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Abstract
Despite the numerous applications of pressurized graphene membranes in new technologies,
there is still a lack of accurate mechanical models. In this work we develop a continuum
model for circular graphene membranes subjected to uniform lateral pressure. We adopt a
semi-inverse method by defining a simplified kinematics of deformation and we describe
the material behavior with a stored energy function that takes into account both nonlinearity
and anisotropy of graphene. An expression of the applied pressure as a function of the de-
flection of the membrane is obtained from an approximate solution of the equilibrium. The
simplifying hypotheses of the analytical model are verified by a finite element (FE) anal-
ysis in nonlinear elasticity. In addition, a numerical solution of the differential equilibrium
equations of the exact theory is presented. The pressure-deflection response from FE and
numerical solutions agree well with the prediction of the analytical formula, demonstrating
its accuracy. The analytical solution is then employed for the response of a two-layered com-
posite membrane made of graphene deposited onto a soft substrate. This application is of
great interest since new nanotechnologies make use of layered nanocomposites. Differently
from our entirely nonlinear approach, most continuum models in the literature are based
on the assumption of linear elastic material, which is suitable only when deformations are
small. The present work gives a comprehensive description of the mechanics of pressurized
graphene membranes.
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1 Introduction

Numerous applications in new technologies involve the use of graphene. The extraordi-
nary mechanical, thermal and electrical properties of this material attracted the interest of

� M. Pelliciari
matteo.pelliciari@unimore.it

A.M. Tarantino
angelomarcello.tarantino@unimore.it

1 DIEF, Department of Engineering “Enzo Ferrari”, via Pietro Vivarelli 10, 41125 Modena, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-022-09937-w&domain=pdf
http://orcid.org/0000-0002-0793-1524
mailto:matteo.pelliciari@unimore.it
mailto:angelomarcello.tarantino@unimore.it


274 M. Pelliciari, A.M. Tarantino

researchers from many engineering fields. In fact, graphene is used in micro-and nano-
electronic devices [56, 70], biomedicine [57], nanocomposite materials [16, 43, 55], energy
generation and storage [51, 54], electrochemical sensors [27], and many other applications.

Graphene membranes are impermeable to standard gases and therefore they are often
used for pressure sensors [5]. Pressurized graphene membranes provide a one-atom-thick
separation barrier that can support large pressure differences. Liu et al. [36] reported the
outstanding molecular separation properties of graphene membranes, which can be applied
to pressure filtration, pervaporation and gas separation. Graphene membranes are also used
as piezoresistive pressure sensors [72] and as pressure sensors for detecting human motions
[59]. Wang et al. [63] presented a graphene-based microelectromechanical system (MEMS)
pressure sensor and showed that, thanks to its high sensitivity, it outperforms most existing
MEMS sensors. Moreover, polymer nanocomposite membranes based on graphene find new
and promising technological applications [28, 41].

Despite the enormous potential of pressurized graphene membranes, there is still a lack
of accurate mechanical models. Wang et al. [62] analyzed the problem of circular graphene
membranes subjected to uniform lateral pressure and proposed approximate analytical solu-
tions based on the assumption of linear elastic material. They carried out molecular dynam-
ics simulations on a nanoscale membrane and it was found that the approximate solutions
are suitable only for small deflections (linear elasticity). Jiang et al. [25] and Wang et al.
[60] carried out FE simulations by modeling the graphene sheet with, respectively, plate
and shell elements composed of linear elastic material. Li et al. [33] proposed a continuum
model based on the large deflection elastic theory of circular membranes and investigated
the effect of variations of the membrane parameters by using FE simulations.

The above models are all based on the hypothesis of linear elastic constitutive response
of graphene. However, experiments and numerical simulations showed that graphene ex-
hibits a pronounced material nonlinearity, which derives from the nonlinear carbon-carbon
interactions in the hexagonal lattice [32, 37, 48, 50]. In addition, graphene is isotropic only
for infinitesimal deformations, while in the theory of large deformations its anisotropy must
be taken into account [24]. This behavior of graphene is not considered in the models men-
tioned above. Against this background, there are still important issues that must be addressed
to provide a comprehensive description of the mechanics of circular pressurized graphene
membranes.

In the present work, we address this problem in the framework of finite elasticity. We
adopt a semi-inverse method by defining a simplified kinematics of deformation of the circu-
lar pressurized membrane. Consequently, we consider the anisotropic hyperelastic material
model for graphene proposed by Höller et al. [23] and we derive the stress measures. The
equilibrium is then written and an approximate solution is derived. Thereby, an expression
of the applied pressure as a function of the deflection of the central point of the membrane
is proposed. The simplifying hypotheses of the proposed analytical solution are verified
by a FE simulation in nonlinear elasticity. The FE simulation was carried out in software
COMSOL Multiphysics. Both material and geometric nonlinearities were considered.

As mentioned above, in order to derive an analytical solution, the equilibrium problem
is written under a simplifying assumption on the kinematics of deformation. With the aim
of providing a comprehensive investigation of the mechanics of pressurized graphene mem-
branes, such assumption is abandoned and the differential equilibrium equations of the exact
theory are derived. A numerical procedure to solve such system of equations is presented.
The results from FE, numerical and analytical solutions are compared to show that the pro-
posed pressure-deflection relation is accurate. We also present a comparison with other re-
sults from experiments and simulations found in the literature.
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Fig. 1 (a) Circular graphene membrane subjected to uniform lateral pressure and (b) kinematics of deforma-
tion in the R-Z plane based on the assumption that the membrane transforms into a spherical cap with origin
in C

The analytical solution is then employed for the prediction of the response of composite
membranes made of graphene deposited on a soft substrate. This topic has gained more
and more attention because of the numerous applications in new nanotechnologies (see,
e.g, [10, 11, 13, 34, 58]). A pressure-deflection relation for a two-layered nanocomposite is
proposed and the effect of graphene on the final response is investigated. An expression of
the equivalent Young’s modulus is derived from the linearized theory.

The paper is organized as follows. The hyperelastic model and the approximate analytical
solution for circular graphene membranes under uniform lateral pressure are presented in
Sect. 2. The FE model is described in Sect. 3 and the numerical solution of the equilibrium
problem is presented in Sect. 4. The results are given in Sect. 5. The proposed analytical
solution is firstly compared with the FE and numerical simulations and then with other
results from the literature. In Sect. 6 we analyze the case of layered membranes composed
of graphene deposited onto a soft surface. Conclusions are drawn in Sect. 7.

2 Hyperelastic Model and Approximate Analytical Solution

The circular pressurized graphene membrane is depicted in Fig. 1a. The undeformed flat
membrane has radius a and thickness t . We introduce a Cartesian coordinate system
(X,Y,Z) and a cylindrical coordinate system (R,�,Z), both with origin in O . Directions
X and Y correspond respectively to zigzag and armchair directions in the graphene hexago-
nal lattice [6, 30]. The membrane is subjected to the uniform pressure p and material point
P moves to P ′. We assume that the membrane preserves its rotational symmetry after defor-
mation, therefore �′ = �. The coordinates of P ′ in deformed configuration are (R′,�,Z′).

We assume that the initially flat membrane transforms into a spherical cap. Note that the
ultimate strain of graphene subjected to uniaxial elongation is around 15-20% [61, 67, 71].
Since the deformations involved are moderately large, the assumption that the membrane
transforms into a spherical cap gives an appropriate description of the kinematics of defor-
mation [69]. This hypothesis will be verified by the FE simulation in Sect. 3. We remark that
in the present analysis the out-of-plane bending stiffness of graphene is ignored. The formu-
lation is thus valid for deformation states in which the contribution of bending to the strain
energy density is negligible compared to that of the in-plane deformation. In light of this,
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the linear behavior at small deflections is not well captured because, in such circumstance,
graphene behaves as an elastic plate instead of a membrane.

The membrane deforms according to the kinematics of Fig. 1b. The spherical cap is
centered in point C and has radius ρ. Displacement field u(P ) of point P with coordinates
(R,�,0) has the following expression in cylindrical coordinates:

uR(P ) = R′ − R = ρ sinψ − R,

u�(P ) = 0,

uZ(P ) = Z′ = ρ (cosψ − cosψ0) ,

where ψ0 ∈ (0,π) and

ρ = a

sinψ0
, ψ = ψ0R

a
.

The deformation of point P is ϕ(P ) = id(P ) + u(P )1 and its representation in cylindrical
coordinates is

ϕR(P ) = ρ sinψ,

ϕ�(P ) = �,

ϕZ(P ) = ρ (cosψ − cosψ0) .

In order to derive the deformation gradient F we must introduce the contraction of
the membrane thickness, which is expressed by stretch λZ . However, we are considering
a single-layer graphene sheet whose thickness corresponds to the diameter of the carbon
atom. From a physical point of view it is hard to imagine that such thin membrane can un-
dergo a transverse contraction, because this would produce a reduction of the dimension
of the atom. In light of this, the most reasonable assumption is that λZ = 1 throughout the
deformation process, which means that thickness t of the undeformed membrane remains
unchanged (t ′ = t ). In this section we proceed according to such an assumption. However,
the lack of experimental observation does not allow to validate this hypothesis. Hence, we
also propose a solution considering the transverse contraction, which is outlined in Ap-
pendix A. The results from both solutions will be presented and compared. It is remarked
that the most common hypothesis for graphene is that λZ = 1 [40]. Nevertheless, the so-
lution in Appendix A may be a good basis for continuum models of multilayer graphene,
where transverse contraction certainly plays a role.

Under the assumption that λZ = 1, the deformation gradient is derived as follows [46]:

[F] =

⎡
⎢⎢⎢⎢⎢⎣

∂ϕR

∂R

1

R

∂ϕR

∂�
sinψ

ϕR

∂ϕ�

∂R

ϕR

R

∂ϕ�

∂�
0

∂ϕZ

∂R

1

R

∂ϕZ

∂�
cosψ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ
∂ψ

∂R
cosψ 0 sinψ

0
ρ sinψ

R
0

−ρ
∂ψ

∂R
sinψ 0 cosψ

⎤
⎥⎥⎥⎥⎥⎦

.

1id(P ) indicates the position vector of point P .
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The polar decomposition of the deformation gradient, F = RU, allows us to write rotation
tensor R and right stretch tensor U as

[R] =
⎡
⎣

cosψ 0 sinψ

0 1 0
− sinψ 0 cosψ

⎤
⎦ , [U] =

⎡
⎢⎢⎢⎣

ρ
∂ψ

∂R
0 0

0
ρ sinψ

R
0

0 0 1

⎤
⎥⎥⎥⎦ . (1)

Tensor U is diagonal and therefore the cylindrical coordinate system (R,�,Z) is principal.
Hence, from (1) we derive the following expressions of the principal stretches:

λR = ρ
∂ψ

∂R
= ρψ0

a
, λ� = ρ sinψ

R
. (2)

Radial stretch λR is not a function of position because we assumed that the membrane de-
forms into a spherical cap.

The right Cauchy-Green deformation tensor, C = FT F, is computed and expressed in
cylindrical coordinates as

[C] =
⎡
⎣

λ2
R 0 0
0 λ2

� 0
0 0 1

⎤
⎦ ,

with λR and λ� given by (2). The Green-Lagrange strain tensor, E = (C − I) /2, has the
following diagonal form:

[E] =
⎡
⎣

ER 0 0
0 E� 0
0 0 EZ

⎤
⎦ = 1

2

⎡
⎣

λ2
R − 1 0 0

0 λ2
� − 1 0

0 0 0

⎤
⎦ . (3)

The extensive number of investigations on the mechanical behavior of graphene demon-
strated that this material is isotropic only for small deformations, while anisotropy arises
when deformations become large [24, 42]. This is due to the particular symmetry and pe-
riodicity of the graphene honeycomb lattice. To this regard, Kumar and Parks [31] used
the isotropicization theorem [53] to define an additional invariant of the Green-Lagrange
strain tensor that reproduces the anisotropic nature of graphene. We introduce tensors
M = nX ⊗nX −nY ⊗nY

2 and N = nX ⊗nY +nY ⊗nX , which define the material symmetry
group of graphene. Thereby, the strain energy density of graphene is written as a function of
the following strain invariants:

I1 = trE = ER + E�,

I2 = 1

2

[
(trE)2 − tr

(
E2

)] = ERE�,

I3 = (M · E)3 − 3 (M · E) (N · E)2 = (ER − E�)3 cos (6φ) ,

(4)

where φ ∈ [0,π/6] and it represents the angle that principal direction 1 forms with zigzag
direction (Fig. 2). Symmetry and periodicity of graphene allows us to investigate its material

2Unit vectors nX and nY identify respectively directions X and Y of the Cartesian coordinate system. Sym-
bols ⊗ and (·) denote dyadic product and second-order tensor contraction, respectively.
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Fig. 2 Representation of the
periodicity in the lattice structure
of graphene, which repeats itself
allowing to study its mechanical
response within the domain
identified by φ ∈ [0,π/6]

behavior in the domain between zigzag and armchair directions, inside which φ = �. Note
that, in (4), I1 and I2 are the isotropic principal invariants of the Green-Lagrange strain
tensor [47]. Anisotropy is introduced with the third invariant I3, which plays a role only
when deformations are relatively large and ER �= E�. Equation (4) is rewritten as a function
of the principal stretches as follows:

I1 = 1

2

(
λ2

R + λ2
� − 2

)
,

I2 = 1

4

(
λ2

R − 1
) (

λ2
� − 1

)
,

I3 = 1

8

(
λ2

R − λ2
�

)3
cos (6φ) .

(5)

In general, circular membranes composed of anisotropic materials lose their rotational
symmetry when subjected to uniform lateral pressure. Nevertheless, this effect is negligi-
ble for the particular case of graphene and the reason is as follows. As already pointed
out, graphene breaks for deformations that are not very large. The ultimate value of
strain is reached before that invariant I3 assumes a sensible importance. Specifically, term(
λ2

R − λ2
�

)3
is negligible with respect to the values assumed by the isotropic invariants I1

and I2. Given the above, the hypothesis of axisymmetric kinematics of deformation is still
valid and gives a simplified but effective description of the actual behavior of graphene. In
any case, this assumption will be verified by the FE simulation, which will be presented in
Sect. 3. This hypothesis on the kinematics makes it possible to derive a pressure-deflection
relation for the membrane problem. This clarifies the necessity and effectiveness of such
assumption.

In this work, we consider the stored energy function for graphene introduced by Höller
et al. [23] by fitting density functional theory (DFT) simulations. Subsequent works [45, 49]
showed its validity and accuracy in the prediction of the graphene response subjected to
large in-plane deformations. In particular, in [45], a new set of constitutive parameters was
calibrated by fitting FE molecular mechanics simulations under both uniaxial and equibiax-
ial loads. The hyperelastic model provided accurate predictions of the graphene mechanics
and therefore we consider the constitutive parameters proposed in such work. It goes with-
out saying that there are other hyperelastic models for graphene in the literature (see, e.g.,
[31, 64, 65]). Also these models have been proven to provide accurate and reliable predic-
tions of the graphene mechanics. The choice of the constitutive function in this work was
mainly driven by its particularly straightforward mathematical description.
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The stored energy function proposed in [23] is

ω(I1, I2, I3) = 1

t

3∑
k=1

ckIk + 1

t

11∑
h=1

ch+3Jh, (6)

where c1 – c14 are polynomial fitting coefficients with dimension of energy per unit area,
whose values are reported in Table 3 of work [45]. Invariants Jh are defined as polynomial
combinations of I1, I2 and I3 and their expressions are given in [23]. Being graphene a one-
atom-thick layer, it is often treated as a two-dimensional material. In the expression of the
stored energy function (6), we divided by thickness t so as to regard the graphene membrane
as a three-dimensional solid and evaluate stress components with the usual dimension of
force per unit area.

The second Piola-Kirchhoff stress tensor is energetically conjugated to the Green-
Lagrange strain tensor and thus it is computed as

� = ∂ω

∂E
(I1, I2, I3) =

3∑
k=1

∂ω

∂Ik

∂Ik

∂E
, (7)

where the derivatives of the principal invariants with respect to E are

∂I1

∂E
= nX ⊗ nX + nY ⊗ nY ,

∂I2

∂E
= I1 (nX ⊗ nX + nY ⊗ nY ) − E,

∂I3

∂E
= S,

with S = 3
[
(M · E)2 − (N · E)2]M − 6 [(M · E) (N · E)] N, whose representation in the

cylindrical coordinate system is

[S] = 3 (ER − E�)2

⎡
⎣

cos (6φ) − sin (6φ) 0
− sin (6φ) − cos (6φ) 0

0 0 0

⎤
⎦ .

We introduce invariants β1, β2 and β3, defined as

β1 = c1 + c2I1 − 3c5I2 + c6

(
I 2

1 + I2

) − 4c7I1I2 + 2c8I1I2 + c9

(
I 3

1 − 2I1I2

)

+ 5c10
(
I 2

2 − I 2
1 I2

) + c11
(
I 4

1 − 3I 2
2 − 3I 2

1 I2
) + c12

(
I 2

2 + 2I 2
1 I2

) + c13I3,

β2 = − c2 + 2c4 + 3c5I1 − c6I1 + 4c7

(
I 2

1 − I2

) − 2c8I2 + c9

(
4I2 − I 2

1

)

+ 5c10

(
I 3

1 − 2I1I2

) + c11

(
6I1I2 − I 3

1

) − 2c12I1I2 + 2c14I3,

β3 = c3 + c13I1 + c14
(
I 2

1 − 2I2
)
.

(8)

From (7) we derive the following expressions for the components of the symmetric second
Piola-Kirchhoff stress tensor:

�RR = β1

t
+ β2

2t

(
λ2

R − 1
) + 3β3

4t

(
λ2

R − λ2
�

)2
cos(6φ),

��� = β1

t
+ β2

2t

(
λ2

� − 1
) − 3β3

4t

(
λ2

R − λ2
�

)2
cos(6φ),

�R� = −3β3

4t

(
λ2

R − λ2
�

)2
sin(6φ),

�RZ = ��Z = �ZZ = 0.

(9)
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It is assumed that the graphene undeformed configuration is stress free and therefore c1 = 0.
Having at hand the second Piola-Kirchhoff stress tensor, the other stress measures can be

derived. The first Piola-Kirchhoff stress tensor, TR = F�, reads

[TR] =
⎡
⎣

λR�RR cosψ λR�R� cosψ 0
λ��R� λ���� 0

−λR�RR sinψ −λR�R� sinψ 0

⎤
⎦ . (10)

We observe that TRnZ = 0. This guarantees that the stress component normal to the de-
formed membrane is zero, as required by the membrane stress state. TR is not diagonal
in reference system (R,�,Z), which is principal regarding the deformation. Hence, the
principal strain directions do not coincide with the principal stress directions. This is not
a surprise given that graphene is described by an anisotropic material model. In order to
write the equilibrium in deformed configuration, we now derive the Cauchy stress tensor
T = TRFT /detF. By definition, tensor T is symmetric and its components are

TRR = λR

λ�

�RR cos2 ψ, T�� = λ�

λR

���, TZZ = λR

λ�

�RR sin2 ψ,

TR� = �R� cosψ, TRZ = −λR

λ�

�RR cosψ sinψ, T�Z = −�R� sinψ.

(11)
At this point, the equilibrium allows us to derive a relationship between applied pressure

and deflection of the membrane. We adopted a semi-inverse approach, with which we set
an appropriate kinematics of deformation and accordingly we obtained the stress tensors.
The kinematics of the model is not exact and thus the local equilibrium equations can not be
solved in every internal point of the membrane. The exact solution to the local equilibrium
is not known and it would include a more general kinematics. Nevertheless, we derive an
approximate analytical solution by imposing the equilibrium between applied pressure and
internal stresses in the neighborhood of the central point of the membrane. With this aim, we
firstly compute the Cauchy stress tensor for the limit case of R → 0. In this circumstance,
radial and circumferential stretches are equal to each other (λR = λ�|R→0 = λ). Third in-
variant I3 goes to zero and the only non-zero components of the Cauchy stress tensor are

TRR|R→0 = T��|R→0 = T0 = 1

t
β1|R→0 + 1

2t

(
ψ2

0 cscψ2
0 − 1

)
β2|R→0 . (12)

In the neighborhood of the central point, equilibrium along Z direction reads

p
(
πρ2dψ2

) = T0 (2πρdψt) dψ,

from which we derive the following relationship between lateral pressure and kinematic
parameter ρ:

p = 2T0t

ρ
. (13)

Using (12), (8) and (5) and recalling that ρ = a/ sinψ0, equation (13) takes the form

p = 1

8a
sinψ0

4∑
j=1

κj

(
ψ2

0 csc2 ψ0 − 1
)j

, (14)
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where

κ1 = 8 (c2 + 2c4) , κ2 = 12 (c5 + c6) , κ3 = 4 (2c7 + c8 + 2c9) ,

κ4 = 5 (c10 + c11 + c12) .

Angle ψ0 is related to displacement δ of the central node through ψ0 = 2 arctan δ̄, with δ̄ =
δ/a denoting the normalized deflection. By substitution into (14), the pressure-deflection
relation for circular graphene membranes is finally obtained.

2.1 Linearized Formulation

Graphene is isotropic when deformations are small. Hence, in linear elasticity its material
behavior is entirely described by two constants: Young’s modulus E and Poisson’s ratio ν.
Expressions for E and ν can be derived from the finite theory by introducing the hypothesis
that both displacements and displacement gradients are small [9, 18]. To this aim, strain and
stress measures are developed in Taylor series as functions of ψ0 and they are truncated at
the second order. The Green-Lagrange strain tensor, expressed by (3), assumes the following
linearized expression:

[E] ∼=

⎡
⎢⎢⎢⎣

ψ2
0

6
0 0

0
(a − R)(a + R)ψ2

0

6a2
0

0 0 0

⎤
⎥⎥⎥⎦ . (15)

Tensor E is the infinitesimal strain tensor in the classical linear theory.
The linearization of the second Piola-Kirchhoff stress tensor �, given by (9), provides

[�] ∼=

⎡
⎢⎢⎢⎢⎣

ψ2
0

6t

[(
1 − R2

a2

)
c2 + 2c4

]
0 0

0
ψ2

0

6t

[
c2 + 2

(
1 − R2

a2

)
c4

]
0

0 0 0

⎤
⎥⎥⎥⎥⎦

. (16)

The development in Taylor series of both TR and T (equations (11) and (10) respectively),
with truncation at the second order in ψ0, gives the same result as (16). Therefore, as it
should be, in the linearized theory all the stress measures coincide and we may refer only to
a single stress tensor, expressed by (16). Furthermore, we notice that the representation of
the stress tensor in the principal strain system is diagonal. This indicates that in the linearized
theory principal strain and stress directions coincide. This because graphene is isotropic for
small deformations.

The Navier’s constitutive relationships for plane stress are

σR = E

1 − ν2
(εR + νε�) ,

σ� = E

1 − ν2
(ε� + νεR) .

(17)

Stress components σR and σ� are given respectively by the radial and circumferential com-
ponents of the linearized stress tensor (16). Same goes for strain components εR and ε�,
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which are expressed by the strain tensor (15). Equation (17) transforms into the following
linear system of two equations in the two unknown variables E and ν:

8a2c4 + 4c2(a − R)(a + R)

t
+ E

[
4a2(ν + 1) − 4νR2

]
ν2 − 1

= 0,

4a2c2 + 8c4(a − R)(a + R)

t
+ E

[
4a2(ν + 1) − 4R2

]
ν2 − 1

= 0,

whose solution gives the expressions of the elastic constants of graphene in linear elasticity

E = 1

t

(
2c4 − c2

2

2c4

)
, ν = c2

2c4
. (18)

This result corresponds to that derived by Höller et al. [23]. Under the hypothesis of homo-
geneous deformations, the authors obtained the expression of the tangent elasticity tensor.
The linearization of such tensor with E → 0 provided the Young’s modulus and Poisson’s
ratio given in (18).

The linearized form of the pressure-deflection relation is obtained by developing (14)
in Taylor series as function of ψ0 and truncating at the third order. Constitutive parameters
c2 and c4 are written as functions of E and ν by using (18). The following expression is
derived:

p = 8Et

3a (1 − ν)
arctan3 δ̄. (19)

3 Finite Element Simulation

The formulation presented in the previous section is based on the following assumptions on
the kinematics of deformation: (i) The deformed membrane preserves rotational symmetry;
(ii) The membrane transforms into a spherical cap. Such assumptions allowed us to derive
an approximate expression for the pressure-deflection relation. In this section, we present a
FE analysis with the aim of verifying the validity of the above assumptions.

The FE model was realized by using software COMSOL Multiphysics version 6.0. The
3D membrane interface of the structural mechanics module was selected. This interface
allows to model plane stress elements without bending stiffness that can deform both in the
in-plane and out-of-plane directions.

The geometry of the membrane was defined through a work plane, in which a circle with
radius a = 2.375 µm was built. This value of a is the one considered in the experimental and
numerical investigations of works [25, 29, 60]. We will present comparisons of the results
in the next section. The thickness of the membrane was set to t = 0.335 nm. A fixed con-
straint was assigned along the perimeter. This reproduces the condition for which, along the
constrained geometry, displacements are zero in all directions. A pressure load was applied
to the free face of the membrane. The pressure load is a follower load, therefore its direction
changes with deformation in the geometrically nonlinear analysis.

In the COMSOL membrane analysis it is necessary to apply a tensile prestress. This in
order to avoid the singularity due to the fact that the undeformed membrane has no transverse
stiffness. In our model, the prestress was introduced as an external in-plane force of 0.001
N/m, which is negligible compared to the stress values acting in the graphene membrane
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Fig. 3 FE simulation with COMSOL Multiphysics: (a) Subdivided domain to define the anisotropic material
properties of graphene; (b) Mesh used for the analysis; (c) Deformed configuration of the circular graphene
membrane after application of a uniform lateral pressure

during the simulation. The sole scope of the prestress was to avoid the singularity and allow
the solver to find a solution.

The material behavior was defined through the user-defined compressible hyperelastic
material. In detail, the isotropic invariants were introduced as local variables according to
(4). Anisotropy was added by subdividing the domain into subdomains. To do this, the mem-
brane was cut by planes parallel to direction Z and containing central point O . Starting from
direction X, a plane was defined for every angle increment of 5 degrees (see Fig. 3a). The
entire domain was thus partitioned into 72 subdomains. In each of them, invariant I3 was
defined as a local variable with the corresponding value of cos (6φ). In other words, the
variation of term cos (6φ) in the expression of I3 was introduced in a discrete way by sub-
dividing the membrane domain into several subdomains. It goes without saying that this is
a simplification, but it gives a reasonable approximation of the continuous variation of I3 as
a function of φ. One may further subdivide the domain in order to reach more accuracy, but
as we will see in the following the contribution of graphene anisotropy is negligible in the
problem analyzed. The subdivision into 72 subdomains is already enough.

The mesh was composed of triangular elements with minimum and maximum size of,
respectively, 0.019 and 0.26 µm (Fig. 3b). A stationary simulation was carried out and the
applied pressure was increased from 5 Pa to 18 MPa. The stationary solver MUMPS was
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Fig. 4 Pressure-deflection
curves, with δ̄ = δ/a, obtained
from the FE analysis of a circular
graphene sheet with radius
2.375 µm. The setup of FE model
1 is such as to avoid transverse
contraction of graphene, while it
is included in FE model 2. The
ultimate pressure, normalized
deflection and stretch at the pole
are denoted by pu, δ̄u and λu ,
respectively

employed. Figure 3c shows the deformed configuration of the circular graphene membrane
for a certain value of applied pressure.

The 3D membrane model in COMSOL involves transverse contraction of the membrane.
In order to avoid this, the term c∞ (λZ − 1)2 was added to the energy density function in-
troduced in the user-defined compressible hyperelastic material. The value of parameter c∞
was set as three orders of magnitude larger than the maximum value among parameters
c1 – c14. In this way the membrane was much stiffer in Z direction and the values of the
corresponding component of deformation were negligible with respect to both radial and
circumferential deformations. This FE model setup is consistent with the hypothesis of the
analytical solution presented in the previous section and, from now on, it will be referred
as FE model 1. Another simulation was carried out after removing term c∞ (λZ − 1)2. This
setup involves transverse contraction of the membrane and therefore it is consistent with the
solution outlined in Appendix A. This second model will be referred as FE model 2.

The pressure-deflection curves obtained from the FE analysis are displayed in Fig. 4. The
simulation of FE model 1 stopped at the ultimate value of pressure pu = 16.80 MPa because
an unstable (buckling) equilibrium configuration was reached. Namely, further increasing
deflections require decreasing values of pressure to guarantee equilibrium. The ultimate
value of stretch at the pole is λu = 1.18, which corresponds to the ultimate normalized
displacement δ̄u = 0.455. Same goes for FE model 2, but the ultimate value of pressure is
pu = 13.13 MPa, which took place at λu = 1.17 and δ̄u = 0.415.

Although the stress state in the FE simulation is not equibiaxial, the value of λu is con-
sistent with results in the literature obtained from simulations of graphene under equibiaxial
loads. For instance, Cao et al. [7] and Marianetti and Yevick [39] carried out density func-
tional theory (DFT) simulations and reported an ultimate strain close to 0.15. Yazdani and
Hatami [68] and Pelliciari et al. [45] obtained from molecular mechanics simulations the
ultimate strains 0.20 and 0.18, respectively. Note that the variability of the results in the
literature is due to the different computational methods and interatomic potentials.

Figure 5 shows the profiles of deformation from FE model 1 along diameters identified
by different angles φ. We observe that variations of φ do not cause appreciable variations
in the deformed shape, represented in the R-Z plane. This means that the three-dimensional
deformed configuration is axisymmetric with respect to Z. Figure 6a shows normalized dis-
placement uZ/a in the X-Y plane for the ultimate value of pressure computed by FE model
1. Figures 6b–6d show respectively the trend of invariants I1, I2 and I3 in the membrane
domain. The values of I3 are very close to zero in the entire domain, except from the areas
close to the perimeter. This because in such areas, due to the influence of the constrained
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Fig. 5 Profiles of deformation from FE model 1 represented in the R-Z plane and given in terms of dimen-
sionless coordinates R/a and Z/a (a = 2.375 µm). The deformed shapes along diameters with different angle
φ coincide and therefore the kinematics of deformation is axisymmetric

Fig. 6 Contour plots of (a) normalized deflection uZ/a, (b) invariant I1, (c) invariant I2 and (d) invariant I3
at the ultimate value of pressure from FE model 1. The values of I3 are negligible with respect to both I1 and
I2 and thus anisotropy of graphene does not activate

boundary, stretches λR and λ� differ more than in the inner region. Nevertheless, the values
assumed by I3 are negligible with respect to I1 and I2 and therefore anisotropy of graphene
does not play a noticeable role. The above discussion demonstrates that the assumption of
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rotational symmetry in the analytical solution is accurate and in accordance with the FE
simulation.

The profiles of deformation and the contour plots of deflection and invariants from FE
model 2 show the same trend. Hence, even when considering transverse contraction, the
deformed configurations preserve rotational symmetry. The corresponding results are not
presented for the sake of brevity.

4 Numerical Solution of the Equilibrium Problem

In this section we present a numerical solution of the equilibrium problem of circular
graphene membranes subjected to uniform lateral pressure. The pressure-deflection formula
(14) was derived under the simplifying hypothesis that the membrane transforms into a
spherical cap. Such hypothesis is now abandoned and the differential equilibrium equations
are written. Then, a numerical procedure to solve such system of equations is presented.

The FE analysis allowed us to conclude that, for the problem analyzed in this paper, the
role of graphene anisotropy is negligible. Hence, we keep the hypothesis that the deformed
configuration preserves its rotational symmetry and, when computing the stress quantities,
we neglect the terms related to I3. As we did in Sect. 2, we assume that graphene does not
undergo transverse contraction (λZ = 1). Thereby, the most general kinematics of deforma-
tion is described by the following deformation gradient [44]:

[F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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where ′ denotes the derivative with respect to coordinate R. The dependence of the quantities
with radial coordinate R is omitted for the sake of simplicity. The polar decomposition of
the deformation gradient reads
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Hence, the principal stretches are expressed by
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√
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(20)
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The equilibrium equations in radial and normal directions read [1]

dN1

dϕR

+ 1

ϕR

(N1 − N2) = 0,

K1N1 + K2N2 = p,

(21)

where K1 and K2 are the principal curvatures in radial and circumferential directions re-
spectively, while N1 and N2 are the principal stress resultants with dimension of force per
unit length. The principal curvatures are written as [66]
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, (22)

where w = ϕ′
R . Neglecting anisotropy in (7), we express the components of the second

Piola-Kirchhoff stress tensor as
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Since anisotropy is now neglected, principal directions of strain and stress coincide and
thus tensor � is diagonal. The Cauchy stress tensor is computed as T = F�FT /detF. The
principal stress components in deformed configuration are derived by the transformation
T̃ = RT TR and, finally, the following stress resultants are obtained:
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The derivative of N1 with respect to ϕR is computed using the chain rule, namely
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Introducing (22), (23) and (24) into (21), the equilibrium equations take the following form:
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(25)

with p̄ = pR/c2. The system of differential equations (25) is to be solved under the bound-
ary conditions

λR = λ� = w = λ0 at R = 0, λ� = 1 at R = a,

with λ0 > 1.
We notice that the form of system (25) remains unchanged if a scaling factor γ is mul-

tiplied to R. This invariance property was firstly observed by Yang and Feng [66] when
studying the equilibrium problem of circular inflated membranes composed of incompress-
ible Mooney-Rivlin material. This property greatly simplifies the numerical solution. In fact,
similarly to the procedure outlined in [66], the solution is obtained as follows: (i) Set the de-
sired value of λ0; (ii) Set an initial guess value p0 for pressure p; (iii) Perform the numerical
integration of system (25) for increasing values of R, until λ� = 1. The value of R at which
λ� = 1 is denoted by R0; (iv) The initial guess p0 is likely to be different from the correct
one and thus R0 is different from a. However, the invariance property of system (25) allows
us to introduce the scaling factor γ = a/R0 and compute the correct value of pressure as
p̄ = p0R0/c2 = p0a/(γ c2). (v) Perform again the numerical integration by setting as initial
guess the correct value of p̄. From this final integration the stretches profiles are obtained
and the deformed shape of the membrane is derived using (20).

The equilibrium equations were written in software MATLAB R2017a. A list of values
for λ0 ranging from 1 to λu was defined. According to FE model 1 of Sect. 3, the ultimate
stretch considered was λu = 1.18. Another list for the initial guess values p0 was defined. In
this regard, the FE pressure-deflection curve of Fig. 5 helped to select reasonable values of
p0. The procedure outlined in the previous paragraph was then carried out for each increas-
ing value of λ0. The numerical integration of the differential equations was performed using
function ode23t.

5 Results and Comparison

In this section we compare the results of the approximate analytical solution, the FE analysis
and the numerical solution. The numerical solution is based on the assumption that λZ = 1
and thus we expect to find good agreement with the analytical solution (14). Same goes
for FE model 1, in which transverse contraction is avoided. Instead, FE model 2 takes into
account the contraction of the membrane, which means that λZ assumes values other than
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Fig. 7 Pressure-deflection curves
with δ̄ = δ/a of a circular
graphene sheet with radius
2.375 µm. Black and red curves
represent respectively the
analytical solutions without and
with transverse contraction. Gray
and blue curves are obtained
respectively from FE models 1
and 2 while the green curve is the
numerical solution

1. Therefore, we expect that the pressure-deflection curve from this model agrees well with
the solution proposed in Appendix A, expressed by (32).

We recall that the most plausible assumption is that graphene does not undergo transverse
contraction during deformation. Therefore, after the above comparison, we consider only
the analytical solution (14) and we compare the pressure-deflection curve with experimental
data and numerical simulations from the literature.

5.1 Comparison Between Analytical, FE and Numerical Solutions

The comparison of the pressure-deflection curves obtained from analytical solution, FE sim-
ulation and numerical solution is shown in Fig. 7. The ultimate value of stretch considered
in the numerical analysis is λu = 1.18, at which ultimate deflection and pressure are re-
spectively δ̄u = 0.455 and pu = 17.10 MPa. In such configuration, the value of pressure
predicted by the analytical solution (14) is 17.27 MPa. The relative error between the two
ultimate pressure values is 1.08%. A good match with the simulation of FE model 1 is also
observed. In this case, the relative error of the analytical prediction is 2.79%. The good
agreement between analytical, FE and numerical solutions demonstrates the accuracy of the
formulation proposed in this work.

The profiles of deformation are shown in Fig. 8a. The maximum relative discrepancies
of the analytical deformed shapes with respect to the numerical and FE ones are, respec-
tively, 6% and 5.5%. The deformed configurations of the analytical model nearly match the
FE ones until δ̄ attains the value 0.4. Then, the membrane in the FE model experienced a
higher deformation concentrated in the area close to the center. In fact, Fig. 7 shows that
the gap between analytical, numerical and FE pressure-deflection curves becomes more evi-
dent after δ̄ = 0.4. Nevertheless, we can conclude that the hypothesis of spherical deformed
shape provides an accurate description of the kinematics of deformation of the graphene
membrane.

The pressure-deflection response from FE model 2 agrees well with the analytical solu-
tion with transverse contraction (32). Also in this case, the two pressure-deflection curves
nearly match until δ̄ = 0.4. The higher discrepancy for δ̄ > 0.4 is again explained by ob-
serving the comparison of the deformation profiles given in Fig. 8b. The analytical and
FE deformed configurations almost coincide for δ̄ ≤ 0.4, but then the membrane in the FE
model experienced a higher deformation in the central area. The value of pressure at δ̄u from
the analytical solution is 13.65 MPa and the relative error with respect to the FE prediction
is 3.96%.
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Fig. 8 Profiles of deformation represented in the R-Z plane and given in terms of dimensionless coordinates
R/a and Z/a: (a) Analytical solution without transverse contraction, numerical solution and FE model 1; (b)
Analytical solution with transverse contraction and FE model 2

5.2 Comparison with Other Results

We recall that, from a physical point of view, it is doubtful that a one-atom-thick membrane
can undergo a transverse contraction. Therefore, the analytical solution that is most consis-
tent with the real response of graphene is the one expressed by (14). From now on, this will
be the reference analytical solution and we will compare it with other models, numerical
simulations and experiments found in the literature.

The well-known Fichter’s model [17] is considered and, for the sake of brevity, it is out-
lined in Appendix B. The experimental data that we consider are reported in the work by
Koenig et al. [29]. In that work, the authors produced monolayer graphene sheets through
mechanical exfoliation over predefined microcavities etched in a silica substrate. The mi-
crocavities had diameter of around 4.75 µm. A bulge test was performed using a pressure
chamber and the deformed shape of the graphene membrane was measured with an atomic
force microscope. For the comparison we also consider the FE simulation carried out by
Jiang et al. [25]. The FE model was built in software COMSOL Multiphysics using a plate
element composed of linearly elastic and isotropic material. The circular plate had diameter
of 4.75 µm and it was clamped along the boundary. Geometric nonlinearity was included in
the solution.

Figure 9 shows the comparison of the pressure-deflection curves. The black curve
(present solution) is expressed by equation (14). The Fichter’s solution is in good agreement
with our model only for small values of δ̄. This because Fichter’s model is based on the
assumption of linear elastic material. Such assumption is not suitable for graphene, which
exhibits material nonlinearity even for relatively small values of strain [21, 38]. In particular,
the uniaxial stress-strain response of graphene shows a progressive reduction of its stiffness
until the attainment of the ultimate stress. This is not taken into account in Fichter’s model
and the result is that, as the strain increases, the gap between its prediction and our solution
increases.

From the right side of Fig. 9 we observe a good agreement of our solution with the exper-
imental data by Koenig et al. [29]. However, at some point of the experiment a delamination
of graphene from the silica substrate took place. This explains why the last two experimen-
tal data (red dots) deviate from the analytical prediction. Very good agreement is found also
with the FE simulation of Jiang et al. [25]. Note that their simulation was based on the as-
sumption of linear elastic material. In fact, when δ̄ exceeds 0.12 their prediction becomes
slightly stiffer than the response of our model.
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Fig. 9 Comparison of the pressure-deflection curves obtained with the proposed solution (14), Fichter’s
model [17], experiment from Koenig et al. [29] and FE simulation carried out by Jiang et al. [25] for a
graphene membrane with diameter 4.75 µm

Fig. 10 Comparison with the pressure-deflection curves from (a) FE simulation of a graphene sheet with
diameter 50 µm, reported in Wang et al. [60], and (b) nonlinear membrane model (NMM) and molecular
dynamics (MD) simulation of a graphene sheet with diameter 10 nm, reported in Wang et al. [62]

Further comparisons are presented in Fig. 10. In particular, in Fig. 10a we consider the FE
simulation carried out by Wang et al. [60] using software ANSYS. The authors used 2-node
axisymmetric shell elements composed of a linear elastic material with E = 1 TPa and ν =
0.17. As expected, for the same reasons explained previously, the FE simulation matches
well with our solution only for relatively small deflections. It is demonstrated once again
that the material nonlinearity of graphene plays an important role and must be considered.

Figure 10b shows a comparison with the molecular dynamics (MD) simulation carried
out by Wang et al. [62], which is displayed in green color. The graphene membrane had
diameter 10 nm. The choice of such a small diameter is due to the fact that MD simulations
require a large computational effort and therefore they can be applied only to systems with
a relatively small number of atoms. Although the computational strategy is different from
the continuum modeling, the simulation is in good agreement with the present solution. The
gap is mainly due to the parametrization of the interatomic potential describing the carbon-
carbon interactions in graphene. Wang et al. [62] adopted the second-generation reactive
empirical bond-order (REBO-2) potential [4], but there are several potentials that can be
used and may lead to sensibly different results [19, 20, 42]. The coefficients of the stored
energy function (6) adopted in this work were estimated by fitting molecular mechanics
simulations based on the modified Morse potential [45].
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Fig. 11 Comparison with the pressure-deflection curves from (a) numerical and approximate analytical so-
lutions by Delfani [14], for a graphene membrane with diameter 10 nm, and (b) MD simulation from Qi et
al. [52] for a graphene sheet with diameter 8 nm

A nonlinear membrane model (NMM) was also proposed by Wang et al. [62] (equations
(3.4) and (3.5) in [62]). The corresponding response of the pressurized graphene membrane
is depicted in Fig. 10b. We observe again a good match with our analytical prediction for
relatively small deflections. The model proposed in [62] does not take into account material
nonlinearity and thus it deviates from our solution as the deflection increases.

The comparison with the experimental data by Koenig et al. [29] showed that delamina-
tion of graphene from a silica substrate takes place for relatively small deformations. In such
case, as visible in Fig. 9, an accurate prediction is obtained even with a model in linear elas-
ticity. However, nowadays there are more and more studies where suspended monolayer and
multilayer graphene films are produced and employed for mechanical, optical and electronic
sensors. For instance, Afyouni et al. [2] produced graphene through chemical vapor deposi-
tion and then removed the substrate obtaining clean graphene membranes with diameter up
to 750 µm. Other examples can be found in [3, 8, 12]. Being not connected to a substrate,
suspended graphene does not experience delamination and therefore it can undergo large
deformations. In this case, nonlinear formulations such as the one proposed in this work are
required.

To this regard, very few authors analyzed the problem of pressurized graphene mem-
branes in nonlinear elasticity. A recent solution was proposed by Delfani [14]. He consid-
ered the nonlinear constitutive model proposed in [15] and derived the equilibrium equations
of the thin plate theory in absence of body forces. Consequently, he presented an application
to the case of a circular graphene sheet subjected to bulge test. Due to the complexity of
the equilibrium equations, he proposed a numerical solution by expanding in series the un-
known displacement components. The series were truncated at the fifth order in parameter
q = p/E. He also proposed an approximate analytical solution valid for small deflections,
which is reported in equation (89) of [14].

In Fig. 11a, we compare the solution proposed in the present work with the numerical
and analytical ones proposed by Delfani. We observe that the present solution matches the
numerical one proposed by Delfani until relatively large deformations (δ̄ ≤ 0.3), then the
two solutions diverge. This because the numerical solution by Delfani was obtained with a
truncation at the fifth order in q , which results in a loss of accuracy for large deflections
(δ̄ > 0.3). As expected, due to the mathematical simplifications performed thanks to the
hypothesis of small deflections, the approximate analytical solution by Delfani matches the
present solution only for small values of δ̄.
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Fig. 12 Comparison between
profiles of deformation of
graphene under uniform lateral
pressure (present solution),
constant surface load and
indentation (results from Höller
et al. [22]). The values of
pressure applied on the
membrane are such that the
resultants of the external forces
match those considered in [22]

Another nonlinear simulation of pressurized graphene was presented by Qi et al. [52].
The authors carried out MD simulations adopting the AIREBO potential to describe the
carbon-carbon interactions. They considered a circular graphene membrane with radius
4 nm. In the work [52], the authors reported the pressure-deflection response until a value
of deflection δ̄ ≈ 0.31. From Fig. 11b, we observe that their prediction agrees quite well
with the analytical formula proposed in this work. The gap between the two curves reaches
a maximum of 9% and it is mostly due to the different interatomic potentials adopted. We
recall that atomistic simulations require a large computational effort, thus they are suitable
only for very small systems. On the other hand, the present analytical solution is particularly
advantageous from this point of view.

5.3 Response Under Different Lateral Loads

In order to show the variations in the response of graphene under different lateral loads,
Fig. 12 depicts the profiles of deformation under constant surface load and indentation. The
results are obtained from the work by Höller et al. [22]. In particular, the authors reported the
cases of a constant surface load and a load concentrated in the center of the membrane. In
the first case, the surface load applied to the membrane was 0.156 MPa. In the second case, a
lateral force equal to 500 nN was applied. To compare the shapes of the deformed graphene
membrane with the case of uniform lateral pressure, the deformed profiles from the present
solution are shown in Fig. 12. The values of pressure considered are such that the resultants
of the external loads match with those applied in [22]. Note that, in this comparison, the
results are obtained using the constitutive parameters given in [22].

6 Membranes Composed of Graphene Deposited onto a Soft Surface

Many applications in nanotechnologies involve the use of layered nanocomposites formed
by graphene deposited onto a substrate. In general, when a layered nanocomposite is sub-
jected to lateral pressure there is no delamination. Therefore, the capability of graphene to
undergo large deformations can be exploited and material nonlinearity plays a role in the
mechanical response. In the present section we use the analytical solution (14) to predict the
pressure-deflection response of a graphene nanocomposite.

We consider a two-layered composite membrane formed by graphene deposited onto a
soft substrate. The membrane is circular with radius a and the thickness of the substrate is
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h. We recall that we assume a graphene thickness t = 0.335 nm and we introduce η = t/h,
which expresses the volume fraction of graphene.

A compressible Mooney-Rivlin material model is adopted for the soft substrate, which is
defined by the stored energy function

ω(I1, I2, I3) = C1(ı1 − 3) + C2(ı2 − 3) + C3(ı3 − 1) − (C1 + 2C2 + C3)ln ı3,

where constitutive parameters C1, C2 and C3 have dimension or force per unit area. Under
the hypothesis of spherical deformed shape, the radial Cauchy stress T S

0 of the substrate
when R → 0 reads [46]
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The principal Cauchy radial stress T G
0 of the graphene sheet is expressed by (12).

We assume a uniform strain distribution between graphene and substrate (isostrain). This
assumption has been widely used for predicting the elastic properties of layered composites
[26]. The prediction is especially accurate when there is a strong bond between the layers
and the thickness of each layer is much smaller than the other two dimensions [35]. Under
isostrain state, the equilibrium equation (13) in case of composite membrane becomes

p = 2h
(
ηT G

0 + T S
0

)
ρ

, (26)

where ρ = a/ sinψ0. The expression of pressure p is written as function of the normalized
deflection using ψ0 = 2 arctan δ̄, with δ̄ = δ/a.

In order to show the effect of graphene in a composite membrane of practical interest, we
consider a silicone substrate characterized by the constitutive parameters given in Table 4
of work [46]. For nanocomposites made of monolayer graphene deposited on a substrate,
the typical volume fraction of graphene ranges from 10−6 to 10−4. The pressure-deflection
response for several values of η in such range is displayed in Fig. 13a, where p̄ = pa/(C1h).
The ultimate deflection considered is δ̄u = 0.455, as reported in Sect. 5.1. We observe that
small volume fractions of graphene have a remarkable impact on the final response of the
nanocomposite, which becomes much stiffer compared to that of the bare substrate.

In the following, an expression of the equivalent Young’s modulus of the composite mem-
brane is derived. We introduce into (26) the linearized form of the radial Cauchy stress,
expressed by (17), for both substrate and graphene contributions. The following linearized
expression of the applied pressure is derived:

p =
[
η

EG

(1 − νG)
+ ES

(1 − νS)

]
8h

3a
arctan3 δ̄.

The equivalent Young’s modulus EC is computed by equating the above expression of p

with the one in (19), valid for a membrane of homogeneous material. Note that, in this case,
equation (19) is computed with the thickness of the composite membrane, namely h(1 + η).
The following expression for EC is obtained:

EC =
[
η

EG

(1 − νG)
+ ES

(1 − νS)

]
(1 − νC)

(1 + η)
.
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Fig. 13 Two-layered composite membrane made of graphene deposited on a silicone substrate: (a) Pressure-
deflection curves from (26) for increasing volume fractions of graphene, expressed by η = t/h, with t and
h indicating respectively graphene and substrate thicknesses; (b) Semi-logarithmic plot of the ratio between
Young’s moduli of composite membrane and bare substrate, EC/ES , as a function of the graphene volume
fraction η

As previously mentioned, the volume fraction of graphene in most layered nanocomposites
ranges from 10−6 to 10−4. Thus we expect that the presence of graphene has a negligible
effect on the Poisson’s ratio νC of the nanocomposite (νC ≈ νS ). Under this assumption, the
expression of EC becomes

EC = ηEG (1 − νS) + ES (1 − νG)

(1 + η) (1 − νG)
.

The Young’s modulus ES and Poisson’s ratio νS of the silicone substrate analyzed pre-
viously are computed using equation (24) of work [46]. The elastic constants of graphene
are computed using (18), obtaining E = 1042.9 GPa and ν = 0.146. A plot of the ratio be-
tween Young’s moduli of composite membrane and bare substrate with increasing volume
fractions of graphene is shown in Fig. 13b.

7 Conclusions

In the present work we analyzed the problem of circular graphene membranes subjected
to uniform lateral pressure. The analytical formulation was developed in finite elasticity.
The kinematics of deformation was described by assuming that the membrane preserves the
axisymmetry and deforms into a spherical cap. The material behavior was described by a
hyperelastic stored energy function that takes into account both nonlinearity and anisotropy
of graphene. Assuming that the graphene membrane does not experience transverse contrac-
tion and writing the equilibrium for R → 0, an approximate solution expressing the applied
pressure as a function of the deflection was derived. In addition, another solution considering
the transverse contraction was proposed in Appendix A. This solution may be a good basis
for modeling membranes composed of multilayer graphene, where transverse contraction
should be considered.

A FE analysis was carried out in COMSOL using the 3D membrane interface. Both ma-
terial nonlinearity and anisotropy of graphene were included. It was shown that for circular
pressurized graphene membranes the effect of material anisotropy is negligible and thus the
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deformed configuration remains axisymmetric. Furthermore, it was verified that a spherical
cap provides an accurate description of the kinematics of deformation.

To provide a comprehensive investigation of the mechanics of pressurized graphene
membranes, a numerical solution of the equilibrium problem of the exact theory was pro-
posed. The simplifying hypothesis on the kinematics of the analytical model was abandoned.
The differential equilibrium equations were derived and solved with a numerical procedure
implemented in MATLAB. The results from FE, numerical and analytical solutions agree
well, demonstrating that the proposed formulation is accurate.

A comparison with other models, numerical simulations and experiments found in the
literature was presented. Good agreement in the pressure-deflection curves was found for
relatively small deflections. However, in most cases, significant differences were observed
for large deflections. This because, differently from our entirely nonlinear approach, most
continuum models in the literature are based on the assumption of linear elastic material.
The comparison with the numerical solution in nonlinear elasticity proposed by Delfani [14]
showed good agreement even for deflections that go well beyond the range of application
of the linearized theory. Nevertheless, in addition to being a numerical approach, the above
solution loses accuracy for δ̄ > 0.3. The foregoing considerations point out the novelty of the
present work and the importance of considering the nonlinear material response of graphene.

The proposed analytical solution was then employed to study the pressure-deflection
behavior of a two-layered membrane made of graphene deposited onto a soft substrate.
The effect of graphene on the final response was investigated and the equivalent Young’s
modulus of the nanocomposite was derived. This application may be important because
nowadays nanotechnologies often involve layered nanocomposites.

The approximate solution proposed in this work is a useful tool for accurate predictions
of the response of pressurized graphene membranes. For the first time, a pressure-deflection
relation in nonlinear elasticity was proposed. This is a great advantage in terms of appli-
cability because it does not require any computational effort, which is the main concern in
atomistic and FE simulations.

Appendix A: Analytical Solution with Transverse Contraction

After deformation, thickness t transforms into t ′ = λZt and the deformation gradient reads
[46]

[F] =

⎡
⎢⎢⎢⎢⎢⎣

ρ
∂ψ

∂R
cosψ 0 λZ sinψ

0
ρ sinψ

R
0

−ρ
∂ψ

∂R
sinψ 0 λZ cosψ

⎤
⎥⎥⎥⎥⎥⎦

.

Rotation tensor R remains unchanged and right stretch tensor U becomes

[U] =

⎡
⎢⎢⎢⎣

ρ
∂ψ

∂R
0 0

0
ρ sinψ

R
0

0 0 λZ

⎤
⎥⎥⎥⎦ .
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The right Cauchy-Green deformation tensor and the Green-Lagrange strain tensor expressed
in cylindrical coordinates assume the form

[C] =
⎡
⎣

λ2
R 0 0
0 λ2

� 0
0 0 λ2

Z

⎤
⎦ , [E] = 1

2

⎡
⎣

λ2
R − 1 0 0

0 λ2
� − 1 0

0 0 λ2
Z − 1

⎤
⎦ ,

where λR and λ� are given by (2).
Strain invariants I1 and I2 become

I1 = 1

2

(
λ2

R + λ2
� + λ2

Z − 3
)
,

I2 = 1

4

(
λ2

R − 1
) (

λ2
� − 1

) + 1

4

(
λ2

R − 1
) (

λ2
Z − 1

) + 1

4

(
λ2

� − 1
) (

λ2
Z − 1

)
,

(27)

while invariant I3 has the same expression as in (5). The second Piola-Kirchhoff stress tensor
is computed using (7), obtaining

�RR = β1

t
+ β2

2t

(
λ2

R − 1
) + 3β3

4t

(
λ2

R − λ2
�

)2
cos(6φ),

��� = β1

t
+ β2

2t

(
λ2

� − 1
) − 3β3

4t

(
λ2

R − λ2
�

)2
cos(6φ),

�ZZ = β1

t
+ β2

2t

(
λ2

Z − 1
)
,

�R� = −3β3

4t

(
λ2

R − λ2
�

)2
sin(6φ), �RZ = ��Z = 0,

(28)

where β1, β2 and β3 are given in (8). The first Piola-Kirchhoff stress tensor is thus derived

[TR] =
⎡
⎣

λR�RR cosψ λR�R� cosψ λZ�ZZ sinψ

λ��R� λ���� 0
−λR�RR sinψ −λR�R� sinψ λZ�ZZ cosψ

⎤
⎦ .

Condition TRnZ = 0 for the membrane stress state requires that

λZ�ZZ sinψ = 0 and λZ�ZZ cosψ = 0, ∀ψ ∈ [0,π/6] , (29)

which are satisfied only if �ZZ = 0. From this condition and recalling (28), we derive the
following implicit expression of stretch λZ :

λZ =
√

1 − 2
β1

β2
. (30)

Finally, the components of the Cauchy stress tensor read

TRR = λR

λ�λZ

�RR cos2 ψ, T�� = λ�

λRλZ

���, TZZ = λR

λ�λZ

�RR sin2 ψ,

TR� = 1

λZ

�R� cosψ, TRZ = − λR

λ�λZ

�RR cosψ sinψ, T�Z = − 1

λZ

�R� sinψ,

with λZ expressed by (30).
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As we did in Sect. 2, we now write the equilibrium in the neighborhood of the central
point of the membrane. With this aim, we firstly compute the Cauchy stress tensor for the
limit case of R → 0. Radial and circumferential stretches are equal to each other (λR =
λ�|R→0 = λ) and third invariant I3 goes to zero. The only non-zero components of the
Cauchy stress tensor are

TRR|R→0 = T��|R→0 = T0 = ψ2
0 cscψ2

0 − λ2
Z

∣∣
R→0

2t λZ|R→0
β2|R→0 . (31)

Hereinafter, for the sake of simplicity, we indicate λZ|R→0 simply with λZ . Equilibrium
equation (13) becomes

p = 2T0λZt

ρ
,

from which, using (31), (8) and (27), we derive the following expression of the applied
pressure:

p = sinψ0

8a

(
ψ2

0 csc2 ψ0 − λ2
Z

) 3∑
j=0

ζjψ
2j

0 csc2j ψ0, (32)

where

ζ0 = λ2
Z

[
λ2

Z

(
5c10λ

2
Z − c11λ

2
Z − 25c10 − 3c11 + 4c12

) + 8c7

(
λ2

Z − 4
) − 2c9

(
λ2

Z + 2
)

− 4c6 + 8c8 + 9 (5c10 + 3c11 − 2c12)
]

+ 12c5

(
λ2

Z − 3
) − 8c2 + 16c4 + 3 (4c6 + 16c7 − 4c8 + 2c9 − 15c10 − 9c11 + 6c12) ,

ζ1 = 2λ2
Z

[
3c11

(
λ2

Z − 8
) − 2c12

(
λ2

Z − 7
) + 5c10

(
λ2

Z − 4
) − 4c8 + 4c9

] + 16c7

(
λ2

Z − 4
)

+ 24c5 − 8c6 + 16c8 − 8c9 + 90c10 + 54c11 − 36c12,

ζ2 = 2
[
c12

(
11 − 5λ2

Z

) + 5c10

(
λ2

Z − 7
) + 3c11

(
3λ2

Z − 5
) + 12c7 − 2c8

]
,

ζ3 = 4 (5c10 + c11 − c12) .

An explicit expression of stretch λZ is derived by satisfying condition (29) for the limit case
of R → 0, for which λR = λ�|R→0 = λ. In this case, substitution of (8) and (27) into (30)
gives

√
η −

√
�n

�d

= 0, (33)

with η = λ2
Z and

�n = − 8c2

(
η + 2λ2 − 2

) + 16c4 + 12c5

[−η + 2 (η − 1) λ2 + λ4
]

− 4c6

[
η2 − 7η + 2 (3η − 7) λ2 + 5λ4 + 9

]

+ 8c7

[−η2 + 5η + (5η − 8) λ4 + 2 (η − 5) (η − 1) λ2 + 2λ6 − 3
]

− 4c8 (λ − 1) (λ + 1)
(
2η + λ2 − 3

) (
η + 2λ2 − 2

)
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− 2c9

[
η3 − 4η2 + 11η + 2 (η − 7) λ4 + 2

(
η2 − 6η + 11

)
λ2 + 4λ6 − 12

]

+ 5c10

{−η3 + 6η2 − 15η + 8 (η − 2) λ6 + [η (5η − 32) + 33]λ4

+ 2 (η − 1) [(η − 6) η + 15]λ2 + 3λ8 + 9
}

− c11

{
η

[
(η − 5) η2 + 9

] + 8 (1 − 2η)λ6 − 3 [5 (η − 4) η + 9]λ4

+ 2
[
η

(
η2 + 9η − 27

) + 9
]
λ2 + λ8

}

− c12 (λ − 1) (λ + 1)
(
2η + λ2 − 3

) [
2 (η − 6) η + 10ηλ2 + 9λ4 − 24λ2 + 15

]
,

�d = − 8c2 + 16c4 + 12c5

(
η + 2λ2 − 3

) − 4c6

(
η + 2λ2 − 3

)

+ 8c7

[
η2 + 2(η − 4)λ2 − 4η + 3λ4 + 6

]

− 4c8

(
λ2 − 1

) (
2η + λ2 − 3

) − 2c9 (η − 1)
(
η − 4λ2 + 3

)

+ 5c10
(
η + 2λ2 − 3

) [
(η − 2) η + 2λ4 − 4λ2 + 3

]

− c11

(
η + 2λ2 − 3

) [
η2 + 4(3 − 2η)λ2 + 6η − 2λ4 − 9

]

− 2c12 (λ − 1) (λ + 1)
(
2η + λ2 − 3

) (
η + 2λ2 − 3

)
.

Equation (33) admits four solutions in η. Two solutions are not real and another one does
not respect condition η = 1 when λ = 1. The remaining solution is the correct one. We do
not report this solution due to its very long mathematical expression. Having obtained an
explicit expression for η, we compute λZ = √

η and by substitution into (32) we finally
derive the pressure-deflection equation. We recall that relation ψ0 = 2 arctan δ̄ allows us to
obtain a direct expression of pressure as a function of deflection.

Appendix B: Fichter’s Model

Fichter’s model is based on the assumption that the material is linearly elastic. In this case,
the equilibrium equations are

N2

(
R̄2 d2N

dR̄2
+ 3R̄

dN

dR̄

)
− 1

2
R̄3 dN

dR̄
+ 1

2
(3 + ν) R̄2N + 1

4

R̄2EH

pL
= 0,

N
dδ̄

dR̄
+ 1

2
R̄ = 0,

(34)

where R̄ = R/a, E is the Young’s modulus, ν is the Poisson’s ratio and N = NR/(pa), with
NR indicating the radial stress resultant. Young’s modulus and Poisson’s ratio of graphene
are computed using (18), obtaining E = 1042.9 GPa and ν = 0.146. The solution for both
stress resultant and deflection is found in the form of a power series

N
(
R̄

) =
∞∑
0

n2mR̄2m,

δ̄
(
R̄

) =
∞∑
0

w2n

(
1 − R̄2n+2

)
.

(35)
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Substituting (35)1 into (34)1 and equating coefficients of like powers of R̄ we obtain a sys-
tem of equations that allows to derive the expressions of coefficients n2m as functions of
n0. Likewise, substituting (35)2 into (34)2 and equating coefficients of like powers of R̄

we derive the expressions of coefficients w2n as functions of n0. Finally, n0 is evaluated by
imposing the following boundary condition on radial displacement:

{
R̄

[
d

dR̄

(
R̄N

) − νN − R̄
dδ̄

dR̄

]}∣∣∣∣
R̄=1

= 0.

This procedure was implemented in software Wolfram Mathematica. A vector of increasing
pressure values was defined and, for each value, the solution was obtained by considering
twelve terms in the power series (m = 12 and n = 12). More terms did not cause sensible
variations in the solutions and only increased the computational burden.
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