is the imaginary unit, Re[f ] is the real part of f ,
and Q∗ is a prescribed function. Let us introduce the notations

A∗
2 = L∗

2L
∗
4� − L∗

5A
∗
3,L

∗
3 = (β − γ )� + ibω,L∗

4 = (β − γ )� − ibω,

L∗
5 = d�� − k� − aω2,A∗

3 = (ξ − ζ�)� + ρω2, ξ = λ + 2μ,ζ = ν1 + ν2. (67)
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If we assume that

χ = Re[χ∗(r,ω) exp(−iωt)], (68)

then from (58), (59) we find the following equation for amplitude χ∗,

A∗
2χ

∗ = Q∗. (69)

We denote by κ2
j , (j = 1,2,3,4), the roots of the equation

dζx4 + p1x
3 + p2x

2 − p3x + ρaω4 = 0, (70)

where we have introduced the notation

p1 = ξd + ζk − (β − γ )2,p2 = kξ − ρω2d − aζω2,p3 = ω2(b2 + ρk + aξ). (71)

Then, the equation (69) can be expressed in the form

(� + κ2
1 )(� + κ2

2 )(� + κ2
3 )(� + κ2

4 )χ∗ = eQ∗, (72)

where we have used the notation e = (ξd)−1. In what follows we denote by κs, (s =
1,2,3,4), the roots with positive real parts and assume that these roots are distinct. If the
functions χk, (k = 1,2,3,4), satisfy the equations

(� + κ2
j )χj = eQ∗, (no sum; j = 1,2,3,4), (73)

then the function χ∗ can be expressed in the form

χ∗ =
4∑

s=1

hsχs, (74)

where

h−1
s =

4∏
j=1(j 	=s)

(κ2
s − κ2

j ), (s = 1,2,3,4). (75)

Let ua assume now that Q∗ = δ(x − y), where δ is the Dirac measure and y is a fixed point.
Then, from (73) we obtain

χs = − e

4πr
exp(iκsr), (s = 1,2,3,4). (76)

It follows from (74) and (76) that

χ∗ = − e

4πr

4∑
s=1

hs exp(iκsr). (77)

If we seek the solution of the form

u = Re[u∗(r,ω) exp(−iωt)], ϕ = Re[ϕ∗(r,ω) exp(−iωt)],
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then from (60) and (68) we find that

u∗ = L∗
3 gradχ∗, ϕ∗ = −A∗

3χ
∗.

It is easy to see that the conditions at infinity are satisfied. In classical thermoelasticity, the
problem of concentrated loads in the case of steady vibrations has been studied in various
works (see, e.g., [18, 19] and references therein).

7 Summary

The results presented in this paper can be summarized as follows:

(a) We use the Green-Naghdi theory of thermomechanics to establish a second gradient
theory of thermoelasticity that leads to a fourth-order equations for the temperature.

(b) We establish boundary conditions for thermal displacement and formulate the boundary-
initial-value problems.

(c) We present the field equations for homogeneous and isotropic solids.
(d) We establish a uniqueness result for the basic boundary-initial-value problems.
(e) We establish an existence result for the first boundary-initial-value problem.
(f) We investigate the problem of a concentrated heat source.
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