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Abstract
Within the framework of continuum thermodynamics, a tensor-valued rate-type model of
elastic-plastic materials is established. The evolution of the stress-strain relation is governed
by a free-energy function and a hysteretic function proportional to the entropy production
density. It is a key point of the present approach that the entropy production is given by
a constitutive function consistent with the second-law inequality. The free energy depends
on both stress and strain, as well as temperature. In the absence of hysteretic loops the
evolution of the stress depends on the values of stress and strain and is affected by the time
derivative of the strain. The hysteretic behaviour is modelled in detail in the one-dimensional
case. Simple examples are established by a hysteretic function proportional to the absolute
value of the strain rate. While the entropy production is formally similar to the widely used
dissipation potentials the corresponding approaches are qualitatively different. The entropy
production and the free energy potential are functions of the same set of physical variables
and no internal variable is involved. The analysis of the second-law inequality leads to the
sought constitutive relation, here in the rate-type form, for stress and strain.
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1 Introduction

The literature on the modelling of plastic behaviour of materials shows different pictures
of the material.1 In many theories of plasticity it is assumed that the displacement gradient
H admits a decomposition H = He + Hp , where He represents the elastic distortion and
Hp the plastic distortion. Physically He is ascribed to non-dissipative processes and Hp to
dissipative processes. Hence, letting Ee , Ep be the symmetric parts of He , Hp it is assumed2

that the second law inequality results in an equality for Ee and an inequality for Ep . In
other approaches [6, 34] the decomposition is placed into the context of the continua with a
two-scale representation of the deformation. In large-deformation plasticity a multiplicative
decomposition of the deformation gradient F, namely the Kröner-Lee decomposition [22,
23] F = FeFp , is applied; as shown in [6], the Kröner-Lee decomposition is incompatible
with the geometry of two-scale continua.

Other models can be viewed within the gradient theory [1, 19]. In [14] the gradient in-
volves the time derivative Ėp within a power conjugate to the gradient of Ėp , via a third-
order microscopic hyperstress.

Approaches have been developed also without having recourse to the additive decom-
position of strain. This is the case for approaches involving history variables or rheological
models especially in the Bouc-Wen form, see, e.g., [20, 50, 51]. In [35] the stretching, not
the strain, tensor is considered in the additive elastic-plastic decomposition.

The elastic-plastic decomposition is avoided in some works of Rajagopal and Srinivasa
[42, 43]; their approach leads to a rate-type equation which is reviewed in § 11.

The present approach avoids the splitting of the displacement gradient into elastic and
plastic parts as well as the multiplicative decomposition of the deformation gradient and the
introduction of internal powers due to hyperstresses. Nor will we have recourse to dissipa-
tion potentials [26] or to a maximum dissipation criterion [4, 25]. The modelling is strictly
based on the second law of thermodynamics which turns out to be a relation involving the
free energy and the entropy production. It is a key point of the present approach3 that the
entropy production too is given by a positive-valued constitutive function; the dependence
on stress and strain rates of the entropy production is shown to characterize the hysteretic
properties of the material. Though this view is at the basis of very general models, here we
show that simple, realistic behaviours are obtained by letting hysteretic functions involve
the sign of the time derivative of strain (or stress). In addition the simultaneous dependence
of the free energy on strain and stress (see § 5) is essential to the modelling of inelastic
materials. Throughout we use objective tensors and objective time derivatives. Indeed the
selection of objective time derivatives is based on constitutive (and balance) equations in
the reference configuration where only the material time derivative occurs. The thermody-
namic analysis is developed in general in a three-dimensional setting (§§ 3-5) while detailed
hysteretic models are developed in a one-dimensional setting (§§ 6-10).

1Chapters 75 to 112 of [15], Chaps. 8 of [18] and 12 of [33], and the book [17] are relevant references to the
subject.
2The elastic-plastic decomposition E = Ee + Ep is investigated via an approach [11] that does not rely on
auxiliary elements such as reference frame and reference configuration.
3See § 11.3
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2 Balance Laws and Entropy Inequality

We consider a body occupying the time dependent region Ω ⊂ E 3. The motion is described
by means of the function χ(X, t) providing the position vector x ∈ Ω in terms of the posi-
tion X in a reference configuration R, and the time t , so that Ω = χ(R, t). The symbols ∇ ,
∇R denote the gradient operator with respect to x ∈ Ω , X ∈ R. The function χ is assumed
to be differentiable; hence we can define the deformation gradient as F = ∇R χ or, in suf-
fix notation, FiK = ∂XK

χi . The invertibility of X �→ x = χ(X, t) is guaranteed by letting
J := det F > 0. Let v(x, t) be the velocity field, on Ω × R. A superposed dot denotes time
differentiation following the motion of the body and hence, for any function f (x, t), we
have4 ḟ = ∂tf + v · ∇f . We denote by L the velocity gradient, Lij = ∂xj

vi , and recall that

Ḟ = LF.

Moreover D denotes the stretching tensor, D = symL. In terms of F the (right) Cauchy-
Green and the Green-St. Venant deformation tensors are respectively defined by

C := FT F, E := 1
2 (C − 1).

Let ε be the internal energy density (per unit mass), T the symmetric Cauchy stress, q
the heat flux vector, ρ the mass density, r the (external) heat supply and b the mechanical
body force per unit mass. The balance equations for mass, linear momentum, and energy are
taken in the form

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb, ρε̇ = T · D − ∇ · q + ρr. (1)

Let η be the entropy density and θ > 0 the absolute temperature. As the statement of the
second law of thermodynamics we take it that the inequality

σ := ρη̇ + ∇ · (q/θ) − ρr/θ ≥ 0 (2)

for the entropy production σ holds for any process compatible with the balance equations.
Consequently, admissible constitutive equations are required to satisfy inequality (2).

Multiplying (2) by θ and substituting ∇ · q − ρr from the energy equation (1)3 we have

θσ = ρθη̇ − ρε̇ + T · D − 1

θ
q · ∇θ ≥ 0. (3)

Letting ψ = ε − θη (Helmholtz free energy density) we can rewrite inequality (3) as

−ρ(ψ̇ + ηθ̇) + T · D − 1

θ
q · ∇θ ≥ 0. (4)

The modelling of the constitutive properties is made simpler by using referential, Eu-
clidean invariant quantities. Let

TRR := JF−1TF−T , qR := JF−1q;
4Throughout the symbol ∂ with a suffix denotes partial differentiation, e.g., ∂t = ∂/∂t .
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TRR is then the second Piola-Kirchhoff stress. Both TRR and qR are Euclidean invariants
([49, § 19]; [18, Ch. 5]). Under any change of frame with rotation tensor Q,

x → x∗, x∗ = c(t) + Q(t)x, det Q = 1,

we have F∗ = QF and hence TRR and qR are invariant,

T∗
RR

= J (QF)−1QTQT (QF)−T= JF−1TF−T = TRR,

and likewise q∗
R

= qR . The tensors C and E are invariant too in that

C∗ = (QF)T (QF) = FT F = C.

Moreover

Ė = FT DF.

Accordingly we multiply inequality (4) by J , observe that Jρ is the mass density ρR in the
reference configuration and find

Jθσ = −ρR(ψ̇ + ηθ̇) + TRR · Ė − 1

θ
qR · ∇R θ ≥ 0. (5)

The entropy inequality can be written in terms of the Gibbs free energy φ related to the
Helmholtz free energy ψ by5

ρRφ := ρRψ − TRR · E.

Hence (4) becomes

Jθσ = −ρR(φ̇ + ηθ̇) − ṪRR · E − 1

θ
qR · ∇R θ ≥ 0. (6)

3 Constitutive Relations

So as to describe the elastic-plastic effects we let the strain E, the stress TRR , and the deriva-
tives Ė, ṪRR be among the independent variables.6 Since also thermal properties are mod-
elled then we let

Ξ := (θ,E,TRR,∇R θ, Ė, ṪRR)

5In isothermal elastic processes, φ represents the opposite of the complementary strain energy density. In
classical thermodynamics φ = ψ + pυ , where p and υ denote the pressure and the specific volume, respec-
tively.
6The use of functions dependent on both stress and strain deserves some comments. Rate-type models are
developed within macroscopic thermodynamics for viscoelastic fluids where the stress depends on the stretch-
ing as in the Maxwell or the Oldroyd model [7, 24, 41, 53]. The common dependence on stress and strain
occurs in fluid theories where implicit relations are involved [39, 40]. Here no implicit relation is consid-
ered. However in plasticity, and likewise in any hysteretic model, the dependence of TRR on E would be
given by a multivalued function. To avoid this type of dependence it seems convenient to let the pertinent
constitutive equations depend on both stress and strain. Otherwise we might consider an internal variable and
correspondingly a generalized stress; see § 11.2.
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be the set of independent variables. Accordingly we let ψ , η, qR be functions of Ξ and
assume η and qR are continuous while the free energy ψ is continuously differentiable.

Upon evaluation of ψ̇ and substitution in (5) we obtain

ρR(∂θψ + η)θ̇ + (ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR+

ρR∂∇R θψ · ∇R θ̇ + ∂Ėψ · Ë + ∂ṪRR
ψ · T̈RR + 1

θ
qR · ∇R θ = −Jθσ ≤ 0.

The linearity and arbitrariness of θ̇ , ∇R θ̇ , Ë, T̈RR imply that ψ is independent of ∇R θ , Ė,
ṪRR and hence

ψ = ψ(θ,E,TRR), η = −∂θψ,

and

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR + 1

θ
qR · ∇R θ ≤ 0. (7)

Further restrictions placed on ψ and qR depend on the arbitrariness or possible con-
straints on Ė, ṪRR , ∇R θ . Since ψ is independent of ∇R θ , if further Ė and ṪRR are indepen-
dent of each other then it follows

∂TRR
ψ = 0, TRR = ρR∂Eψ, qR · ∇R θ ≤ 0,

as it happens for hyperelastic materials.
Yet, to describe plasticity a connection between Ė and ṪRR is in order. Since ψ is inde-

pendent of ∇R θ then inequality (7) implies that

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR = −JθσT ≤ 0, (8)

qR · ∇R θ = −Jθ2σq ≤ 0,

where σT , σq are the entropy productions associated with deformation and heat conduction.
A Fourier-like relation for qR ,

qR = −κ(θ,E,TRR)∇R θ, κ ≥ 0,

satisfies qR · ∇R θ ≤ 0 with σq = κ|∇θ |2/ρ θ2; more involved constitutive equations for the
heat conduction might include qR among the independent variables and q̇R as a constitutive
function [29]. A detailed modelling of the mechanical properties—via TRR , E, ṪRR , Ė—is
developed on the basis of (8).

4 A Thermodynamic Context for Incremental Models of Inelastic
Materials

A class of models, consistent with inequality (8) and describing the visco-elastic-plastic
behaviour,7 is realized by letting Ė and ṪRR be related via a nonlinear relation. The basic
idea stems from the observation that inequality (8) holds if

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR = −Γ (θ,E,TRR, Ė, ṪRR), (9)

7Plastic models are developed in a one-dimensional setting.
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where Γ = JθσT ≥ 0. Within the isothermal setting, Γ is usually referred to as rate of
(mechanical) dissipation [38].

The statement of the second law in terms of an equality is not new in the literature.8 If we
ignore that Γ has to be non-negative we may say that the second law is stated as an equality.
However, there are two correct ways of viewing at (9). First, −Γ is just a symbol defined by
the left-hand side; we then merely require that Γ ≥ 0. Secondly, as we do here, we let Γ be
an appropriate constitutive function of the chosen set of independent variables and require
that Eq. (9) holds. The selection of the function Γ and the requirement Γ ≥ 0 are the key
point of the present approach.

Equation (9) can be viewed as a very general rate-type constitutive relation and the func-
tional dependence of Γ can be used to classify the corresponding incremental (rate-type)
models. For instance, Γ = 0 marks the linear hypoelastic behaviour,9 whereas a function Γ

which is independent of Ė and ṪRR is typically related to viscoelastic10 and rate-dependent
viscoplastic11 models. Indeed, to describe the elastic-plastic behaviour, below we find it
operative to let Γ depend on Ė or ṪRR via their norms, in the one-dimensional case.

Although (9) was introduced using Lagrangian fields, it can easily be translated into the
spatial description. Observe that since Ḟ = LF then

0 = (FF−1)̇ = ḞF−1 + F(F−1)̇ = L + F(F−1)̇

whence

(F−1)̇ = −F−1L, [(F−1)̇]T = −LT F−T .

Consequently,

ṪRR = (JF−1TF−T )̇ = JF−1[(∇ · v)T − LT + Ṫ − TLT ]F−T = JF−1 T F−T ,

where T= Ṫ + (∇ · v)T − LT − TLT is the Truesdell rate of T [30]. Moreover

∂Tψ = JF−T ∂TRR
ψ F−1, ∂Eψ = F−1∂Fψ

and hence

∂TRR
ψ · ṪRR = ∂Tψ · T .

In addition, since

Ė = FT DF, TRR · Ė = JT · D,

then (9) can be written

J [(ρF∂EψFT − T) · D + ρ∂Tψ · T] = −Γ. (10)

8See § 11.3.
9See, e.g., [28, 49].
10See, e.g., [9, 10].
11For the one-dimensional case, see [16, 45].
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For formal convenience we now consider the Eulerian Almansi finite strain tensor de-
noted by EEE . The definition of EEE and its relation with E (EEE,E ∈ Sym) are established by look-
ing at a homogeneous deformation so that the position vectors y = χ(Y, t), x = χ(X, t),
where Y,X ∈ R, satisfy

y − x = F(Y − X).

The difference |y − x|2 − |Y − X|2 is given by

|y − x|2 − |Y − X|2 = 2(Y − X) · E(Y − X) = 2(y − x) ·EEE(y − x).

Replacing Y − X with F−1(y − x) and making use of the arbitrariness of y − x we conclude
that

EEE = F−T EF−1 = 1
2 (1 − B−1),

where B = FFT is the Eulerian (or left) Cauchy-Green deformation tensor. Consequently

∂Ekl
Eij = ∂Ekl

[F−T
im EmsF

−1
sj ] = F−T

ik F−1
lj ,

∂Ekl
ψ = ∂Eij

ψ∂Ekl
Eij = F−1

ki ∂Eij
ψF−T

jl ,

whence ∂Eψ = F−1∂EEEψF−T . We then obtain that the Cotter-Rivlin rate of EEE ,


EEE := ĖEE+LTEEE+

EEEL, yields



EEE = 1

2 (LT B−1 + B−1L) + 1
2 LT (1 − B−1) + 1

2 (1 − B−1)L = D. (11)

Accordingly Eq. (10) can be given the form

(ρ∂EEEψ − T)· 

EEE +ρ∂Tψ · T= −Λ(θ,EEE,T,



EEE,T), (12)

where Λ = (1/J )Γ (θ,FTEEEF, JF−1TF−T ,FT


EEE F, JF−1 T F−T ). Equation (12) is objective

and gives an invariant formulation of a wide class of incremental three-dimensional models
in the spatial description. Based on the time derivative of referential quantities, ṪRR , Ė,

we have found that in the Eulerian description


EEE= D and T are privileged derivatives.12

Unfortunately experimental tests on the appropriate time derivative are immaterial in one-
dimensional settings.

By means of the Gibbs free energy

φ(θ,E,TRR) := ψ(θ,E,TRR) − TRR · E/ρR

we can write the entropy inequality

−ρR(ψ̇ + ηθ̇) + TRR · Ė − 1

θ
qR · ∇R θ ≥ 0

in the form

−ρR(φ̇ + ηθ̇) − ṪRR · E − 1

θ
qR · ∇R θ ≥ 0.

12See Remark 2 on
◦
T as a preferable derivative.
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Since E and TRR are independent variables then

ρR∂Eφ = ρR∂Eψ − TRR, ρR∂TRR
φ = ρR∂TRR

ψ − E. (13)

Consequently, (9) can be given the form

ρR∂Eφ · Ė + (ρR∂TRR
φ + E) · ṪRR = −Γ (θ,E,TRR, Ė, ṪRR). (14)

This equation involves E and TRR as Lagrangian independent variables. We now look for
the analogue in the (spatial) Eulerian description. Observe

TRR · E = 1
2 JT · F−T (FT F − 1)F−1 = 1

2JT · (1 − B−1) = JT ·EEE

and hence

ρφ = ρψ − T ·EEE .

Now, if ψ and φ depend on EEE , T then

ρ∂EEEφ = ρ∂EEEψ − T, ρ∂Tφ = ρ∂Tψ −EEE

Consequently inequality (12) can be written in the form

ρ∂EEEφ· 

EEE +(ρ∂Tφ +EEE)· T= −Λ(θ,EEE,T,



EEE,T). (15)

On the other hand, since ∂Tφ = JF−T ∂TRR
φF−1 then

∂TRR
φ · ṪRR = ∂Tφ · T, E · ṪRR = JEEE · T,

and (15) follows also from (14) by defining Λ = Γ/J .
If the material is incompressible, ∇ · v = 0, then

T = Ṫ − LT − TLT =: �
T,

the Truesdell rate T equals the Oldroyd rate
�
T. Hence, for incompressible materials,

ρ∂EEEφ· 

EEE +(ρ∂Tφ +EEE)· �

T= −Λ(θ,EEE,T,


EEE,

�
T).

Henceforth three simple cases of the incremental constitutive equations (9) and (14) are
considered assuming that Γ depends on Ė or ṪRR via their norms, or is proportional to
|TRR · Ė|.

5 Duhem-Like Solids

Within models for hysteresis the Duhem model is expressed by a rate equation of the form

ẋ = f (x,u)g(u̇),
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where u is the input and x is the response. By analogy, we refer to Duhem-like solids as
those modelled by a relation between stress-rate and strain-rate. First we let

Γ (θ,E,TRR, Ė, ṪRR) = γE|Ė|, γE ≥ 0,

so that (9) can be written in the form

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR = −γE|Ė|. (16)

We let γE depend on E, TRR and Ė/|Ė| and be parameterized by the temperature θ . Accord-
ingly, this equation is invariant under the time transformation

t → c t, c > 0,

and hence it describes a rate-independent behaviour. When the restriction is made to the
one-dimensional case, especially in connection with uniaxial tensile tests, Eq. (16) leads to
the well-known class of scalar Duhem models.13

Since Ė · Ė = tr (BD)2 we can translate (16) into the spatial description by way of (12),

(ρ∂EEEψ − T) · D + ρ∂Tψ · T= −γE

J
[tr (BD)2]1/2. (17)

Hypo- and hyperelastic models follow from (16) and (17) as Duhem-like models without
dissipation. In the spatial description, if γE = 0 and ∂Tψ = 0 it follows

(ρ∂EEEψ − T) · D = 0.

The arbitrariness of D implies

T = ρ∂EEEψ = ρ∂FψFT

and TRR = ρR∂Eψ in the material description. Accordingly, T and EEE cannot be independent
variables. Otherwise, if ψ is a C2 function we find a contradiction, namely

∂2
TEEEψ = 1

ρ
1 ⊗ 1, ∂2

EEETψ = 0.

Accordingly, the dependence of T on EEE must be expressed by a constitutive relation describ-
ing hyperelastic solids. The analogous conclusion follows in the material description.

If, instead, γE = 0 but ∂Tψ �= 0 (∂TRR
ψ �= 0), then (9) and (12) can be written in the form

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ṪRR = 0, (ρ∂EEEψ − T) · D + ρ∂Tψ · T= 0. (18)

We emphasize that these expressions are consistent, in that

TRR · Ė = JT · D, ∂Eψ · Ė = ∂EEEψ · D, ∂TRR
ψ · ṪRR = ∂Tψ · T .

As a consequence, ṪRR and T can be given a linear representation in Ė and D, respectively.
In this connection, we take advantage of the following

13See, e.g., [52], pp. 130-150.
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Proposition 1 Given a second-order tensor A let N = A/|A|. If Z is a second-order tensor
such that only Z · N is known then14

Z = (Z · N)N + (III − N ⊗ N)G (19)

for any second-order tensor G.

Proof To see this we first observe that, for any second-order tensor Y,

[(III − N ⊗ N)Y] · N = 0;

in words, the projection onto N of the orthogonal part of Y with respect to N is identically
zero. Hence,

Y = Y‖ + Y⊥, Y‖ := (Y · N)N, Y⊥ := (III − N ⊗ N)Y,

and Y⊥ · N = 0.
If Z is a tensor such that Z‖ is given while Z⊥ is undetermined then the representation of

Z allows for any tensor Z⊥ subject to Z⊥ · N = 0. Now, since [(III − N ⊗ N)G] · N = 0 for any
second-order tensor G, then [(III − N ⊗ N)G] is any possible value of Z⊥. Hence the relation
Z = Z‖ + Z⊥ results in the representation (19). �

Upon the identifications

A = ∂TRR
ψ, Z = ṪRR, G = GGGRRĖ,

we now apply the representation (19) to ṪRR subject to (18)1. It follows

ṪRR = 1

ρR

[(TRR − ρR∂Eψ) · Ė]N + (III − N ⊗ N)GGGRRĖ,

where N = ∂TRR
ψ/|∂TRR

ψ | and GGGRR(θ,E,TRR) is any arbitrary fourth-order tensor-valued
function. Hence, letting

CCCRR(θ,E,TRR) = GGGRR + 1

ρR|∂TRR
ψ |2 ∂TRR

ψ ⊗ (TRR − ρR∂Eψ − ρRGGGT
RR

∂TRR
ψ)

we can write

ṪRR = CCCRRĖ. (20)

In general, the fourth-order tensor CCCRR enjoys the minor symmetries, not the major one.
By the arbitrariness of GGGRR it follows that there are infinitely many tensors CCCRR compati-

ble with a given free energy ψ . It is apparent that this representation relies crucially on the
assumption ∂TRR

ψ �= 0 and then cannot hold for hyperelastic materials.
If, instead, a constitutive relation

ṪRR = ĈCCRRĖ, (21)

14The symbol III denotes the fourth-order identity tensor.
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is assigned in advance then from (18)1 we obtain

(ρR∂Eψ − TRR) · Ė + ρR∂TRR
ψ · ĈCCRRĖ = 0.

The arbitrariness of Ė then implies

TRR − ρR∂Eψ = ρRĈCC
T

RR
∂TRR

ψ. (22)

In [16] the existence of a thermodynamic potential ψ satisfying (18)1 is investigated by
exploiting the overdetermined system (22) with a given tensor ĈCCRR . In the particular case
when ∂TRR

ψ = 0, Eq. (22) becomes TRR = ρR∂Eψ and this relation is compatible with (21)

provided that ψ depends only on E and ĈCC
T

RR
= ρR∂2

Eψ .
In the general case, when γE �= 0 and ∂TRR

ψ �= 0, by paralleling previous arguments we
can rewrite (16) as

ṪRR = CCCRRĖ + Γ E|Ė|, Γ E = −γE

∂TRR
ψ

ρR|∂TRR
ψ |2 . (23)

Observe that sometimes an additive decomposition of the stress is introduced a priori [26].
Here the decomposition (23) is obtained as a result for the rate ṪRR .

Applying to (18)2 the representation (19) with A = ∂Tψ , Z =T and G = GGGD, in the
spatial description we find

T= CCC D, (24)

where

CCC(θ,EEE,T) = GGG + 1

ρ|∂Tψ |2 ∂Tψ ⊗ (T − ρ∂EEEψ − ρ GGGT ∂Tψ).

As well as CRR , the tensor CCC enjoys the minor symmetries, not the major one.
As an example, let G be any non-singular, symmetric fourth-order tensor (possibly pa-

rameterized by θ ) and let

ρψ = ρψ0(θ) + 1
2 G−1T · T.

Then, ∂Tψ = G−1T and applying (24) it follows T= GD. After replacing this relation into
(18)2 and exploiting the expression of ρψ we obtain the identity

−T · D + G−1T · GD = 0.

In the general case, when γE �= 0 and ∂Tψ �= 0, (17) yields

T= CCC D + ΛE[tr (BD)2]1/2, ΛE = −γE

∂Tψ

ρR|∂Tψ |2 . (25)

5.1 Hypoelastic Solids

Following Truesdell [47, 48], materials characterized by relations of the form (24) are said
to be hypoelastic if the tensor C is possibly dependent on the temperature θ and the stress
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T but is independent of the strain. Further the solid is said to be hypoelastic of grade zero
if C is independent of T. Instead Noll [31, 32], Thomas [46] and Ericksen [8] define and
investigate hypoelastic solids in the form

◦
T= BD, (26)

◦
T being the corotational derivative of T and B is a fourth-order tensor function of T. So
different rates of the Cauchy stress are considered, the Truesdell rate and the corotational
rate. With reference to the present approach we can then say that the constitutive equation
(21) (and likewise, in the spatial description, Eq. (24)) describes hypoelastic solids if CRR is
independent of the strain measure E, which is the case if ∂Eψ = 0.

Remark 1 Under the crucial assumption ∂Tψ �= 0, the absence of dissipation, locally in space
and time, holds true even for the general scheme in the spatial description. Indeed, replacing
the constitutive relation (24) into the thermodynamic relation (12) we obtain the rate of
dissipation

Λ = (ρ∂EEEψ − T) · D + ρ∂Tψ · CD.

Applying the definition of C it follows

Λ = (ρ∂EEEψ − T) · D + ρ∂Tψ ·
[

GD + (T − ρ∂EEEψ) · D
ρ|∂Tψ |2 ∂Tψ − ∂Tψ · (GD)

|∂Tψ |2 ∂Tψ

]

= (ρ∂EEEψ − T) · D + ρ∂Tψ · (GD) + (T − ρ∂EEEψ) · D − ρ∂Tψ · (GD) = 0.

The result (24) resembles the Lagrangian Jaumann (LJ) formulation of inelastic strain.
Now, in the present notation the LJ formulation, e.g., Eq. (1) of [21], reads as (26), BBB being a
constant fourth-order tensor. As shown, e.g., by [21], in the LJ formulation a residual stress
remains at the end of an elastic closed path, for finite deformations, so that the work done
may not be zero.

This is not a contradiction. Within the present approach both stress and strain are inde-
pendent variables and ∂Tψ �= 0. Therefore the work done must be calculated in a closed path
in the strain-stress space; the presence of a residual stress prevents the path to be closed. As a
comment, we observe that the stretching D is not the corotational derivative of a deformation

measure; instead D = 

EEE according to (11). The use of

◦
T in the left-hand side as an objective

stress rate is not motivated by the right-hand side. Instead, the thermodynamic analysis leads
to (24) and hence the Truesdell derivative appears as the appropriate stress rate.

A different approach consists in assuming that a hypoelastic constitutive relation (of
grade zero)

T= Ĉ D, (27)

is assigned in advance with a constant elastic tensor Ĉ. Then from (18)2 we obtain

(ρ∂EEEψ − T) · D + ρ∂Tψ · Ĉ D = 0.

The arbitrariness of D then implies

T − ρ∂EEEψ = ρĈ
T
∂Tψ. (28)
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In the particular case when ∂Tψ = 0, Eq. (28) becomes

T = ρ∂EEEψ. (29)

Unfortunately, contrary to what occurs in the material description, this relation is incompat-
ible with (27). Xiao et al. [3, 27, 55–57] presented explicit, integrable-exactly hypoelastic
relations like (26) based on the logarithmic stress rate and proved that this is the only choice
among all infinitely many objective corotational stress rates compatible with (29).

The derivative K̇ − ΣK − KΣT is objective subject to the transformation law Σ∗ =
QΣQT − Ω , Ω = Q̇QT , Q being the rotation tensor [30]. This happens for the corotational

derivative
◦
K, where Σ = W, or any derivative obtained by adding to Σ an objective tensor.

This is the case for the Truesdell and Oldroyd rates and, e.g., the Hill rate
◦
K −m(KD+DK),

m being any real number, or the logarithmic rate [2, 54] where

Σ = Ω log = W +
m∑

σ �=τ=1

(
1 + (bσ /bτ )

1 − bσ /bτ )
+ 2

ln(bσ /bτ )

)
Bσ DBτ ,

b1, . . . , bm being the m distinct eigenvalues and B1, . . . ,Bm the corresponding eigenprojec-
tions of B = FFT . The logarithmic derivative is motivated also by integrability conditions
for every process of elastic deformation.

Remark 2 In ref. [36] Prager examines the condition that the stress field has to be indepen-
dent of time, when the continuum performs a rigid body motion, relative to an observer at
rest with the continuum. This requirement in turn implies that the yield function is stationary
when the stress rate vanishes. Based on this requirement Prager infers that, in connection
with the modelling of plastic behaviour, the corotational derivative is preferable to the other
definitions of stress rate (Oldroyd and Truesdell) examined in [36]. We observe that in rigid
motions D = 0 (see, e.g., [15, § 10.1]) and then the Cotter-Rivlin, Oldroyd, Truesdell and
logarithmic derivatives reduce to the corotational derivative. It seems then worth accounting
also for thermodynamic requirements to select appropriate objective time derivatives.

Finally, we also remark that owing to the relation

T= ◦
T −DT − TD + (tr D)T

the rate equation (24) can be written in the form (26), namely

◦
T= C∗D, C∗ = C + A,

where

Aikpq = Tipδkq + Tqkδip − Tikδpq .

Hence, there is no contradiction between Prager’s analysis and rate equations in the form
(24) when C∗ is allowed to depend on T.
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5.2 An Additive Decomposition of Rates

An analogous setting is now established by means of the Gibbs free energy φ. As a result a
rate-type equation for E is obtained which eventually does not require the dependence of ψ

on the stress.
Consider (14) and let

Γ (θ,E,TRR, Ė, ṪRR) = γT |ṪRR|, γT ≥ 0,

where γT is allowed to depend on E, TRR and ṪRR/|ṪRR| and is parameterized by the tem-
perature θ . Accordingly,

ρR∂Eφ · Ė + (ρR∂TRR
φ + E) · ṪRR = −γT |ṪRR|. (30)

As with (16), this equation is rate-independent. Since

ṪRR · ṪRR = J 2(F−1 T F−T ) · (F−1 T F−T ) = J 2tr
(

B−1 T
)2

then (30) in the spatial description becomes

∂EEEφ · D + (ρ∂Tφ +EEE)· T= −γT

[
tr

(
B−1 T

)2]1/2
.

If γT = 0 and ∂Eφ = 0 then (30) reduces to

(ρR∂TRR
φ + E) · ṪRR = 0.

The arbitrariness of ṪRR implies E = ρR∂TRR
φ (EEE = −ρ∂Tφ in the spatial description) and

hence TRR and E cannot be independent.
If, instead, γT = 0 but ∂Eφ �= 0 (∂EEEφ �= 0), then (14) and (15) reduce to

ρR∂Eφ · Ė + (ρR∂TRR
φ + E) · ṪRR = 0, ρ∂EEEφ · D + (ρ∂Tφ +EEE)· T= 0. (31)

Then, Ė and D can be given a linear representation in ṪRR and T, respectively. By paralleling
the procedure of the previous section, we can write

Ė = KKKRRṪRR,

KKKRR = HHHRR − 1

ρR|∂Eφ|2 ∂Eφ ⊗ (E + ρR∂TRR
φ − ρRHHHT

RR
∂Eφ)

(32)

and

D = KKKT, KKK = HHH − 1

ρ|∂EEEφ|2 ∂EEEφ ⊗ (EEE + ρ∂Tφ − ρ HHHT ∂EEEφ),

HHHRR and HHH being arbitrary fourth-order tensor-valued functions independent of the rates. The
additive decomposition of KKKRR and KKK induces the corresponding decomposition of Ė and D.

The following example shows a possible form of KKKRR . Let

ρRφ(θ,E,TRR) = ρRφ0(θ) + 1
2

∫ |TRR |2

0
[ν(θ) + uβ(θ,u)]du − TRR · E,
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ν and β being real-valued functions. Consequently

ρR∂TRR
φ = [ν(θ) + |TRR|2β(θ, |TRR|2)]TRR − E, ρR∂Eφ = −TRR,

whence

E + ρR∂TRR
φ = [ν(θ) + |TRR|2β(θ, |TRR|2)]ρR∂Eφ.

Let HHHRR = μ III. It follows from (32) that

KKKRR(θ,TRR) = μ III + β(θ, |TRR|2)TRR ⊗ TRR + (ν − μ)
TRR

|TRR| ⊗ TRR

|TRR|
and then KKKRR enjoys the major symmetry. Choosing μ = ν reduces KKKRR to

KKKRR = ν(θ)IIIRR + β(θ, |TRR|2)TRR ⊗ TRR.

The resulting constitutive equation (32) may be viewed as generated by Prandtl-Reuss plas-
ticity theory provided that we let tr E = tr TRR = 0.15

In the general case, when γT �= 0 and ∂Eφ = ∂Eψ − TRR �= 0, by paralleling previous
arguments we can rewrite (30) as

Ė = KKKRRṪRR + Γ T |ṪRR|, Γ T = −γT

∂Eφ

ρR|∂Eφ|2 . (33)

Taking into account (13), both KKKRR and Γ T can be represented using ψ rather than φ. A
similar result holds true in the spatial description, namely

D = KKK T +ΛE

[
tr

(
B−1 T

)2]1/2
, ΛE = −γT

∂EEEφ

ρ|∂EEEφ|2 .

Remark 3 By Eq. (33), the strain rate Ė is the sum of two terms

KKKRRṪRR, Γ T |ṪRR|.
A similar decomposition also holds for the stretching tensor D. In a qualitative sense, we
might view this splitting as the analogue of the standard incremental relation Ė = Ėe + Ėp

of classical formulations of plasticity where

Ėe := KKKRRṪRR, Ėp := Γ T |ṪRR|.
It should be noted that this additive decomposition does not require the assumption of small
deformations, but is valid in the more general context of large deformations. However this
view is merely formal in that (33) is non-integrable and we cannot recover an additive de-
composition of E from it.

The analogies suggested by Remark 3 lead us to introduce the notion of hardening vari-
able S directly from the model, without adding new internal variables. To this end we let

Ṡ = Γ T |ṪRR| · TRR − ρR∂Eψ

|TRR − ρR∂Eψ |
15We mention [2], where the Prandtl-Reuss theory is applied to finite deformations, and [28, § C], where the
complementary strain energy, −φ, has the same form exhibited here.
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Since ρR∂Eφ = ρR∂Eψ − TRR then Ṡ is a non-negative quantity strictly related to the rate of
dissipation Γ . In fact, from (33) it follows

Ṡ = γT

|ṪRR|
|TRR − ρR∂Eψ | = Γ

|TRR − ρR∂Eψ | ≥ 0.

Owing to this relation, the quantity S(t) = ∫ t

0 Ṡ(τ )dτ may be viewed as the accumulated
dissipation up to t .

5.3 A Three-Dimensional Model of Inelastic Solid

Another class of models is now determined by letting Γ depend on Ė in the form

Γ = HTRR · Ė, H = H(TRR · Ė)H
(|Tdev

RR
|2 − 2

3T 2
y

)
,

where Tdev
RR

represents the deviatoric part of TRR , Ty denotes the tensile yield strength of the
material16 and H is the Heaviside step function. Accordingly Eq. (9) can be written in the
form

(ρR∂Eψ − [1 −H]TRR) · Ė + ρR∂TRR
ψ · ṪRR = 0.

By arguing as in §5.1 it follows that

ṪRR = CCCRRĖ

where

CCCRR = GGGRR + 1

ρR|∂TRR
ψ |2 ∂TRR

ψ ⊗ ([1 −H]TRR − ρR∂Eψ − ρRGGGT
RR

∂Tψ
)
.

Likewise, owing to the work-conjugacy relation, in the spatial description we obtain

Λ := Γ/J = HT · D, H = H(T · D)H
(|Tdev

∗ |2 − 2
3T 2

y

)
,

where T∗ := JTB−1, B being the left Cauchy-Green deformation tensor.17 From equation

(12) we then obtain the representation (24), T= CCC D, where

CCC(θ,EEE,T) = GGG + 1

ρ|∂Tψ |2 ∂Tψ ⊗ ([1 −H]T − ρ∂EEEψ − ρ GGGT ∂Tψ).

As an example, let X be a symmetric fourth-order tensor and

ρ∂Tψ = X T, ∂EEEψ = 0, GGG = [1 −H]X−1.

Then we have C = GGG = [1 −H]X−1 and hence

X T= [1 − H(T · D)H
(|Tdev

∗ |2 − 2
3T 2

y

)]D
16This choice is consistent with von Mises’ standard criterion.
17Here we applied the identities tr TRR = J tr (TB−1) and |TRR |2 = J 2tr [(TB−1)2].
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If, for simplicity, we let X be the isotropic tensor18

X = 1

E
[(1 + ν)I − ν1 ⊗ 1]

then we find

1

E
[(1 + ν)T − ν(tr T)1] = [1 − H(T · D)H

(|Tdev
∗ |2 − 2

3T 2
y

)]D (34)

and in this special case the free energy density is given by

ρψ = ρψ0(θ) + 1

2E
[(1 + ν)|T|2 − ν(tr T)2].

As a comment, if T vanishes then ṪRR does the same,19 so that |T∗|2 = |TRR|2 holds constant
and the yield surface is well defined. Moreover, Eq. (34) reduces to Eq. (5.4) of [5] when
the linear approximation is considered.

6 One-Dimensional Models

Restrict attention to one-dimensional models associated with strain and stress in the direc-
tion e so that

E = Ee ⊗ e, TRR = S e ⊗ e.

The notation S for the component of TRR is consistent with the engineering-stress consid-
ered in the literature as the ratio of the axial force over the reference area ([15, § 74]).

Hence we regard ψ as a function of θ , E, S and write (9) in the form

∂Sψ Ṡ + (∂Eψ − S)Ė = −Γ (θ,E,S, Ė, Ṡ). (35)

At constant temperature ψ̇ = ∂Sψ Ṡ + ∂Eψ Ė an hence integration of (35), as t ∈ [t1, t2],
along a closed curve in the E − S plane results in

0 ≤
∫ t2

t1

Γ dt =
∫ t2

t1

[−∂Sψ Ṡ + (S − ∂Eψ)Ė]dt =
∫ t2

t1

S Ė dt =
∮

S dE, (36)

∮
denoting the integral along the closed curve. By (36) we have

∮
S dE ≥ 0 and this implies

that the closed curve is run in the clockwise sense.
Consistent with (16) we let

Γ (θ,E,S, Ė, Ṡ) = γE|Ė|,
γE ≥ 0 being possibly dependent on E, S, sgn Ė and parameterized by θ . Equation (35) is
invariant under the time transformation t �→ ct , c > 0, and hence the associated model is
rate-independent because so is γE . It describes plastic behaviour when γE is smooth, but

18 E and ν denote the Young modulus and the Poisson ratio, respectively.
19A straightforward calculations leads to J 2| T |2 = tr [(ṪRRC)2].
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when γE is piecewise smooth and vanishes in a suitable open region (called elastic region)
it describes an elastic-plastic behaviour.

Look at time intervals where Ė �= 0. Since ∂Sψ �= 0, divide Eq. (35) by ∂SψĖ to obtain

Ṡ

Ė
= S − ∂Eψ

∂Sψ
− γE

∂Sψ
sgn Ė. (37)

As Ė �= 0, E changes in time and S changes in time correspondingly. We can then view S

as a function of E and

Ṡ = dS

dE
Ė,

Ṡ

Ė
= dS

dE
.

Now let

χ1 = S − ∂Eψ

∂Sψ
, χ2 = − γE

∂Sψ
. (38)

Accordingly, χ1 is a function of E and S parameterized by θ , whereas χ2 can also depend
on sgn Ė. The uniaxial stress-strain slope is then given by

dS

dE
= χ1 + χ2 sgn Ė. (39)

If γE = 0, and hence χ2 = 0, dS/dE gives the slope of the hypoelastic curve and

dS

dE
= χ1(θ,E,S) > 0

means that the slope at E depends also on S; hence χ1 is the positive slope of the (engineer-
ing) stress-strain curve. Accordingly the elastic model is recovered by letting

γE = 0, ∂Sψ = 0, S = ∂Eψ.

Since the slope of the stress-strain curve is supposed to be non-negative, in addition to the
positivity of χ1 we assume that

χ1 + χ2 sgn Ė ≥ 0. (40)

It is worth remarking that the monotonicity condition (40) follows from physical arguments
about the stress-strain curve but are not required by thermodynamics.

We now proceed to establish some models of elastic-plastic rate-independent materials
by specifying the functions χ1 and χ2. In this regard we observe that χ1 is fully determined
by the free energy ψ while χ2 depends also on γE . Consequently different models can be
determined by using the same free energy ψ but different functions γE . Owing to its effect
on the hysteretic properties, γE is referred to as hysteretic function.

To determine the functions χ1 and χ2, we start with the definitions of elastic point, elastic
curve and elastic region.20 At a given temperature θ , any pair (E,S) such that γE = 0 is

20These notions are quite similar to those of equilibrium point, equilibrium curve and equilibrium region
introduced in connection with viscoelastic and viscoplastic materials [16].
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named elastic point and the set E of all elastic points is referred to as elastic region. If γE is
smooth, we assume that there exists a non-decreasing smooth function,21

S = S (E),

whose graph S= {(E,S (E)) : E ∈R} is referred to as elastic curve and coincides with the
elastic region E. On the other hand, if γE is piecewise smooth with respect to E and S, we
assume that there exist two non-decreasing smooth functions, S = S +(E) and S = S −(E),
which bound the elastic region E.

In the absence of hysteretic effects, and hence when χ2 = γE = 0, by the thermodynamic
condition (35) it follows

∂Sψ Ṡ + (∂Eψ − S)Ė = 0. (41)

Denoting by the suffix E the restriction to the elastic region, we observe that

dS

dE

∣∣∣
E

= S − ∂Eψ

∂Sψ

∣∣∣
E

= χ1

∣∣
E

describes the non-hysteretic behaviour and accordingly χ1 can be viewed as the elastic dif-
ferential stiffness (tangent stiffness). Equation (41) in itself gives a constitutive equation of
the form Ṡ = Ŝ(S,E, Ė), thus within the class of hypoelastic materials [49].

Experiments show that the hysteretic effect, due to the clockwise run, results in a decrease
of the slope when S is greater than S +(E) and E increases, whereas the slope increases
when E decreases. Likewise, when S < S −(E) the slope decreases if E decreases and
increases if E increases. Around both corners, the slope has a positive jump. Consequently
any model should satisfy the conditions

χ2(E,S)

⎧⎨
⎩

< 0 if S > S +(E),

= 0 if S −(E) ≤ S ≤ S +(E),

> 0 if S < S −(E).

(42)

The main conceptual blocks in the construction of hysteretic models are given by the
following scheme.

- elastic regime: γE = 0, ∂Sψ = 0, S = ∂Eψ ,

- hypoelastic regime: γE = 0, ∂Sψ �= 0, dS
dE

= S−∂Eψ

∂Sψ
,

- hysteretic regime: γE �= 0, ∂Sψ �= 0, dS
dE

= S−∂Eψ

∂Sψ
− γE

∂Sψ
sgn Ė.

The next investigation deals with non-elastic bodies and hence is developed under the as-
sumption that ∂Sψ �= 0.

Alternatively, a family of one-dimensional models consistent with an additive decompo-
sition of the strain rate follows by letting φ = ψ − ES and assuming ∂Eφ = ∂Eψ − S �= 0.
In fact, after dividing (39) by ∂Eψ − S and assuming Γ = γT |Ṡ| we obtain

Ė = ξ1Ṡ + ξ2|Ṡ|, ξ1 = 1

χ1
= ∂Sψ

S − ∂Eψ
, ξ2 = γT

S − ∂Eψ
, (43)

21The dependence on the constant temperature θ is understood and not written.
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γT ≥ 0 being possibly dependent on E, S, sgn Ṡ and parameterized by θ . This splitting
mimics the standard relation Ė = Ėe + Ėp of the one-dimensional incremental theory of
plasticity and suggests that we introduce a hardening variable S by means of the differential
relation

Ṡ = sgn (S − ∂Eψ)Ėp = sgn (S − ∂Eψ)ξ2|Ṡ|.

This quantity turns out to be always non-negative and strictly related to the rate of dissipa-
tion. Indeed,

Ṡ = γT

|S − ∂Eψ | |Ṡ| = Γ

|S − ∂Eψ | .

Looking at time intervals where Ṡ �= 0, from (43) the uniaxial strain-stress slope follows

dE

dS
= ξ1 + ξ2 sgn Ṡ (44)

and the monotonicity requirement becomes

ξ1 + ξ2 sgn Ṡ ≥ 0. (45)

The notions of elastic point, elastic curve and elastic region correspond to the vanishing of
γT .

Possible models of the constitutive relations (39) and (44) are established below by de-
termining the free energy and the hysteretic functions γE and γT .

Remark 4 Equation (35) is the one-dimensional version of the thermodynamic conditions
(8), (9). It is worth observing that (35) has a similarity with a model by Puzrin and Houlsby
[37] which traces back to an approach by Ziegler [58]. The variables are the stress σ and an
internal variable α or the strain ε and α. In terms of the potential f (ε,α) they derive σ = ∂εf

and the generalized stress χ̄ = −∂αf . Moreover the model involves a dissipation function
d(α̇) which generates the dissipative generalized stress χ = ∂α̇d . The physical meaning of
α, χ , χ̄ then need to be determined.

7 The Helmholtz Free Energy

To determine the function ψ appearing into the model (38)-(39) we start with the generic
assumption

ψ(S,E) = L(S − G(E)) +F(S) +H(E), (46)

L, G, F , and H being undetermined differentiable functions, possibly dependent on θ ; the
dependence on the parameter (temperature) θ is understood and not written. Substitution of
∂Sψ and ∂Eψ in (38) yields

χ1 = S +L′(S − G(E))G′(E) −H′(E)

L′(S − G(E)) +F ′(S)
, χ2 = − γE

L′(S − G(E)) +F ′(S)
.
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The function χ1 is assumed to be non-negative. Furthermore for simplicity we let χ1 depend
only on E,

χ1 = g(E) ≥ 0.

Consequently we obtain the requirement

S −F ′(S)g(E) −L′(S − G(E))[g(E) − G′(E)] = H′(E)

which is satisfied by letting F ′(S) = 0 and

g(E) − G′(E) = α, H′(E) = G(E), L′(S − G(E)) = 1

α
(S − G(E)),

for some α �= 0. Hence χ2 becomes

χ2 = −γEα
1

S − G(E)
.

To fulfill the condition (42) outside the elastic region where γE > 0, some restrictions on α

and G are required. For simplicity we let

α > 0, G = S .

If γE is smooth, then S represents the elastic function. Otherwise, if γE is piecewise smooth
and there exist infinitely many elastic curves lying within the elastic region E , we are al-
lowed to choose an arbitrary increasing smooth function such that S − ≤ S ≤ S +.

To summarize the properties of the model we state that

1) the free energy ψ , defined by (46) to within an additive constant (possibly parameterized
by the temperature θ ), is characterized by the elastic function S and parameterized by α > 0
and the temperature θ in the form

ψ(S,E) = 1

2α
[S − S (E)]2 +H(E), (47)

where H′(E) = S (E);
2) the characteristic functions χ1 and χ2 are given by

χ1 = S ′(E) + α ≥ 0, χ2 = − αγE

S − S (E)
. (48)

The model is then fully characterized by the elastic function S (E), the positive parame-
ter α, and the hysteretic function γE . The positive parameter α gives the difference between
the elastic differential stiffness χ1 and the slope of the elastic function S (E). The occur-
rence of both S and α allows a greater flexibility in the modelling of hysteretic materials as
will be shown in §§ 8-10.

Properties 1) can also be obtained starting from (44). A characterization of ξ1 and ξ2

similar to property 2) occurs provided that γE is replaced by γT .



134 C. Giorgi, A. Morro

8 Examples of Smooth Hysteretic Function γE

To determine a definite hysteretic behaviour via an explicit representation of χ2, we now
investigate some expressions of γE . We assume that γE is a smooth function. Accordingly,
the elastic region reduces to a smooth curve in the (E,S)-plane and the resulting hysteretic
behaviour provides some models of plastic flow. In the modelling process the emphasis is
on the thermodynamic consistency rather than on the fit of experimental data. However, for
definiteness, having in mind metals we take the unit for the variable E equal to 0.01 and that
for S equal to 100 MPa.

8.1 Plastic Flow with Asymptotic Strength

Let S (E) ≡ 0 so that ψ = S2/2α and χ1 = α. Then take the hysteretic factor γE as a smooth
function in the form

γE(S) = 1

Su

S2, Su > 0.

Hence S = S (E) ≡ 0 gives exactly the elastic function. Consequently (37) becomes

dS

dE
= α

Su

(Su − S sgn Ė).

Since dS/dE → 0 as S → ±Su, hysteresis loops are confined to the open strip |S| < Su.
The elastic region shrinks to a line; hardening occurs as soon as the system leaves the elastic
line.

The monotonicity requirement holds in that |S| ≤ Su. The model is characterized by the
positive parameters α, Su; α denotes the slope of the stress-strain path across the elastic
curve S while Su denotes the asymptotic strength, as |E| → ∞, or the ultimate tensile
stress: the maximum stress that a material can withstand while being stretched or pulled
before breaking.

Hysteresis loops in Fig. 1 are determined by solving the system of equations

{
Ė = ωE cosωt,

Ṡ = α(SuĖ − S|Ė|)/Su,

with initial values E0, S0. The rate independence of the model allows the loops to be inde-
pendent of the angular frequency ω.

8.2 Plastic Flow with Linear Elastic Function

The elastic function is taken to be linear and increasing, S (E) = κE, κ > 0 being possibly
dependent on the temperature θ . Hence Eqs. (47) and (48) imply

ψ = 1

2α
(S − κE)2 + 1

2κE2

and χ1 = κ + α. The hysteretic function γE is taken in the form

γE(E,S) = 1

σ0
(S − κE)2, σ0 > 0.
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Fig. 1 Plastic model: hysteresis
loops (solid) and asymptotic
bounds |S| = Su (dashed) with
α = 1, Su = 1.5, E = 1,2,3 and
starting from (E0, S0) with
E0 = 0, S0 = 0,−0.1

Hence, the slope of the hysteretic path is given by

dS

dE
= κ + α

σ0
[σ0 − (S − κE)sgn Ė]. (49)

All loops are within the strip |S − κE| ≤ σ0 and the positive value of κ warrants the
monotonicity condition. So the model is characterized by the positive parameters α, κ , and
σ0. As in previous example the elastic region reduces to a single line, here S = κE. Figure 2
shows an example of the loops obtained by solving the system of equations

{
Ė = ωE cosωt,

Ṡ = (κ + α)Ė − α

σ0
(S − κE)|Ė|,

with initial values E0, S0. Again, the rate independence of the model allows the loops to be
independent of the angular frequency ω.

8.3 Plastic Flow with Nonlinear Elastic Function

The elastic function S and the hysteretic coefficient γE are taken in the form

S (E) = κ tanh(ζE), κ, ζ > 0,

γE(E,S) = 1

σ0
[S − κ tanh(ζE)]2, σ0 > 0.

From (47) it follows that

ψ = 1

2α
[S − κ tanh(ζE)]2 + κ

ζ
ln[cosh(ζE)],

while

χ1 = ζκ[1 − tanh2(ζE)] + α.
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Fig. 2 Plastic model with linear
elastic function; hysteresis loops
(solid) and asymptotic-strength
bounds (dashed) are determined
by letting α = 1, κ = 0.5, σ0 = 2;
the amplitudes of the oscillations
are E = 3 and E = 6 with
E0 = 0, S0 = 0,−0.1

Accordingly, the slope of any stress-strain path is given by

dS

dE
= ζκ[1 − tanh2(ζE)] + α

σ0
[σ0 − (S − κ tanh(ζE))sgn Ė]. (50)

The elastic region reduces to the curve S = κ tanh(ζE). Here, the choice of a function S

with horizontal asymptotes, S (E) = ±κ , forces the loops to rely within a horizontal strip,
indeed |S| ≤ κ + σ0. Therefore, the value κ + σ0 takes the meaning of asymptotic strength
(or ultimate tensile stress) of the model. The monotonicity condition (40) gives

|S − κ tanh(ζE)| ≤ ζκσ0

α
[1 − tanh2(ζE)] + σ0

and is satisfied provided that

|S − κ tanh(ζE)| ≤ σ0.

This inequality identifies a region which is included within the strip |S| ≤ κ + σ0. Figure 3
shows some loops obtained from (50).

9 Models with Piecewise Smooth Hysteretic Function γE

Some models are now developed where a nontrivial elastic region exists. Accordingly, they
describe an elastic-plastic behaviour. Henceforth Sy denotes the yield limit.

9.1 Elastic-Perfectly Plastic Model

Letting S (E) ≡ 0 it follows that ψ = S2/2α and χ1 = α. In addition we let

γE(S, sgn Ė) =
{

|S| if |S| = Sy and sgn (SĖ) > 0,

0 if |S| < Sy or |S| = Sy and sgn (SĖ) ≤ 0.
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Fig. 3 Plastic model with
nonlinear elastic function.
Hysteresis loops (solid) and
asymptotic-strength bounds
|S| = κ + σ0 (dashed) are
determined by letting α = 1,
ζ = 4, κ = 1, σ0 = 1.5; the
amplitudes of the oscillations are
E = 2,5 with E0 = 0,
S0 = 0,−0.1

Correspondingly the open strip Ey = {(E,S) : |S| < Sy} gives the elastic region and
S (E) ≡ 0 represents its midline. The stress-strain evolution is given by

dS

dE
=

{
0 if |S| = Sy and sgn (SĖ) > 0,

α if |S| < Sy or |S| = Sy and sgn (SĖ) ≤ 0.
(51)

Hence the model satisfies the condition (40). Since, by assumption, S (E) ≡ 0, it follows
that all hysteretic patterns rely within the closed strip |S| ≤ Sy which is referred to as the set
of all admissible states.

Consider oscillations of E with amplitude E and angular frequency ω. Hysteresis loops
in the (E,S)-plane are obtained by solving the system of equations

{
Ė = ωE cosωt,

Ṡ = α(Ė − γE|Ė|/S),

with various initial states (E0, S0). Due to the rate-independence property, cycles are invari-
ant with respect to the angular frequency ω (see Fig. 4).

This model is characterized by the positive parameters α and Sy ; α represents the stiffness
of the linear elastic response. The material behaves elastically (χ2 = 0) within the elastic
region.

9.2 Bilinear Model with Strain Hardening

As in example 8.2, letting S (E) = κE, κ > 0, we have

ψ = 1

2α
(S − κE)2 + 1

2κE2, χ1 = κ + α.

In addition, we let σ0 > 0 and

γE(E,S, sgn Ė) =
{

|S − κE)| if |S − κE| ≥ σ0 and sgn ([S − κE]Ė) > 0,

0 otherwise.



138 C. Giorgi, A. Morro

Fig. 4 Elastic-perfectly plastic
model: hysteresis loops (solid)
and yield-strength bounds
|S| = Sy (dashed) with α = 1,
Sy = 1.5, E= 3 and E0 = 0,
S0 = 0,−0.1

It follows that

dS

dE
=

{
κ if |S − κE| ≥ σ0 and sgn ([S − κE]Ė) > 0,

κ + α otherwise.
(52)

The loops are comprised within the closed strip |S − κE| ≤ σ0. The positive value of
κ warrants the monotonicity condition. The (linear) elastic behaviour is confined within
the open strip |S − κE| < σ0 which therefore represents the elastic region. In particular,
S +(E) = κE + σ0 and S −(E) = κE − σ0 are the upper and lower elastic bounds at every
strain E.

This model is characterized by the positive parameters α, κ , and σ0. Figure 5 shows
an example of cycles determined by solving the following system of equations with given
values of α, κ , σ0 and initial values (E0, S0),

{
Ė = ωE cosωt,

Ṡ = α[Ė − γE|Ė|/(S − κE)].
Using the Heaviside step function H we can write the system in the form

{
Ė = ωE cosωt,

Ṡ = {
κ + α[1 − H([S − κE]Ė)H(|S − κE| − σ0)]

}
Ė.

9.3 Elastic-Plastic Model

As in example 9.1 we let S (E) ≡ 0 and ψ = S2/2α, χ1 = α. Now let Sy be the yield limit
Su > Sy > 0 and choose the hysteretic function in the form

γE(S, sgn Ė) =
⎧⎨
⎩

|S| − Sy

Su − Sy

|S| if |S| ≥ Sy and sgn (SĖ) > 0,

0 otherwise.
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Fig. 5 Elastic-perfectly plastic
model with linear strain
hardening: hysteresis loops
(solid) and yield-strength bounds
|S − κE| = σ0 (dashed) are
determined by α = 1, κ = 0.5,
σ0 = 2; the amplitude of the
oscillations is E= 6 with
E0 = 0, S0 = 0,−0.1

Since Su − Sy − (|S| − Sy) sgn (SĖ) = Su − |S| when sgn (SĖ) > 0, then equation (39)
becomes

dS

dE
=

⎧⎨
⎩

α
Su − |S|
Su − Sy

if |S| ≥ Sy and sgn (SĖ) > 0,

α otherwise.

This scheme is quite realistic, although it is unable to capture the Bauschinger effect.
It combines the properties of the previous models, a plastic flow with asymptotic strength
along with elastic-plastic behaviour, and is characterized by the positive parameters α, Sy ,
Su. The loops are placed within the strip |S| < Su. Inside the open strip |S| < Sy , Sy <

Su, the body behaves elastically, therefore this region is exactly the same elastic region as
in example 9.1. Within the strips |S| ∈ (Sy, Su) the linear behaviour occurs only during
unloading; instead, during loading the material behaves nonlinearly.

Figure 6 shows an example of the cyclic process obtained by solving the system of equa-
tions

{
Ė = ωE cosωt,

Ṡ = α
(
Ė − γE|Ė|/S)

,

with initial value (E0, S0) = (0,0). Asymptotically, as t → +∞, the hysteretic path tends to
a closed loop which is symmetric with respect to the origin.

Making use of the Heaviside step function H we can write the system in the form
⎧⎪⎨
⎪⎩

Ė = ωE cosωt

Ṡ =
[

1 − |S| − Sy

Su − Sy

H(SĖ)H(|S| − Sy)

]
αĖ.

10 Models with Additive Decomposition of the Strain Rate

Some models are now developed starting from the additive decomposition of the strain rate
represented by (44) where ξ1 is induced by the free energy ψ and ξ2 by the dissipation rate
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Fig. 6 Elastic-plastic model:
hysteresis loops (solid) and
yield-strength bounds |S| = Sy

(dashed) with α = 1, Sy = 1.5,
Su = 2.5, E = 4

γT |Ṡ|. Though they are within the present thermodynamic context, the following models
show connections with the one-dimensional incremental theory of plasticity (see, e.g., [15,
33]).

10.1 Elastic-Plastic Model with Linear Strain Hardening

By analogy with example 9.2, we now let S (E) ≡ 0 so that ψ = S2/2α. Hence, ξ1 = 1/α,
ξ2 = γT /S. In addition we let

γT (S, sgn Ṡ) =
{

|S|/h if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise,

where h > 0 represent the hardening parameter. Correspondingly the stress-strain evolution
is given by

dE

dS
=

{
1/α + 1/h if |S| ≥ Sy and sgn (SṠ) > 0,

1/α otherwise.
(53)

Hence the model is characterized by the positive parameters α, h and Sy . The monotonicity
requirement (45) is trivially satisfied. The elastic region is identified with the horizontal strip
E = {(E,S) : |S| ≤ Sy}. The loops are bilinear as in example 9.2, but are not confined in a
strip of the (E,S)-plane.

It is of interest to examine the cyclic stress-driven processes

⎧⎨
⎩

Ṡ = ωG cosωt,

Ė =
{

1

α
+ 1

h
H(SṠ)H(|S| − Sy)

}
Ṡ.

Yet to get a close connection of the resulting loops with those obtained in § 9.2 we show the
stress-strain path corresponding to harmonic oscillations of E by means of Fig. 7. Owing to
the monotonicity condition (sgn Ṡ = sgn Ė) we can write the system in the form

{
Ė = ωE cosωt,

Ṡ = {
hα/[h + α H(SĖ)H(|S| − Sy)]

}
Ė.
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Fig. 7 Elastic-plastic model with
linear strain hardening: hysteresis
loops (solid) and yield-strength
bounds |S| = Sy (dashed) are
determined by α = 1, h = 1,
Sy = 3; the amplitude of the
oscillations is E= 6

The slopes of the stress-strain relation are α, the elastic modulus, within the elastic region
and αh/(α + h) < α, the elastic-plastic tangent modulus, outside this region.

In light of (53) we might view Ė as an additive decomposition via

Ėe = 1

α
Ṡ, Ėp =

{
Ṡ/h if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise.

To describe the plastic flow a hardening variable S, viewed as a scalar internal variable,
is sometimes considered such that its evolution is governed by a first-order differential equa-
tion for S parameterized by the derivative of Ep [15]. Here we find an analogous differential
equation involving the engineering stress. Moreover, we now establish a connection between
the hardening variable rate and the entropy production. In relation to the one-dimensional
incremental theory of plasticity, we can define the rate of the hardening variable22 S as
follows

Ṡ = (sgnS)Ėp =
⎧⎨
⎩

1

h
|Ṡ| if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise.
(54)

By (54) Ṡ turns out to be always non-negative and strictly related to the rate of dissipation.
Indeed, thanks to the definition of γT ,

Ṡ|S| = γT |Ṡ| = Γ.

The definition of S, the cumulative dissipation function, is completed by letting S(t0) = 0 at
the initial time t0. Consequently, for all t ≥ t0

S(t) =
∫ t

t0

Ṡ(τ ) dτ =
∫ t

t0

Γ (τ)

|S(τ)| dτ =
∫ t

t0

γT (τ )
|Ṡ(τ )|
|S(τ)| dτ.

22This quantity is often introduced as an additional internal variable. See, e.g., [33, § 8.6.1], where the hard-
ening variable is denoted by α.
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Fig. 8 Elastic-plastic model with
nonlinear strain hardening:
hysteresis cycles (solid) and yield
limit S = Sy are determined by
α = 1, Sy = 1.5, Su = 2.5; the
amplitude of the stress oscillation
is G = 2.4

Hence, by exploiting (54) we obtain

S(t) = 1

h

∫
I(t0,t)

|Ṡ(τ )|dτ

where I(t0,t) = {τ ∈ (t0, t) : |S(τ)| ≥ Sy and sgn (S(τ )Ṡ(τ )) > 0}.

10.2 Elastic-Plastic Model with Nonlinear Strain Hardening

As in the previous case we let S (E) ≡ 0 and ψ = S2/2α. Hence, ξ1 = 1/α, ξ2 = γT /S. In
addition we let Su > Sy > 0 and choose the hysteretic function in the form

γT (S, sgn Ṡ) =
⎧⎨
⎩

|S| − Sy

α(Su − |S|) |S| if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise.

We point out that γT ≥ 0 only in the open strip |S| < Su. With this constraint, equation (44)
becomes

dE

dS
=

⎧⎨
⎩

Su − Sy

α(Su − |S|) if |S| ≥ Sy and sgn (SṠ) > 0,

1/α otherwise.

The resulting deformation-driven loops are just shown in Fig. 6. Rather stress-driven cycles
between S = 0 and S = G are generated by the system

⎧⎨
⎩

Ṡ = 1
2ωG sinωt,

Ė =
{

1

α
+ |S| − Sy

α(Su − |S|)H(SṠ)H(|S| − Sy)

}
Ṡ

and are shown in Fig. 8, with E0, S0 = 0.
Formally we can indicate an additive decomposition of the strain rates by means of the

identifications

Ėe = 1

α
Ṡ, Ėp =

⎧⎨
⎩

|S| − Sy

α(Su − |S|) Ṡ if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise.
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Accordingly, the rate of the hardening variable S is given by

Ṡ = (sgnS)Ėp =
⎧⎨
⎩

|S| − Sy

α(Su − |S|) |Ṡ| if |S| ≥ Sy and sgn (SṠ) > 0,

0 otherwise,
(55)

and satisfies the relation Ṡ|S| = γT |Ṡ| = Γ . Upon an integration of (55) over (t0, t) we have

S(t) =
∫
I(t0,t)

|S(τ)| − Sy

α(Su − |S(τ)|) |Ṡ(τ )|dτ,

where I(t0,t) = {τ ∈ (t0, t) : |S(τ)| ≥ Sy and sgn (S(τ )Ṡ(τ )) > 0}.

11 Relation to Other Approaches

11.1 Solids Described by Implicit Constitutive Equations

Among the models appeared in the literature we find it interesting to consider equations
given in [42]; in the present notation, equations (12) and (15) of [42] read23

Ṡ − λĖ = −λH(SĖ)H(|S| − Sy)Ė,

−a(S + bS3)Ṡ + Ė = f (S)H(SĖ)SĖ,
(56)

where λ, a, b are constants and f (S) = −f (−S) ≥ 0 as S ≥ 0. Consequently

dS

dE
= λ − λH(SĖ)H(|S| − Sy),

dS

dE
= 1

a(S + bS3)
− f (S)H(SĖ)

a(1 + bS2)
.

To ascertain the thermodynamic consistency we check whether Eqs. (56) have the form
(37). Relative to (56)1 we then look for the possible function ψ by letting

S − ∂Eψ

∂Sψ
= λ.

As a simple guess, let ∂Eψ = 0. Accordingly ∂Sψ = S/λ and we have

dS

dE
= λ − λγE

S
sgn Ė.

Equation (56)1 is recovered by letting

γE = |S|H(|S| − Sy)H(SĖ)

in that

− γE

∂Sψ
sgn Ė = −λ sgnS sgn Ė H(|S| − Sy)H(SĖ).

Hence (56)1 is consistent with thermodynamics (γE ≥ 0).

23Owing to a misprint, the factor λ in front of H(SĖ)H(|S| − Sy) is missing in [42].
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Concerning (56)2 we require that

S − ∂Eψ

∂Sψ
= 1

a(S + bS3)
.

Letting ∂Eψ = 0 we have

∂Sψ = aS2(1 + bS2).

Hence we check whether

γEsgn Ė

∂Sψ
= f (S)H(SĖ)SĖ

aS(1 + bS2)
.

This relation holds if

γE = |S|f (S)S H(SĖ)

and then γE ≥ 0 in that S f (S) ≥ 0. Hence Eq. (56)2 is consistent with thermodynamics.
The approach of [42, 43] is claimed to be consistent with a three-dimensional thermo-

dynamic setting [5]. The setting in [5] starts from a Helmholtz free energy ψ(θ,Be), where
Be is an appropriate tensor. Next the evolution equation for the entropy is considered in the
form

ρθη̇ = T · D − ρ∂Beψ · Ḃe − ∇ · q.

Upon some developments the entropy production is defined to be (Eq. (26) of [5])

T · D − ρ∂Beψ · Ḃe = H(T · D)H(|T| − Ty)T · D

which is evidently non-negative. Consequently the evolution equation of η, Eq. (27) of [5],
becomes

ρθη̇ + ∇ · q = H(T · D)H(|T| − Ty)T · D. (57)

In light of the form of the right-hand sides of (56) and (57) the corresponding models are
said to be consistent with thermodynamics.

Though we have proved the thermodynamic consistency of (56) we observe that the
entropy production σ has to satisfy (2).

11.2 Entropy Production and Dissipation Potential

There are similarities and differences among the various approaches based on dissipation
potentials and the present approach. For definiteness we examine the scheme of ref. [26].
Let S and E be generalized stress and strain measures. To quantify inelastic processes a
set of internal variables I is considered. Then the additive decomposition S = Sen + Sdis is
assumed, Sdis := ∂Eψ , and the reduced dissipation inequality

d = Sdis · Ė − ∂Iψ · İ ≥ 0 (58)

follows. The dissipation potential π(Ė, İ) is then introduced so that Sdis and Xdis := −∂Iψ

are subdifferentials of π with respect of Ė and İ.



Rate-Type Models of Elastic-Plastic Materials 145

The similarity with the present approach is given by the reduced dissipation inequality;
the dissipation (rate) d in (58) is the analogue of (θ times) the entropy production. Yet there
are conceptual differences. In (9) we have a thermodynamic restriction for the functions ψ

and Γ = JθσT ≥ 0 which depend on the same set of physical variables, here θ , E, TRR ,
Ė, ṪRR . Once ψ and Γ are established we have a model involving only physical variables;
here, in one dimension, we obtain Ṡ in terms of S, E, Ė. Moreover, in the present approach
the second law inequality is a single relation for ψ and Γ . Instead, the approaches involving
dissipation potentials consider the separate additive contributions to stress of the free energy
and of the dissipation potential.

11.3 Entropy Production as a Constitutive Function

The idea that the entropy production σ be given by a constitutive equation traces back to
Green and Naghdi [13]; they do not require that σ ≥ 0 for any process. Later on Rajagopal
and Srinivasa [38], in connection with shape memory wires, considered the rate of mechan-
ical dissipation ξ ; by definition ξ = Jθσ (≡ Γ in the present notation). Then they let α

be a mass fraction and assume that ξ is a function of θ , α, α̇, while the stress and the free
energy depend on F , α, θ . As a consequence they find that ξ governs the evolution of α via
−ρ0∂αψ α̇ = ξ , and then any appropriate choice of ξ completes the model.

Conceptually our approach extends this idea assuming from the outset that all constitutive
functions depend on the common set of (physical) variables, say Ξ . Next the second law
inequality is investigated so that both requirements in (3) are satisfied with σ , η, q, ε, T
functions of Ξ . Accordingly it may happen that the resulting material properties originate
from the joint structure of the potential, e.g., ψ = ε − θη, and the entropy production σ .
Equations (9) and (35) are clear examples of joint contributions of ψ and σ . We mention
that a similar approach was developed in [12] for ferroelectric materials.

12 Conclusions

In essence the approach developed in this paper is based on the following points. First,
the constitutive equations involve both the deformation gradient and the stress among the
independent variables via the set

Ξ = (θ,E,TRR,∇R θ, Ė, ṪRR).

The invariance of the Green-St. Venant tensor E and the second Piola stress TRR makes Ξ

invariant and hence objective. Second, the requirement of the second law inequality implies
that the free energy ψ depends only on θ , E, TRR and satisfies inequality (8). The rate of
dissipation Γ (see (9)) is allowed to depend on Ξ and can be specified as a constitutive
function. In particular, Γ is taken in the form γE|Ė|, γT |ṪRR| or HRTRR · Ė, where γE , γT

and HR are nonnegative rate-independent functions. This general approach is consistent with
large deformations and can be easily translated into the spatial formulation. Third, attention
is then restricted to one-dimensional settings and the resulting scheme is given by (47) and
(48). Models are then characterized by the elastic function S (E), the parameter α, and the
hysteretic function γE (or γT ). The engineering stress S is given by the differential equation
(37) quite analogous to the evolution equation for the hardening variable (Eq. (76.7) of
[15]). In some one-dimensional example, we establish a connection between the dissipation
rate Γ and the derivative of the hardening variable defined as proportional to the plastic
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deformation rate Ėp (see Eq. (54)). Hysteretic loops in the (E,S) plane are shown for some
Duhem-like models by appropriately selecting S , α, and γE . The existence of an elastic
domain, where the material behaves as a linear hypoelastic solid, is related to the existence
of an open region where γE = 0 (or γT = 0).

Following are some features of the present approach. Any model obeying (47) and (48) is
consistent with thermodynamics; a fit of the behaviour is obtained by selecting appropriate
functions S and γE (or γT ). A nontrivial elastic region occurs when the hysteretic function
is piecewise smooth rather than smooth. Unlike the schemes adopted in most theories of
plasticity, no decomposition is made a priori between the elastic and plastic strain Ee and
Ep or the elastic and plastic stress Te and Tp . Further, while the use of dissipation potentials
leads to additional generalized stresses, the present analysis based on the entropy production
allows more detailed constitutive equations for physical stress in terms of the macroscopic
strain.

We observe that all the models devised in this paper are rate-independent. As a natural
improvement we think to the development of rate-dependent models so that the present
approach can be applied to obtain viscoplastic models. Furthermore we remark that detailed
models are given in the one-dimensional setting while only a structure of three-dimensional
models is established in § 5.3. Detailed three-dimensional models might be determined and
the papers [43, 44] are useful references in this connection.
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