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Abstract
Contact problems with Coulomb friction in linear elasticity are notoriously difficult, and
their mathematical analysis is still largely incomplete. In this paper, a model problem with
heterogeneous friction coefficient is considered in two-dimensional elasticity. For this model
problem, an existence and uniqueness result is proved, relying heavily on harmonic analysis.
A complete and rigorous homogenization analysis can be performed in the case of a highly
oscillating friction coefficient, being the first result in that direction. The Coulomb law is
found to hold in the limit, and an explicit formula is provided to calculate the effective fric-
tion coefficient. This effective friction coefficient is found to differ from the spatial average,
showing an influence of the coupling between friction and elasticity on the homogenized
limit.
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1 Introduction

Rate-independent processes are a special class of evolution problems that do not possess
any internal time scale. They are appropriate for studying quasistatic evolution in which vis-
cous effects can be neglected. Some examples are provided by perfect plasticity [7], brittle
damage [10], brittle fracture [11] or phase transitions, which all have received considerable
attention in the past decades both in the solid mechanics and applied mathematics commu-
nities. The above examples have in common to possess an underlying variational structure:
when introducing a time-discretization, the problem to solve at each time-step is sponta-
neously a minimization problem. Thus, the techniques of the calculus of variation (direct
method, relaxation, �-convergence,. . . ) have considerably contributed to the understanding
of the underlying mathematical structures, enlightening the main qualitative features of the
solutions.
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However, not all rate-independent processes need to spontaneously exhibit an underlying
variational structure. One example is provided by contact problems with Coulomb friction
in linear elasticity whose mathematical analysis was undertaken as early as 1972 by Duvaut
& Lions [8]. More recent examples are the so-called non-associative models of plasticity
[2]. As a consequence of the lack of a ‘spontaneous’ underlying variational structure, the
mathematical analysis of these problems turns out to be considerably more involved.

Denoting by u = unn + ut and t = tnn + tt the boundary displacement and the surface
traction, and their splitting into normal and tangential parts (here n denotes the outward unit
normal), contact problems with Coulomb friction amount to consider a boundary condition
in linear elasticity in which the Signorini contact condition:

un ≤ ḡ, tn ≤ 0, (un − ḡ)tn = 0,

(here ḡ is a given function representing the initial gap with the obstacle), is complemented
with the Coulomb law of dry friction, whose formal pointwise formulation can be syntheti-
cally written as:

∀v̂, tt · (v̂ − u̇t) − f̄ tn
(|v̂| − |u̇t|

) ≥ 0. (1)

Here, f̄ ≥ 0 is the given friction coefficient and the dot refers to the time-derivative. The
associated incremental problem (the problem to solve at each time-step in a time discretiza-
tion) amounts to solve the same problem in which the velocity u̇t in the Coulomb law is
replaced by ut. Existence of a solution for the incremental problem was first proved in [12]
using a fixed point argument and extended in [9] based on a penalty method. The existence
of a solution for the evolution problem was first obtained in [1]. All these results have in
common to require that the friction coefficient is lower than a finite critical value and leave
open the question of uniqueness for arbitrarily small friction coefficients.

The problem simplifies, though preserving mechanical meaningfulness, in the situation
where a steady motion of the obstacle is prescribed, in which case the Coulomb law (1) of
dry friction reduces to the linear condition:

tt = f̄ tnτ , (2)

where τ is a given unit tangential vector (the normalized relative tangential velocity). The
corresponding elastostatic contact problem was first studied in [3] in the case of a homo-
geneous friction coefficient. In the case of a bounded body, it was proved using classical
results on variational inequalities that there always exists a nonempty range [0, f̄c[ so that
the problem admits a unique solution for all f̄ ∈ [0, f̄c[. An example of multiple solution
was displayed, showing the possibility of a bifurcation with respect to the friction coefficient
taken as a control parameter. In the case where the body is a two-dimensional homogeneous
isotropic half-space with homogeneous friction coefficient, the situation was proved simpler
as a unique solution exists whatever the value of the friction coefficient is.

Hence, this background drove us naturally towards the geometry of the two-dimensional
elastic half-space to investigate the homogenization of dry friction, that is, to study asymp-
totically highly oscillating heterogeneous friction coefficients. Three natural questions arise
in this context.

1. Is the heterogeneous problem well-posed, that is, does it admit a unique solution?
2. Is the steady friction law (2) stable by homogenization, that is, does it hold true in the

limit with the heterogeneous friction coefficient f̄ (x) replaced with some constant effec-
tive friction coefficient f̄eff?
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3. If so, what is the constant effective friction coefficient?

In this paper, we bring a complete and rigorous answer to these three questions in the case
of the simplest geometry, that is, that of a moving convex rigid indentor of finite width at
the surface of the two-dimensional isotropic elastic half-space. In particular, we prove that
the frictional contact problem in the case of a highly oscillating periodic friction coefficient
f̄ (x) has a unique solution, and that a constant effective friction coefficient f̄eff appears in
the limit, given by the formula:

f̄eff = 2(1−ν)

1−2ν
tan

〈
arctan

(
1−2ν

2(1−ν)
f̄
)〉

,

where ν is the Poisson ratio and 〈·〉 stands for the spatial average. This formula shows that
the effective friction coefficient depends on the elastic moduli. Thanks to Jensen formula, the
effective friction coefficient f̄eff is always smaller than the spatial average of the microscopic
coefficient, except in the limit case of incompressibility (ν → 1/2) where the equality is
achieved.

The geometry of the problem to which this paper is restricted (a moving rigid indentor of
finite width at the surface of the two-dimensional isotropic elastic half-space) truly encom-
passes all the couplings between unilateral contact, dry friction and elasticity. Therefore, we
expect that this result has a wide range of validity for steady sliding frictional contact prob-
lems in two-dimensional isotropic homogeneous linear elasticity. As an important difficulty
in homogenization is often to identify the limit problem, we believe that it is the merit of
the special geometry which is studied in this paper, to lead to the identification of the good
candidate.

This whole investigation was at first sight deeply obstructed by a few obstacles, which
have been overcome in the following way.

• Although the problem with homogeneous friction is monotone and has therefore a unique
solution for an indentor of arbitrary shape, the heterogeneous problem with highly oscil-
lating periodic friction is never monotone. However, we have been able to recover some
monotonicity and solve it uniquely for an arbitrary convex rigid indentor.

• The corresponding contact problem is non-variational. Hence, one cannot expect to rely
on �-convergence to study the homogenized limit. The main problem is to handle the
product of the normal component of the surface traction with the heterogeneous friction
coefficient, for both of which only weak convergences are obtained. This difficulty is
overcome by exploiting the differential structure of the problem in an original, broad
compensated compactness argument.

We first analyze the case of the flat indentor, for which a new explicit solution can be
obtained. Drawing inspiration from this, we are able to uncover monotonicity in the general
case of an arbitrary convex indentor, to solve uniquely the corresponding contact problem
and prove the homogenization result.

The structure of the paper is the following. Section 2 is devoted to the statement of our
main results in the case of heterogeneous friction and a rigid flat indentor (Section 2.2),
of homogeneous friction and arbitrary indentor (Section 2.3), and of heterogeneous friction
and arbitrary indentor (existence results, Section 2.4) or convex indentor (uniqueness, reg-
ularity, and homogenization results, Section 2.5). Proofs of the results of Sections 2.2–2.5
are presented respectively in Sections 3.1–3.4. Finally, Appendices A–D contain some clas-
sical results concerning respectively the Hilbert transform, the spaces H 1/2 and H−1/2, the
Poisson integral, and pseudomonotone variational inequalities.
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2 Position of Problem and Statement of Results

2.1 The Formal Problem

We consider an isotropic homogeneous linearly elastic two-dimensional half-space defined
by y < 0 (y is the space variable along the direction perpendicular to the boundary). The
Poisson ratio is denoted by ν ∈ ]−1,1/2[ and the force unit is chosen so that the Young
modulus E = 1. We denote by x the space variable along the boundary, by t(x) the surface
traction distribution on the boundary and the (outward) normal and tangential components
will be addressed as tn(x) and tt(x) (hence tn = ty and tt = tx ). The half-space is assumed to
be free of body forces. Use of Fourier transform with respect to x provides explicit knowl-
edge of the fundamental solution ū of the classical Neumann problem in linear elasticity
(with no condition at infinity). It is obtained up to an affine function involving four arbitrary
constants. Two of these constants (corresponding to an overall rotation and a component of
stress at infinity) can be fixed by adding the following condition at infinity:

ū(x, y) = O
(
log(x2 + y2)

)
, as x2 + y2 → ∞,

where ū denotes the displacement field. In that case, the stress field goes to zero at infinity.
However, the displacement is generally infinite at infinity and there is no mean to fix the
remaining two constants which correspond to an arbitrary translation. Setting:

u := ū
2(1 − ν2)

, and γ := 1 − 2ν

2(1 − ν)
∈ ]0,3/4[ ,

the boundary displacement u(x,0) resulting from a prescribed surface traction distribution
t(x) with compact support, is given (see, for example, [5, theorem 1] for a detailed proof)
by:

u′
n = − 1

π
pv

1

x
∗ tn − γ tt,

u′
t = − 1

π
pv

1

x
∗ tt + γ tn,

in R,

where pv 1/x denotes the distributional derivative of log |x| and ∗ is the convolution product
with respect to x. The acronym ‘pv’ stands for ‘(Cauchy) principal value’ and the mapping:

t �→ − 1

π
pv

1

x
∗ t

is known as the Hilbert transform1. In the case where t is a function, it is an example of what
is sometimes called a ‘singular integral’ or a ‘Cauchy principal value integral’.

The above expression of (un, ut) in terms of (tn, tt) is nothing but the Neumann-to-
Dirichlet operator of the isotropic homogeneous elastic bidimensional half-space. Each
component of the boundary displacement is obtained up to an arbitrary additive constant,
which is to be interpreted as an overall rigid translation.

We consider a rigid indentor which moves along the boundary of the half-space, at a
constant velocity w > 0 (see Figure 1). The geometry of the indentor is described by a

1the multiplicative constant 1/π is there to ensure that the Hilbert transform is an isometry of L2(R), whose
inverse mapping is minus itself.
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Fig. 1 Geometry of the problem

given function ḡ : ]−1,1[ → R, so that the indentor fills the area defined by: y ≥ ḡ(x)

((x, y) ∈ ]−1,1[ ×R). Set:

g := ḡ

2(1 − ν2)
.

The steady sliding frictional contact problem was introduced and studied in [3]. In a
frame moving with the indentor, it is formally that of finding t(x),u(x) : ]−1,1[ → R

2 such
that:

• − 1

π
pv

1

x
∗ tn − γ tt = u′

n, in ]−1,1[ ,

• − 1

π
pv

1

x
∗ tt + γ tn = u′

t, in ]−1,1[ ,

• un ≤ g, tn ≤ 0,
(
un − g

)
tn = 0, in ]−1,1[ ,

• tt = −f̄ tn, in ]−1,1[ ,

•
∫ 1

−1
tn(x)dx = −P,

where P > 0 is the given amplitude of the total normal force exerted from the moving
indentor, f̄ ≥ 0 is a given friction coefficient. The above convolution products are meant in
terms of the extension by zero of tn, tt to the whole real line. Note that if g is changed into
g +C, where C denotes an arbitrary constant, then we get a solution for the new problem by
just changing un into un + C in the solution. This means that the penetration of the indentor
into the half-space is undefined and this is due to the fact that the displacement field is
infinite at infinity. The problem can be parametrized by the total normal force P only, and
not by the height of the moving obstacle, because it is undetermined. This fact is intimately
connected with the fact that the stress field in the half-space is not square integrable: the
elastic energy of the solution is infinite and this is the reason why the problem has to be
brought to the boundary by use of the fundamental solution of the Neumann problem for the
half-space and singular integrals.
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Focusing on the normal components, this formal problem reduces to that of finding
tn, un : ]−1,1[ →R such that:

• − 1

π
pv

1

x
∗ tn + γ f̄ tn = u′

n, in ]−1,1[ ,

• un ≤ g, tn ≤ 0,
(
un − g

)
tn = 0, in ]−1,1[ ,

•
∫ 1

−1
tn(x)dx = −P.

Finally, we set f = γ f̄ and drop the index ‘n’. Given two functions f,g : ]−1,1[ → R and
P > 0, the formal problem to be studied is now that of finding t, u : ]−1,1[ →R such that:

• − 1

π
pv

1

x
∗ t + f t = u′, in ]−1,1[ ,

• u ≤ g, t ≤ 0,
(
u − g

)
t = 0, in ]−1,1[ ,

•
∫ 1

−1
t (x)dx = −P,

where, again, the convolution product is meant in terms of the extension of t to the whole
real line, by zero.

In the case where f is a constant, it was proved in [3] that this formal problem can be
put under the form of a monotone variational inequality and that the Lions-Stampacchia
theorem yields a unique solution (t, u) ∈ H−1/2(−1,1) × H 1/2(−1,1) for any given shape
g ∈ H 1/2(−1,1) of the moving indentor and any positive total normal force P > 0.

In this paper, we are essentially concerned with the case of a heterogeneous friction
coefficient, that is, the case where f : ]−1,1[ → R is a given function of x. The situation
turns out to be considerably more involved in this case, as the monotonicity property of the
underlying linear operator is generally lost.

As seen in the sequel, insight can be gained by studying first the particular case where
the indentor is a rigid flat punch, that is, the case where g = 0. The reason is that it can
be proved that any solution of the unilateral problem achieves active contact everywhere.
The problem therefore reduces to a linear problem associated with the so-called Carleman
(singular integral) equation. In the case where the given function f is Lipschitz-continuous
on ]−1,1[, some classical analysis of the Carleman equation is available (see for example
[14, Section 4-4]), based on Marcel Riesz’s Lp-theory of the Hilbert transform in connection
with the study of a class of holomorphic functions in the upper complex half-plane. As the
natural case of application of our analysis is the situation where f is a piecewise constant
friction coefficient, we are driven to look for an extension of the classical theory of Carleman
equation to the case where f is piecewise Lipschitz-continuous, that is, to the case where
f is allowed to have jumps. Interestingly enough, in that extended framework, uniqueness
of solution is generally lost for the linear Carleman equation with generic appearance of
a finite-dimensional kernel. However, uniqueness is recovered for the unilateral problem,
thanks to the inequality requirement. In addition, the link made by Marcel Riesz’s Lp-theory
of the Hilbert transform between the Carleman equation and some class of holomorphic
functions in the upper complex half-plane makes it easy to pass to the homogenized limit of
highly oscillating friction coefficients, when the indentor is a rigid flat punch.
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In the case of an indentor of arbitrary shape g ∈ H 1/2(−1,1) and heterogeneous fric-
tion coefficient f ∈ BV(−1,1), the contact problem is reduced to a variational inequality.
The underlying linear operator is monotone in the case where f is a non-decreasing func-
tion, but not in general. In the general case, the variational inequality is proved to be pseu-
domonotone in the sense of Brézis [6], yielding the existence of a solution to the contact
problem. To obtain the uniqueness of solution and the homogenization analysis, the analy-
sis is further restricted to the particular case of an indentor of arbitrary convex shape with
Lipschitz-continuous friction coefficient. In this case, the analysis can be refined, yielding
uniqueness of solution and homogenized limit, so that the analysis for the rigid flat punch is
fully generalized. We believe that our analysis may be extended, possibly with major tech-
nical adaptations, to the case of nonconvex indentors with piecewise Lipschitz-continuous
friction coefficients.

2.2 Statement of Results in the Case of the Rigid Flat Punch

Proposition 1 Let P > 0 and f : ]−1,1[ → R be a given piecewise Lipschitz-continuous
function. There exists a unique (t, u) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) such that:

• − 1

π
pv

1

x
∗ t + f t = u′, in D ′(]−1,1[),

• u ≤ 0, t ≤ 0, u t = 0, a.e. in ]−1,1[ ,

•
∫ 1

−1
t (x)dx = −P.

The displacement u is actually always 0 on ]−1,1[ (active contact everywhere). In the par-
ticular case where f is the piecewise constant function:

f (x) =
n∑

i=1

fi χ
]
xi−1,xi

[(x),

where the fi and −1 = x0 < x1 < · · · < xn = 1 are given real constants and χ]a,b[ denotes
the characteristic function, then the unique solution t is explicitly given by:

t (x) = − P
∏n−1

i=1 |x − xi |αi−αi+1

π
√

1 + f 2(x)(1 + x)
1
2 +α1(1 − x)

1
2 −αn

, where αi := 1
π

arctanfi. (3)

In the case where f is a constant, formula (3) reduces to the classical solution:

t (x) = − P

π
√

1 + f 2(1 + x)1/2+α(1 − x)1/2−α
.

In the case where f is piecewise constant, the explicit solution seems to be new. The dis-
continuities of f introduce contributions of type |x − xi |αi−αi+1 in t (x), so that the normal
contact force t (x) goes to infinity at every increasing discontinuity (f (xi+) > f (xi−)) and
goes to zero at every decreasing discontinuity (f (xi+) < f (xi−)) (see Figure 2).

In the case of a highly oscillating periodic piecewise constant friction coefficient, the
contact force has therefore very large oscillations, as it goes to zero and to infinity on each
period. It is therefore very natural to investigate the question whether an effective constant
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Fig. 2 Normal contact force under a moving flat punch with piecewise constant friction coefficient

friction coefficient can be calculated. From the point of view of homogenization theory,
this amounts to consider a 2/n-periodic friction coefficient fn(x) designed by repetition of
a (suitably rescaled with respect to x) given period f1 and investigate whether the corre-
sponding normal contact force tn admits a limit in a suitable sense, as n goes to infinity. A
full answer is provided for the flat indentor by the following theorem.

Theorem 2 Let p : ]−1,1[ →R be a given piecewise Lipschitz-continuous function and ex-
tend it to R by 2-periodicity. Let fn : ]−1,1[ → R be the 2/n-periodic piecewise Lipschitz-
continuous function defined on ]−1,1[ by:

fn(x) := p(nx),

and let tn ∈ ∪p>1L
p(−1,1) be the unique nonpositive solution of total mass −P of the

equation:

− 1

π
pv

1

x
∗ tn + fn tn = 0, in D ′(]−1,1[),

provided by Proposition 1. Let also feff be the constant:

feff := tan
〈
arctanf1

〉
,

where 〈·〉 denotes the average, that is, 〈h〉 := (1/2)
∫ 1

−1 hdx, and let teff be the unique solu-
tion of the problem associated with the constant feff:

teff(x) := − P

π

√
1 + f 2

eff(1 + x)1/2+αeff(1 − x)1/2−αeff

, where αeff := 1
π

arctanfeff.

Then, the sequences (tn) and (fntn) converge weakly in Lp(−1,1), respectively towards teff

and feffteff, for all p ∈ ]
1, (1/2 + β)−1

[
, where:

β := 1

π
arctan

∥
∥f1

∥
∥

L∞(−1,1)
<

1

2
.

In particular, the total tangential contact force − ∫ 1
−1 fntn dx converges towards feffP .
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As seen in Section 3, the proofs of Proposition 1 and Theorem 2 relies heavily on M.
Riesz’s Lp-theory of the Hilbert transform, and the link it induces between the Hilbert trans-
form and a class of holomorphic functions in the upper complex half-plane. A sketch of the
main results of that theory are gathered in Appendix A of this paper for easy reference.

2.3 Statement of Results in the Case of Homogeneous Friction and Indentor of
Arbitrary Shape

In this section, the friction coefficient f is supposed to be an arbitrary real constant f ∈ R

(homogeneous friction). In the case of an indentor with arbitrary shape g ∈ H 1/2(−1,1),
the existence and uniqueness of solution (t, u) ∈ H−1/2(−1,1) × H 1/2(−1,1) to the con-
tact problem was proved in [4]. We outline here the structure of the proof for the sake
of completeness, before stating new results on the Lp regularity of the unique solu-
tion, based on a Lewy-Stampacchia inequality. In particular, it will be proved that if
the shape of the indentor is Lipschitz-continuous g ∈ W 1,∞(−1,1), the unique solution
(t, u) ∈ H−1/2(−1,1) × H 1/2(−1,1) to the contact problem has actually the regularity
(t, u) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1).

As was seen in the study of the flat obstacle, the integrable function t0 : ]−1,1[ → R
+

defined by:

t0(x) := 1

π
√

1 + f 2(1 + x)
1
2 +α(1 − x)

1
2 −α

,

with α := 1

π
arctanf

(
α ∈ ]−1/2,1/2[

)
,

satisfies:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, in ]−1,1[ , and

∫ 1

−1
t0(x)dx = 1, (4)

(a proof of the above facts is contained in Proposition 21 below). It suggests the following
shift on unknown in the contact problem:

t̃ (x) := t (x) + P t0(x),

so that t̃ must now have zero integral over ]−1,1[. Accordingly, we introduce the following
closed subspace of H−1/2(−1,1):

H ∗
0 :=

{
t̂ ∈ H−1/2(−1,1)

∣∣ 〈
t̂ ,1

〉 = 0
}
,

where 1 denotes the constant function taking value 1 all over ]−1,1[. The dual space of H ∗
0

is readily seen to be the quotient space H0 := H 1/2(−1,1)/R. An arbitrary t̂ ∈ H ∗
0 defines a

distribution in H−1/2(R) with support in [−1,1] (a sketch of the basic definitions and facts
about the spaces H 1/2 and H−1/2 can be found in Appendix B). Its Fourier transform is a
C∞ function which vanishes at 0. Using the classical expressions of the Fourier transform
of log |x| and sgn(x) (the sign function) recalled in Proposition 39 in Appendix C, this fact
entails that the convolution products:

t ∗ log |x|, t ∗ sgn(x),
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are distributions in H 1/2(R) whose restrictions to the interval ]−1,1[ are therefore in
H 1/2(−1,1). In addition, the bilinear form defined by:

t1, t2 �→ −
〈
t1 ∗ log |x|, t2

〉
,

is symmetric and is also positive definite on H ∗
0 . It therefore defines a scalar product on the

space H ∗
0 , and this scalar product induces a norm that is equivalent to that of H−1/2(−1,1)

(see [5, theorem 3] or lemma 40 in Appendix C). The bilinear form:

t1, t2 �→
〈
t1 ∗ sgn(x), t2

〉
,

can easily be seen to be continuous and skew-symmetric on H ∗
0 . All in all, we have proved

that the bilinear form:

t1, t2 �→ − 1

π

〈
t1 ∗ log |x|, t2

〉
+ f

2

〈
t1 ∗ sgn(x), t2

〉
,

is continuous and coercive on H ∗
0 . For an arbitrary t̃ ∈ H ∗

0 , the formula:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D ′(]−1,1[),

defines a unique equivalence class ů = At̃ in H0, and the operator A : H ∗
0 → H0 is con-

tinuous. Reciprocally, for all ů ∈ H0, the linear problem At̃ = ů admits a unique solution
t̃ ∈ H ∗

0 , thanks to the Lax-Milgram theorem. Therefore, the operator A : H ∗
0 → H0 is an

isomorphism, and the bilinear form:

ů1, ů2 �→ 〈
A−1ů1, ů2

〉
,

is continuous and coercive on H0, thanks to the open mapping theorem. Incidentally, the
restriction of A−1 to W 1,∞(−1,1)/R takes values in ∪p>1L

p(−1,1) and is explicitly given
by:

(A−1ů)(x) = f ů′(x)

1 + f 2
+ t0(x)

{

pv
1

x
∗
[
(1 + x)

1
2 +α(1 − x)

1
2 −αů′(x)/

√
1 + f 2

]}

, (5)

where the integral of the above function over ]−1,1[ vanishes, thanks to formula (4) (for a
proof, see [14, Section 4-4]) or [5, theorem 13]).

An equivalence class ů ∈ H0 = H 1/2(−1,1)/R will be said nonpositive (notation ů ≤
0) if one function at least in the equivalence class is nonpositive. Hence, stating that ů ∈
H0 = H 1/2(−1,1)/R is nonpositive is equivalent to state that at least one function in the
equivalence class is bounded by above, which is equivalent to state that all the functions in
the equivalence class are bounded by above2.

Picking an arbitrary g ∈ H 1/2(−1,1), it defines a unique equivalence class in
H 1/2(−1,1)/R (which is to be thought of as the function g up to an arbitrary additive
constant) which will be denoted by g̊ ∈ H0. For g̊ ∈ H0 and P ∈ [0,+∞[, the following
subsets:

K0 :=
{
ů ∈ H0

∣
∣ ů − g̊ ≤ 0

}
,

2we recall that H 1/2(−1,1) contains unbounded functions such as u(x) = log | log |x/2||.
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K∗
0 :=

{
t ∈ H ∗

0

∣
∣ t − P t0 ≤ 0

}
,

are obviously non-empty, convex and closed in H0 and H ∗
0 , respectively. Finally, for P ≥ 0,

the functional defined by:

ϕ(ů) :=

⎧
⎪⎪⎨

⎪⎪⎩

min
u−g∈ů−g̊
u−g≤0

〈
−P t0 , u − g

〉
, if ů ∈ K0,

+∞, otherwise,

is proper, lower semicontinuous and convex on H0 (see [4, lemma 4]). It is the Legendre-
Fenchel conjugate of:

ϕ∗(t) :=
〈
g̊, t

〉
+ IK∗

0
(−t) =

⎧
⎨

⎩

〈
g̊, t

〉
, if − t ∈ K∗

0 ,

+∞, otherwise,

With this notation, the contact problem can be put under the form of any one of the three
following equivalent problems.

Problem (i). Find ů ∈ H0 and t̃ ∈ H ∗
0 such that:

• − 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in ]−1,1[,

• ů ∈ K0, t̃ ∈ K∗
0 , min

u−g∈ů−g̊
u−g≤0

〈
t̃ − P t0 , u − g

〉
= 0.

Problem (ii). Find ů ∈ H0 and t̃ ∈ H ∗
0 such that:

• ∀t̂ ∈ H ∗
0 ,

〈
At̃, t̂ − t̃

〉+ ϕ∗(−t̂ ) − ϕ∗(−t̃ ) ≥ 0.
• ů = At̃ ,

Problem (iii). Find ů ∈ H0 and t̃ ∈ H ∗
0 such that:

• ∀û ∈ H0,
〈
A−1ů, û − ů

〉+ ϕ(û) − ϕ(ů) ≥ 0.
• t̃ = A−1ů,

Problem (iii) is the primal weak formulation under the form of a so-called variational in-
equality and problem (ii) is the variational inequality corresponding to the dual weak formu-
lation. Unique solvability of problem (ii) is a direct consequence of the Lions-Stampacchia
theorem. Hence, each of these three equivalent problems has the same unique solution
(ů, t̃ ) ∈ K0 × K∗

0 (see [4] for a detailed proof). Note that neither the operator A, nor A−1 is
symmetric (except in the frictionless case f = 0), so that these variational inequalities are
not associated with the minimization problem of an underlying energy.

Starting from an arbitrary g ∈ H 1/2(−1,1), the above analysis consists in introducing
first the corresponding equivalence class g̊ ∈ H0 = H 1/2(−1,1)/R and building then a
unique solution ů ∈ H0 = H 1/2(−1,1)/R. Since one prefers to work with functions instead
of equivalence classes, provided that P > 0, it is always possible to define the function of
H 1/2(−1,1):

u − g := arg min
u−g∈ů−g̊
u−g≤0

〈
−P t0 , u − g

〉
.
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It corresponds to the unique function u−g in the equivalence class ů− g̊, whose supremum
is 0. Finally, given g ∈ H 1/2(−1,1), f ∈ R and P > 0, we conclude that the following
problem P has a unique solution.

Problem PPP . Find u ∈ H 1/2(−1,1) and t̃ ∈ H−1/2(−1,1) such that:

• − 1

π
pv

1

x
∗ t̃ + f t̃ = u′, in ]−1,1[ ,

• t̃ − P t0 ≤ 0, u − g ≤ 0,
〈
t̃ − P t0 , u − g

〉 = 0,

• 〈
t̃ , 1

〉 = 0.

Remark The solution of problem PPP obviously satisfies ess sup(u − g) = 0.

Exact explicit solutions for the above steady sliding frictional contact problem are known
in the particular cases:

• g = 0 (moving rigid flat punch), the solution being given by u(x) = 0, t̃ = 0, that is,
t (x) = −P t0(x),

• g = x2/r (moving rigid parabola with radius of curvature r/(4(1 − ν2)) at apex), an
extensive derivation of the explicit solution is to be found in [3]. It shows in particular that
the coincidence set or contact zone (the set of those x ∈ ]−1,1[ such that u(x) = g(x))
depends on the friction coefficient f , in general.

These exact explicit solutions seem to have been first discovered by Galin in USSR just after
World War II.

Let us also mention that a catalogue of the universal singularities that can be displayed
by the solution of the above steady sliding frictional contact problem is to be found in [4].

In this paper, we first add the proof of some new facts about the unique solution of
problem PPP . All these facts are based on the following property for the operator A−1. This
property is sometimes called T-monotonicity by some authors [15, p. 231]. It enables to
adapt some techniques developed by Stampacchia for the obstacle problem to problem PPP .

Theorem 3 Let u ∈ H 1/2(−1,1). Then the function u+(x) := max{u(x),0} is in H 1/2(−1,1)

and we have:
〈
A−1ů , u+

〉
≥ 0,

where the equality is achieved if and only if u+ is constant.

The detailed proof of Theorem 3 is postponed to Section 3.2

Definition 4 A pair (u, t̃) ∈ H 1/2(−1,1)×H−1/2(−1,1) which satisfies all the requirements
of problem P , except possibly for the requirement 〈t̃ − P t0, u − g〉 = 0 is called a subsolu-
tion of problem P .

Corollary 5 Let (u, t̃) be the solution of problem P and (v, r̃) be an arbitrary subsolution.
Then:

v ≤ u.
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Proof Let z(x) := max{u(x), v(x)}, so that z ∈ H 1/2(−1,1) (because w ∈ H 1/2 ⇒ w+ ∈
H 1/2). As z − u = (v − u)+, (u, t̃) is the solution of problem P and z ≤ g, we have:

〈
t̃ − P t0, (v − u)+〉 = 〈

t̃ − P t0, z − u
〉 ≥ 0.

Given an arbitrary subsolution (v, r̃), r̃ −P t0 ≤ 0 yields 〈r̃ −P t0, (v − u)+〉 ≤ 0. Gathering,
we have:

〈
A−1(v̊ − ů) , (v − u)+〉 = 〈

r̃ − t̃ , (v − u)+〉 ≤ 0,

which implies that (v − u)+ is a constant, thanks to Theorem 3. If that constant were posi-
tive, then v −u would be a positive constant, which must be ruled out as we have both v ≤ g

and ess sup(u − g) = 0. Therefore, (v − u)+ = 0 which is nothing but the claim. �

Definition 6 Let (u, t̃) be the unique solution of problem P . The contact zone CP or coin-
cidence set is the closure in ]−1,1[ of the complement in ]−1,1[ of the support of u − g.

Corollary 7 The contact zone CP is a nondecreasing function of P :

0 < P1 < P2 ⇒ CP1 ⊂ CP2 .

Proof Let (ui, t̃i ) be the solution of problem P with total force Pi (i = 1,2). Then, (u1, t̃1)

is a subsolution of problem P with total force P2. Corollary 5 yields u1 ≤ u2 ≤ g, which
entails the claim. �

We now focus on the particular case where the obstacle is Lipschitz-continuous: g ∈
W 1,∞(−1,1) ⊂ H 1/2(−1,1). As the Hilbert transform is an isomorphism of Lp(R), for all
p ∈ ]1,∞[, and t0 ∈ Lp(−1,1), for all 1 ≤ p < (1/2 + |α|)−1, formula (5) shows that, in
this case, A−1g̊ ∈ Lp(−1,1), for all 1 ≤ p < (1/2 + |α|)−1, where α = (arctanf )/π .

Theorem 8 Assuming that g ∈ W 1,∞(−1,1) ⊂ H 1/2(−1,1), the solution (u, t̃) of prob-
lem P satisfies the Lewy-Stampacchia inequality:

min
{
P t0,A

−1g̊
}

≤ t̃ ≤ P t0.

Proof We only have to prove the first inequality. As P t0 and A−1g̊ are both integrable func-
tions, their pointwise minimum is well defined. The closed convex subset of H ∗

0 :

{
t ∈ H ∗

0

∣∣ t ≤ −min{P t0,A
−1g̊}

}
, (6)

is non-empty, as it contains −A−1g̊. Therefore, as A : H ∗
0 → H0 is continuous and coercive,

the variational inequality in problem (ii) above still has a unique solution when g̊ is replaced
by −ů and P t0 by −min{P t0,A

−1g̊} (that is, K∗
0 is replaced by (6)), thanks to the Lions-

Stampacchia theorem. Hence, the contact problem (problem (i), (ii) or (iii) above) obtained
by replacing g̊ by −ů and P t0 by −min{P t0,A

−1g̊} has a unique solution which is denoted
by (−v̊,−A−1v̊). It satisfies in particular −v̊ ≤ −ů and:

−A−1v̊ ≤ −min{P t0,A
−1g̊}. (7)
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We denote by u − v the unique function in the equivalence class ů − v̊ whose supremum
is 0. By construction of the nonpositive function u − v, we have:

〈
A−1v̊ − min{P t0,A

−1g̊} , v − u
〉
= 0. (8)

Note that we also have:

−g ≤ −u, and − A−1g̊ ≤ −min{P t0,A
−1g̊},

which shows that (−g,−A−1g̊) is a subsolution of the contact problem solved by −v. There-
fore, Corollary 5 yields:

−g ≤ −v, ⇒ u ≤ v ≤ g.

But, this entails that we can use v as a test function in the variational inequality that defines
u:

〈
A−1ů − P t0 , v − u

〉
=

〈
A−1ů − P t0 , v − g

〉
−

〈
A−1ů − P t0 , u − g

〉
≥ 0,

which entails:
〈
A−1ů − P t0 + (P t0 − A−1g̊)

+
, v − u

〉
≥ 0,

that is:
〈
A−1ů − min{P t0,A

−1g̊} , v − u
〉
≥ 0.

Taking the difference of this last inequality with identity (8), we obtain:

〈
A−1(ů − v̊) , u − v

〉
≤ 0,

which shows that u−v is a constant function, as A−1 : H0 → H ∗
0 is coercive. As this constant

function has 0 supremum, it vanishes identically. So, we have proved that v = u. But then,
the claimed inequality is given by inequality (7). �

Corollary 9 Let P > 0 and g ∈ W 1,∞(−1,1). Then, the solution (u, t̃) of problem P fulfills
actually the additional regularity: t̃ ∈ Lp(−1,1), u ∈ W 1,p(−1,1), for all p such that 1 <

p < (1/2 + |α|)−1, with α = (arctanf )/π .

Proof We have t0 ∈ Lp(−1,1), for all p such that 1 < p < (1/2 + |α|)−1. As g ∈
W 1,∞(−1,1), formula (5) shows that A−1g̊ ∈ Lp(−1,1) (we recall that the Hilbert trans-
form maps continuously Lq(R) onto itself, for all q ∈ ]1,∞[, by Theorem 32 of Ap-
pendix A). By Theorem 8, this is also true of t̃ , and by the first equation in problem P ,
this is true of u′. �

Corollary 10 Let P > 0 and g ∈ W 1,∞(−1,1) be convex. Then, the contact zone CP coin-
cides with the support of t = t̃ − P t0 in ]−1,1[ and is connected, that is, it is an interval.
Denoting by a < b ∈ [−1,1] the bounds of that interval, we have:

• u < g, g′ < u′ < 0, on ]−1, a[,
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• u < g, 0 < u′ < g′, on ]b,1[.

In particular, u ∈ W 1,∞(−1,1) and ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1).

Proof If CP = ]−1,1[, then there is nothing to prove. Otherwise, there exists x0 such that
u(x0) < g(x0). As u is continuous by the previous corollary, let ]c, d[ be the largest open
interval containing x0 (x0 ∈ ]c, d[ ⊂ ]−1,1[) in which u < g. We are going to prove that
we cannot have −1 < c < d < 1, which is sufficient to prove that the contact zone CP is
connected. So, let us suppose −1 < c < d < 1. By the continuity of u given by the preceding
corollary, we have u(c)−g(c) = u(d)−g(d) = 0. Furthermore, t = t̃ −P t0 must vanish on
]c, d[, so that, by using Theorem 32 in Appendix A:

∀x ∈ ]c, d[ , u′(x) = 1

π

∫ c

−1

t (s)

s − x
ds + 1

π

∫ 1

d

t (s)

s − x
ds.

As t ≤ 0, u′ is decreasing on ]c, d[ and therefore u − g is concave on ]c, d[. But u − g

is also nonpositive and vanishes at c and d . Therefore, it must vanish identically on ]c, d[,
yielding the expected contradiction. Besides, note that the contradiction is reached under the
sole hypothesis that there exist −1 < c < d < 1 such that c, d ∈ supp t and t = 0 on ]c, d[.
Hence, both the contact zone and the support of t are intervals. Let a < b ∈ [−1,1] be the
bounds of the support of t . We have u = g on ]a, b[. Also, u′ is negative and decreasing on
]−1, a[, which entails u < g on ]−1, a[. As u′(c−) ≥ g′(c−), we must have g′ < u′ < 0 on
]−1, a[. By the same argument, u < g and 0 < u′ < g′ on ]b,1[. As u′ = g′ on ]a, b[, we
get ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1). �

2.4 Existence of Solutions in the Case of Heterogeneous Friction and Indentor of
Arbitrary Shape

We now turn to the problem of generalizing the existence and uniqueness results for the
case of homogeneous friction, to the case of heterogeneous friction. The following two
difficulties arise.

• As, in applications, heterogeneous friction coefficients are going to be piecewise constant,
our framework should encompass discontinuous friction coefficients. The restriction of a
distribution t ∈ H−1/2(−1,1) to ]0,1[ does not define a distribution on ]−1,1[, in gen-
eral. Hence, there are some t ∈ H−1/2(−1,1) for which we cannot define the product
f t and the functional framework must therefore be redesigned in this case. Note, how-
ever, that as t must be nonpositive, it belongs to the Banach space of Radon measures
M ([−1,1]). Any t ∈ H−1/2 ∩ M ([−1,1]) is a Radon measure without any atom, and a
function f ∈ BV([−1,1]) has a countable set of discontinuities. Therefore, the product
f t is a well-defined Radon measure in that case. Hence, we are driven to look for t in
H−1/2 ∩ M ([−1,1]), and one must therefore leave the framework of Hilbert spaces.

• In the case where f ∈ BV([−1,1]) and t̃ ∈ H ∗
0 ∩M ([−1,1]), it will be seen in the sequel

that the identity:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in ]−1,1[ ,

defines uniquely ů = At̃ in H0 + C0([−1,1]) ∩ BV([−1,1]) ⊂ H0 + C0([−1,1]). How-
ever, it will be seen that the operator A is not strictly monotone (or even monotone) in
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general. This could be anticipated from the analysis of the flat punch case, as Proposi-
tion 22 shows that, in the case of a piecewise constant f , the kernel of A can contain a
finite-dimensional space.

However, we will prove that A : H ∗
0 ∩ M ([−1,1]) → H0 + C0([−1,1]) is pseudomono-

tone in the sense of Brézis. As a consequence, the contact problem always admits a solution
under the only hypotheses that f ∈ BV([−1,1]) and g ∈ H 1/2(−1,1). In addition, in the
particular case where the function f : [−1,1] → R is non-decreasing, the operator A is
strictly monotone and the solution is therefore unique.

To formulate the contact problem under the form of a variational inequality, we first
extend the definition of t0 to less regular friction coefficient. Interestingly enough, the proof
of the following proposition (postponed to Section 3.3) relies on the same technique that
yielded the homogenization of friction in the case of the flat indentor.

Proposition 11 Let f ∈ L∞(−1,1), extended by zero on R \ ]−1,1[. We denote by τ :=
− 1

π
pv 1

x
∗ arctanf , the Hilbert transform of the function arctanf . Let t0 be the function

defined by:

t0(x) := eτ(x)

π
√

1 − x2
√

1 + f 2(x)
, for x ∈ ]−1,1[ ,

and extended by zero on R \ ]−1,1[. Then, t0 ∈ ∪p>1L
p(−1,1), it is obviously positive on

]−1,1[, has total mass
∫ 1

−1 t0 dx = 1 and solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, a.e. in ]−1,1[ .

Note that the above proposition provides incidentally a solution of the contact problem
for the moving flat punch with arbitrary friction coefficient f ∈ L∞(−1,1).

Let B1, B2 be Banach spaces that are both continuously embedded in some Hausdorff
topological vector space. Then, B1 + B2 and B1 ∩ B2 are both Banach spaces for the natural
norms:

‖x‖B1+B2 := inf
b1∈B1,b2∈B2,

b1+b2=x

{‖b1‖B1 + ‖b2‖B2

}
,

‖x‖B1∩B2 := max
{‖x‖B1 ,‖x‖B2

}
.

In addition, we have (B1 + B2)
∗ = B∗

1 ∩ B∗
2 . Hence, the Banach space H ∗

0 ∩ M ([−1,1]) is
the dual of the Banach space H0 + C0([−1,1]).

We are given P ≥ 0 and g ∈ H 1/2(−1,1) + BV([−1,1]). The set:

K∗
0 :=

{
t ∈ H ∗

0

∣∣ t − P t0 ≤ 0
}
, (9)

is a nonempty (0 ∈ K∗
0 ), convex, closed subset of H ∗

0 ∩ M ([−1,1]) (where H ∗
0 := {t̂ ∈

H−1/2(−1,1)|〈t̂ ,1〉 = 0}). We will associate with g, a unique g̊ ∈ H0 + BV([−1,1]) as
in Section 2.3, and write ů ≤ g̊ to mean, as there, that one (and therefore all) function
u − g in the equivalence class ů − g̊ is bounded by above. The reason for allowing g ∈
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H 1/2(−1,1) + BV([−1,1]) is that this new setting encompasses indentors that may have
steps. This is interesting from the point of view of mechanics. From the point of view of
mathematics, there is no additional difficulty as any function in BV([−1,1]) is the uniform
limit of a sequence of step functions and is therefore integrable with respect to any Radon
measure. In addition, the linear functional t �→ ∫

gt is continuous on H ∗
0 ∩ M ([−1,1]), so

that the notation t �→ 〈t, g〉 can be used unambiguously.
Any t ∈ H−1/2 ∩ M ([−1,1]) is a Radon measure without any atom, and the same is

true of f t . Hence, we can write unambiguously
∫ x

0 f t , for any x ∈ [−1,1] and the function
x �→ ∫ x

0 f t is a continuous function on [−1,1] with bounded variation. Also, log |x| ∗ t is in
H 1/2(−1,1). Therefore, given t̃ ∈ H ∗

0 ∩ M ([−1,1]), the identity:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D ′(]−1,1[),

defines uniquely ů = At̃ in H0 + (
C0([−1,1]) ∩ BV([−1,1])) ⊂ H0 + C0([−1,1]).

With this notation, we can now easily generalize problems (i) and (ii) of Section 2.3 to
the case where f ∈ BV([−1,1]).

Problem (i′). Find ů ∈ H0 +C0([−1,1])∩BV([−1,1]) and t̃ ∈ H ∗
0 ∩M ([−1,1]) such that:

• − 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D ′(]−1,1[),

• ů ≤ g̊, t̃ ≤ P t0, min
u−g∈ů−g̊
u−g≤0

〈
t̃ − P t0 , u − g

〉
= 0.

Problem (ii′). Find ů ∈ H0 + C0([−1,1]) ∩ BV([−1,1]) and t̃ ∈ K∗
0 such that:

• ∀t̂ ∈ K∗
0 ,

〈
At̃, t̂ − t̃

〉 ≥ 〈
g, t̂ − t̃

〉
.

• ů = At̃ ,

Proposition 12 Problems (i′) and (ii′) are equivalent in the sense that any solution of prob-
lem (i′) is a solution of problem (ii′), and reciprocally.

Proof First, consider a solution (ů, t̃) of problem (i′). By the second condition of prob-
lem (i′), there exists u ∈ ů such that 〈t̃ − P t0 , u − g〉 = 0 and u − g ≤ 0. By the first
condition, there exists C ∈R such that:

− 1

π
log |x| ∗ t̃ + 1

2
sgn(x) ∗ (f t̃) = u + C, in ]−1,1[ ,

so that, for all t̂ ∈ K∗
0 :

〈
At̃, t̂ − t̃

〉
−

〈
g, t̂ − t̃

〉
=

〈
t̂ − P t0 , u − g

〉
−

〈
t̃ − P t0 , u − g

〉
≥ 0,

that is, ů, t̃ solves problem (ii′).
Reciprocally, consider a solution (ů, t̃ ) of problem (ii′). Pick an arbitrary u ∈ ů. We have,

for all t̂ ∈ K∗
0 :

〈
t̂ − P t0 , u − g

〉
−

〈
t̃ − P t0 , u − g

〉
=

〈
At̃, t̂ − t̃

〉
−

〈
g, t̂ − t̃

〉
≥ 0. (10)
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Let us show that u − g is (essentially) bounded by above. If it were not, then the sets:

Kn :=
{
x ∈ [−1,1] ∣∣ u(x) − g(x) ≥ n

}
,

would all have a positive measure, and the sequence (t̂n) in K∗
0 defined by:

t̂n := P t0 − P

|Kn|χKn,

(where χKn is the characteristic function of Kn) would be such that limn→+∞〈t̂n −P t0 , u−
g〉 = −∞ which would contradict (10). Hence, u − g is (essentially) bounded by above,
which shows that ů ≤ g̊. Therefore, by (10), for all t̂ ∈ K∗

0 :

min
u−g∈ů−g̊
u−g≤0

〈
t̃ −P t0 , u−g

〉
=

〈
t̃ −P t0 , u−g− sup

]−1,1[
(u−g)

〉
≤

〈
t̂ −P t0 , u−g− sup

]−1,1[
(u−g)

〉
.

Once again, one can easily construct a sequence (t̂n) in K∗
0 such that limn→+∞〈t̂n −P t0 , u−

g−sup(u−g)〉 = 0, which shows that the value of the minimum is 0 and therefore that (ů, t̃ )

solves problem (i′). �

Proposition 13 The linear operator A : H ∗
0 ∩ M ([−1,1]) → H0 + C0([−1,1]) is bounded.

Proof We have:

∥
∥At

∥
∥

H0+C0 ≤
∥∥∥(−1/π)(log |x| ∗ t)

∥∥∥
H 1/2

+
∥∥∥
∫ x

0 f t

∥∥∥
C0

≤ M
(∥
∥t
∥
∥

H−1/2 + ∥
∥t
∥
∥

M

)

≤ 2M
∥∥t
∥∥

H∗
0 ∩M

,

for some real constant M depending only on ‖f ‖L∞ and, in particular, independent of t

(here the Fourier transform of the logarithm provided by Proposition 39 in Appendix C was
used to obtain the second inequality). �

Theorem 14 In the case of an arbitrary function f ∈ BV([−1,1]), the bounded linear op-
erator A : H ∗

0 ∩ M ([−1,1]) → H0 + C0([−1,1]) is pseudomonotone in the sense of Brézis
(see Definition 43), with the space H ∗

0 ∩ M ([−1,1]) endowed with weak-* topology and
H0 +C0([−1,1]) endowed with the weak topology. In addition, in the particular case where
the function f is nondecreasing, the bounded linear operator A : H ∗

0 ∩ M ([−1,1]) →
H0 + C0([−1,1]) is strictly monotone (see Definition 42).

The proof of theorem 14 is postponed to Section 3.3.

Corollary 15 In the case of an arbitrary function f ∈ BV([−1,1]), problem (ii′) always has
a solution. In the particular case where f is nondecreasing, this solution is unique.

Proof The set K∗
0 is a closed convex subset of H ∗

0 ∩M ([−1,1]) that contains 0. In addition,
the set {−P t0} + K∗

0 contains only nonpositive measures of total mass −P and is therefore
a subset of the closed ball of radius P in M ([−1,1]). Hence, a sequence in K∗

0 whose
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H ∗
0 ∩ M ([−1,1])-norm goes to infinity has also its H−1/2(−1,1)-norm going to infinity.

Hence, we have:

lim
‖t‖→+∞

t∈K∗
0

〈At, t〉 + 〈g, t〉
‖t‖ = lim

‖t‖→+∞
t∈K∗

0

− 1
π

〈
log |x| ∗ t, t

〉
+ 〈g, t〉

‖t‖ = +∞,

where ‖ · ‖ is the norm of H ∗
0 ∩ M ([−1,1]) (here, the second term in 〈At, t〉 has been

removed since it is bounded). The claim is now a direct consequence of Corollary 46 in
Appendix D and Theorem 14. �

2.5 Regularity, Uniqueness and Homogenization in the Case of Heterogeneous
Friction and Convex Indentor

In this section, we are restricted to the case where the shape of the indentor g ∈ W 1,∞(−1,1)

is Lipschitz-continuous and convex. The heterogeneous friction coefficient f : ]−1,1[ →R,
will be supposed Lipschitz-continuous. There is no doubt that the whole analysis could be
generalized to the case of a piecewise Lipschitz-continuous friction coefficient, as in the
case of the moving flat punch, but we will restrict ourselves to the case of a Lipschitz-
continuous friction coefficient, for the sake of simplicity. In this restricted case, we are go-
ing to be able to generalize all the results already proved in the case of the moving flat
punch with piecewise Lipschitz-continuous friction coefficient: existence and uniqueness of
a solution (t, u) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) to the contact problem and homoge-

nization analysis with the same value of the effective friction coefficient in the homogenized
limit. This generalization has an important added value as, in the case of the general convex
indentor, contrary to the case of the flat punch, the contact zone is a true unknown of the
problem and is different a priori for each oscillating friction coefficient fn. The fact that we
obtain the same value for the effective friction coefficient in the homogenized limit shows
that there is no influence of unilateral contact on homogenized friction.

In this section, f denotes a Lipschitz-continuous function on ]−1,1[, extended as
usual by zero to the whole real line. We also consider a function f̄ , which is identi-
cally equal to f on ]−1,1[, and chosen to be compactly supported in R and Lipschitz-
continuous on R (which f is not, in general). We denote by τ := − 1

π
pv 1

x
∗ arctanf and

τ̄ := − 1
π

pv 1
x

∗ arctan f̄ the Hilbert transforms of arctanf and arctan f̄ , respectively, and
we keep the notation:

t0(x) := eτ(x)

π
√

1 − x2
√

1 + f 2(x)
, for x ∈ ]−1,1[ ,

which, we recall, is a solution of the homogeneous Carleman equation in ∪p>1L
p(−1,1)

and has total mass 1.
We shall now prove that the original contact problem (problem Po below) which was

seen in previous section to have a default of monotonicity, is equivalent to an auxiliary con-
tact problem (problem Pa below) associated with a monotone operator. These two problems
are defined as follows.
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Problem Po. Find (t̃ , u) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) such that:

• − 1

π
pv

1

x
∗ t̃ + f t̃ = u′, in D ′(]−1,1[),

• u − g ≤ 0, t̃ − P t0 ≤ 0,
(
u − g

)(
t̃ − P t0

) = 0, a.e. in ]−1,1[ ,

•
∫ 1

−1
t̃ dx = 0.

Problem Pa. Find (t̃ , v) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) such that:

• e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t̃ + f t̃

)
= v′, in D ′(]−1,1[),

• v(x) −
∫ x

−1

g′e−τ̄

√
1+f 2

ds ≤ 0, t̃(x) − P t0(x) ≤ 0,

(
v(x) −

∫ x

−1

g′e−τ̄

√
1+f 2

ds

)(
t̃ (x) − P t0(x)

)
= 0, a.e. in ]−1,1[ ,

•
∫ 1

−1
t̃ dx = 0.

Proposition 16 We assume that P > 0, f ∈ W 1,∞(−1,1) and g ∈ W 1,∞(−1,1) is convex.
Then, problem Po and problem Pa are equivalent in the following sense.

• If (t̃ , u) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) denotes an arbitrary solution of prob-
lem Po, then, setting:

v(x) :=
∫ x

−1

u′e−τ̄

√
1+f 2

ds − sup
x∈]−1,1[

∫ x

−1

(u′ − g′)e−τ̄

√
1+f 2

ds,

the pair (t̃ , v) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) yields a solution of problem Pa.
• If (t̃ , v) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) denotes an arbitrary solution of prob-

lem Pa, then, setting:

u(x) :=
∫ x

−1
v′eτ̄√

1+f 2 ds − sup
x∈]−1,1[

(
−g(x) +

∫ x

−1
v′eτ̄√

1+f 2 ds

)
,

the pair (t̃ , u) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) yields a solution of problem Po.

In addition, if (t̃ , u) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) denotes an arbitrary solution of
problem Po, then there exist a, b ∈ [−1,1] such that supp(t̃ − P t0) = [a, b] and:

• u < g, g′ < u′ < 0, on ]−1, a[,
• u = g, on ]a, b[,
• u < g, 0 < u′ < g′, on ]b,1[.

In particular, ‖u′‖L∞(−1,1) = ‖g′‖L∞(−1,1).
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Proof Let (t̃ , u) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) be an arbitrary solution of prob-
lem Po. The pair (t̃ , v) obviously fulfills all the statements of problem Pa except maybe:

(
v(x) −

∫ x

−1

g′e−τ̄

√
1+f 2

ds

)(
t̃ (x) − P t0(x)

)
= 0. (11)

Noting that the proof of Corollary 10 uses only the fact that (t̃ , u) belongs to ∪p>1L
p(−1,1)×

∪p>1W
1,p(−1,1) and not that the friction coefficient f is constant, we can apply its conclu-

sion. In particular, u′ ∈ L∞(−1,1), supp (t̃ −P t0) is an interval and its bounds a, b ∈ [−1,1]
are such that u′ − g′ ≥ 0 on ]−1, a[, u′ − g′ = 0 on ]a, b[ and u′ − g′ ≤ 0 on ]b,1[. This
entails that the function:

v(x) −
∫ x

−1

g′e−τ̄

√
1+f 2

ds,

is non-decreasing on ]−1, a[, is constant on ]a, b[ and is non-increasing on ]b,1[. As its
supremum is zero, by construction, this function actually vanishes on ]a, b[. This is sufficient
to say that identity (11) holds and that the pair (t̃ , v) solves problem Pa.

Reciprocally, let (t̃ , v) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) be an arbitrary solution of
problem Pa. We have u′ = v′eτ̄√1+f 2 ∈ ∪p>1L

p(−1,1). The pair (t̃ , u) obviously fulfills all
the statements of problem Po except maybe:

(
u(x) − g(x)

)(
t̃ (x) − P t0(x)

)
= 0. (12)

To prove this, we are going to prove that the set of those x ∈ ]−1,1[ such that v(x) =
ϕ(x) :=

∫ x

−1

g′e−τ̄
√

1+f 2 ds is an interval. Consider x0 ∈ ]−1,1[ such that v(x0) − ϕ(x0) < 0 and

let ]a, b[ be the largest interval containing x0 (x0 ∈ ]a, b[ ⊂ ]−1,1[) in which this contin-
uous function is negative. As t̃ − P t0 vanishes on ]a, b[, we have, using Theorem 32 of
Appendix A:

∀x ∈ ]a, b[ , u′(x) = 1

π

∫ a

−1

t̃ (s) − P t0(s)

x − s
ds + 1

π

∫ 1

b

t̃(s) − P t0(s)

x − s
ds,

which entails that u′ is decreasing on ]a, b[, so that u′ − g′ is also decreasing on ]a, b[ (as
g is convex). If −1 < a and b < 1, we would have, on the one hand (v − ϕ)(a) = 0 =
(v − ϕ)(b). On the other hand, if (u′ − g′)(a+) > 0, then the function v′ − ϕ′ would be
positive on a right neighborhood ]a, a + ε[ of a, which is impossible since v − ϕ ≤ 0, so
we must have (u′ − g′)(a+) ≤ 0. Similarly (u′ − g′)(b−) ≥ 0. But, this implies that u′ − g′
vanishes identically on ]a, b[ and the same must be therefore true of v′ − ϕ′, which yields
a contradiction. Hence, either a = −1 or b = 1, which implies that (v − ϕ)−1({0}) is an
interval. As previously, the function t̃ − P t0 vanishes outside this interval and the function
u′ − g′ is decreasing outside this interval. Since u′ − g′ = 0 on this interval, the constant
value taken by u − g on that interval is also its maximum, which is zero by construction.
Finally, we have proved identity (12). �

The motivation for defining problem Pa lies in the fact that the underlying linear operator
enjoys the same good properties as those of the underlying linear operator of the case of ho-
mogeneous friction (which the underlying linear operator of problem Po does not enjoy, as
was seen in the preceding section). These good properties are summarized in the following
theorem, whose proof is postponed to Section 3.4.
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Theorem 17 Let f ∈ W 1,∞(−1,1). Then, for all t̃ ∈ H ∗
0 := {t̂ ∈ H−1/2(−1,1)|〈t̂ ,1〉 = 0},

the identity:

e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t̃ + f t̃

)
= v′, in ]−1,1[ ,

defines a unique v̊ = Āt̃ in H0 := H 1/2(−1,1)/R. The mapping Ā : H ∗
0 → H0 is continuous

and coercive, so that it is actually an isomorphism. Its inverse mapping Ā−1 : H0 → H ∗
0 is

also continuous, coercive, and enjoys, in addition, the T-monotonicity property:

∀v ∈ H 1/2(−1,1),
〈
Ā−1v̊, v+〉 ≥ 0,

where the equality is achieved if and only if v+ is constant.

The proof of theorem 17 is postponed to Section 3.4. We are now going to state its
consequences, which are roughly, that the contact problem with heterogeneous friction and
convex indentor behaves like the contact problem with homogeneous friction.

Corollary 18 Let f ∈ W 1,∞ be an arbitrary Lipschitz-continuous friction coefficient, g ∈
W 1,∞(−1,1) a convex indentor shape and P > 0. Then, there exists a unique (t̃ , v) ∈
∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) that solves problem Pa.

Proof As Ā : H ∗
0 → H0 is continuous and coercive, thanks to Theorem 17, the Lions-

Stampacchia Theorem yields a unique pair (t̃ , v) ∈ H−1/2(−1,1) × H 1/2(−1,1) satisfying
all the statements of problem Pa (with

∫ 1
−1 t̃ dx = 0 replaced by 〈t̃ ,1〉 = 0). In addition, by

the same reasoning as in the proof of Theorem 8, the T-monotonicity of Ā−1 entails the
Lewy-Stampacchia inequality:

min

{
P t0, Ā

−1
∫ x

−1
g′e−τ̄ /

√
1+f 2 ds

}
≤ t̃ ≤ P t0. (13)

Note that Ā−1
∫ x

−1 g′e−τ̄ /
√

1+f 2 ds denotes the unique solution t ∈ H ∗
0 of the equation:

e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t + f t

)
= g′e−τ̄

√
1+f 2

, in D ′(]−1,1[),

that is, of the non-homogeneous Carleman equation with Lipschitz coefficient:

− 1

π
pv

1

x
∗ t + f t = g′, in D ′(]−1,1[).

It is given by:

t (x) = f g′(x)

1 + f 2
+ t0(x)

{

pv
1

x
∗
[√

1 − x2e−τ(x)g′(x)/
√

1 + f 2

]}

,

where t0 is the function defined in Proposition 7 (for a proof, see [14, Section 4-4] or [5,
theorem 13]). As e−τ(x)g′(x) ∈ L∞(−1,1), the Hilbert transform in the above formula is in
Lp , for all p ∈ ]1,+∞[ by Theorem 32 in Appendix A. As t0 ∈ ∪p>1L

p(−1,1), the same
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is true of t = Ā−1
∫ x

−1 g′e−τ̄ /
√

1+f 2 ds. Going back to the Lewy-Stampacchia inequality (13),
we can conclude t̃ ∈ ∪p>1L

p(−1,1). As the same conclusion applies to:

v′ = e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t̃ + f t̃

)
,

the proof is complete. �

Note that the T-monotonicity property of the operator Ā−1 yields incidentally that the
contact zone CP (which is an interval as the indentor is assumed to be convex) is a non-
decreasing function of P , as in Corollary 7.

We are now able to generalize the homogenization result (Theorem 2) already obtained
for the particular case of the flat indentor to the case of an arbitrary convex Lipschitz-
continuous (g ∈ W 1,∞(−1,1)) indentor. The following theorem requires that the oscillating
friction coefficient fn is Lipschitz-continuous.

Theorem 19 Let P > 0 and g ∈ W 1,∞(−1,1) be convex. We are given a period p ∈
W 1,∞(−1,1), such that p(−1) = p(1) which is extended by 2-periodicity to the whole line.
Let fn : ]−1,1[ → R be the 2/n-periodic piecewise Lipschitz-continuous function defined
on ]−1,1[ by:

fn(x) := p(nx),

and let t̃n ∈ ∪p>1L
p(−1,1) be the unique solution of the contact problem (either problem Po

or problem Pa) provided by Corollary 18. Let also feff be the constant:

feff := tan
〈
arctanf1

〉
,

where 〈·〉 denotes the average, that is, 〈h〉 := (1/2)
∫ 1

−1 hdx, and let t̃eff be the unique solu-
tion of the contact problem associated with the constant feff.

Then, the sequences (t̃n) and (fnt̃n) converge weakly-* in M ([−1,1]), respectively to-
wards t̃eff and feff t̃eff. In particular, the total tangential contact force − ∫ 1

−1 fn(t̃n − P t0
n )dx

converges towards feffP .

The proof of Theorem 19 is postponed to Section 3.4. Note that the type of convergence
which is proved for the sequences (t̃n) and (fnt̃n) is slightly weaker than the convergence
that was proved in the case where the indentor is a rigid flat punch: weak-* convergence in
M ([−1,1]) instead of weak convergence in Lp(−1,1) with p in a range of values larger
than 1.

3 Proofs of the Stated Results

3.1 Proof of the Results for the Case of the Rigid Flat Punch

First, we give a proof of the fact that, in the case of the flat punch, any solution of the contact
problem achieves active contact everywhere.
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Proposition 20 Let P > 0 and f : ]−1,1[ → R be a given piecewise Lipschitz-continuous
function. Let (t, u) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) be such that:

• − 1

π
pv

1

x
∗ t + f t = u′, in D ′(]−1,1[),

• u ≤ 0, t ≤ 0, u t = 0, a.e. in ]−1,1[ ,

•
∫ 1

−1
t dx = −P < 0.

Then, u vanishes identically on ]−1,1[.

Proof Assume that there exists x0 ∈ ]−1,1[ such that u(x0) < 0. As u is continuous, we can
consider the largest interval containing x0 (x0 ∈ ]a, b[ ⊂ ]−1,1[) such that u is negative on
]a, b[. As u cannot be negative all over ]−1,1[ because otherwise t would vanish identically,
contradicting

∫ 1
−1 t (x)dx = −P < 0, only the three following cases can happen:

1. a = −1 and −1 < b < 1, in which case u(b) = 0,
2. b = 1 and −1 < a < 1, in which case u(a) = 0,
3. −1 < a < b < 1, in which case u(a) = u(b) = 0.

In any case, t must vanish on ]a, b[, so that using Theorem 32 in Appendix A:

∀x ∈ ]a, b[ , u′(x) = 1

π

∫ a

−1

t (s)

s − x
ds + 1

π

∫ 1

b

t (s)

s − x
ds.

In case 1, the above identity implies that u′ is negative on ]−1, b[, which contradicts u ≤ 0.
In case 2, it implies that u′ is positive on ]a,1[, which also contradicts u ≤ 0. In case 3, it
implies that u′ must be non-increasing all over ]a, b[, so that u must be concave on ]a, b[.
As it is also nonpositive and u(a) = u(b) = 0, it must vanish identically which also yields
contradiction. Finally, there is no x0 ∈ ]−1,1[ such that u(x0) < 0. �

The next proposition provides a solution of constant sign for the homogeneous Carleman
equation. This solution is classical in the case where f is Lipschitz-continuous (see, for
example, [14, Section 4-4]). The proof is extended here to the case where f is piecewise
Lipschitz-continuous and a Green’s formula is established in addition. This will turn out to
be crucial for the homogenization analysis.

Proposition 21 Let f : ]−1,1[ → R be a piecewise Lipschitz-continuous function that we
extend by zero on R \ ]−1,1[. We denote by τ := − 1

π
pv 1

x
∗ arctanf , the Hilbert transform

of the function arctanf . Let t0 be the function defined by:

t0(x) := eτ(x)

π
√

1 − x2
√

1 + f 2(x)
, for x ∈ ]−1,1[ ,
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and extended by zero on R \ ]−1,1[. Then, t0 ∈ ∪p>1L
p(−1,1), is obviously positive on

]−1,1[, has total mass
∫ 1

−1 t0 dx = 1, and its Hilbert transform is given by:

− 1

π
pv

1

x
∗ t0 =

∣∣
∣∣
∣∣
∣∣
∣

− f eτ

π
√

1 − x2
√

1 + f 2
, in ]−1,1[ ,

− sgn(x) eτ

π
√

x2 − 1
, in R \ ]−1,1[ .

In particular, t0 solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, in ]−1,1[ .

In addition, t0 can be represented by use of the Green’s formula:

∀ϕ ∈ C∞
c (�+),

∫ 1

−1
t0(x)ϕ(x,0)dx = 1

2π

∫

�+
�
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ

∂x
(x, y)

− �
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ

∂y
(x, y)dx dy, (14)

where �+ denotes the open upper Euclidean plane, �+ its closure and φ± are the holomor-
phic complex functions defined on �+ by:

φ±(x + iy) := 1

π

∫ 1

−1

±π/2 + arctanf (s)

s − (x + iy)
ds.

Finally, the following identity holds true:

∀(x, y) ∈ �+,
1

π

∫ 1

−1

t0(s)

s − (x + iy)
ds = 1

2π

(
eφ+(x+iy) − eφ−(x+iy)

)
.

Proof The strategy of proof to solve the Carleman equation is as follows. We know that
if φ(z) is a holomorphic function on �+ admitting the trace φ(x + i0) = ρ(x) + iθ(x)

on ∂�+, then eφ(z) is holomorphic on �+ with trace eρ(x) cos θ(x) + ieρ(x) sin θ(x). If, in
addition, this trace belongs to Lp(R), then eρ(x) cos θ(x) will be the Hilbert transform of
eρ(x) sin θ(x) (see Appendix A). Looking for a solution of the Carleman equation of the
form t = eρ(x) sin θ(x), we are led to solve f = −H[t]/t = −1/ tan θ , obtaining formally
the equation tan θ(x) = −1/f (x) for some unknown function θ , with support in [−1,1]. In
order to make this argument rigorous, we set:

φ±(z) := 1

π

∫ 1

−1

±π/2 + arctanf (s)

s − z
ds,

which by use of Theorem 33 in Appendix A satisfies:

for a.a. x ∈R, lim
y→0+

φ±(x+iy) = log

√∣
∣∣∣
1 ∓ x

1 ± x

∣
∣∣∣+τ(x)+i

(
±π

2
χ]−1,1[(x)+arctanf (x)

)
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where χ]−1,1[ is the characteristic function of ]−1,1[ whose Hilbert transform is readily
calculated as (1/π) log |(1 − x)/(1 + x)|, using Theorem 32 in Appendix A. Hence, the
function:

ψ±(z) := eφ±(z) − 1,

is holomorphic in �+ and satisfies:

for a.a. x ∈ ]−1,1[ , lim
y→0+

ψ±(x + iy) = ∓f (x)

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f 2(x)

− 1 ± i

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f 2(x)

,

and:

for a.a. x ∈R \ [−1,1], lim
y→0+

ψ±(x + iy) =
√∣
∣∣
∣
1 ∓ x

1 ± x

∣
∣∣
∣ e

τ(x) − 1.

We are now going to check that this trace ψ±(x + i0) belongs to Lp(R) for some p ∈
]1,+∞[. First, note that:

∀x ∈ R \ [−1,1], τ (x) = 1

π

∫ 1

−1

arctanf (s)

s − x
ds,

so that τ is C∞ on R \ [−1,1] and τ(x) = O(1/x) as |x| → ∞. This entails that
|ψ±(x + i0)|p is integrable on a neighborhood of infinity for all p > 1. As f is piece-
wise Lipschitz-continuous with support in [−1,1], the function arctanf is the sum of a
Lipschitz-continuous function on R and a piecewise constant function. This entails that
its Hilbert transform τ is continuous on R except possibly at a finite number of points xi

(namely the discontinuity points of f in [−1,1]) where τ has the singularity:

τ(x) ∼ arctanf (xi−) − arctanf (xi+)

π
log |x − xi |, as x → xi. (15)

All in all, the function
√|(1 ∓ x)/(1 ± x)|eτ(x) is continuous on R except possibly at a finite

number of points where it may have a power singularity which belongs to Lp for some p >

1. Hence, ψ± is holomorphic on �+ and ψ±(x + i0) ∈ Lp(R) for some p > 1. In addition,
φ± goes to zero at infinity and the same is therefore true of ψ±. Hence, Corollary 35 in
Appendix A yields:

− 1

π
pv

1

x
∗ �ψ±(x + i0) = �ψ±(x + i0), on R.

Setting:

t±(x) := ±�ψ±(x + i0) =
√∣∣
∣∣
1 ∓ x

1 ± x

∣∣
∣∣

eτ(x)

√
1 + f 2(x)

χ]−1,1[(x),

we get:

− 1

π
pv

1

x
∗ t± + f t± = ∓1, in ]−1,1[ , (16)
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so that t0 := (t+ + t−)/(2π) solves the homogeneous Carleman equation on ]−1,1[. The
last identity of the Proposition is now a direct consequence of the application of Theorem 33
in Appendix A to the holomorphic functions ψ+ and ψ−.

We now turn to the proof of the representation of t0 by means of the Green’s formula.
The functions h± defined on �+ by:

h±(x, y) := 1

π

∫ 1

−1
t±(s) log

√
(x − s)2 + y2 ds,

are clearly harmonic on �+ (as log
√

x2 + y2 is) and, by Theorem 33 of Appendix A, we
have:

±ψ±(x + iy) = 1

π

∫ 1

−1

t±(s)ds

s − (x + iy)
= −∂h±

∂x
(x, y) + i

∂h±

∂y
(x, y),

on �+. By this and Green’s formula:

∀ϕ ∈ C∞
c (�+),

∫ 1

−1

∂h±

∂y
(x,0)ϕ(x,0)dx = −

∫

�+
∇h± · ∇ϕ dx dy,

we finally get formula (14).
Finally, the only thing which remains to prove is the identity:

∫ 1

−1
t0(x)dx = 1.

Set:

I :=
∫ 1

−1
arctanf (x)dx,

and:

ψ̃±(z) := zeφ±(z) − z ± 1 + I,

so that ψ̃± is holomorphic in �+ and:

for a.a. x ∈ ]−1,1[ , lim
y→0+

ψ̃±(x + iy) = ∓x

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f 2(x)

(
f (x) − i

)

− x ± 1 + I,

for a.a. x ∈R \ [−1,1], lim
y→0+

ψ̃±(x + iy) = x

√∣∣
∣∣
1 ∓ x

1 ± x

∣∣
∣∣ e

τ(x) − x ± 1 + I.

As:
√∣
∣∣∣
1 ∓ x

1 ± x

∣
∣∣∣ e

τ(x) = 1 − I ± 1

x
+ O(1/x2), as |x| → +∞,
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we have ψ̃±(x + i0) ∈ Lp(R) for some p > 1. Using once more Corollary 35 in appendix A
(since ψ± is bounded at infinity), we have:

− 1

π
pv

1

x
∗ �ψ̃±(x + i0) = �ψ̃±(x + i0), on R.

As the restriction of ψ̃±(x + i0) to a neighborhood of x = 0 is actually in W 1,p for some
p > 1 (thanks to the estimate (15)), both members of the above identity are continuous
functions on a neighborhood of x = 0, so that we can consider this identity at x = 0. The
right-hand side at x = 0 reduces to ±1 + I and the left-hand side reduces to:

± 1

π

∫ 1

−1

√
1 ∓ x

1 ± x

eτ(x)

√
1 + f 2(x)

dx = ±1 + I,

so that:

1

π

∫ 1

−1
t±(x)dx = 1 ± I ⇒

∫ 1

−1
t0(x)dx = 1. �

In the case where f is Lipschitz-continuous, all the solutions in ∪p>1L
p(−1,1) of the

homogeneous Carleman equation are proportional to t0 (see [14, Section 4-4]). In the case
where f is piecewise Lipschitz-continuous, these solutions form a finite-dimensional linear
space whose dimension may be larger than one. This fact was already observed in [5, theo-
rem 14]. The result and the proof is adapted here to the notation of this paper for the sake of
completeness.

Proposition 22 Let f : ]−1,1[ →R be a piecewise Lipschitz-continuous function. Let n ∈N

be the total number of those discontinuity points xi ∈ ]−1,1[ of f such that:

f (xi−) > f (xi+).

Then, all the solutions t ∈ ∪p>1L
p(−1,1) of the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t + f t = 0, in ]−1,1[ ,

(where the convolution is meant in terms of the extension of t by zero on R), are given by:

t (x) = C0 t0(x) +
n∑

i=1

Ci t0(x)

x − xi

,

where the function t0 was defined in Proposition 21 and the Ci ’s are arbitrary real constants.
In addition, we have:

∀i ∈ {1, . . . , n},
∫ 1

−1

t0(x)

x − xi

dx = 0.

Proof As already noted in the proof of Proposition 21, the Hilbert transform τ of arctanf

admits the estimate:

τ(x) ∼ arctanf (xi−) − arctanf (xi+)

π
log |x − xi |, as x → xi,



Homogenization of Friction in a 2D Linearly Elastic Contact Problem 289

at every discontinuity point xi of arctanf . Therefore, if xi is a discontinuity point such that
f (xi−) > f (xi+), then the function t0(x)/(x − xi) belongs to ∪p>1L

p(−1,1). Let xi be
such a discontinuity point. In view of Proposition 21, we have:

f t0 = 1

π
pv

1

x
∗ t0, a.e. in ]−1,1[ ,

from which we get, using Theorem 32 in Appendix A:

for a.a. x ∈ ]−1,1[ , f (x) t0(x) = x − xi

π

(
pv

1

x
∗ t0

x − xi

)
(x) − 1

π

∫ 1

−1

t0(x)

x − xi

dx,

that is:

− 1

π
pv

1

x
∗ t0

x − xi

+ f
t0

x − xi

= − 1

π(x − xi)

∫ 1

−1

t0(x)

x − xi

dx, a.e. in ]−1,1[ .

By Theorem 32 in Appendix A, the left-hand side of this identity is in ∪p>1L
p(−1,1) and,

in particular, is integrable. Therefore:

∫ 1

−1

t0(x)

x − xi

dx = 0,

and the function t0(x)/(x − xi) solves the homogeneous Carleman equation.
There remains only to prove that any solution in ∪p>1L

p(−1,1) of the homogeneous
Carleman equation is a linear combination of t0 and the t0/(x − xi) (for i ∈ {1, . . . n}). In-
troducing the holomorphic functions on �+ defined by:

φ(z) := − 1

π

∫ 1

−1

π/2 + arctanf (s)

s − z
ds, ψ(z) := eφ(z) − 1,

and mimicking the proof of Proposition 21 (or simply applying formula (16) after changing
f into −f ), we obtain:

− 1

π
pv

1

x
∗
{√∣∣

∣∣
1 + x

1 − x

∣∣
∣∣

e−τ(x)

√
1 + f 2(x)

χ]−1,1[(x)

}

= f (x)

√
1 + x

1 − x

e−τ(x)

√
1 + f 2(x)

+ 1, a.e. in ]−1,1[ . (17)

But, by Theorem 32 in Appendix A, for g ∈ ∪p>1L
p(−1,1) extended by zero outside

]−1,1[ and c ∈ R, we have:

pv
1

x
∗
{
(x − c)g(x)

}
= (x − c)

{
pv

1

x
∗ g

}
−

∫ 1

−1
g(x)dx.

Applying this inductively with the choices c = 1, xi together with formula (17), we get:

− 1

π
pv

1

x
∗
{√|1 − x2|e−τ(x)�n

i=1(x − xi)√
1 + f 2(x)

χ]−1,1[(x)

}
=
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= f (x)

√|1 − x2|e−τ(x)�n
i=1(x − xi)√

1 + f 2(x)
+ Qn+1(x), a.e. in ]−1,1[ , (18)

where Qn+1 denotes a real polynomial of degree n + 1. Now, consider an arbitrary solution
t ∈ ∪p>1L

p(−1,1) of the homogeneous Carleman equation:

H[t] + f t = 0, a.e. in ]−1,1[ , (19)

where we have used the notation:

H[t] = − 1

π
pv

1

x
∗ t.

Noting that:

l :=
√|1 − x2|e−τ(x)�n

i=1(x − xi)√
1 + f 2(x)

χ]−1,1[(x) ∈ L∞(−1,1),

formula (19) entails that:

H
[
lH[t]

]
+H[f l t] = 0, a.e. in R.

Making use of the Poincaré-Bertrand-Tricomi theorem (Corollary 34 in Appendix A), we
get:

H[l]H[t] − l t −H
[
H[l] t

]
+H[f l t] = 0,

which, in view of formula (18), yields:

f lH[t] + Qn+1 H[t] − l t −H
[
Qn+1 t

] = 0, a.e. in ]−1,1[ .

Therefore, formula (19) yields:

(1 + f 2) l t = Qn+1 H[t] −H
[
Qn+1 t

]
, a.e. in ]−1,1[ ,

that is:

(1 + f 2(x)) l(x) t (x) = − 1

π

∫ 1

−1
t (s)

Qn+1(x) − Qn+1(s)

x − s
ds, a.e. in ]−1,1[ .

But the right-hand side of this identity is a polynomial P of degree at most n. Hence, we
have proved:

t (x) = P (x) eτ(x)

�n
i=1(x − xi)

√
1 − x2

√
1 + f 2(x)

, a.e. in ]−1,1[ ,

which is necessarily a linear combination of t0(x) and the t0(x)/(x − xi). �

Proof of Proposition 1 By Proposition 20, any solution of the contact problem is such that
u = 0 on ]−1,1[, so that t must actually solve a homogeneous Carleman equation. Denoting
by τ the Hilbert transform of arctanf (extended by zero outside ]−1,1[), defining:

t0(x) := eτ(x)

π
√

1 − x2
√

1 + f 2(x)
, for x ∈ ]−1,1[ ,
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and denoting by xi those discontinuity points of f in ]−1,1[ such that f (xi−) > f (xi+),
we get:

t (x) = −P t0(x) +
n∑

i=1

Ci

t0(x)

x − xi

,

for some real constants Ci ∈ R, thanks to Propositions 21 and 22. Splitting arctanf as the
sum of a Lipschitz-continuous function on ]−1,1[ and a piecewise constant function, we
have the following estimate for τ at xi :

τ(x) ∼ arctanf (xi−) − arctanf (xi+)

π
log |x − xi |, as x → xi,

which entails, on the one hand, that t0 is bounded on a neighborhood of xi , and on the other
hand, that t0(x)/(x − xi) goes to −∞ on xi− and to +∞ on xi+. Therefore, the condition
t ≤ 0 entails that all the constants Ci above must vanish and t = −P t0. In the particular
case where f is a piecewise constant function, then the Hilbert transform τ(x) is explicitly
obtained from Theorem 32 in Appendix A, yielding the claimed explicit formula for t . �

The next lemma is a minor and usual reformulation of the Riemann-Lebesgue lemma.

Lemma 23 Let p ∈ L∞(−1,1) be a given bounded function on ]−1,1[ that is extended to R

by 2-periodicity. Let fn : ]−1,1[ → R be the 2/n-periodic function defined on ]−1,1[ by:

fn(x) = p(nx).

Then, the sequence (fn) converges in L∞(−1,1) weak-* towards the constant function
〈p〉 := 1

2

∫ 1
−1 p(x)dx.

Proof As ‖fn‖L∞(−1,1) = ‖p‖L∞(−1,1), the sequence (fn) is obviously bounded in L∞(−1,1)

and we can extract a subsequence (still denoted by (fn)) that converges in L∞(−1,1) weak-
* towards some limit f̄ . It is readily checked that, for all a, b ∈ [−1,1]:

lim
n→∞

∫ b

a

fn(x)dx = (b − a)

2

∫ 1

−1
p(x)dx = (b − a) 〈p〉.

Therefore, for any piecewise constant function c : ]−1,1[ →R, we have:

lim
n→∞

∫ 1

−1
c(x)fn(x)dx = 〈p〉

∫ 1

−1
c(x)dx.

But, as the piecewise constant functions are dense in L1, f̄ must be the constant function
〈p〉. As any converging subsequence has the same limit, the whole sequence (fn) must
converge in L∞(−1,1) weak-* towards the constant function 〈p〉. �

The next technical lemma contains a Lp-estimate which is crucial for the proof of the
homogenization result.
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Lemma 24 Let (fn) be a sequence of piecewise Lipschitz-continuous functions that is
bounded in L∞(−1,1). We denote by τn the Hilbert transform of arctanfn and by (tn) the
sequence of functions in ∪p>1L

p(−1,1) defined by:

tn(x) := eτn(x)

π
√

1 − x2
√

1 + f 2
n (x)

, for x ∈ ]−1,1[ ,

which is a positive function of total mass 1, thanks to Proposition 21. We set:

β := 1

π
arctan

(
sup

n

∥
∥fn

∥
∥

L∞(−1,1)

)
<

1

2
.

Then, the sequence (tn) is bounded in Lp(−1,1), for all p ∈ ]
1, (1/2 + β)−1

[
.

Proof Fix p ∈ ]
1, (1/2 + β)−1

[
arbitrarily. Note that p < 2 and 2βp < 1. Our goal is to find

a majorant of:

∫ 1

−1

epτn(x)

(1 − x2)p/2
dx.

We apply Hölder inequality:

∫ 1

−1

epτn(x)

(1 − x2)p/2
dx ≤

(∫ 1

−1

dx

(1 − x2)(ps−s+1)/2

)1/s
(∫ 1

−1

e
ps
s−1 τn(x)

√
1 − x2

dx

)(s−1)/s

(20)

with the choice of an arbitrary s in the interval:

s ∈
]

1

1 − 2βp
,

1

p − 1

[
.

Note that all the s in that interval are larger than 1 and that the interval is non-empty, thanks
to the condition 1 < p < (1/2 + β)−1. Such a choice for s ensures that:

0 <
ps − s + 1

2
< 1,

so that the first integral in the right-hand side of the inequality is finite. It also ensures that:

q := ps

s − 1
∈ ]p,1/(2β)[ .

Finally, inequality (20) shows that the sequence (tn) is bounded in Lp(−1,1), provided that
the integral

∫ 1

−1

eqτn(x)

√
1 − x2

dx,

is bounded by above by some constant independent of n.
Define:

f̃n(x) := tan
(
q arctanfn(x)

)
,
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so that f̃n is piecewise Lipschitz continuous and the sequence (f̃n) is bounded in L∞(−1,1),
thanks to the condition q < 1/(2β). Denoting by τ̃n := qτn the Hilbert transform of
arctan f̃n, Proposition 21 ensures:

∫ 1

−1

eτ̃n(x)

π
√

1 − x2
√

1 + f̃ 2
n (x)

dx = 1,

which yields:

∫ 1

−1

eqτn(x)

√
1 − x2

dx ≤ π

√
1 + ‖f̃ 2

n ‖L∞ ,

and therefore the claimed estimate. �

Proof of Theorem 2 We are given p : ]−1,1[ →R a piecewise Lipschitz-continuous function
on ]−1,1[ that is extended to the whole real line by 2-periodicity. The function fn is defined
on ]−1,1[ by:

fn(x) := p(nx),

and extended by zero outside ]−1,1[, so that it is supported in [−1,1] and its restriction to
that interval is 2/n-periodic. Let tn ∈ ∪p>1L

p(−1,1) be the unique nonpositive solution of
total mass −P of the equation:

− 1

π
pv

1

x
∗ tn + fn tn = 0, in ]−1,1[ , (21)

provided by Proposition 1.
We set:

β := 1

π
arctan

∥∥fn

∥∥
L∞(−1,1)

= 1

π
arctan

∥∥f1

∥∥
L∞(−1,1)

<
1

2
,

and pick an arbitrary p ∈ ]
1, (1/2 + β)−1

[
. By Proposition 21 and lemma 24, the sequence

(tn) is bounded in Lp(−1,1). As (fn) is bounded in L∞(−1,1), the sequence (fntn) is also
bounded in Lp(−1,1).

Extracting a subsequence, if necessary, the sequence (tn) converges weakly in Lp(−1,1)

towards some limit t̄ ∈ Lp(−1,1). We are going to prove that t̄ = teff, where teff is defined
in the statement of Theorem 2. The proof will be based on the representation of tn by means
of a Green’s formula as established in Proposition 21:

∀ϕ ∈ C∞
c (�+),

∫ 1

−1
tn(x)ϕ(x,0)dx = − P

2π

∫

�+
�
(
eφ+

n (x+iy) − eφ−
n (x+iy)

) ∂ϕ

∂x
(x, y)

− �
(
eφ+

n (x+iy) − eφ−
n (x+iy)

) ∂ϕ

∂y
(x, y)dx dy, (22)

where:

φ±
n (z) := 1

π

∫ 1

−1

±π/2 + arctanfn(s)

s − z
ds, z = x + iy ∈ �+.
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The left-hand side of formula (22) converges towards 〈t̄ , ϕ〉. In the right-hand side, the se-
quences (φ±

n (x + iy)) converge pointwisely in �+ towards φ±
eff(x + iy) defined by:

φ±
eff(z) := 1

π

∫ 1

−1

±π/2 + arctanfeff(s)

s − z
ds, z = x + iy ∈ �+,

thanks to lemma 23. Furthermore, the restriction of φ±
n (x + iy) to any compact subset K ⊂

�+ of the open half-plane �+ is bounded by a constant depending only on K . Therefore,
we can pass to the limit by dominated convergence in the right-hand side of formula (22),
replacing the index n by the index ‘eff’, provided that the support of ϕ is contained in �+.
We need to extend the conclusion to the case where the support of ϕ can be any compact
subset of �+. So let K ⊂ �+ be an arbitrary compact subset of �+. Take Y > 0 such that
K ⊂R× [0, Y ]. By Proposition 21, we have:

∀(x, y) ∈ �+,
1

π

∫ 1

−1

tn(s)

s − (x + iy)
ds = 1

2π

(
eφ+

n (x+iy) − eφ−
n (x+iy)

)
.

Picking an arbitrary y0 > 0, we obtain:

1

2π

∥∥
∥�(eφ+

n (x+iy0) − eφ−
n (x+iy0))

∥∥
∥

Lp(R)
=

∥
∥∥
∥

1

π

y0

x2 + y2
0

x∗ tn(x)

∥
∥∥
∥

Lp(R)

≤ ∥∥tn
∥∥

Lp(R)
.

But, Theorem 33 of Appendix A also yields that �(eφ+
n (x+iy0) − eφ−

n (x+iy0)) is the Hilbert
transform of �(eφ+

n (x+iy0) − eφ−
n (x+iy0)). As the Hilbert transform is linear continuous in

Lp(R), we have:
∥∥
∥eφ+

n (x+iy0) − eφ−
n (x+iy0)

∥∥∥
Lp(R)

≤ C
∥
∥tn

∥
∥

Lp(R)
,

for some real constant C that depends on p, but not of y0 and n. Using Lemma 24, we can
conclude that there exists a constant K > 0, independent of y0 and n such that:

∥
∥∥eφ+

n (x+iy0) − eφ−
n (x+iy0)

∥
∥∥

Lp(R)
≤ K.

In particular, the sequence (eφ+
n (x+iy) − eφ−

n (x+iy)) is bounded in Lp(R × [0, Y ];C). There-
fore, it has a weakly convergent subsequence. But the above analysis shows that this weak
limit must be eφ+

eff(x+iy) − eφ−
eff(x+iy).

Now, we are able to pass to the limit in formula (22) to get, for all ϕ ∈ C∞
c (�+):

∫ 1

−1
t̄ (x)ϕ(x,0)dx = − P

2π

∫

�+
�
(
eφ+

eff(x+iy) − eφ−
eff(x+iy)

) ∂ϕ

∂x
(x, y)

− �
(
eφ+

eff(x+iy) − eφ−
eff(x+iy)

) ∂ϕ

∂y
(x, y)dx dy,

=
∫ 1

−1
teff(x)ϕ(x,0)dx.

All in all, we have proved that the sequence (tn) converges weakly in Lp(−1,1) towards teff.
As the Hilbert transform maps continuously Lp(R) onto itself, by Theorem 32 in Ap-

pendix A, (1/π)pv 1/x ∗ tn converges weakly in Lp(−1,1) towards (1/π)pv 1/x ∗ teff =
feffteff. Hence, the sequence (fntn) converges weakly in Lp(−1,1) towards the function
feffteff. �
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3.2 Proof of the Results for the Case of Homogeneous Friction

In the case of the analysis of the contact problem with homogeneous friction, the only result
whose proof was postponed here is Theorem 3. Given f ∈R and ů ∈ H0 := H 1/2(−1,1)/R,
let t̃ = A−1ů be the unique distribution in H ∗

0 := {t̂ ∈ H−1/2(−1,1) | 〈t̂ ,1〉 = 0} such that:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D ′(]−1,1[).

Then, the linear operator A−1 : H0 → H ∗
0 is an isomorphism. Theorem 3 states that it has

the following T-monotonicity property:

∀u ∈ H 1/2(−1,1),
〈
A−1ů, u+〉 ≥ 0,

(where u+(x) := max{u(x),0}) with equality if and only if u is a constant function on
]−1,1[.

Lemma 25 Let u ∈ H 1/2(R) and C ∈R be arbitrary. Then, (u + C)+ − C+ ∈ H 1/2(R) and:
〈
pv

1

x
∗ u′ , (u + C)+ − C+

〉
≥ 0,

where the equality is achieved if and only if (u + C)+ − C+ = 0.

Proof We recall that the space H 1/2(R) can be defined as the space of those distributions u

such that:

‖u‖2
L2 +

∫

R2

∣
∣∣
u(x) − u(y)

x − y

∣
∣∣
2

dx dy < ∞.

Taking u ∈ H 1/2(R) and C ∈R, we have:
∣
∣∣
(
u(x) + C

)+ −C+
∣
∣∣ ≤ |u(x)|, and

∣
∣∣
(
u(x) + C

)+ − (
u(y) + C

)+∣∣∣ ≤ |u(x)−u(y)|,

which shows that (u + C)+ − C+ ∈ H 1/2(R).
Next, we denote by �u the Poisson integral of u (see Proposition 41 in Appendix C) and

we define:

ϕn(x, y) := min{1, n/y}
[(

�u(x, y) + C
)+ − C+

]
,

for (x, y) ∈ �+, so that ϕn ∈ H 1(�+) and the sequence (∇ϕn) converges strongly in
L2(�+) towards the limit ∇(

�u(x, y) + C
)+

(we recall that ϕ ∈ H 1 ⇒ ϕ+ ∈ H 1, by Stam-
pacchia’s theorem [15, Theorem 1.56, p 79]). By Proposition 41, this entails:
〈
pv

1

x
∗ u′ , (u + C)+ − C+

〉
=

∫

�+

(
∂�u

∂x

∂

∂x

(
�u + C

)+ + ∂�u

∂y

∂

∂y

(
�u + C

)+
)

dx dy,

=
∫

�+

{[
∂

∂x

(
�u + C

)+
]2

+
[

∂

∂y

(
�u + C

)+
]2}

dx dy,

thanks to Stampacchia’s theorem. Hence, the duality product is nonnegative. It only vanishes
when (�u + C)+ is a constant, implying that (u + C)+ is a constant. But, as (u + C)+ −
C+ ∈ L2(R), this constant must be equal to C+. �
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Proof of Theorem 3 Pick u ∈ H 1/2(−1,1) and define t̃ := A−1ů ∈ H ∗
0 . The distribution t̃ ∈

H−1/2(−1,1) can be seen as an element of H−1/2(R) with support in [−1,1]. Its Fourier

transform ˆ̃t is therefore a C∞ function and, as 〈t̃ ,1〉 = 0, it satisfies ˆ̃t (0) = 0. Next, we
define:

ũ := − 1

π
log |x| ∗ t̃ + f

2
sgn(x) ∗ t̃ .

By Proposition 39 in Appendix C, we obtain:

ˆ̃u(ξ) = (
sgn(ξ) − if

) ˆ̃t (ξ)

ξ
⇒ ∣

∣ ˆ̃u(ξ)
∣
∣ =

√
1 + f 2

| ˆ̃t (ξ)|
|ξ | ,

where the ‘hat’ stands for the Fourier transform. As ˆ̃t is a C∞ function which satisfies:

ˆ̃t (0) = 0, and
∫ +∞

−∞

|ˆ̃t (ξ)|2
√

1 + ξ 2
dξ < ∞,

we have:
∫ +∞

−∞
| ˆ̃u(ξ)|2

√
1 + ξ 2 dξ < ∞,

that is, ũ ∈ H 1/2(R), by Proposition 37 in Appendix B.
We have:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ũ′, on R,

which is easily inverted by taking the Hilbert transform and use of Theorem 32 in Ap-
pendix A, as:

t̃ = f

1 + f 2
ũ′ + 1

1 + f 2

1

π
pv

1

x
∗ ũ′.

As ũ′ = u′ on ]−1,1[, there exists C ∈R such that u = ũ + C on ]−1,1[. Hence, using this
and the previous identity, it is easily calculated that:

〈
A−1ů , u+〉 =

〈
t̃ , (ũ + C)

+ − C+
〉
,

= f

1 + f 2

〈
ũ′ , (ũ + C)

+ − C+
〉
+ 1

π(1 + f 2)

〈
pv1/x ∗ ũ′ , (ũ + C)

+ − C+
〉
.

(23)

We are now going to prove that the first term in the right-hand side of identity (23) vanishes.
In the particular case where w ∈ C∞

c (R), we have:

〈
w′ , (w + C)+ − C+

〉
=

〈
w′ , (w + C)+

〉
=

〈
(w + C)′ , (w + C)+

〉
= 0.

Taking a sequence (wn) in C∞
c (R) converging strongly in H 1/2(R) towards ũ, the sequence

(w′
n) converges strongly in H−1/2(R) towards ũ′ and the sequence ((wn + C)+ − C+) con-

verges strongly in H 1/2(R) towards ((ũ + C)
+ − C+). Hence, we have proved:
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〈
ũ′ , (ũ + C)

+ − C+
〉
= 0,

and therefore, by identity (23):

〈
A−1ů , u+〉 = 1

π(1 + f 2)

〈
pv1/x ∗ ũ′ , (ũ + C)

+ − C+
〉
,

and the claim is now a straightforward consequence of Lemma 25. �

3.3 Proof of the Existence Result for Heterogeneous Friction and Arbitrary Indentor

In the case where f is a piecewise Lipschitz-continuous function on [−1,1] (extended by
zero on R\ [−1,1]) and denoting τ := − 1

π
pv 1

x
∗arctanf , the Hilbert transform of arctanf ,

it was proved in Proposition 21 that the nonnegative function:

t0(x) := eτ(x)

π
√

1 − x2
√

1 + f 2(x)
, for x ∈ ]−1,1[ ,

and extended by zero on R\ ]−1,1[, belongs to ∪p>1L
p(−1,1), has total mass

∫ 1
−1 t0 dx = 1

and solves the homogeneous Carleman equation:

− 1

π
pv

1

x
∗ t0 + f t0 = 0, a.e. in ]−1,1[ .

We are now going to prove that all these facts remain true when f is only supposed to be in
L∞(−1,1).

Proof of Proposition 11 Pick f ∈ L∞(−1,1) and an approximation of identity ρn(x) :=
nρ(nx) based on some nonnegative even C∞ function ρ with compact support and total
mass 1. Then, the sequence of functions (fn) defined by:

fn(x) := (ρn ∗ f )(x)χ]−1,1[(x),

is a sequence of Lipschitz-continuous functions on ]−1,1[, which is bounded in L∞(−1,1)

(‖fn‖L∞ ≤ ‖f ‖L∞ ), and converges towards f in L∞(−1,1) weak-*. Set:

t0
n (x) := eτn(x)

π
√

1 − x2
√

1 + f 2
n (x)

, for x ∈ ]−1,1[ ,

extended by zero on R \ ]−1,1[, where τn denotes the Hilbert transform of arctanfn. By
Proposition 21, the function t0

n is in ∪p>1L
p(−1,1) and has total mass 1. By Lemma 24, the

sequence (t0
n ) is bounded in Lp(−1,1), for all p ∈ ]

1, (1/2 + β)−1
[
, where:

β := 1

π
arctan

∥∥f
∥∥

L∞(−1,1)
<

1

2
.

Hence, upon extracting a subsequence, the sequence (t0
n ) converges weakly in Lp(−1,1), for

all p ∈ ]
1, (1/2 + β)−1

[
, towards some limit t̄ which has total mass 1. Writing the Green’s

formula provided by Proposition 21 for t0
n and going to the limit n → +∞ along the lines

of the proof of Theorem 2, we get:
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∀ϕ ∈ C∞
c (�+),

∫ 1

−1
t̄ (x)ϕ(x,0)dx = 1

2π

∫

�+
�
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ

∂x
(x, y)

− �
(
eφ+(x+iy) − eφ−(x+iy)

) ∂ϕ

∂y
(x, y)dx dy,

where:

φ±(z) := 1

π

∫ 1

−1

±π/2 + arctanf (s)

s − z
ds.

As �(eφ+(x+i0) − eφ−(x+i0))/(2π) = t̄ ∈ ∪p>1L
p(−1,1), this entails by Theorem 33 of Ap-

pendix A that:

∀z ∈ �+,
1

π

∫ 1

−1

t̄ (s)ds

s − z
= eφ+(z) − eφ−(z)

2π
,

and that (eφ+(x+iy) − eφ−(x+iy))/(2π) converges, as y → 0+, for almost all x, towards
H[t̄](x) + it̄(x). But, the pointwise limit of (eφ+(x+iy) − eφ−(x+iy))/(2π) can also be com-
puted from the definition of φ±(x + iy) using again Theorem 33 of Appendix A. Its imagi-
nary part is found to be:

eτ(x)

π
√|1 − x2|√1 + f 2(x)

χ]−1,1[(x) = t0(x),

and the restriction of its real part to ]−1,1[ is found to equal −f t0. Therefore, t̄ = t0 and it
solves the homogeneous Carleman equation. �

We now turn to the proof of Theorem 14. Assume that f ∈ BV([−1,1]). The Banach
space H ∗

0 ∩M ([−1,1]) is the dual of the Banach space H0 +C0([−1,1]). Given an arbitrary
t̃ ∈ H ∗

0 ∩ M ([−1,1]), we have defined ů = At̃ by the identity:

− 1

π
pv

1

x
∗ t̃ + f t̃ = ů′, in D ′(]−1,1[).

As log |x| ∗ t̃ is in H 1/2(−1,1) and x �→ ∫ x

0 f t̃ is a continuous function with bounded varia-
tion, the linear operator A maps H ∗

0 ∩ M ([−1,1]) into H0 + C0([−1,1]) ∩ BV([−1,1]) ⊂
H0 + C0([−1,1]). It was shown in Proposition 13 that the linear operator A : H ∗

0 ∩
M ([−1,1]) → H0 + C0([−1,1]) is bounded.

The following lemma contains the result of a calculation which will prove in the sequel to
be cornerstone for the analysis of the monotonicity and pseudomonotonicity of the operator
A.

Lemma 26 Let f ∈ BV([−1,1]). For all t ∈ H ∗
0 ∩ M ([−1,1]), we have:

〈
t,
∫ x

−1 f t
〉
= 1

2

∫ 1

−1
f ′
(∫ x

−1
t

)2

,

where the integral in the right-hand side stands for the integral of the continuous function
(
∫ x

−1 t)2 (which vanishes at x = −1,1) with respect to the measure f ′.
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Proof This is almost obvious.

〈
t,
∫ x

−1 f t
〉
=

∫ 1

−1
t

(∫ x

−1
f t

)
= −

∫ 1

−1
f t

(∫ x

−1
t

)

= −1

2

∫ 1

−1
f (x)

d

dx

(∫ x

−1
t

)2

= 1

2

∫ 1

−1
f ′
(∫ x

−1
t

)2

,

where the fact that the function x �→ ∫ x

−1 t is continuous (since the measure t has no atom)
and vanishes at x = −1,1, was used together with the integration by part formula for func-
tions with bounded variation. �

Corollary 27 We assume that the function f is nondecreasing. The bounded linear operator
A : H ∗

0 ∩ M ([−1,1]) → H0 + C0([−1,1]) is strictly monotone (see Definition 42).

Proof If f is nondecreasing, then the measure f ′ is nonnegative. The previous lemma en-
tails, for all nonzero t ∈ H ∗

0 ∩ M ([−1,1]):
〈
At, t

〉 = − 1

π

〈
log |x| ∗ t, t

〉
+

〈
t,
∫ x

−1 f t
〉
≥ − 1

π

〈
log |x| ∗ t, t

〉
> 0,

where the last inequality relies, once again, on Lemma 40 of Appendix C. �

Proof of Theorem 14 Let (tn) be a sequence in H ∗
0 ∩ M ([−1,1]) that converges weakly-* in

H ∗
0 ∩ M ([−1,1]) towards a limit t , such that:

lim sup
n→+∞

〈
Atn, tn − t

〉 ≤ 0.

From the definition of pseudomonotonicity in Appendix D, we have to prove:

∀τ ∈ H ∗
0 ∩ M ([−1,1]), 〈

At, t − τ
〉 ≤ lim inf

n→+∞
〈
Atn, tn − τ

〉
.

Step 1. The sequence (Atn) converges weakly in H0 + C0([−1,1]) towards At .
We pick an arbitrary τ ∈ H ∗

0 ∩ M ([−1,1]). We have to prove that limn→+∞〈Atn, τ 〉 =
〈At, τ 〉. But:

〈
Atn, τ

〉 = − 1

π

〈
log |x| ∗ tn, τ

〉
+

∫ 1

−1
τ

∫ x

−1
f tn.

The first term of the right-hand side is the H−1/2-scalar product of tn and τ (thanks
to [5, Theorem 3]. As (tn) converges weakly in H−1/2 towards t , it converges towards
(−1/π)〈log |x| ∗ t, τ 〉. There remains only to prove that

∫ 1
−1 τ

∫ x

−1 f tn converges towards
∫ 1

−1 τ
∫ x

−1 f t . As (tn) converges weakly-* in M ([−1,1]) towards t , the sequence (tn) is
bounded in M ([−1,1]). Therefore, the functions x �→ ∫ x

−1 f tn are bounded uniformly
with respect to n. Hence, it is sufficient to prove that the sequence of functions x �→∫ x

−1 f tn converges pointwisely towards x �→ ∫ x

−1 f t , to obtain the expected conclusion

limn→∞
∫ 1

−1 τ
∫ x

−1 f tn = ∫ 1
−1 τ

∫ x

−1 f t from the dominated convergence theorem. So, let us
prove that the sequence of functions x �→ ∫ x

−1 f tn converges pointwisely towards x �→∫ x

−1 f t . In the particular case where all the tn, and therefore t , are nonnegative measures



300 P. Ballard, F. Iurlano

(forgetting for a while the condition
∫

[−1,1] t = 0) and x ∈ ]−1,1[ is fixed, given an arbitrary
ε > 0, we can build a continuous function ϕε : [−1,1] → [0,1], supported in [−1, x], such
that:

(1 − ε)

∫ x

−1
t ≤

∫ 1

−1
ϕεt ≤

∫ x

−1
t,

and a function ψε : [−1,1] → [0,1] that takes the value 1 all over [−1, x], such that:

∫ x

−1
t ≤

∫ 1

−1
ψεt ≤ (1 + ε)

∫ x

−1
t,

where the fact that the measure t has no atom at x has been used. As:

∀n ∈N,

∫ 1

−1
ϕεtn ≤

∫ x

−1
tn ≤

∫ 1

−1
ψεtn,

we obtain that the sequence of functions x �→ ∫ x

−1 tn converges pointwisely towards x �→∫ x

−1 t . Hence, provided that the sequence (tn) is nonnegative, and f is a stepwise constant
function, the sequence of functions x �→ ∫ x

−1 f tn converges pointwisely towards x �→ ∫ x

−1 f t .
As any function with bounded variation in [−1,1] is a uniform limit of a sequence of step-
wise constant functions, the conclusion extends to the case where (tn) is nonnegative, and
f ∈ BV([−1,1]). Finally, let us drop the hypothesis that (tn) is nonnegative. An arbitrary
measure tn is the difference of its positive and negative parts: tn = t+n − t−n . As tn has no atom,
the same is true of t+n and t−n . As the sequence (tn) is weakly-* convergent in M ([−1,1]),
it is bounded in M ([−1,1]) and therefore, so are the sequences (t+n ) and (t−n ). Hence, ex-
tracting, if necessary, a subsequence, the sequences (t+n ) and (t−n ) converge weakly-* in
M ([−1,1]) towards limits t+ and t− such that t = t+ − t−. Now, applying the previous
conclusion to the sequences (t+n ) and (t−n ), we have proved the desired conclusion that the
sequence of functions x �→ ∫ x

−1 f tn converges pointwisely towards x �→ ∫ x

−1 f t .
Step 2. Conclusion.

We have, by hypothesis, lim supn→+∞
〈
Atn, tn − t

〉 ≤ 0. Since (Atn) converges weakly in
H0 + C0([−1,1]) towards At , this entails that:

lim sup
n→+∞

〈
Atn, tn

〉 ≤ 〈
At, t

〉
.

But, by lemma 26:

〈
Atn, tn

〉 = − 1

π

〈
log |x| ∗ tn, tn

〉
+ 1

2

∫ 1

−1
f ′
(∫ x

−1
tn

)2

.

By dominated convergence, we have:

lim
n→+∞

∫ 1

−1
f ′
(∫ x

−1
tn

)2

=
∫ 1

−1
f ′
(∫ x

−1
t

)2

,

so that:

lim sup
n→+∞

− 1

π

〈
log |x| ∗ tn, tn

〉
≤ − 1

π

〈
log |x| ∗ t, t

〉
.
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Hence, (tn) is a weakly convergent sequence in the Hilbert space H−1/2(−1,1) such that
lim supn→+∞ ‖tn‖H−1/2 ≤ ‖t‖H−1/2 . By the weak lower semicontinuity of the norm in a
Hilbert space, this classically entails that limn→+∞ ‖tn‖H−1/2 = ‖t‖H−1/2 . Finally, we have
proved that:

∀τ ∈ H ∗
0 ∩ M ([−1,1]), lim

n→+∞
〈
Atn, tn − τ

〉 = 〈
At, t − τ

〉
,

which contains the expected conclusion. �

3.4 Proof of the Uniqueness, Regularity, and Homogenization Results for
Heterogeneous Friction and Convex Indentor

The first part of this section is devoted to the proof of Theorem 17, that is, essentially to
prove that the linear mapping Ā : H ∗

0 → H0 defined by the identity:

e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t̃ + f t̃

)
= v′, in ]−1,1[ ,

is continuous and coercive on H ∗
0 := {t ∈ H−1/2(−1,1)|〈t,1〉 = 0}. As we shall see, the

fundamental reason is, once again, the link made by Theorem 33 of Appendix A between
the Hilbert transform and a class of holomorphic functions on the complex upper half-plane.

Lemma 28 Let f̄ :R→ R be an arbitrary Lipschitz-continuous function with compact sup-
port. We denote by τ̄ := − 1

π
pv 1

x
∗ arctan f̄ the Hilbert transform of arctan f̄ . Let φ(z) and

ψ(z) be the holomorphic complex functions defined on the complex upper half-plane �+
by:

φ(z) := 1

π

∫ ∞

−∞

arctan f̄ (s)ds

s − z
, ψ(z) := eφ(z) − 1.

Then, the functions φ(x + iy) and ψ(x + iy) converge as y → 0+, for almost all x ∈ R,
towards the limits:

φ(x + i0) = τ̄ (x) + i arctan f̄ (x),

ψ(x + i0) =
[

eτ̄(x)

√
1+f̄ 2(x)

− 1

]
+ i

f̄ (x) eτ̄ (x)

√
1+f̄ 2(x)

.

In addition, φ(x + i0),ψ(x + i0) ∈ Lp(R;C), for all p ∈ ]1,+∞[, and we have:

− 1

π
pv

1

x
∗
[

eτ̄

√
1+f̄ 2

− 1

]
+ f̄

eτ̄

√
1+f̄ 2

= 0, on R.

Finally, the function �eφ(x+iy) > 0 is positive on �+, is bounded away from zero and infinity:

∃C1,C2 ∈R, ∀(x, y) ∈ �+, 0 < C1 ≤ �eφ(x+iy) ≤ C2,

and:

∀(x, y) ∈ �+, inf f̄ ≤ �eφ(x+iy)

�eφ(x+iy)
≤ sup f̄ .
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Proof As arctan f̄ ∈ Lp(R), for all p ∈ ]1,+∞[, Theorem 33 yields that existence of the
almost everywhere pointwise limit φ(x + i0) ∈ Lp(R;C), for all p ∈ ]1,+∞[. Using:

cos arctan f̄ = 1
√

1 + f̄ 2
, sin arctan f̄ = f̄

√
1 + f̄ 2

,

we get the existence of the almost everywhere pointwise limit ψ(x + i0) and its value. As
f̄ is Lipschitz-continuous with compact support, its Hilbert transform τ̄ is continuous on R.
Since f̄ is compactly supported, τ̄ (x) = O(1/x) and eτ̄(x) − 1 = O(1/x), as |x| → +∞,
so that τ̄ (x) and eτ̄(x) − 1 have integrable p-power in the neighborhood of infinity, for all
p ∈ ]1,+∞[. Finally, we have proved that φ(x + i0),ψ(x + i0) ∈ Lp(R;C), for all p ∈
]1,+∞[. As φ and ψ converge to 0 at infinity, Corollary 35 shows that �ψ(x + i0) is the
Hilbert transform of �ψ(x + i0), which entails that −�ψ(x + i0) is the Hilbert transform
of �ψ(x + i0).

Finally, we have:

φ(x + iy) = 1

π

∫ ∞

−∞

(s − x) arctan f̄ (s)ds

(s − x)2 + y2
+ i

π

∫ ∞

−∞

y arctan f̄ (s)ds

(s − x)2 + y2
,

so that, for all (x, y) ∈ �+:

−π

2
< arctan(inf f̄ ) ≤ �φ(x + iy) ≤ arctan(sup f̄ ) <

π

2
,

which entails that:

∀(x, y) ∈ �+, �eφ(x+iy) > 0.

Hence:

∀(x, y) ∈ �+,
�eφ(x+iy)

�eφ(x+iy)
= tan

(
1

π

∫ ∞

−∞

y arctan f̄ (s)ds

(s − x)2 + y2

)
∈ [

inf f̄ , sup f̄
]
.

As f̄ is Lipschitz-continuous and compactly supported, τ̄ is in W 1,p(R), for all p ∈ ]1,∞[,
by Theorem 32 of Appendix A, which entails that φ(x + iy) and eφ(x+iy) are both continuous
functions on �+. The additional fact that φ(x + iy) goes to zero at infinity on �+ yields the
fact that �eφ(x+iy) is bounded away from zero and infinity. �

Lemma 29 Let p ∈ ]2,+∞] and θ ∈ L∞(R) such that θ ′ ∈ Lp(R). Then, the linear map-
pings:

{
H 1/2(R) → H 1/2(R)

u �→ θu

{
H−1/2(R) → H−1/2(R)

t �→ θt

are continuous.

Proof The space H 1/2(R) is endowed with the Sobolev-Slobodetskii norm:

∥∥u
∥∥2

H 1/2 := ∥∥u
∥∥2

L2 +
∫

R×R

(
u(x) − u(y)

x − y

)2

dx dy.
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For u ∈ H 1/2(R), we have:

∥
∥θu

∥
∥2

L2 ≤ ∥
∥θ

∥
∥2

L∞
∥
∥u

∥
∥2

L2 ,

and:

∫

R×R

(
θ(x)u(x) − θ(y)u(y)

x − y

)2

dx dy ≤ 2
∫

R×R

θ2(x)

(
u(x) − u(y)

x − y

)2

dx dy +

+ 2
∫

R×R

u2(y)

(
θ(x) − θ(y)

x − y

)2

dx dy.

Fixing y ∈R, we have:

∫ ∞

−∞

(
θ(x) − θ(y)

x − y

)2

dx ≤
∫

R\[y−1,y+1]

(
θ(x) − θ(y)

x − y

)2

dx +
∫ y+1

y−1

(
θ(x) − θ(y)

x − y

)2

dx,

≤ 8
∥
∥θ

∥
∥2

L∞ +
∫ y+1

y−1

(
1

|x − y|
∫ y

x

|θ ′(s)|ds

)2

dx,

≤ 8
∥
∥θ

∥
∥2

L∞ +
∫ y+1

y−1

1

|x − y|2/p

(∫ y

x

|θ ′(s)|p ds

)2/p

dx,

≤ 8
∥∥θ

∥∥2

L∞ + 2p

p − 2

∥∥θ ′∥∥2

Lp .

Finally, we have proved:

∥
∥θu

∥
∥2

H 1/2 ≤
[
19

∥
∥θ

∥
∥2

L∞ + 4p

p − 2

∥
∥θ ′∥∥2

Lp

]∥
∥u

∥
∥2

H 1/2 ,

which yields the claimed result for the first mapping. For the second mapping, we recall that
H−1/2(R) is the dual space of H 1/2(R), and that we have:

〈
θt, u

〉 = 〈
t, θu

〉
,

by definition. �

The following corollary will be the cornerstone of the proof of Theorem 17, but also of
the homogenization analysis.

Proposition 30 Let f̄ ∈ W 1,∞(R) be a compactly supported Lipschitz-continuous function,
and η ∈ H 1/2(R). Then,

e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ η′ + f̄ η′

)
∈ H−1/2(R),

and we have the Green’s formula, for all ϕ ∈ H 1(�+):

〈
e−τ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ η′ − f̄ η′

)
, ϕ(x,0)

〉
=

∫

�+

[
�e−φ(x+iy) ∂�η

∂x
+ �e−φ(x+iy) ∂�η

∂y

]∂ϕ

∂x
+
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+
[
−�e−φ(x+iy) ∂�η

∂x
+ �e−φ(x+iy) ∂�η

∂y

]∂ϕ

∂y
,

(24)

where:

φ(z) := 1

π

∫ ∞

−∞

arctan f̄ (s)ds

s − z
, for z ∈ �+,

and �η denotes the Poisson integral of η (see Proposition 41 in Appendix C):

�η(x, y) := 1

π

∫ ∞

−∞

y η(s)ds

(s − x)2 + y2
= 1

π

y

x2 + y2

x∗ η = 1

π
arctan

x

y

x∗ η′,

and where the terms between [ ] in formula (24) are the two components of the gradient of
a harmonic function in �+. This entails the following formula valid for arbitrary η1, η2 ∈
H 1/2(R):

〈
e−τ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ η′

1 − f̄ η′
1

)
, η2

〉
=

∫

�+

[
�e−φ(x+iy) ∂�η1

∂x
+ �e−φ(x+iy) ∂�η1

∂y

]∂�η2

∂x
+

+
[
−�e−φ(x+iy) ∂�η1

∂x
+ �e−φ(x+iy) ∂�η1

∂y

]∂�η2

∂y
.

Proof Since f̄ ∈ W 1,∞(R) is a compactly supported Lipschitz-continuous function, τ̄ ∈
W 1,p(R), for all p ∈ ]1,∞[. This entails that the function:

θ := e−τ̄

√
1+f̄ 2

,

satisfies θ ∈ L∞(R) and θ ′ ∈ Lp(R), for all p ∈ ]1,∞[. Also, the definition of the spaces
H−1/2(R) and H 1/2(R) in terms of the Fourier transform (Proposition 37 in Appendix B)
shows that η ∈ H 1/2(R) ⇒ η′ ∈ H−1/2(R). Hence,

e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ η′ + f̄ η′

)
∈ H−1/2(R),

is now an immediate consequence of Lemma 29.
Pick η ∈ C∞

c (R) and consider the following holomorphic complex function

ψ̃(x + iy) := ie−φ(x+iy) 1

π

∫ ∞

−∞

η′(s)ds

s − (x + iy)
= ie−φ(x+iy)

(
∂�η

∂y
(x, y) + i

∂�η

∂x
(x, y)

)
,

where the last identity is established using the last definition of �η in formula (33). By
Lemma 28, the function e−φ(x+iy) is bounded on �+, so that Proposition 41 in Appendix C
entails that ψ̃ ∈ L2(�+;C). In addition, using Theorem 33 in Appendix A, ψ̃(x + iy) con-
verges as y → 0+, for almost all x ∈R, but also in Lp(R), for all p ∈ ]1,+∞[, towards:

ψ̃(x + i0) = e−τ̄

√
1+f̄ 2

(
f̄ + i

)(− 1

π
pv

1

x
∗ η′ + iη′

)
.
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Finally, the harmonic function h̃(x, y) := (1/π) log
√

x2 + y2
x∗ �ψ̃(x + i0) is linked to ψ̃

by:

∀(x, y) ∈ �+, ψ̃(x + iy) = −∂h̃

∂x
(x, y) + i

∂h̃

∂y
(x, y),

and satisfies the Green’s formula:

∀ϕ ∈ C∞
c (�+), −

∫ ∞

−∞
�ψ̃(x + i0)ϕ(x,0)dx =

∫

�+

(
∂h̃

∂x

∂ϕ

∂x
+ ∂h̃

∂y

∂ϕ

∂y

)
dx dy.

This is readily seen to be the expected Green’s formula in the particular case η ∈ C∞
c (R)

and ϕ ∈ C∞
c (�+). By Proposition 41 in Appendix C and the definition of H 1/2(R) in terms

of the Fourier transform (Proposition 37 in Appendix B), we have:

∀η ∈ H 1/2(R),
∥
∥∇�η

∥
∥2

L2(�+)
= 1

π

〈
pv1/x ∗ η′, η

〉 ≤ ∥
∥η

∥
∥2

H 1/2(R)
.

By the density of C∞
c (R) in H 1/2(R), Lemma 29 (to go to the limit on the boundary term)

and Lemma 28 (which yields that e−φ(x+iy) is bounded on �+ and enables to go to the
limit in the integral over �+), we obtain the Green’s formula for all η ∈ H 1/2(R) and ϕ ∈
C∞

c (�+). The generalization to ϕ ∈ H 1(�+) now follows from the density of C∞
c (�+) in

H 1(�+).
Finally, take arbitrary η1, η2 ∈ H 1/2(R). As �η2 /∈ H 1(�+), in general, but is only in

H 1(R× ]0, Y [), for all Y > 0, by Proposition 41, we define:

ϕn(x, y) := min{1, n/y}�η2(x, y),

so that ϕn ∈ H 1(�+) and (∇ϕn) converges strongly in L2(�+) towards ∇�η2 . Using ϕn as
a test-function in the Green’s formula written for �η1 and going to the limit yields the final
claim of the proposition. �

Proof of Theorem 17 We assume that f ∈ W 1,∞(−1,1), and we consider any compactly sup-
ported extension f̄ ∈ W 1,∞(R) of f .
Step 1. Let t̃ ∈ H ∗

0 := {t ∈ H−1/2(−1,1) | 〈t,1〉 = 0}. Then there exists a unique v ∈
H 1/2(R) such that:

e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ t̃ + f̄ t̃

)
= v′, in D ′(R).

We know that t̃ ∗ log |x| ∈ H 1/2(R) by using Propositions 39 and 37, so that we only have
to prove that there exists a unique ṽ ∈ H 1/2(R) such that:

(
e−τ̄

√
1+f̄ 2

− 1

)(
− 1

π
pv

1

x
∗ t̃

)
+ f̄

e−τ̄

√
1+f̄ 2

t̃ = ṽ′, in D ′(R), (25)

because v := ṽ − (1/π)t̃ ∗ log |x| would then satisfy the claim. The function e−τ̄ /
√

1+f̄ 2 − 1
is readily checked to be in H 1(R) ⊂ H 1/2(R). For (u, t) ∈ H 1/2(R) × H−1/2(R), we have
〈u,pv1/x ∗ t〉 = −〈pv1/x ∗ u, t〉. Hence, Lemma 28 for −f̄ yields:

〈
e−τ̄

√
1+f̄ 2

− 1 , − 1

π
pv

1

x
∗ t̃

〉
+

〈
f̄

e−τ̄

√
1+f̄ 2

, t̃

〉
= 0. (26)
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As t̃ ∈ H−1/2(−1,1) is a compactly supported distribution, the left-hand side of (25) (which
is in H−1/2(R), thanks to Lemma 29) can be written as a sum T + L where T ∈ H−1/2(R)

with compact support and L : R → R is a continuous integrable function such that L(x) =
O(1/x2) at infinity. Denoting by H the Heaviside function, H ∗T is therefore in L2

loc. Setting
ṽ := H ∗ (T + L), the function ṽ is therefore in L2

loc and fulfills identity (25). In addition,
we have ṽ(x) = O(1/x) at −∞ and ṽ(x) = C∞ + O(1/x) at +∞, where C∞ is checked
to equal the left-hand side of identity (26) and therefore vanishes. Hence, ṽ ∈ L2(R). By
Proposition 37 in Appendix B, we see that a function ṽ ∈ L2(R) such that ṽ′ ∈ H−1/2(R) is
actually in H 1/2(R). Hence, ṽ ∈ H 1/2(R), and it is clearly the only solution of (25) with this
regularity. The proof of Step 1 is complete.

Step 2. The mapping Ā : H ∗
0 → H0, which associates with t̃ ∈ H ∗

0 := {t ∈ H−1/2(−1,1) |
〈t,1〉 = 0} the unique v̊ = Āt̃ in H0 := H 1/2(−1,1)/R such that:

e−τ̄

√
1+f 2

(
− 1

π
pv

1

x
∗ t̃ + f̄ t̃

)
= v̊′, in D ′(]−1,1[),

is continuous and coercive.
The fact that there exists a unique v ∈ H0 satisfying the above identity is a direct conse-

quence of step 1.
Consider arbitrary t̃1, t̃2 ∈ H ∗

0 . Their extension by zero to the real line are elements of
H−1/2(R) whose Fourier transforms are C∞ functions vanishing at 0. By the definition of
the spaces H 1/2(R) and H 1/2(R) in terms of the Fourier transform (Proposition 37 in Ap-
pendix B), this entails that the distributions ηi := (1/2) sgn ∗ t̃i are in H 1/2(R). By Proposi-
tion 30, we obtain:

∣∣
∣∣
∣

〈
e−τ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉∣∣
∣∣
∣
≤ C

∥∥∇�η1

∥∥
L2(�+)

∥∥∇�η2

∥∥
L2(�+)

,

for some real constant C independent of t̃i , since the function e−τ̄ (x+iy) is bounded on �+
by Lemma 28. Combining Proposition 41 and 40, we have:

∀t̃ ∈ H ∗
0 ,

∥∥∇�η

∥∥2

L2(�+)
= − 1

π

〈
log |x| ∗ t̃ , t̃

〉 = ∥∥t̃
∥∥2

H−1/2(−1,1)
,

where η := (1/2)sgn ∗ t̃ ∈ H 1/2(R), so that, we have proved that the bilinear form:

t̃1, t̃2 �→
〈

e−τ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉

is continuous on H ∗
0 . Hence, the formula:

〈
Āt̃1, t̃2

〉 =
〈

e−τ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ t̃1 − f̄ t̃1

)
,

1

2
sgn ∗ t̃2

〉

defines a continuous linear mapping Ā : H ∗
0 → H0. Also, using again Lemma 28 and Propo-

sition 30, we obtain:

∃C > 0, ∀t̃ ∈ H ∗
0 ,

〈
Āt̃ , t̃

〉 ≥ C
∥∥∇�η

∥∥2

L2(�+)
= C

∥∥t̃
∥∥2

H−1/2(−1,1)
,

which shows that Ā : H ∗
0 → H0 is coercive, so that it is an isomorphism, by the Lax-Milgram

theorem.
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Step 3. Let t̃ ∈ H ∗
0 and the element v ∈ H 1/2(R) satisfying:

v′ = e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ t̃ + f̄ t̃

)
, in D ′(R).

Then, we have the inversion formula:

t̃ = eτ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ v′ + f̄ v′

)
, in D ′(R).

Pick an arbitrary t̃ ∈ H ∗
0 . Assume in addition that t ∈ Lp(−1,1) for some p ∈ ]1,∞[.

Set ṽ := v − (1/π) log |x| ∗ t̃ , so that ṽ ∈ H 1/2(R), ṽ′ ∈ Lp(R) and:

ṽ′ =
(

e−τ̄

√
1+f̄ 2

− 1

)(
− 1

π
pv

1

x
∗ t̃

)
+ f̄

e−τ̄

√
1+f̄ 2

t̃ , in D ′(R).

Recalling that the function:

e−τ̄

√
1+f̄ 2

− 1,

is in Lq(R), for all q ∈ ]1,∞[, and using Lemma 28 and Corollary 34 of Appendix A, we
obtain:

− 1

π
pv

1

x
∗ ṽ′ = f̄

e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ t̃

)
−

(
e−τ̄

√
1+f̄ 2

− 1

)
t̃ .

Combining:

v′ = e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ t̃ + f̄ t̃

)
,

− 1

π
pv

1

x
∗ v′ = e−τ̄

√
1+f̄ 2

(
− f̄

π
pv

1

x
∗ t̃ − t̃

)
,

we obtain the expected inversion formula for the particular case t̃ ∈ Lp(−1,1) ⇒ v′ ∈
Lp(R). Using the density of H ∗

0 ∩ Lp(−1,1) into H ∗
0 and making use of Lemma 29, we

obtain the general case.

Step 4. The operator Ā−1 has the T-monotonicity property.
The above inversion formula is all what is needed to prove the T-monotonicity property

of the operator Ā−1 along the lines of the proof already given in the case of homogeneous
friction in Section 3.2. Take an arbitrary v ∈ H 1/2(−1,1). Set t̃ = Ā−1v̊ ∈ H ∗

0 and v̄ as the
unique function in H 1/2(R) such that:

v̄′ = e−τ̄

√
1+f̄ 2

(
− 1

π
pv

1

x
∗ t̃ + f̄ t̃

)
, in D ′(R).

As v and v̄ have the same derivative on ]−1,1[, there exists C ∈ R such that v = v̄ + C on
]−1,1[, so that:

〈
Ā−1v̊, v+〉 =

〈
eτ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ v̄′ + f̄ v̄′

)
, (v̄ + C)+ − C+

〉
,
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where (v̄ + C)+ − C+ ∈ H 1/2(R) (see Lemma 25). Applying the Green’s formula (24) of
Proposition 30 upon replacing f̄ by −f̄ , η by v̄, ϕ by (�v̄ + C)+ − C+ and mimicking the
proof of Lemma 25, we get:

〈
eτ̄

√
1+f̄ 2

(
1

π
pv

1

x
∗ v̄′ + f̄ v̄′

)
, (v̄ + C)+ − C+

〉

=
∫

�+

[
�eφ(x+iy) ∂�v̄

∂x
+ �eφ(x+iy) ∂�v̄

∂y

] ∂

∂x

(
�v̄ + C

)+ +

+
[
−�eφ(x+iy) ∂�v̄

∂x
+ �eφ(x+iy) ∂�v̄

∂y

] ∂

∂y

(
�v̄ + C

)+
,

=
∫

�+
�eφ(x+iy)

{[
∂

∂x

(
�v̄ + C

)+]2

+
[

∂

∂y

(
�v̄ + C

)+]2}
≥ 0,

where Proposition 41 and Stampacchia’s theorem [15, Theorem 1.56, p 79] have been used.
If the equality is achieved, then (�v̄ + C)+ must be a constant, implying that (v̄ + C)+ is
also constant. �

We now turn to the detailed proof of the homogenization result in the case of an ar-
bitrary convex indentor (Theorem 19). We are given P > 0 and a convex indentor shape
g ∈ W 1,∞(−1,1). The microscopic friction coefficient fn is built from a given period
p ∈ W 1,∞(−1,1), such that p(−1) = p(1) which is extended by 2-periodicity to the whole
line. The Lipschitz-continuous function fn is defined on ]−1,1[ by:

fn(x) := p(nx).

Picking an arbitrary function ϕ ∈ C∞
c (R; [0,1]) such that ϕ(x) = 1, for all x ∈ [−1,1], the

function f̄n(x) := ϕ(x)p(nx) is a compactly supported Lipschitz-continuous extension of
fn to the whole line. Denoting by feff the constant:

feff := tan
〈
arctanf1

〉
,

Lemma 23 yields that the sequence (fn) converges weakly-* in L∞(−1,1) towards the con-
stant function feff and the sequence (f̄n) converges weakly-* in L∞(R) towards feff ϕ(x).

Let t̃n ∈ ∪p>1L
p(−1,1) be the unique solution of the contact problem (either problem Po

or problem Pa) provided by Corollary 18. Let also t̃eff be the unique solution of the contact
problem associated with the constant feff. We also denote by t0

n the function:

t0
n (x) := eτn(x)

π
√

1 − x2
√

1 + f 2
n (x)

, on ]−1,1[ .

The function t0
n has integral over ]−1,1[ equal to 1 and solves the homogeneous Carleman

equation. The function −P t0
n solves the contact problem with microscopic friction coeffi-

cient fn in the case of the flat indentor g = 0. From the analysis in Section 2.3, we know
that the sequence (t0

n ) converges weakly in Lp(−1,1), for all p ∈ ]
1, (1/2 + β)−1

[
, where:

β := 1

π
arctan

∥∥f1

∥∥
L∞(−1,1)

<
1

2
, (27)
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towards:

t0
eff(x) := eτeff(x)

π
√

1 − x2
√

1 + f 2
eff(x)

, on ]−1,1[ .

In particular, as the embedding of Lp(−1,1) (p ∈ ]1,∞[) into H−1/2(−1,1) is compact,
the sequence (t0

n ) converges strongly in H−1/2(−1,1) towards t0
eff.

The function t̃n ∈ ∪p>1L
p(−1,1) is characterized by the following assertions:

•
∫ 1

−1
t̃n dx = 0 and t̃n ≤ P t0

n .

• There exists (uniquely) Cn ∈R such that:

∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds ≤ Cn, and

〈
t̃n − P t0

n ,

∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds − Cn

〉
= 0. (28)

The following lemma contains the technical estimate on which the proof of Theorem 19
is going to rely.

Lemma 31 The sequence:
(

e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

))

n∈N\{0}

is bounded in Lp(R), for all p ∈ ]
1, (1/2 + β)−1

[
, where β is given by formula (27).

Proof Step 1. Setting:

u′
n := − 1

π
pv

1

x
∗ t̃n + fnt̃n, in ]−1,1[ ,

we have
∥
∥u′

n

∥
∥

L∞(−1,1)
= ∥

∥g′∥∥
L∞(−1,1)

, for all n.

As (t̃n, un) ∈ ∪p>1L
p(−1,1) × ∪p>1W

1,p(−1,1) is the unique solution of problem Po

associated with friction coefficient fn, the claim is given by Proposition 16.

Step 2. We have:

t̃n = fn u′
n χ]−1,1[

1 + f 2
n

+ eτn χ]−1,1[

π
√

1 − x2
√

1 + f 2
n︸ ︷︷ ︸

t0
n

pv
1

x
∗
[

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

]
,

(where χ]−1,1[ is the indicatrix function) which entails:

− 1

π
pv

1

x
∗ t̃n + fnt̃n =

∣
∣∣
∣∣
∣∣

u′
n, in ]−1,1[ ,

− sgn(x) eτn

π
√

x2 − 1
pv

1

x
∗
[

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

]
, in R \ [−1,1].
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Set:

Tn := fn u′
n χ]−1,1[

1 + f 2
n

+ eτn χ]−1,1[

π
√

1 − x2
√

1 + f 2
n︸ ︷︷ ︸

t0
n

pv
1

x
∗
[

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

]
.

As:

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

∈ L∞(−1,1),

and ∃r ∈ ]1,2[ ,
eτn χ]−1,1[

π
√

1 − x2
√

1 + f 2
n

∈ Lr(−1,1),

we obtain Tn ∈ Lr(−1,1), for some r ∈ ]1,2[, thanks to Theorem 32 in Appendix A. In
addition:

∫ 1

−1
Tn dx =

∫ 1

−1

fn u′
n χ]−1,1[

1 + f 2
n

dx −
∫ 1

−1

[
e−τn

√
1 − x2 u′

n χ]−1,1[√
1 + f 2

n

][
pv

1

x
∗ t0

n

]
dx,

=
∫ 1

−1

fn u′
n χ]−1,1[

1 + f 2
n

dx −
∫ 1

−1

fn u′
n χ]−1,1[

1 + f 2
n

dx = 0.

Also, the Hilbert transform of Tn can be calculated, thanks to Corollary 34:

− 1

π
pv

1

x
∗ Tn = u′

n χ]−1,1[

1 + f 2
n

− 1

π

(

pv
1

x
∗
[

eτn χ]−1,1[

π
√

1 − x2
√

1 + f 2
n

])

×
(

pv
1

x
∗
[

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

])

. (29)

This yields, in particular:

− 1

π
pv

1

x
∗ Tn + fnTn = u′

n, a.e. in ]−1,1[ ,

so that Tn − t̃n solves the homogeneous Carleman equation. But, as fn is Lipschitz-
continuous, all the solutions in ∪p>1L

p(−1,1) of the homogeneous Carleman equation are
proportional to t0

n (see [14, Section 4-4] or Proposition 22). Since both Tn and t̃n have zero
integral over ]−1,1[, we must have Tn = t̃n and the claimed expression for t̃n is therefore
established.

Finally, by Proposition 21, the Hilbert transform of t0
n is:

− 1

π
pv

1

x
∗
[

eτn χ]−1,1[

π
√

1 − x2
√

1 + f 2
n

]
=

∣∣∣
∣∣
∣∣
∣∣

− fn eτn

π
√

1 − x2
√

1 + f 2
n

, in ]−1,1[ ,

− sgn(x) eτn

π
√

x2 − 1
, in R \ ]−1,1[ ,

which, together with identity (29), is sufficient to obtain the claim in Step 2.
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Step 3. We have:

∣∣
∣∣−

1

π
pv

1

x
∗ t̃n + fnt̃n

∣∣
∣∣ ≤

∣∣
∣∣
∣∣∣
∣

∥∥g′∥∥
L∞(−1,1)

in ]−1,1[ ,

∥
∥g′∥∥

L∞(−1,1)

[
1 + eτn(x)

√
x2 − 1

(|x| + 2πβ
)]

in R \ ]−1,1[ ,

where β := (1/π) arctan‖f1‖L∞(−1,1).
The estimate in ]−1,1[ was already proved in Step 1. Let us first estimate the following

function for |x| > 1:

∣
∣∣
∣∣
pv

1

x
∗
[

e−τn
√

1 − x2 u′
n χ]−1,1[√

1 + f 2
n

]∣∣∣
∣∣
=

∣
∣∣
∣∣

∫ 1

−1

e−τn(s)
√

1 − s2 u′
n(s)√

1 + f 2
n (s)(x − s)

ds

∣
∣∣
∣∣
,

≤ ∥
∥g′∥∥

L∞

∣∣
∣∣

∫ 1

−1

e−τn(s)
√

1 − s2

√
1 + f 2

n (s)(x − s)
ds

∣
∣∣∣
∣
.

We have to estimate the integral in the right-hand side:

∫ 1

−1

e−τn(s)

√
1 + f 2

n (s)

√
1 − s

1 + s

1 + s

x − s
ds = (1 + x)

∫ 1

−1

e−τn(s)

√
1 + f 2

n (s)

√
1 − s

1 + s

ds

x − s
−

−
∫ 1

−1

√
1 − s

1 + s

e−τn(s) ds
√

1 + f 2
n (s)

,

where the two integrals appearing in the right-hand side have actually already been calcu-
lated in the proof of Proposition 21:

∫ 1

−1

e−τn(s)

√
1 + f 2

n (s)

√
1 − s

1 + s

1 + s

x − s
ds

= (1 + x)π

(
1 − e−τn(x)

√∣
∣∣
∣
1 − x

1 + x

∣
∣∣
∣

)
− π

(
1 −

∫ 1

−1
arctanfn(s)ds

)

= −sgn(x)π
√

x2 − 1 e−τn(x) + π

(
x +

∫ 1

−1
arctanfn(s)ds

)
.

Using this and Step 2, we obtain the claim in Step 3.

Step 4. Conclusion.
Set:

Vn := e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
.

The set suppf̄n is bounded uniformly with respect to n. To fix ideas, we can suppose:

∀n ∈ N \ {0}, suppf̄n ⊂ [−2,2].
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Note that:
∫ 1

−1
|t̃n(s)|ds ≤

∫ 1

−1

(
|t̃n(s) − P t0

n (s)| + P t0
n (s)

)
ds ≤ 2P,

and also that:
∫ 2

−2
| arctan f̄n(s)|ds ≤ 4πβ,

so that, for |x| > 3, we have:

|Vn(x)| = e−τ̄n(x)

π

∣∣
∣∣

∫ 1

−1

t̃n(s)ds

x − s

∣∣
∣∣,

≤ 1

π

∫ 1
−1 |t̃n(s)|ds

|x| − 1
e

1
π

∫ 2
−2

arctan f̄n(s) ds
x−s ,

≤ 2P

π

1

|x| − 1
e

4β
|x|−2 .

The function appearing in the right-hand side is independent of n and is in Lp(−∞,−3)

and in Lp(3,∞), for all p > 1.
Hence, to obtain the conclusion of the Lemma, it is now sufficient to prove that the

sequence Vn is bounded in Lp(−3,3), for all p ∈ ]
1, (1/2 + β)−1

[
. To do this, we invoke

the estimate of Vn provided by Step 3:

∣∣Vn(x)
∣∣ ≤

∣∣
∣∣
∣∣
∣∣
∣∣

∥
∥g′∥∥

L∞(−1,1)

e−τ̄n(x)

√
1+f̄ 2

n (x)

in ]−1,1[ ,

∥∥g′∥∥
L∞(−1,1)

e−τ̄n(x)

√
1+f̄ 2

n (x)

[
1 + eτn(x)

√
x2 − 1

(|x| + 2πβ
)]

in ]−3,−1[ ∪ ]1,3[ .

By Lemma 24 in ]−3,3[ with f replaced by −f̄ , the sequence
(
e−τ̄n/

√
1+f̄ 2

n

)
is bounded in

Lp(−3,3), for all p ∈ ]
1, (1/2 + β)−1

[
. Now, there remains only to prove that the sequence:

(
eτn(x)−τ̄n(x)

√
1+f̄ 2

n (x)

√
x2 − 1

)
(30)

is bounded both in Lp(−3,−1) and Lp(1,3), for all p ∈ ]
1, (1/2 + β)−1

[
, to reach the

conclusion of the Lemma. We are going to prove it for Lp(1,3), the other case being similar.
Set:

ν +©
n := f̄n χ]1,2[, ν -©

n := f̄n χ]−2,−1[

so that arctanfn − arctan f̄n = − arctan ν -©
n − arctanν +©

n and τn − τ̄n = −H[arctanν -©
n ] −

H[arctan ν +©
n ] (where H stands for the Hilbert transform). As the sequence arctan ν -©

n is sup-
ported in [−2,−1] and is bounded in L1(−2,−1), the sequence H[arctan ν -©

n ] is bounded in
C0([1,3]). Finally, we can write:

for a.a. x ∈ ]1,3[ ,
eτn(x)−τ̄n(x)

√
1+f̄ 2

n (x)

√
x2 − 1

= Cn(x)
e−H[arctanν

+©
n ](x)

√
1+ν

+©2
n (x)

√
(3 − x)(x − 1)

,
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where Cn denotes a bounded sequence in C0([1,3]). Invoking again Lemma 24, the
sequence e−H[arctanν

+©
n ]/(

√
1+ν

+©2
n

√
(3 − x)(x − 1)) is bounded in Lp(1,3), for all p ∈]

1, (1/2 + β)−1
[
. Hence we have proved that the sequence (30) is bounded in Lp(1,3),

for all p ∈ ]
1, (1/2 + β)−1

[
. By the same argument, it is also bounded in Lp(−3,−1).

All in all, we have proved that the sequence (Vn) is bounded in Lp(−3,3), for all
p ∈ ]

1, (1/2 + β)−1
[
, and the Lemma is proved. �

Proof of Theorem 19
Step 1. The sequence (t̃n) is bounded in M ([−1,1]) and in H−1/2(−1,1). Therefore, upon
extracting a subsequence, it converges towards some limit t̄ in M ([−1,1]) weak-* and in
H−1/2(−1,1) weak.

The integrable function t̃n − P t0
n is nonpositive and has total mass P . This entails that t̃n

belongs to the closed unit ball of radius 2P in M ([−1,1]). Also, as t̃n solves problem Po,
it fulfills the variational inequality:

〈
− 1

π
log |x| ∗ t̃n + 1

2
sgn(x) ∗ (

f̄nt̃n
)
, t̂ − t̃n

〉
≥ 〈

g , t̂ − t̃n
〉
,

for all t̂ ∈ H ∗
0 ∩ M ([−1,1]) such that t̂ − P t0

n ≤ 0. Taking t̂ = 0, we obtain:
〈
− 1

π
log |x| ∗ t̃n , t̃n

〉
≤ ∥

∥g
∥
∥

H 1/2

∥
∥t̃n

∥
∥

H−1/2 + ∥
∥t̃n

∥
∥

M

∥
∥fnt̃n

∥
∥

M
,

where the second term in the right-hand side is bounded and the left-hand side can be iden-
tified with ‖t̃n‖2

H−1/2 , thanks to Lemma 40 in Appendix C. This inequality therefore shows
that ‖t̃n‖H−1/2 is bounded.

Step 2. We have the following convergence:

e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
⇀

e−τ̄eff

√
1+f̄ 2

eff

(
− 1

π
pv

1

x
∗ t̄ + feff t̄

)

weakly in Lp(R), for all p ∈ ]
1, (1/2 + β)−1

[
, where β is given by formula (27).

From now on, we pick an arbitrary p ∈ ]
1, (1/2 + β)−1

[
. Given arbitrary t ∈ Lp(R) and

y > 0, we have:
∥
∥∥
∥

1

π

∫ ∞

−∞

y t (s)ds

(x − s)2 + y2

∥
∥∥
∥

Lp(R)

≤
∥
∥∥
∥

1

π

y

x2 + y2

∥
∥∥
∥

L1(R)

‖t‖Lp(R) = ‖t‖Lp(R).

Applying Theorem 33(i) in Appendix A to the holomorphic function:

φ(z) := 1

π

∫ ∞

−∞

t (s)

s − z
ds, z ∈ �+,

we obtain, for all y > 0:

1

π

∫ ∞

−∞

(s − x) t (s)

(s − x)2 + y2
ds = − 1

π
pv

1

x

x∗
(

1

π

∫ ∞

−∞

y t (s)

(s − x)2 + y2
ds

)

,

so that, invoking Theorem 32(iii) in Appendix A, we have:
∥
∥φ(x + iy)

∥
∥

Lp(R)
≤ C‖t‖Lp(R),
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for some universal constant C, independent of t , φ and y > 0. Applying Green’s formula to

the harmonic function h(x, y) := (1/π) log
√

x2 + y2
x∗ t , we have, for all ϕ ∈ C∞

c (�+):

∫ ∞

−∞
t (x)ϕ(x,0)dx

= − 1

π

∫

�+

[
∂ϕ

∂x
(x, y)

∫ ∞

−∞

(x − s) t (s)ds

(x − s)2 + y2
+ ∂ϕ

∂y
(x, y)

∫ ∞

−∞

y t (s)ds

(x − s)2 + y2

]
dx dy,

where, for all Y > 0, the following estimates hold:

∥
∥∥
∥

∫ ∞

−∞

(x − s) t (s)ds

(x − s)2 + y2

∥
∥∥
∥

Lp(R×]0,Y [)

≤ CY 1/p ‖t‖Lp(R),

∥
∥∥
∥

∫ ∞

−∞

y t (s)ds

(x − s)2 + y2

∥
∥∥
∥

Lp(R×]0,Y [)

≤ CY 1/p ‖t‖Lp(R),

(31)

for some constant C independent of t and Y > 0. When

t = e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
,

such a Green’s formula is the one provided by Proposition 30:

∫ ∞

−∞

e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

)
ϕ(x,0)dx

=
∫

�+

[
�e−φn(x+iy) ∂�η̃n

∂x
+ �e−φn(x+iy) ∂�η̃n

∂y

]
∂ϕ

∂x

+
[
−�e−φn(x+iy) ∂�η̃n

∂x
+ �e−φn(x+iy) ∂�η̃n

∂y

]
∂ϕ

∂y
,

where η̃n := (1/2) sgn(x) ∗ t̃n and:

φn(z) := 1

π

∫ ∞

−∞

arctan f̄n(s)ds

s − z
,

�η̃n(x, y) := 1

π

∫ ∞

−∞

y η̃n ds

(x − s)2 + y2
= 1

π
arctan

x

y

x∗ t̃n.

Using Lemma 31 and formula (31), this entails that the two sequences:

(
�e−φn(x+iy) ∂�η̃n

∂x
+�e−φn(x+iy) ∂�η̃n

∂y

)
and

(
−�e−φn(x+iy) ∂�η̃n

∂x
+�e−φn(x+iy) ∂�η̃n

∂y

)
,

are bounded in Lp(R× ]0, Y [), for all Y > 0, and therefore have a weak limit (upon extract-
ing subsequences) in Lp(R× ]0, Y [). As (arctan f̄n) converges towards arctan f̄eff in L∞(R)

weak-*, (t̃n) converges towards t̄ in M ([−1,1]) weak-* and H−1/2(−1,1) weak, and:

φn(x + iy) = 1

π

∫ ∞

−∞

arctan f̄n(s)ds

s − (x + iy)
,
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∂�η̃n

∂x
(x, y) = 1

π

∫ 1

−1

y t̃n(s)ds

(x − s)2 + y2
,

∂�η̃n

∂y
(x, y) = 1

π

∫ 1

−1

(s − x) t̃n(s)ds

(x − s)2 + y2
,

it is readily checked that the sequences (φn(x + iy)), (∂�η̃n/∂x) and (∂�η̃n/∂y) con-
verge pointwisely in �+ towards, respectively, φeff, ∂�η̄/∂x and ∂�η̄/∂y, where η̄ :=
(1/2) sgn(x) ∗ t̄ (this is the same argument already used in the case of the flat indentor).
Furthermore, these three sequences are bounded by a constant on each compact subset
of �+. Using the dominated convergence theorem, this implies that the weak limits in
Lp(R× ]0, Y [) of the above two sequences must equal:

(
�e−φeff(x+iy) ∂�η̄

∂x
+�e−φeff(x+iy) ∂�η̄

∂y

)
and

(
−�e−φeff(x+iy) ∂�η̄

∂x
+�e−φeff(x+iy) ∂�η̄

∂y

)
.

This entails that the sequence:

(
e−τ̄n

√
1+f̄ 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n

))

n∈N\{0}

converges weakly in Lp(R) towards:

e−τ̄eff

√
1+f̄ 2

eff

(
− 1

π
pv

1

x
∗ t̄ + feff t̄

)
.

Step 3. We have t̄ = t̃eff and, in particular, the sequence (t̃n) converges towards t̃eff in
M ([−1,1]) weak-*.

Step 2 and Lemma 24 entail that the sequence:

(∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds

)

n∈N\{0}

converges pointwisely towards:

∫ x

−1

e−τ̄eff

√
1+f 2

eff

(
− 1

π
pv

1

x
∗ t̄ + feff t̄ − g′

)
ds,

and is bounded in W 1,p(−1,1), for all p ∈ ]
1, (1/2 + β)−1

[
. As W 1,p(−1,1) is contin-

uously embedded in C0,(p−1)/p([−1,1]), Ascoli’s theorem yields that the convergence is
actually strong in C0([−1,1]). Coming back to formula (28), this entails that the sequence:

Cn := 1

P

〈
P t0

n − t̃n ,

∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)〉

converges towards a limit C∞, as the first term converges in M ([−1,1]) weak-* and the sec-
ond one converges strongly in C0([−1,1]). Recalling that t0

n converges weakly in Lp(−1,1)

to t0
eff, by Theorem 2, we therefore have:

• 〈
t̄ ,1

〉 = 0 and t̄ ≤ P t0
eff.

•
∫ x

−1

e−τ̄eff

√
1+f 2

eff

(
− 1

π
pv

1

x
∗ t̄ + feff t̄ − g′

)
ds ≤ C∞,
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•
〈
t̄ − P t0

eff ,

∫ x

−1

e−τ̄eff

√
1+f 2

eff

(
− 1

π
pv

1

x
∗ t̄ + feff t̃eff − g′

)
ds − C∞

〉
= 0.

But, there is one and only one element of H−1/2(−1,1) satisfying all these conditions:
t̃eff. Hence t̄ = t̃eff and we have proved that the sequence (t̃n) converges towards t̃eff in
M ([−1,1]) weak-* and in H−1/2(−1,1) weak.

Step 4. The sequence (fnt̃n) converges towards feff t̃eff in M ([−1,1]) weak-*.
Let (t̃n, un) ∈ ∪p>1L

p(−1,1) × ∪p>1W
1,p(−1,1) be the unique solution of problem Po

associated with friction coefficient fn. By Proposition 16, we have:
∥∥u′

n

∥∥
L∞(−1,1)

≤ ∥∥g′∥∥
L∞(−1,1)

.

By Ascoli’s theorem, the sequence un converges in C0([−1,1]) towards some limit ū (upon
extracting a subsequence). We are going to prove that ū = ueff. Of course, we have ū ≤ g.
As:

∫ 1

−1

(
t̃eff − P t0

eff

)(
ū − g

)
dx = lim

n→∞

∫ 1

−1

(
t̃n − P t0

n

)(
un − g

)
dx = 0,

we have ū = g = ueff on supp(t̃eff − P t0
eff). Consider an arbitrary x0 ∈ ]−1,1[ \ supp(t̃eff −

P t0
eff) (in the case where there exists some). We denote by (t̃n, vn) ∈ ∪p>1L

p(−1,1) ×
∪p>1W

1,p(−1,1) (resp. (t̃eff, veff)) the unique solution of problem Pa associated with fric-
tion coefficient fn (resp. feff). Set:

wn(x) := vn(x) −
∫ x

−1

g′ e−τ̄n

√
1+f 2

n

ds − sup
x∈]−1,1[

{
vn(x) −

∫ x

−1

g′ e−τ̄n

√
1+f 2

n

ds

}
,

=
∫ x

−1

e−τ̄n

√
1+f 2

n

(
u′

n − g′)ds − sup
x∈]−1,1[

∫ x

−1

e−τ̄n

√
1+f 2

n

(
u′

n − g′)ds,

=
∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds −

− sup
x∈]−1,1[

∫ x

−1

e−τ̄n

√
1+f 2

n

(
− 1

π
pv

1

x
∗ t̃n + fnt̃n − g′

)
ds,

and weff by replacing all the ‘n’ by ‘eff’ in the above definition. By Proposition 16, the
function weff vanishes on supp(t̃eff − P t0

eff) and is negative on ]−1,1[ \ supp(t̃eff − P t0
eff).

Hence, weff(x0) < 0. By the analysis led in step 2 and step 3, the sequence (wn) converges
towards weff in C0([−1,1]). Therefore:

∃N ∈N, ∃η > 0, ∀n ≥ 0, ∀x ∈ [x0 − 2η,x0 + 2η], wn(x) < 0.

Hence, for all n ≥ N , [x0 − η,x0 + η] ∩ supp(t̃n − P t0
n ) = ∅, and, of course [x0 − η,x0 +

η] ∩ supp(t̃eff − P t0
eff) = ∅. As, supp(t̃eff − P t0

eff) is connected, it lies either on the left, or
the right of [x0 − η,x0 + η]. Let us assume that it lies on the right. Then, the same is true of
supp(t̃n − P t0

n ) whenever n is large enough, by the weak-* convergence in M ([−1,1]) of
(t̃n − P t0

n ). Then:

∃Un ∈ R, ∀x ∈ ]−1, x0 + η[ , un(x) = Un − 1

π

∫ 1

x0+η

log |x − s|
(
t̃n(s) − P t0

n (s)
)

ds,
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where the sequence (Un) must be bounded. We can therefore take the limit to obtain:

∃U ∈R, ∀x ∈ ]−1, x0 + η[ , ū(x) = U + ueff(x),

and therefore:

∃U ∈R, ∀x < inf supp(t̃eff − P t0
eff), ū(x) = U + ueff(x).

As ū and ueff are continuous and equal on supp(t̃eff − P t0
eff), we have U = 0. All in all, we

have proved ū = ueff.
The sequence (fnt̃n) being bounded in M ([−1,1]) converges in M ([−1,1]) weak-*,

upon extracting a subsequence, towards some limit ¯̄t ∈ M ([−1,1]). We are going to prove
that ¯̄t = feff t̃eff. Going to the limit in the formula:

− 1

π
pv

1

x
∗ t̃n + fnt̃n = u′

n, in D ′(]−1,1[),

we obtain:

− 1

π
pv

1

x
∗ t̃eff + ¯̄t = u′

eff = − 1

π
pv

1

x
∗ t̃eff + feff t̃eff, in D ′(]−1,1[).

Hence, we have ¯̄t = feff t̃eff as elements of D ′(]−1,1[). To obtain the equality as elements
of M ([−1,1]), we need to prove that the measure ¯̄t has no atom at −1 and 1. But this is
ensured by:

‖f1‖L∞(−1,1)

(
t̃n − P t0

n

) ≤ fn

(
t̃n − P t0

n

) ≤ −‖f1‖L∞(−1,1)

(
t̃n − P t0

n

)
,

which yields:

‖f1‖L∞(−1,1)

(
t̃eff − P t0

eff

) ≤ ¯̄t − Pfefft
0
eff ≤ −‖f1‖L∞(−1,1)

(
t̃eff − P t0

eff

)
,

in M ([−1,1]), as (t0
n ) and (fnt

0
n ) converge respectively towards t0

eff and fefft
0
eff in

M ([−1,1]) weak-*, thanks to Theorem 2. All in all, we have proved that the sequence
(fnt̃n) converges towards feff t̃eff in M ([−1,1]) weak-*. �

Appendix A: Marcel Riesz’s Lp-Theory of the Hilbert Transform

The distributional derivative of the locally integrable function log |x| is denoted by pv 1/x

(meaning ‘principal value’). It satisfies:

∀ϕ ∈ C∞
c (R),

〈
pv

1

x
,ϕ

〉
= lim

ε→0+

∫

R\]−ε,ε[

ϕ(x)

x
dx,

(C∞
c stands for the space of C∞ compactly supported test-functions), where the limit exists

thanks to the differentiability of ϕ at 0. The distribution pv 1/x is a tempered distribution
whose Fourier transform is given by:

F
[
pv 1/x

] = −i

√
π

2
sgn,
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where sgn is the sign function and the following convention is used to define the Fourier
transform of any integrable function f :

F
[
f
]
(ξ) := 1√

2π

∫ ∞

−∞
f (x) e−ixξ dx.

As the Fourier transform is an isometry of L2(R), the same applies to the so-called Hilbert
transform defined by the convolution product:

H
[
f
] = − 1

π
pv

1

x
∗ f,

whose inverse is minus itself:

∀f ∈ L2(R), H
[
H[f ]] = −f.

Actually, these results classically extend to Lp(R), provided that p ∈ ]1,+∞[. A proof
of the following two theorems of Marcel Riesz can be found for example in [13].

Theorem 32 (M. Riesz) Let p ∈ ]1,∞[ and f ∈ Lp(R). Then:

(i) For almost all x ∈R,

H[f ](x) := − 1

π
lim

ε→0+

∫

R\]x−ε,x+ε[

f (s)

x − s
ds,

exists and is finite.
(ii) The function H[f ], defined almost everywhere in R by the above formula, is in Lp(R).

(iii) The mapping H : Lp → Lp is linear continuous.
(iv) The following identity holds:

∀f ∈ Lp(R), H
[
H[f ]] = −f,

which shows that H is an isomorphism of Lp(R).
(v) The function H[f ] coincides with the convolution product:

H
[
f
] = − 1

π
pv

1

x
∗ f,

and is accordingly named the Hilbert transform of f ∈ Lp(R) (p ∈ ]1,+∞[).

The Hilbert transform is closely related to the study of some class of holomorphic func-
tions defined in the open upper-half plane:

�+ :=
{
z ∈ C ; �(z) > 0

}
,

as seen in the next theorem.
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Theorem 33 (M. Riesz)

(i) Let p ∈ ]1,∞[ and f ∈ Lp(R). Then, the function � : �+ →C defined by:

�(z) := 1

π

∫ ∞

−∞

f (t)

t − z
dt,

is holomorphic in �+ and satisfies:

∃K ∈ R, ∀y > 0,

∫ ∞

−∞

∣
∣�(x + iy)

∣
∣p dx < K. (32)

In addition, �(x + iy) converges, as y → 0+, in Lp(R;C), but also for almost all
x ∈R, towards the limit:

�(x + i0) = H[f ](x) + if (x).

(ii) Reciprocally, if � is some holomorphic function in �+ satisfying the condition:

∃K ∈R, ∀y > 0,

∫ ∞

−∞

∣
∣�(x + iy)

∣
∣p dx < K,

then, �(x + iy) converges, as y → 0+, in Lp(R;C), but also for almost all x ∈ R,
towards some limit �(x + i0), which satisfies in addition:

�{
�(x + i0)

} = H
[
�{�(x + i0)

}]
.

Using Theorem 33(i) and the following indentities:

�
((
H[f1] + if1

)(
H[f2] + if2

)) = H[f1]H[f2] − f1 f2,

�
((
H[f1] + if1

)(
H[f2] + if2

)) = H[f1]f2 + f1 H[f2],

we get the following corollary.

Corollary 34 (Poincaré-Bertrand-Tricomi) Let f1 ∈ Lp1(R) and f2 ∈ Lp2(R), with p1,p2 ∈
]1,∞[ and 1

p1
+ 1

p2
< 1. Then:

H
[
H[f1]f2 + f1 H[f2]

]
= H[f1]H[f2] − f1 f2.

Corollary 35 Let � : �+ → C be a holomorphic function such that �(x + iy) converges,
as y → 0+, towards a limit �(x + i0), for almost all x ∈ R. Suppose that �(x + i0) ∈
Lp(R;C), for some p ∈ ]1,∞[ and � is bounded at infinity. Then:

�{
�(x + i0)

} = H
[
�{�(x + i0)

}]
.

Proof Let f := ��(x + i0) ∈ Lp(R). Then, the function �̃(z) := �(z) − 1
π

∫ ∞
−∞

f (t)

t−z
dt is

holomorphic in �+. By Theorem 33(i), ��̃(x + iy) converges, as y → 0+, towards 0, for
almost all x ∈ R. This fact can be used to extend the harmonic function (x, y) �→ ��̃(x +
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iy) as a harmonic function defined on the whole plane (by reflection). As this harmonic
extension is bounded at infinity, it is bounded and is therefore constant by the Liouville
theorem for harmonic functions. Hence, the holomorphic function �̃ must be constant on
�+. This constant must equal ��̃(x + i0) ∈ Lp(R) and is therefore 0. Hence, �(z) =
1
π

∫ ∞
−∞

f (t)dt

t−z
and the claim is now obtained from Theorem 33(i). �

Appendix B: The Spaces H 1/2 and H−1/2

Let I be an arbitrary (bounded or unbounded) open interval in R.

Definition 36 The space:

H 1/2(I ) :=
{
u ∈ L2(I )

∣∣∣
∫

I×I

(u(x) − u(y)

x − y

)2
dx dy < ∞

}
,

endowed with the norm:

∥
∥u

∥
∥2

H 1/2 := ∥
∥u

∥
∥2

L2 +
∫

I×I

(u(x) − u(y)

x − y

)2
dx dy

is a Hilbert space. The space C∞
c (I ) of C∞ functions with compact support in I is dense in

H 1/2. Its dual space is therefore a space of distributions in I . It is denoted by H−1/2(I ).

It follows directly from the definition of H 1/2 that the restriction to ]c, d[ ⊂ ]a, b[ of
some u ∈ H 1/2(]a, b[) defines an element of H 1/2(]c, d[). As a corollary, the extension
by zero of some t ∈ H−1/2(]c, d[) defines an element of H−1/2(]a, b[). However, the ex-
tension by zero of an arbitrary element of H 1/2(]c, d[) is not, in general, an element of
H 1/2(]a, b[). As a corollary, the restriction to ]c, d[ of some t ∈ H−1/2(]a, b[) is not, in
general, in H−1/2(]c, d[).

In the particular case where I = R, the spaces H 1/2(R) and H−1/2(R) can be equivalently
defined in terms of the Fourier transform.

Proposition 37 Denoting by S ′(R) the space of tempered distributions and by t̂ = F[t] the
Fourier transform of an arbitrary tempered distribution t ∈ S ′(R), we have:

H 1/2(R) =
{
u ∈ S ′(R)

∣∣ (1 + |ξ |2)1/4 û(ξ) ∈ L2(R;C)
}
,

H−1/2(R) =
{
t ∈ S ′(R)

∣∣ (1 + |ξ |2)−1/4 t̂ (ξ ) ∈ L2(R;C)
}
,

and the corresponding natural norms are equivalent to those of H 1/2(R) and H−1/2(R). In
particular, the Hilbert transform is an isomorphism of both H 1/2(R) and H−1/2(R).

Theorem 38 (Sobolev embeddings) Assume that a and b are finite. Then:

∀p ∈ [1,∞[ , H 1/2(a, b) ⊂ Lp(a, b),

with continuous embedding. On the dual side:

∀p ∈ ]1,∞] , Lp(a, b) ⊂ H−1/2(a, b),

with continuous embeddings.
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The space H 1/2(−1,1) contains unbounded functions such as log | log |x/2||, but not
functions with jumps such as the Heaviside function. As a corollary, a measure t ∈
M ([−1,1]) ∩ H−1/2(−1,1) has no atoms.

Appendix C: Fourier Transform and Poisson Integral

The following convention is chosen to define the Fourier transform of any integrable func-
tion f :

F
[
f
]
(ξ) := 1√

2π

∫ ∞

−∞
f (x) e−ixξ dx.

Proposition 39 We denote by pv1/x (‘principal value’) the distributional derivative of
log |x| and by fp1/|x| (‘finite part’) that of sgn(x) log |x| (sgn is the sign function). Then,
the Fourier transforms of the following distributions are known explicitly.

F
[
log

√
x2 + a2

]
= −

√
π

2
e−a|ξ | fp

1

|ξ | − √
2π �Eul δ,

F
[

2
π arctan(x/a)

]
= −i

√
2

π
e−a|ξ | pv

1

ξ
,

F
[
log |x|

]
= −

√
π

2
fp

1

|ξ | − √
2π �Eul δ,

F
[
sgn(x)

]
= −i

√
2

π
pv

1

ξ
,

where a > 0 is an arbitrary positive real constant, δ the Dirac measure at 0 and �Eul :=
limn→∞ − logn +∑n

k=1 1/k is the Euler-Mascheroni constant.

As a consequence of the above Fourier transforms, we have the following lemma whose
proof is to be found in [5, Theorem 3].

Lemma 40 For all t ∈ H−1/2(−1,1) extended by zero on R, the convolution product log |x|∗
t is a locally square integrable function, whose restriction to ]−1,1[ is in H 1/2(−1,1). The
symmetric bilinear form:

t1, t2 �→ −〈
log |x| ∗ t1, t2

〉
,

is a scalar product on the Hilbert space H−1/2(−1,1) which induces a norm that is equiva-
lent to that of H−1/2.

Given an arbitrary u ∈ Lp(R), the function:

�u(x, y) := 1

π

∫ ∞

−∞

y u(s)

(x − s)2 + y2
ds = 1

π

y

x2 + y2

x∗ u = 1

π
arctan

x

y
∗ u′, (33)

is a well-defined harmonic function in �+, called the Poisson integral of u. The following
proposition gives some of its properties in the case where u ∈ H 1/2(R).
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Proposition 41 Let u ∈ H 1/2(R) be arbitrary. Then, its Poisson integral �u is harmonic on
�+ :=R× ]0,+∞[, ∇�u ∈ L2(�+) and �u ∈ H 1(R× ]0, Y [), for all Y > 0. Moreover, u

coincides with the trace of �u on ∂�+ � R and the Hilbert transform of u′ coincides with
the derivative ∂�u/∂y on the boundary, in the sense:

∀ϕ ∈ H 1(�+),

∫

�+

(
∂�u

∂x

∂ϕ

∂x
+ ∂�u

∂y

∂ϕ

∂y

)
dx dy =

〈
1

π
pv

1

x
∗ u′ , ϕ(x,0)

〉
.

Proof First, note that, at fixed y > 0, the function x �→ y/(x2 + y2) is in L1(R). Therefore,
its convolution product with the function u is well-defined and the function x �→ �u(x, y)

is in L2(R). As the function (x, y) �→ y/(x2 + y2) is harmonic in �+, the same is true of
the function �u.

By Proposition 39, the Fourier transform �̂u(ξ, y) of �u with respect to the x-variable
is given by:

�̂u(ξ, y) = √
2π

e−y|ξ |
√

2π
û(ξ) = e−y|ξ | û(ξ),

which shows �u ∈ C0([0, Y ],L2(R)) ⊂ L2(R× ]0, Y [), for all Y > 0. By:

∣∣
∣−iξ �̂u(ξ, y)

∣∣∣
2 +

∣∣
∣∣
∂�̂u

∂y
(ξ, y)

∣∣
∣∣

2

= 2e−2y|ξ | |ξ |2|û(ξ)|2,

we obtain ∇�u ∈ L2(�+) and:

‖∇�u‖2
L2(�+)

=
∫ +∞

−∞
|ξ | |û(ξ)|2 dξ ≤ C‖u‖2

H 1/2(R)
, (34)

for some real constant C, independent of u. Hence, we have proved that �u ∈ H 1(R ×
]0, Y [) and that its trace on ∂�+ � R is u. Taking a sequence (un) in C∞

c (R) that converges
strongly towards u in H 1/2(R), the sequence (∇�un) converges strongly towards ∇�u in
L2(�+), thanks to estimate (34). But:

∂�̂un

∂y
(ξ, y) = −e−y|ξ | |ξ | ûn(ξ),

which shows that �un ∈ C∞(�+), and also that:

∂�̂un

∂y
(ξ,0) = −

√
2π

π

(
iξ ûn(ξ)

)(
−i

√
π

2
sgn(ξ)

)
,

= −
√

2π

π
û′

n(ξ) p̂v 1/x(ξ),

which is nothing but:

∂�un

∂y
(x,0) = − 1

π
pv

1

x
∗ u′

n.

By Green’s formula, this gives:

∀ϕ ∈ C∞
c (�+),

∫

�+

(
∂�un

∂x

∂ϕ

∂x
+ ∂�un

∂y

∂ϕ

∂y

)
dx dy =

〈
1

π
pv

1

x
∗ u′

n , ϕ(x,0)

〉
,
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and, by taking the limit n → +∞ using the fact that the Hilbert transform maps continuously
H−1/2(R) onto itself:

∀ϕ ∈ C∞
c (�+),

∫

�+

(
∂�u

∂x

∂ϕ

∂x
+ ∂�u

∂y

∂ϕ

∂y

)
dx dy =

〈
1

π
pv

1

x
∗ u′ , ϕ(x,0)

〉
.

The expected identity now follows from the density of C∞
c (�+) in H 1(�+). �

Appendix D: Pseudomonotone Variational Inequalities

The content of this appendix particularizes some more general results from [6], for easy
reference and the convenience of the reader.

Let E be a separable Banach space and E∗ be its (topological) dual space, the duality
product being denoted as usual by 〈·, ·〉. In the sequel, A : E∗ → E denotes a bounded linear
mapping.

Definition 42 The linear mapping A : E∗ → E is said monotone if:

∀x ∈ E∗,
〈
Ax,x

〉 ≥ 0,

and is said strictly monotone if:

∀x ∈ E∗ \ {0}, 〈
Ax,x

〉
> 0.

Definition 43 The bounded linear mapping A : E∗ → E is said pseudomonotone or pseu-
domonotone in the sense of Brézis, if all sequence (xn) in E∗, weakly-* convergent to x ∈ E∗
and such that:

lim sup
n→+∞

〈
Axn, xn − x

〉 ≤ 0,

has the property:

∀y ∈ E∗,
〈
Ax,x − y

〉 ≤ lim inf
n→+∞

〈
Axn, xn − y

〉

As a particular case of Proposition 23 of [6], we have:

Proposition 44 If the bounded linear mapping A : E∗ → E is monotone, then it is pseu-
domonotone.

The following theorem is a particular case of a more general result (corollary 29 of [6])
of Brézis.

Theorem 45 Let K be a weak-* compact convex subset of E∗ such that 0 ∈ K , A : E∗ → E

be a bounded linear pseudomonotone mapping, and ϕ : E∗ → R∪{+∞} a convex, weakly-*
lower semicontinuous function such that ϕ(0) = 0. We assume:

∀x ∈ E∗ \ K, 〈Ax,x〉 + ϕ(x) > 0.
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Then, there exists u ∈ K such that:

∀v ∈ E∗,
〈
Au,v − u

〉+ ϕ(v) − ϕ(u) ≥ 0.

If, in addition, A is strictly monotone, then u is unique.

Making use of the fact that the bounded closed convex subsets of E∗ are weak-* compact,
we have the obvious following corollary (which is not given in [6] where a similar statement
for reflexive Banach spaces is given instead).

Corollary 46 Let K be a closed convex subset of E∗ that contains 0, A : E∗ → E be a
bounded linear pseudomonotone mapping, and ϕ : E∗ → R ∪ {+∞} a convex, weakly-*
lower semicontinuous function such that ϕ(0) = 0. We assume:

lim
‖x‖E∗ →+∞

x∈K

〈Ax,x〉 + ϕ(x)

‖x‖E∗
= +∞.

Then, there exists u ∈ K such that:

∀v ∈ K,
〈
Au,v − u

〉+ ϕ(v) − ϕ(u) ≥ 0.

If, in addition, A is strictly monotone, then u is unique.

Proof Let K and ϕ be according the hypotheses of this corollary. There exists R > 0 such
that:

‖x‖E∗ > R and x ∈ K ⇒ 〈Ax,x〉 + ϕ(x) > 0.

We set:

K ′ = K ∩ B∗(0,R), ϕ′ = ϕ + IK,

where B∗(0,R) is the closed ball of radius R in E∗ and IK is the function taking the value 0
all over K and +∞ outside. Then, K ′ and ϕ′ satisfy the hypotheses of Theorem 45, so that
there exists u ∈ K ′ ⊂ K such that:

∀v ∈ E∗,
〈
Au,v − u

〉+ IK(v) + ϕ(v) − ϕ(u) ≥ 0,

which yields the claim. �
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