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Abstract

In the 1960s Jerry Ericksen made major contributions to the construction of the continuum
theory of nematic liquid crystals. This paper gives a brief summary of his work and the
consequent giant impact on the field.
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1 Introduction

No tribute to Jerry Ericksen’s research work in the mathematical sciences can be complete
without serious contemplation of his seminal contribution to the mathematical formulation
of the continuum theory of liquid crystals. In this paper we shall firstly summarize some
of his important work. We shall also make a start at providing some a more extensive con-
text within which historians of science in the future may be able to make a more complete
contextual analysis of its significance. In the interstices we shall give a brief introduction to
liquid crystals which should enable the naive reader to follow our key ideas.

Jerry has left us an extensive archive. We hope that this archive will reveal more both
about Jerry’s life and about his work. Examining it should do much to complete, and perhaps
to some extent supersede, the sketches drawn in this article. But it will take time and is a
project for another day.

This volume is mainly directed at experts, and the mathematical level of some other
contributions is concomitantly elevated. This paper, by contrast, will be relatively mathe-
matically unsophisticated. Our goal will be that even those outside the field may at least
appreciate some of the flavor of Jerry’s work and why workers within the field regarded him
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with such respect, We beg the forbearance of experts who might otherwise be inclined to
neglect the ordinary language which we employ in the place of mathematical formalism.

The reader will find some mathematics here, of course, because Jerry was, as all readers
are aware, a consummate mathematician. But he was not only a mathematician. Behind the
equations lay a powerful physical intuition. This provided an intellectual structure which
enabled him to seek a fundamentals upon which practical calculations could subsequently
be based. Perhaps as importantly, in doing so, he provided a route map, which would also be
used by subsequent workers to construct analogous theories for similar materials at a later
stage.

The 1960s were an “Age of Heroes” for liquid crystals. During this period — including
perhaps a few years before and a few years after — a branch of science, founded as a curiosity
in the late 1880s, was reaching its scientific maturity. In the early 1900s there appeared
several classic monographs [38, 51, 76, 89] on liquid crystals, which raised many questions
but provided few answers. These monographs — written in German and French, and thus
(sadly!) relatively inaccessible to the modern reader — are of great historical interest, but
provide little useful to the beginning graduate student in the 2020s. By the 1970s, however,
the first textbooks on liquid crystals [11, 17] were appearing on the market, and even the
first textbook generation remains useful half a century later. And a major influence on the
content of these textbooks, high up on the “Liquid Crystal Honor List”, is Jerry Ericksen.

The organization of this paper is as follows. In Sect. 2 we present some historical focused
background to liquid crystals, which should explain to the naive reader enough to follow the
subsequent sections. In Sect. 3 we examine some of Ericksen’s key contributions to liquid
crystal science. After some slightly hagiographic front matter, the scientific core of this pre-
sentation is presented in Sect. 3.1. In Sect. 4 we attempt a (rather limited!) contextualization
of what has gone before.

2 Liquid Crystals

Readers familiar with liquid crystals should omit this section, which may well merely repeat
for them long-familiar concepts in a language which they find condescending, unhelpful and
oversimplified. We give here a brief outline, with a historical focus, enabling “nematically
naive” readers to make sense of what follows. Fuller accounts of different aspects of the
early history of liquid crystals can be found elsewhere [9, 16, 42—-47, 79-82, 86]. The most
important key idea is that “liquid crystals™ are not crystals at all. The misnomer is the result
of a historical mistake, which subsequent scientific rectification failed to eliminate. How-
ever, as with other complex fluids, a coherent description requires the use of ideas from both
theories of fluids and of solids.

Liquid crystals are thermodynamic phases which interpose themselves between the crys-
talline and liquid phases in some materials. Early workers misread the appearance of some
colors which appeared in diffraction patterns as indicating crystallinity, when in fact only
local anisotropy could rigorously be inferred. The inference of liquidity came from flow
observations, and in general (although not universally), indeed liquid crystals are fluid in
the sense that they do not sustain a shear stress without flowing. The principal liquid crys-
tal phases are the nematic phase, in which there is a local preferred direction, and smectic
phases in which there is also some layering. A chiral version of the nematic phase, in which
the preferred direction is uniform within a layer, and lies within the layer plane, but twists
in a helix as one proceeds perpendicular to the layer, is known as the cholesteric phase.
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Most discussion in this paper concerns nematics. The unit vector in the local preferred
direction is known as the director i = —n, although we note that the use of this term dates
only from the modern period. Nevertheless we shall use the term anachronistically in our
historical discussion. The first attempts at creating a continuum theory were made in the
1920s and 1930s by the Swedish theoretical physicist Carl Wilhelm Oseen (1879-1944).
Oseen’s papers not only dealt with continuum theory (he called it “the distortion theory™),
but also the link between the continuum theory and the microscopic intermolecular inter-
action. In addition, as at that stage essentially all experiments were optical, he studied the
optical properties of the nematic and cholesteric phases.

To a contemporary student, Oseen’s articles are quite hard going. This is partly because
he does not use the tensor or vector notations in use nowadays, partly because of his insis-
tence on labeling his quantities with Gothic letters, and partly, it must be admitted, because
the calculations are quite difficult anyway. Summaries of Oseen’s conclusions can be found
in a book [69], a long review article [70], and in a contribution to 1933 conference held in
London [71], his only paper in English. Oseen constructed an elastic theory of nematic free
energy more or less as we use it nowadays.

This theory was recapitulated by F.C. Frank [36] in 1958. This classic paper revitalized
studies of liquid crystals after a period of quiescence. We give here (a slightly modified ver-
sion of) Frank’s formula' for the liquid crystal free energy density associated with changes
in the director 71 is

1 A 1 R .
Felastic = EKII (V ‘ l'l)2 + §K22 (Il . (V X Il))2
(1)

1 R 2 R A R
+§K33(nx(Vxn)) — KV - [R(V-h) + 0 x (V x A)].

The contributions to this free energy are known respectively as splay, twist, bend and saddle-
splay, and the constants K;; are known as (Frank-Oseen) elastic constants.

The static distortion theory could be tested by considering alignment in a thin infinite
sample of thickness d, in the presence of a magnetic field which adds a term of the form
—x4(H.H)? per unit volume to the free energy density (1). This would favor a director
parallel or antiparallel to H. Suppose there is a competition between Dirichlet boundary
conditions, favoring, say, an in-plane director (known nowadays as strong anchoring), and
the magnetic field, favoring a director perpendicular to the sample.

In 1929, the Russian physicist Vsevolod Konstatinovich Frederiks (1885-1944) and his
graduate student Valentina Zolina showed experimentally that there is a threshold field H.
below which the boundary condition wins completely, and the director remains in the plane
of the layer [37]. For fields H > H,, the director in the sample begins to realign perpendic-
ular to the layer, and only for fields H > H. is the director within the sample more or less

H.
parallel to the field, with thin boundary layers of thickness ~ ﬁd close to the wall.

The German (later Brazilian) physicist Hans Zocher (1893-1969) was able to explain
this experiment using Oseen’s framework. More importantly, he was unable to explain them
using the competing “Swarm Theory”. This was championed by the Dutch theoretical physi-
cist Leonard Ornstein (1880-1941), and had previously been regarded favorably by the then

IThe notation here corresponds to that of Selinger [77], rather than that of Frank [36].
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small liquid crystal community. Zocher found that

K
Ho="1]2 ®)
d\ xa

where K is an elastic constant; which elastic constant depends on the exact geometry under
consideration. The Frederiks experiment (as it came to be known) can thus be regarded as the
experimentum crucis for the distortion theory, and H, is known as the Frederiks threshold.

In his 1931 Ph.D. thesis one of Oseen’s graduate students, Adolf Anzelius (1894-1979),
attempted to generalize this static theory to dynamics [1], but eventually it turned out that
his stress tensor lacked some key elements. Even Oseen [71] himself was publicly some-
what critical. The task of constructing a dynamic continuum theory was made considerably
harder by the lack of reproducible data. However, in careful experiments the Polish physi-
cist Marian Migsowicz (1907-1992) was able to identify three separate nematic viscosities
N1, 12, N3 depending on the relative configuration of the directors (constrained by strong
magnetic fields) and the shear flows. Finally, another relevant experiment by the Russian
physicist Victor Tsvetkov [87] (1907-1999) in 1939 measured the rotational viscosity, asso-
ciated with the director attempting to follow a rotating magnetic field, while the sample as a
whole remained at rest.

There then followed a quiescent period in liquid crystal research, for reasons which have
been discussed in the literature, and probably have to do with the war and subsequent re-
search concentration on other matters. The baton was picked up again by Frank in 1958, as
discussed above.

3 FEricksen and Liquid Crystals

A number of those contributing at the highest level to the theory of liquid crystals, in par-
ticular Charles Frank (1911-1998) and Pierre-Gilles de Gennes (1932-2007), only lent their
talents to the liquid crystal community. Frank’s principal academic contributions came in
his microscopic studies of crystal dislocations [61, 86], while de Gennes spread his genius
across the whole of what came to be known as Soft Matter physics [8, 78]. In both cases
the magnitude of their non-liquid-crystal oeuvre dwarfed their liquid crystal work, at least
in terms of the number of pertinent pages. As other contributors to this volume will readily
attest, Jerry Ericksen was likewise a member of this polymathic company. Notwithstanding
his iconic status as one of the founders of modern liquid crystal continuum theory, a mere
33 papers out of the total of 145 included in his 2005 CV [31] were devoted to studies of
liquid crystals or anisotropic fluids.

Ericksen’s route toward the study of liquid crystals would be regarded as unexpected by
many outside the mathematical sciences. He reports in his autobiographical sketch [31] that
around 1959...

... I decided to formulate a simple, properly invariant theory of a fluid with a single preferred direc-
tion. I wondered whether there were any real fluids that might be roughly described by it. Chemists are
likely to know about such things, so I asked Bernard Coleman, who has such a background. He sug-
gested and told me a little about liquid crystals, materials I had never heard of. Soon, I made my first
contact with a person working on these, James Fergason, a physicist then working for Westinghouse
in Baltimore. ..

... We learned of a symposium on these at a huge American Chemistry Society meeting, so we par-
ticipated and made contact with the other participants. At the time, most of those interested in liquid
crystals were chemists. However, it was not long before a number of physicists became involved,
stimulated by the creation of the Orsay Group, headed by Pierre De Gennes. . .
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So, primarily Ericksen was concerned with providing a consistent foundation for a contin-
uum theory of fluids with some internal orientational variables. Only secondarily was he
led by a colleague of a colleague, to the liquid crystal community, who would be able to
provide experimental examples of his initially mythical fluids. It was only after that, that he
was completely convinced that it would be fruitful to concentrate on liquid crystal studies.

The liquid crystal community has created a permanent memorial to Ericksen by endow-
ing some key concepts with his name. We talk about the Ericksen stress, the Ericksen num-
ber, Ericksen inequalities, and, of course, the everyday workhorse liquid crystal continuum
theory is the Ericksen-Leslie theory.

3.1 Overview

Initial Work on Anisotropic Fluids

Ericksen’s first few papers on anisotropic fluids [19-21] were concerned with constructing a
general continuum theory. Although his contacts had shown that liquid crystals were exper-
imental candidates, he was cautious in insisting that this was not a theory of liquid crystals
per se. The goal was to use general principles of force and couple balance, entropy produc-
tion, together with symmetry principles. One such, entitled “Transversely Isotropic Fluids”
[21] starts:

As is noted by Noll (1), most theories of anisotropic fluids do not satisfy invariance conditions which
any continuum theory of classical mechanics should. The purpose of this paper is to present and
discuss some features of what may be the simplest properly invariant theory of anisotropic fluids, a
type of theory which is virtually unexplored. ...

Who the miscreant uninvariant competitors are, is left deliberately vague, although the ex-
tract above is accompanied by mention of papers by Noll [62], Oldroyd [63] and Green
and Rivlin [39]. As Walter Noll (1925-2017), Albert Green (1912-1999) and Ronald Rivlin
(1915-2005) were close colleagues and presumably would not have been offended by mere
professional disagreements, they seem unlikely candidates.

Much effort was devoted to what approximations were allowable and/or fruitful. Should
the direction vector n be regarded as constant, or would flow fields affect not only its di-
rection but its magnitude? Could one ignore the “molecular inertia” associated with rotation
of n and merely balance couples? What were the correct forms of the constitutive relation
linking the stress tensor #;; to the rate of strain tensor d;;, and likewise the local rotational
force density g; to flow and directional characteristics?

Clearly the relation had to involve the vector 7 itself, as well as its covariant time deriva-

5 Dn;
tive N; = —

tempt at this relation [20] required as many as 12 viscosity coefficients:

— wy;n;, where w;; = 1 (d;v; — ;v;) is the vorticity tensor. One early at-

tij = (o + a1dy + cadpmniig, + a3 Ning) 8
+ (4 + asdy + asdipning + o Nyng) nin 3)
+ Olgdl'j + (ng,'kl’lknj + Ol]()djknjnk + (Jl]]l’l,'Nj + 0112an,‘.

However, when the fluid is incompressible, the director supposed to always have unit mod-
ulus, and the molecular inertia ignored, the number of viscosities reduces to only 4. The

2We have substituted the modern notation N for Ericksen’s contemporary 7.
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constitutive equation for g; starts with 4 rotational viscosities y,,, and also includes 4 of the
a’s, but when all the approximations are applied, this reduces to:

g&i=M (dijnj - dkmnknmni) s (4)

with a single rotational viscosity L.

At this stage, calculations only included flow. Neither magnetic fields, known from early
work to rotate the liquid crystal director, nor the effect of the elastic forces in the liquid
crystal, were included. The idea, worked through to some extent in a number of papers
[20-22, 24], was that the flow fields by themselves would provide some orienting forces for
the director, although the calculations would have to be carried out self-consistently.

Ericksen Stress
However, by the end of 1961 Ericksen was ready to include the elastic forces in his theory
[23, 25]. Again Ericksen’s own words [25] are superior to those of the present writers:

Hydrostatic Theory of Liquid Crystals

... This permits us to include as a special case the hydrostatic theory presented by FRANK [36];
which is a revised static version of the hydrodynamical theory of OSEEN [71]. ...
... In studies of the static behavior of liquid crystals, it is common to ignore or to treat in an obscure
way the stress tensor and other representations of force. Our treatment emphasizes these. From the
viewpoint of the development of general continuum mechanics, the theory seems interesting. It is one
of the few mechanical theories which involve an asymmetric stress tensor. ...

[Reference numbers for this paper, rather than in ref. [25].]

Two points in this introduction stand out. The first is the asymmetric stress tensor, which is,
as Ericksen points out here, rare but not forbidden in continuum theory. This is not the first
time that Ericksen has addressed this issue; already in ref. [20], he wrote the equation

nig;—n;& +1tij—t;=0. (5)

The symmetry of the stress tensor in fluids without internal orientational variables (i.e., usual
fluids) is the dynamical consequence of the inability of an infinitesimally small volume to
sustain a couple. Asymmetry indicates the existence of such a couple. Equation (5) indicates
how in an anisotropic fluid, the couple due to the asymmetric stress tensor can be balanced
by an explicit torque.

The second point concerns the manner in which the theoretical physicists Oseen and
Frank had neglected the stress tensor. Both the earlier treatment of Oseen [69-71] and its
later renaissance by Frank [36] deal with free energies. The equilibrium is determined by
minimizing this free energy, which in turn is performed by constructing Euler-Lagrange
equations subject to constraints such as [n| = 1. Neither really thought about the dynamic
consequences of this minimization. Implicitly they suppose that the process of orientational
relaxation to equilibrium can be decoupled from fluid motion. But given that the dynami-
cal stress tensor contains orientational contributions, these may in fact be coupled, and the
equilibrium equations must apply not only to orientational equilibrium but also to hydro-
static equilibrium.

In other words, there must be an elastic stress tensor with the properties that (i) its as-
sociated equilibrium equation is equivalent to the Euler-Lagrange equation, and (ii) it must
also contribute to the total stress tensor in the dynamical equations away from equilibrium.
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Using a virtual work argument, Ericksen derives the following elastic contribution to the
stress tensor:

(SFelaslic
8nr,k

Ny, (6)

Qi = —

where Fip,qic 1s the Oseen-Frank elastic free energy density, and commas indicate a partial
derivative index. This was a key contribution to the final dynamical theory and is labeled by
de Gennes [17], and subsequently more generally in the literature, as the Ericksen stress.

Ericksen Inequalities

Having discussed the implications of the elastic theory for the construction of the stress
tensor, Ericksen then (1962) immediately turned his attention [26] to the Euler-Lagrange
equations that followed from the Frank-Oseen elastic free energy, Eq. (1). There are four
coefficients, K11, K2y, K33, K»4, the last of which is associated with a total derivative. Ap-
parently a second derivative of the director with respect to space seems to enter the asso-
ciated term. But in fact it does not; after suitable expansion, the second derivatives cancel
out. Notwithstanding our formulation of Frank’s theory in Eq. (1), in his 1958 paper [36] the
second derivatives have been removed and only first derivatives appear explicitly. We add in
passing that another apparently analogous term K3V - [ﬁ(V . ﬁ)] has often been discussed
in the literature, but in this case the second derivative is irreducible, and the term is in some
sense inadmissible at the level of a second gradient expansion [77].

The key point about the K,4 term is that because it is a total derivative, it does not enter
the Euler-Lagrange equations, nor by consequence, the associated elastic stress tensor. The
term only enters the solution of the director problem through boundary conditions, which,
as Ericksen observed, caused considerable problems when thinking about how to measure
it. In fact, Oseen [68] had made a similar observation as long ago as 1924. Oseen noted that
in the elastic theory of solids the 21 apparent constants reduced to 15, and

... the explanation of the contradiction has been given by Lord Kelvin. ...

However, unhelpfully, Oseen fails to give us a reference to the relevant paper by Kelvin!

Though motivated by the physical problem, Ericksen is here concerned by the mathemat-
ics. The K,4 term is what he calls a “nilpotent energy”, but what nowadays we would label
as “null Lagrangian”. What kind of terms can enter the energy functional and not appear in
the resulting equations? This general problem has been extensively discussed subsequently
in the mathematical literature (see, e.g., [66, 67]).

He returns to the null Lagrangian problem in 1966 [27]. In modern language, the null
term can be re-expressed in terms of a quadratic expansion in irreducible director curvatures.
If the undistorted nematic is in equilibrium, the coefficients in the quadratic re-expansion
must all be positive. These coefficients are combinations of the elastic constants K;;. The
consequence is:

Ky > Koy Ky > Kag; Ky >0, @)
results which have come to be known as the Ericksen inequalities.
Ericksen-Leslie Theory
The was a short hiatus between 1963 and 1966 during which Ericksen worked less on liquid

crystals. His interest in liquid crystal problems was rekindled by the arrival of Frank Leslie
(1935-2000) as a sabbatical visitor at Johns Hopkins in August 1966. Leslie, originally from
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Dundee in Scotland, and eventually to finish his career as Professor of Applied Mathematics
at Strathclyde University in Glasgow, was at the time a lecturer in the mathematics depart-
ment in Newcastle, England. His immediate boss was Professor Albert Green, who, as we
have seen, was a specialist in the dynamics of complex fluids and a colleague of Ericksen’s.

It was Green who had recommended Leslie to Ericksen. Under Green’s tutelage, Leslie
had rederived a version of the dynamical part of Ericksen’s liquid crystal theory [52], but
had noted that

... The theory described in this paper allows a fluid to have a preferred direction at each point

... materials called liquid crystals possess such preferred directions. However since the present the-

ory does not reduce to Frank’s hydrostatic theory [36], it would appear inadequate to describe these
materials. ...

The story of the creation of the Ericksen-Leslie theory has been told elsewhere [3, 9], but
bears repetition here. It was Ericksen’s suggestion that Leslie generalize his 1966 paper [52]
(itself partly based on Ericksen’s previous work) so as to complete the hydrodynamic theory
of nematic liquid crystals. After some discussion, it appeared that two key inputs would have
to be (a) the explicit inclusion of the Frank-Oseen elastic theory, and (b) the only attempt so
far to create a dynamic theory of liquid crystals, that of Anzelius [1].

Luckily, by that time Ericksen had been able to get hold of a copy of Anzelius’s Ph.D
thesis from Uppsala University. The good news was that the thesis was not in Swedish. The
bad news was that it was in German, which had been the scientific lingua franca of the time.
Leslie’s German was rudimentary, but the library did own a rather broad German dictionary.
Leslie repaired to the library. After a month, with thesis in one hand and dictionary in the
other, he had made some degree of progress. But it was all painfully slow.

We do not here give an exposition of the full theory, which can be found by now in
many textbooks (see, e.g., [85]), but confine ourselves to a few remarks. Leslie’s new theory
modified and synthesized both Anzelius’s and Ericksen’s previous work. The dynamical part
of the stress tensor t,.lj) now included 6 viscosities:

t[-? = o nin jmn pdiy + aani Nj + a3nj Ni + aad;j + asningdy; + osn jngdy; . (8)
The «; have come to be known as Leslie viscosities. The local viscous body torque was given
by G =n x g, where

& = ViNi +yan;d;;. 9)

In addition the coupling between the fluid motion and its rotation dictated some relations
between the rotational and fluid viscosities:

VI =Q3 —Qy; Y2 =0 — as. (10)

We can compare the new theory to the previous attempts. The theory is able to make
contact with the old shear measurements of both Migsowicz [59, 60] and the rotational
measurements of Tsvetkov [87] mentioned in Sect. 2. As compared to Anzelius, the formula
for t? includes a dependence on the covariant derivative N. Anzelius had not included any
director time derivatives. He did include a viscous torque, but in an inconsistent fashion,
as the stress tensor remained symmetric. Thus in contrast to Anzelius, but in agreement
with Ericksen’s insights, t? was now properly asymmetric. Finally, as compared to Leslie’s
previous paper [52], elastic forces had been included. The result was a theory that now did
reduce to the Frank theory in the hydrostatic limit, and also (as it was designed to be) to

@ Springer



Jerry Ericksen: Liquid Crystal Pioneer 59

the Navier—Stokes equations in the absence of anisotropy, in which case the only remaining
viscosity is oy

Leslie’s paper [53] was only submitted after his return to the UK, and was not published
until 1968. It was modestly entitled “Some constitutive equations for liquid crystals”. Ac-
knowledging his strong intellectual debt to Ericksen, Leslie did suggest that his name be
included as an author. Ericksen would have none of it. It was his rather generous policy not
to include his name on papers written by his graduate students and postdoctoral workers. He
remarks in his autobiography [31] that he had had some bad experiences in collaborating on
publications, and he confirmed his policy in correspondence with one of the present authors.

So the paper appeared under Leslie’s by-line alone. But Ericksen was universally ac-
knowledged by colleagues to have been its grandfather, despite, so to speak, not being named
on its birth certificate. According to current ethical publication convention, he should have
been included as an author of the paper. It was only Ericksen who was surprised that the
theory came to be called the Ericksen-Leslie theory. Given the background, the historical
judgment is surely right.

A final touch to the theory was added by Parodi [73], using the symmetry of Onsager
coefficients in non-equilibrium thermodynamics, in the language of which the Ericksen-
Leslie theory can be rephrased. This gives the relation o — s = «» + 3. In that context, it
is amusing to note Ericksen’s remark in an earlier paper [20]:

We feel that the basic equations are applicable to fluids for which (n may not be variable). We have
less faith in the Clausius-Duhem inequality and Onsager relations. ...

We are led to wonder whether Ericksen’s “less faith” in the Onsager reciprocal relations may
have played a role in missing this relation, which is well verified by experiment.

Ericksen Number
There are three physical sources of director alignment. We consider, as in Sect. 2, a sample
of thickness d, in field H, and with flows of characteristic magnitude v subject to no slip
boundary conditions.

Two of the sources of director alignment are static — “strong anchoring” (i.e., the Dirichlet
boundary condition fixing the director at the boundary) and an imposed magnetic field. The

T | K
competition between them has been considered in Sect. 2. The critical field H. = — | —

XA
from Eq. (2) might be expressed in more modern non-dimensional language by defining the
non-dimensional field as a Frederiks number

Fr= (%‘)l/de. (11)

Thus the elastic energy wins for low Fr and the director is aligned parallel to the boundary
conditions. The magnetic energy wins for high F¢, and the director is then aligned along the

Fr,
field. The transition occurs at critical #¢,. ~ 7 with boundary layers of thickness § ~ 7 d
¢

within which the nematic reorients to be consistent with the surface strong anchoring.

With the establishment of the Ericksen-Leslie theory, it was natural for both Ericksen
[28-30] and Leslie [53] to extend the Frederiks effect to consider competition between flow,
magnetic fields, and surface effects. A key fluid mechanics result in the absence of a field
was the so-called flow alignment in a shear flow [53]. The director orients in a direction
making an angle 6, with the direction of flow in the plane of the shear, where the angle
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depends on the ratio of two of the Leslie viscosities, specifically

tan’6 = = (12)

o2
The simplest case considers the competition between the surface alignment and shear flow
or Poiseuille flow. Ericksen [30] remarks that it would be expected that for thin samples, the
surface effects would dominate, while for thick samples, the bulk flow alignment solutions
would prevail. Following this paradigm, and by analogy with the Reynolds number Re =

dv
pay (p is density, v a typical velocity, n a characteristic dynamic viscosity) which governs

the transition from laminar to turbulent flow, de Gennes [17] was led to define the Ericksen

number, a usage which others have been content to follow (see, e.g., [85]).

__ndv
aia

& (13)

&r can be regarded as the ratio of the effects of viscous to elastic forces, and is the
non-dimensional quantity governing the transition between a sample well-aligned with the
boundary orientation and one subject to flow alignment. For small &z, the surface alignment
effects extend through the whole sample. By contrast, for large &r, the surface alignment
effects only affect thin boundary layers.

Verification of Ericksen-Leslie Theory

The true test of a dynamical theory, no matter how aesthetically attractive, is not its physical
plausibility, nor yet its mathematical consistency, though both are necessarily important. But
the sufficiency test is whether the theory passes tests of experiment.

An early strong hint, which was taken as verification given its a priori lack of plausibility,
came from observations of Poiseuille flow in nematics by Fisher and Frederickson [35].
Atkin [2] was able to compare predictions of the Ericksen-Leslie theory of nematics, with
analogous predictions for the behavior of an isotropic viscoelastic fluid by Coleman and
Noll [15]. The experimentalists measure the apparent viscosity, which for Poiseuille flow is

PR*
80’
where Q is the fluid volume flow per unit time, R is the tube radius, and P is the pressure
gradient.

Then if the nematic were behaving like a viscoelastic fluid, one would expect [15] 1,p, =
f(QR™3). By contrast the Ericksen-Leslie theory predicts [2] Napp = g(OR™"), where f, g
are unknown functions which permit flow curves for different flow rates and tube sizes to
collapse onto a single curve. The different scaling predictions of the two types of theory
provide quite a stringent test of nematic hydrodynamics, which the Ericksen-Leslie theory
was able to pass successfully.

(14)

Napp =TT

3.2 Ericksen’s Influence on the Development of Liquid Crystal Science

Most contemporary scientists, even mathematicians, often publish jointly. A good first in-
dicator of manner in which the ideas of individual researchers have penetrated their chosen
field can be gathered by examining — or rather, by asking your computer to examine, for
otherwise it will take too long — the network of their publication links. A link here indicates
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Fig.1 Frank Leslie and Jerry
Ericksen. The photograph dates
from the late 1970s when
Ericksen was visiting Glasgow.
Courtesy Ellen Leslie

the existence of a joint publication, with nodes in the network representing authors of arti-
cles. Most workers in the mathematical sciences, for example, will be aware of their Erdos
Number — the shortest number of connected nodes in the publication network required to
link them with the famous Hungarian mathematician Paul Erdds (1913-1996). Only a di-
minishing tribe of mathematical aristocrats can boast an Erdés number of 1.

But Jerry Ericksen possesses a very restricted local network. From his 145 publications
up to 2005, I can find only 7 co-authors — some extremely distinguished, to be sure — but all
from before his liquid crystal period. By then a bad experience had convinced him to eschew
joint publication. From the formal publication record there were no — (zero!) — liquid crystal
collaborators. The computational sociologist would draw a blank. But as we know all too
well, sometimes it behoves us to think before we calculate and not afterward. The links were
present, but must be examined with greater subtlety than merely by counting.

Nevertheless some counting does yield results. One measure of his influence on the de-
velopment of liquid crystal science and technology comes from a search on Google Scholar
using the terms “Ericksen—Leslie” or “Leslie-Ericksen”. This yields some 7000 entries. Two
early papers on anisotropic fluids [19, 23] have been cited over 1000 times, while Leslie’s
1968 paper [53], for which we assert Ericksen’s moral co-authorship, has been cited on al-
most 2000 occasions. A number of other articles have citation rates well into the hundreds.
Ericksen himself would surely have vigorously repudiated citation scores as a measure of
scientific excellence. But these scores do serve as a sociological indication of scientific in-
fluence, and at least to some extent, this may be regarded as an imperfect surrogate for
quality.

Ericksen continued his work in liquid crystals for another thirty years, dividing his tie be-
tween “pure” mathematical and “applied” engineering problems. Only part of his enormous
influence on the field follows directly from the Ericksen-Leslie theory. His close comrade-
ship with his erstwhile apprentice Frank Leslie continued until Leslie’s premature death in
June 2000. Figure 1, a picture of Leslie and Ericksen taken sometime in the late 1970s when
Ericksen was visiting Glasgow, attests to their continuing collaboration.

It is important to recall that at the University of Minnesota, where he arrived in 1982,
Jerry was a joint faculty member of the Department of Aerospace Engineering and Me-
chanics, and the School of Mathematics. And through his active and prominent role at the
newly founded “Institute for Mathematics and its Applications” of the National Science
Foundation, both Jerry the Mathematician and Jerry the Engineer played an active role in
organizing, encouraging, exchanging views and mentoring younger workers and postdoc-
toral fellows
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Given that the theory’s paradigmatic status, many hundreds of papers have been written
— indeed, are being written — by mathematicians discussing the conditions under which
solutions of the Ericksen-Leslie equations exist, are unique etc. (e.g., [56]). But these studies
were started by colleagues of Ericksen’s and in some sense under his tutelage.

Thus in 1986 Hardt et al. [41] studied the nature of the solutions to the Frank-Oseen
static liquid crystal configurations. Then in 1992 Bethuel et al. [6] studied these equations
in a cylindrical tube, examining a bifurcation to broken symmetry solutions which avoid
a singular defect line, known as “escape in the third dimension”. This work came out of
experiments by Patricia Cladis (1938-2017) and Maurice Kléman (1934-2021) in Paris [13,
58]; the physicists Cladis and Kléman were able to locate the correct solution, but more by
accident and physical intuition than by design. Studies of the mathematical structure of the
solutions of the Ericksen-Leslie model itself started with a 1995 study by Lin and Liu in
Communications on Pure and Applied Mathematics [55].

Ericksen the engineer kept in close contact with experimentalists. Patricia Cladis at Bell
Labs was close; her studies [12, 14] of flow in nematic systems were directly inspired by
Ericksen. Another close colleague also at Bell Labs, was the optical physicist Dwight Berre-
man who constructed numerical models to solve the Ericksen-Leslie equations in device
cells. In fact, there has been a long subsequent tradition addressing the question of the con-
struction of efficient numerical methods for Ericksen-Leslie problems (e.g., [4]). Finally no
mention of Ericksen’s colleagues would miss his interaction with the Liquid Crystal Insti-
tute at Kent State University, founded in 1965 by the chemist Glenn H. Brown (1915-1995),
and still one of the leading centers of liquid crystal work.

4 Afterword

We stop our detailed discussion of Ericksen’s contribution at this point. The decade of work
which led up to the creation of the Ericksen-Leslie theory seems in historical hindsight to
have been designed with the launch of the liquid crystal display (or simply “LCD”) industry
in mind (see, e.g., [10, 40, 80] for discussions of this progress). In the 1990s and 2000s, flat
screens, many of which used liquid crystal technology, rapidly replaced the bulky cathode-
ray-tube-based TVs of the 1950s. The development of smart phones in recent years likewise
depends almost totally on LCD’s.

The continuum theory of liquid crystals has been an essential tool not only for device
modeling, but also in device design. For once it was known that the theory accurately mod-
eled device characteristics, designers were able to specify desirable properties (e.g., low
voltage switching, rapid switching times etc.). These in turn depended on specific elastic
constants or viscosities, influencing theoretical physicists and chemists to seek links be-
tween molecular and macroscopic properties (e.g., [74, 83]).

Thus the Ericksen-Leslie theory is by now standard. All liquid crystal textbooks (e.g.,
[11, 17,72, 85], but there are many others) include chapters on the basic equations, together
with a consideration of some simple cases to show which parameters are important where.
The theory has also been extended, using essentially the Ericksen philosophy, to a whole
host of smectic and chiral phases (e.g., [7, 85]). The theory has also been rederived using
a Lagrangian and a Rayleigh dissipation function [88], and also using a Poisson bracket
approach [84].

Notwithstanding its continuing success, there are outstanding problems, and the the-
ory has not been without controversy. An alternative generalized continuum theory (the
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so-called “Harvard theory”) was published in 1972 by Martin, Parodi and Pershan [57]. Ac-
cording to the authors of this paper, their formulation would apply to fluids, crystals and
liquid crystals. Only following some rather heavy calculations was de Gennes [17] able to
show that for liquid crystals, this approach was equivalent to that of Ericksen and Leslie.

A more serious challenge came from the distinguished Turkish Princeton engineering
scientist A. Cemal Eringen (1921-2009). Eringen had his own general formulation of com-
plex fluid dynamics, which he called “micropolar fluid theory” [32], and which has been
immensely influential. The early application to liquid crystals was published in 1971 by Lee
and Eringen [48, 49], with some later specific comparisons with Ericksen-Leslie by Lee and
Eringen [33, 34, 50] and by Rymarz [75].

Here is not the place to discuss this comparison in detail. It appears (after pages and pages
of calculation!) that if the Eringen theory is slightly adapted, and some limits are taken, then
the two theories do appear to give identical results. But in addition to purely academic ques-
tions, there do seem to be some personal issues involved. It seems that Eringen and Ericksen
were not in later life the best of friends. Eringen certainly felt insulted that his approach had
been ignored by the community. In his 1993 comparison with theory with Ericksen-Leslie
[34], he remarks rather bitterly that Leslie’s review [54], with 268 (!) references, did not see
fit to mention his work [33], but did draw attention to critical remarks about papers of Lee
and Eringen [48, 49].

What is the case, however, is that the Ericksen-Leslie approach seems not yet to be able
to treat compressible or highly stressed liquid crystals, and even in the incompressible case
fails as soon as defects are present. In many practical cases, defect lines are ubiquitous,
and indeed it is their presence which causes the dramatic colored characteristic patterns (so-
called “textures”) visible through crossed polarizers under the microscope. Generalizations
of Ericksen-Leslie, which either could be regarded as more complete Eringen theories or
time-dependent Landau theories, and which employ the so-called Q-tensor approach [5, 64,
65], have been extensively used. The existence of “active liquid crystals” in living organisms,
playing a role in embryonic development [18], implies that Jerry Ericksen’s influence on
liquid crystal science will continue for some time yet.
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