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Abstract
A well known result from the non-linear theory of elasticity applied to spherical shells is
that the classical Mooney-Rivlin constitutive law may give either a monotonic or a non-
monotonic pressure-inflation response for finite deformation. Specifically, this is determined
by two factors: the relative shell thickness, and the relative I1 to I2 contribution in the M-
R constitutive law. Here we consider how a residual stress field may affect this behavior.
Using a constitutive framework for hyperelastic materials with residual stress that has been
especially applied to tubes, this paper focuses on finite thickness spherical shells while using
a similar prototypical energy response. In this context we examine different residual stress
states, and show how certain of these lead to more workable analytical results than others.
All of them enable Taylor and asymptotic expansions in the small and large inflation limit.
On this basis it is shown how particular residual stress fields can cause a monotonic inflation
graph to become non-monotonic, and vice versa.

Keywords Residual stress · Non-linear elasticity · Thick spherical shell · Finite
deformation · Non-monotone inflation

Mathematics Subject Classification 74B20

1 Introduction

Spherically symmetric deformation is a classical topic in continuum mechanics. For incom-
pressible materials, the symmetric inflation of a spherical shell is completely characterized
by the displacement of a single location. If the material is also isotropic and hyperelastic,
then this inflation deformation is controllable, meaning equilibrium is obtainable by the ap-
plication of surface tractions alone (in this case a pressure difference between the inner and
outer radii). Because this “controllable deformation can be effected in every homogeneous,
isotropic, hyperelastic material [it] is ... a universal deformation”. This quote is from Beatty’s
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1996 Introduction to Nonlinear Elasticity [3]. This work describes spherical inflation in de-
tail, in addition to discussing universal deformations and their relation to Ericksen’s problem
of characterizing the full set of universal deformations. Elsewhere, Beatty describes how the
incompressible hyperelastic spherical shell admits to interesting and elegant fully dynamical
analysis for the case of small amplitude radial oscillations [4].

Returning to the equilibrium setting, one of the notable aspects of the inflation problem
for a spherical shell is that the well known and often used Mooney-Rivlin (MR) hyperelastic
model permits a nonmonotonic pressure-inflation response. Whether the response of a given
MR spherical shell is monotonic or nonmonotonic is determined by the key MR constitutive
parameter in conjunction with the shell initial geometry (typically taken to be the wall thick-
ness as compared to the initial inner radius). Nonmonotonicity of the inflation response has
immediate consequences for the stability of any ongoing inflation process (again [3], and see
[18] for detailed thermodynamic considerations). It is also connected to loss-of-symmetry
via bifurcation to pear-shaped axisymmetric states [6, 12]. The consideration of additional
driving fields, such as that associated with electrical actuation, lead to rich possibilities for
such pear-shaped bifurcated states, which in general lower the total energy [25].

In this work we consider some effects of residual stress on spherically symmetric de-
formation in such pressurized spherical shells. The conception of residual stress follows
that of Hoger [13, 14]. The specific hyperelastic framework employed here follows the in-
variant formulation presented in [24]. That formulation is further developed and utilized in
subsequent treatments for residual stress including [10, 17] and [23]. These and other re-
cent contributions are discussed at relevant points in this article. Because of the important
connection to residual stress in blood vessels, several of these articles consider tube-type
situations and hence boundary value problems posed in cylindrical coordinates.

In general, biological growth and remodeling leads to residual stress, a process that is
examined for spherical shells in [7] and [9]. A related phenomenon for spherical shells is
the effect of inhomogeneous wall swelling on a hyperelastic pressure-inflation relation [27],
including how this compares to the baseline response with uniform wall swelling [26]. An
examination of symmetry breaking bifurcations that may cause deformation in a residually
stressed solid sphere to depart from spherical symmetry is given in [20].

The present article is organized as follows. The general residual stress conception and
its hyperelastic constitutive formulation is given in Sect. 2, followed by the specialization
to spherically symmetric deformations in Sect. 3. Classes of spherically symmetric resid-
ual stress fields are introduced in Sect. 4. The integration procedure for the solution of the
boundary value problem is given in Sect. 5. This leads to the consideration of specific in-
tegrals associated with the residual stress field, whose properties are examined in Sect. 6.
This property determination permits a rather straight forward assessment of how the residual
stress affects the pressure-inflation relation. Among the findings of interest is that particular
residual stress fields can cause a monotonic inflation graph to become non-monotonic, and
vice versa. Key limitations of our study are discussed in Sect. 8, some of which are asso-
ciated with the elusive nature of the meaning of residual stress, along with an indication of
how some of the analytical findings here could be further exploited.

2 Residual Stress Framework and Constitutive Modeling

We consider a body that inhabits locations X in a reference configuration B0. A residual
stress is present within the body in this reference configuration, where it is given by the
tensor τ . The reason for the existence of the residual stress is not important – the nature
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of the theory permits the consideration of residual stress fields independent of their cause.
Whatever this cause, the residual stress field is subject to the classical balance of torques
and forces in the usual way. Intrinsic couple stresses are not considered whereupon the
torque balance gives that τ is symmetric (τT = τ ). Body forces are regarded as negligible,
whereupon force balance gives that

Divτ = 0, (2.1)

where Div is the divergence operation with respect to reference locations X. The residual
stress is present in the absence of surface tractions, meaning that

τN = 0 on ∂B0, (2.2)

where ∂B0 is the external boundary of B0 and N the outward pointing unit normal vector.
This follows the residual stress conception of Hoger [13]. Other notions of initial stress may
incorporate sustaining surface tractions, whereas none are to be present here. A consequence
of conditions (2.1) and (2.2) is that the mean value of the residual stress over B0 must vanish
[14], namely

∫
B0

τ dV = 0. (2.3)

For this reason, any nontrivial τ will generally cause an inhomogeneous mechanical re-
sponse to subsequent deformation.

The application of surface tractions will deform the body to a new configuration B. Let
x denote locations in B. The deformation gradient of the mapping X → x is denoted by
F in the usual way. This process will generally change the internal stress field so that it is
no longer given by τ . Let σ denote the associated Cauchy stress tensor. If F = I then σ is
equal to τ modulo a purely reactive stress contribution associated with any internal material
constraints (such as incompressibility). The Cauchy stress is also symmetric and it is subject
to

divσ = 0, (2.4)

where div is the divergence operation with respect to deformed locations x. The surface
tractions t follow from σ and the unit surface normal n on ∂B via

t = σn on ∂B. (2.5)

A hyperelastic constitutive framework is employed here which follows that described in
[24]. It is given in terms of a stored energy density function W = W(C,τ ) where C = FTF
is the usual right Cauchy-Green deformation tensor. This form ensures the axiom of objectiv-
ity. One could more generally allow an explicit inhomogeneous response W = W(C,τ ,X)

but this more general case is not considered here. It is important to note that the spatial de-
pendence τ = τ (X) confers the implicit inhomogeneous response (mentioned above) even
in the context of the W = W(C,τ ) treatment.

Attention is here restricted to incompressible materials, meaning that deformations X →
x must be volume preserving. This gives the standard isochoric constraint

detF = 1. (2.6)
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The Cauchy stress now follows from F via

σ = F
∂W

∂C
FT − pI, (2.7)

where p is the non-constitutive reactive pressure associated with (2.6). Because F = I im-
plies σ = τ to within a hydrostatic pressure it follows that

τ = ∂W

∂C

∣∣∣
C=I

− qI, (2.8)

for some scalar q and, as discussed in [24], this imposes restrictions upon W .
Still following [24], the dependence of W upon C and τ can be developed in terms of a

set of nine independent invariants of C, τ and their combination. These can be taken as the
two usual isochoric invariants of C alone:

I1 = tr C, I2 = 1

2
[(tr C)2 − tr(C2)]; (2.9)

(note that I3 = detC = 1), the three invariants of τ alone:

I41 = trτ , I42 = 1

2
[(trτ )2 − tr(τ 2)], I43 = detτ ; (2.10)

and four independent invariants of both C and τ in combination:

I5 = tr(τC), I6 = tr(τC2), I7 = tr(τ 2C), I8 = tr(τ 2C2). (2.11)

Here we consider the specific invariant sets employed in [16]. The three invariants
{I41, I42, I43} are collectively denoted by I4. They are singled out this way because, unlike
the other invariants, they do not contribute derivatives to σ via (2.7) by a chain rule calcu-
lation on ∂W/∂C. Letting Wi = ∂W/∂Ii for i = 1,2,5,6,7,8 such a chain rule calculation
gives

σ =2W1B + 2W2(I1B − B2) + 2W5� + 2W6(�B + B�)

+ 2W7�B−1� + 2W8(�B−1�B + B�B−1�) − pI,
(2.12)

where, following [16], � ≡ FτFT, and B = FFT is the left Cauchy-Green tensor. Note that
(2.12) retrieves the classical (no-residual-stress) hyperelastic result σ = 2W1B+2W2(I1B−
B2) − pI when τ vanishes.

A simple model form for W to consider is one that admits the decomposition W =
Wo(I1, I2)+Wτ(I5, I6, I7, I8). By taking Wo to be some well vetted hyperelastic model from
the conventional isotropic theory, it permits a consideration of the effect of residual stress
upon standard results. Forms for Wτ that have received consideration (see [16]) include

Wτ = 1
2 (I5 − tr(τ )) and Wτ = 1

4 (I6 − tr(τ )). (2.13)

Note that I5, I6, tr(τ ) and Wτ all have the same physical units, so that 1
2 and 1

4 in (2.13) are
pure numbers. The particular values 1

2 and 1
4 in (2.13) are essential as they enable consis-

tency with (2.8).
In what follows we shall consider a Mooney-Rivlin form for Wo, namely

Wo = 1
2μ(κ(I1 − 3) + (1 − κ)(I2 − 3)) . (2.14)
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Here μ, with units of stress, is the shear modulus. The pure number κ is taken to be in
the range 0 ≤ κ ≤ 1 in order for the conventional theory to be consistent with the Baker-
Ericksen inequalities. The value κ = 1 gives the neo-Hookean special case. Values for κ a
bit below one are often regarded as providing a suitable first correction to the neo-Hookean
theory [21].

Expressing W = Wo + Wτ by combining (2.14) with the first of (2.13) gives

W = 1
2μ(κ(I1 − 3) + (1 − κ)(I2 − 3)) + 1

2 (I5 − tr(τ )). (2.15)

This form for W , under the neo-Hookean specialization (κ = 1), has been utilized for the
analysis of residually stressed cylinders in [17] and [16]. Also, the neo-Hookean case of
(2.15) where Wτ is allowed to be augmented with a quadratic term proportional to (I5 −
tr(τ ))2 has been considered for the examination of acoustic waves [24] and Rayleigh waves
[23] in residually stressed materials. Restricting attention to (2.15) it now follows from
(2.12) that

σ = μ
(
(κ + (1 − κ)I1)B − (1 − κ)B2) + FτFT − pI, (2.16)

where it is observed that F = I and p = (2 − κ)μ indeed makes σ = τ .

3 Kinematics for Radial Inflation of a Residually-Stressed Spherical
Shell

We consider a finite thickness spherical shell that, using spherical coordinates (R, �, �),
occupies

A ≤ R ≤ B, 0 ≤ � < π, 0 ≤ � ≤ π (3.1)

in the reference configuration B0. Here A and B are inner and outer radii prior to any defor-
mation. Spherical inflation, which is one of the universal deformations in the conventional
isotropic, incompressible hyperelastic theory, is then described using spherical coordinates
(r , θ , φ) in the deformed configuration B, as

r = r(R), θ = �, φ = �. (3.2)

The deformation gradient is given by

F = λrer ⊗ ER + λθeθ ⊗ E� + λφeφ ⊗ E�, (3.3)

where {ER,E�,E�} and {er , eθ , eφ} are the unit basis vectors in the reference and deformed
configuration respectively, and

λr = dr

dR
, λθ = λφ = r

R
(3.4)

are the principal stretches in the corresponding directions. The associated right and left
Cauchy-Green deformation tensors are

C = λ2
r ER ⊗ ER + λ2

θ (E� ⊗ E� + E� ⊗ E�),

B = λ2
r er ⊗ er + λ2

θ (eθ ⊗ eθ + eφ ⊗ eφ).
(3.5)
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The constraint (2.6) determines r(R) to within a single constant parameter value, which can
be taken as the radial value a of the deformed inner radius. Then

r(R) = (R3 − A3 + a3)1/3, (3.6)

whereupon the deformed sphere occupies a ≤ r ≤ b = (B3 −A3 + a3)1/3. Consequently the
relation between A and a completely characterizes the amount of inflation. This also makes
it convenient to emphasize the azimuthal stretch via the notation

λ ≡ λθ = λφ = r

R
⇒ λr = λ−2 = R2

r2
. (3.7)

The reference configuration is subject to the no surface traction condition (2.2), and the
inflation is induced by increasing the internal pressure by an amount �P > 0. Such loading
is consistent with a radial deformation (3.2) in the conventional theory where there is no
residual stress. In order to remain consistent with spherical inflation, consider residual stress
fields of the symmetric form τ = τRRER ⊗ ER + τ��(E� ⊗ E� + E� ⊗ E�) with τRR =
τRR(R) and τ�� = τ��(R). Then (2.1) and (2.2) respectively give

dτRR

dR
+ 2

R
(τRR − τ��) = 0, (3.8)

and

τRR(A) = 0, τRR(B) = 0. (3.9)

A general result that follows from (3.8) and (3.9) is that
∫ B

A

(
(m − 1)τRR + 2 τ��

)
Rm dR = 0, (3.10)

where m is arbitrary. The cases m = 1 and m = 2 then give
∫ B

A

τ�� R dR = 0,

∫ B

A

(
τRR + 2 τ��

)
R2 dR = 0. (3.11)

The first of these establishes that a nontrivial τθθ field must take on both tensile and compres-
sive values. The second of these is what (2.3) reduces to for the problem under consideration
here.

The Cauchy stress σ takes the form σ = σrrer ⊗ er + σθθ (eθ ⊗ eθ + eφ ⊗ eφ) with σrr =
σrr (r) and σθθ = σθθ (r). In particular, it follows from (2.16), (3.3) and (3.7) that

σrr = μ
(
2(1 − κ)λ−2 + κλ−4

) + λ−4τRR − p, (3.12)

and

σθθ = μ
(
(1 − κ)λ4 + κλ2 + (1 − κ)λ−2

) + λ2τ�� − p. (3.13)

The equilibrium equation (2.4) gives p = p(r) along with the one nontrivial requirement

∂σrr

∂r
+ 2

r
(σrr − σθθ ) = 0. (3.14)

In terms of the applied pressures, the surface traction condition (2.5) is simply

σrr (a) = −�P, σrr (b) = 0. (3.15)
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4 The Residual Stress Fields

Given a τRR field, the associated τ�� follows from (3.8). Probably the simplest nontrivial
τRR field that is consistent with (3.9) is a parabolic profile proportional to (R − A)(R − B).
We write this as

τRR(R) = α2

A2
(R − A)(R − B) = α2

A2
(R2 − (A + B)R + AB) (4.1)

where α2, with units of stress, sets the field strength. The analogous radial component field
was considered in [16] for the case of a cylindrical geometry. For the spherical geometry
under consideration here, using (3.8) with the τRR field given by (4.1) yields

τ��(R) = α2

A2

(
2R2 − 3

2 (A + B)R + AB
)
. (4.2)

The subscript 2 in α2 is indicative of the highest power of R in these expressions.
We wish to consider a wider variety of residual stress fields (τRR(R), τ��(R)) beyond

that given by (4.1) and (4.2). For reasons that will become clear later, it will also be advan-
tageous to consider τRR fields that consist of a linear combination of terms in R0, R2, R5,
and more generally R2+n for n = 0,1,2, . . . . Then the boundary conditions (3.9) motivates
the consideration of

τRR(R) = α5

A5

(
R5 −

(
B5−A5

B2−A2

)
R2 + A2B2(B3−A3)

B2−A2

)
, (4.3)

as well as higher order forms such as

τRR(R) = α8

A8

(
R8 −

(
B8−A8

B5−A5

)
R5 + A5B5(B3−A3)

B5−A5

)
, (4.4)

and

τRR(R) = α11

A11

(
R11 −

(
B11−A11

B8−A8

)
R8 + A8B8(B3−A3)

B8−A8

)
. (4.5)

The multiplier coefficients α2, α5, α8, α11 in (4.1)-(4.5), all with units of stress, will serve
as a useful marker for distinguishing between these different fields in the various examples
that follow.

The τ�� corresponding to (4.3)-(4.5) will again follow from (3.8). In making such a
computation, and especially for later developments, it is useful to proceed term by term in
the residual stress expressions such as (4.3). We will utilize the overbar notation τ̄ for this
purpose. Thus employing (3.8) gives the single term result

τ̄RR = cRq, ⇒ τ̄�� = c
(
1 + 1

2q
)
Rq. (4.6)

Consequently, if τRR is given by (4.3) then

τ��(R) = α5

A5

(
7
2R5 − 2

(
B5−A5

B2−A2

)
R2 + A2B2(B3−A3)

B2−A2

)
. (4.7)

The purpose of the τ̄ notation is to provide a reminder that a single term within the overall
multi-term expression is unlikely to be consistent with (3.9). Thus (4.7) is consistent with
(3.9) whereas (4.6) is not. Rather, (4.6) is a preliminary single term result that will be used
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Fig. 1 Residual stress fields (4.1)
for τRR (red) and (4.2) for τ��

(blue) showing the effect of shell
thickness. Here α2 = 1, A = 1
and: (a) B=1.5, (b) B=2, (c)
B=3, and (d) B=4

in conjunction with other single term expressions to achieve consistency with the boundary
conditions.

For completeness in what follows, the τ�� field associated with (4.4) now also follows
as

τ��(R) = α8

A8

(
5R8 − 7

2

(
B8−A8

B5−A5

)
R5 + A5B5(B3−A3)

B5−A5

)
, (4.8)

and the τ�� field associated with (4.5) follows as

τ��(R) = α11

A11

(
13
2 R11 − 5

(
B11−A11

B8−A8

)
R8 + A8B8(B3−A3)

B8−A8

)
. (4.9)

Figure 1 shows the effect of thickness on the residual stress field pair given by (4.1)
and (4.2). The 2-D counterpart to this figure is Fig. 1 of [16]. As in the 2-D case, the τ��

fields transition from monotone to non-monotone as the thickness increases. The minimum
develops sooner in the present 3-D case since, unlike the 2-D case, it is readily apparent here
for the case of A = 1, B = 2. Note also the qualitative similarity of these fields, which are
independent of constitutive law, to the residual stress field displayed in Fig. 3 of [15] that
is associated with the eversion of a spherical shell composed of a particular Mooney-Rivlin
material.

For a common shell thickness, Fig. 2 displays the four different stress field pairs
(τRR, τ��) as τRR is given by the four alternatives: (4.1), (4.3), (4.4) and (4.5). In partic-
ular, τRR is of a single sign in all four cases. In contrast, τ�� takes on both positive and
negative values, a result which follows from the first of (3.11). Note also that the fields in-
creasingly localize to the outer radius R = B as the order (highest power of R) increases in
the residual stress fields. This tendency is highlighted in Fig. 3 which redisplays the stress
fields from Fig. 2, but now with αi chosen so that τ��(B) = 1 for all four alternatives.
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Fig. 2 Residual stress fields τRR

in red and τ�� in blue showing
how the profiles change as higher
order radial terms are employed.
Here A = 1, B = 2 and αi = 1 in
all four cases. Panel (a) is for
(4.1) and (4.2); panel (b) is for
(4.3) and (4.7); panel (c) is for
(4.4) and (4.8); panel (d) is for
(4.5) and (4.9)

Fig. 3 Stress fields from Fig. 2
with τRR in the left panel and
τ�� in the right panel, now
normalized by taking α2 = 1,
α5 = 3/116, α8 = 31/11344,
α11 = 225/776192. This makes
τ��(B) = 1

5 Pressure-Inflation Relations

For a given residually stressed spherical shell, one seeks to determine the relation between
the applied load �P and the amount of inflation (the value of a in relation to A). For this
purpose (3.14) admits to the integration

σrr (r) − σrr (a) =
∫ r

a

2(σθθ − σrr )
dr

r
. (5.1)

Evaluation of this at r = b using the boundary conditions (3.15) gives

�P =
∫ b

a

2(σθθ − σrr )
dr

r
. (5.2)

Substituting from (3.12) and (3.13) into the above expression eliminates the hydrostatic
pressure p from the treatment. It is further convenient to then decompose the right side of
(5.2) as

∫ b

a

2(σθθ − σrr )
dr

r
= Po + Pτ , (5.3)
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where Po and Pτ gather together the contributions arising from Wo and Wτ , respectively.
Consequently

�P = Po + Pτ (5.4)

with

Po = 2μ

∫ b

a

(
κ(λ2 − λ−4) + (1 − κ)(λ4 − λ−2)

)
dr

r
, (5.5)

and

Pτ = 2
∫ b

a

(
λ2τ�� − λ−4τRR

)
dr

r
. (5.6)

The term Po is familiar from the conventional hyperelastic theory and readily admits
integration using dr/r = dλ/(λ − λ4). Introduce non-dimensionalized quantities

P ∗
o = Po

μ
, η = B

A
, e = a3

A3
− 1, (5.7)

and note that η serves as an aspect ratio or relative thickness parameter that characterizes
the initial shell geometry. The parameter e defines the relative inflation, with e = 0 corre-
sponding to the reference state and e > 0 corresponding to inflation. The integration of (5.5)
now yields

P ∗
o = κ

(
5η4 + 4eη

2(η3 + e)
4
3

− 4e + 5

2(e + 1)
4
3

)
+ (1 − κ)

(
1 + 2e

(e + 1)
2
3

− η3 + 2e

η(η3 + e)
2
3

)
. (5.8)

Observe that P ∗
o vanishes when e = 0, which is consistent with zero pressure in the reference

(undeformed) state.
In the absence of residual stress, the inflation relation for hyperelastic spherical shells

has been the subject of longstanding study. We close this section with a quick recap of the
pressure-inflation response for Mooney-Rivlin spherical shells as given by (5.8). In other
words, this recap recalls well known results because it is for the case in which there is no
residual stress. The associated pressure-inflation response graphs, with �P on the ordinate
and either e or a/A on the abscissa, all exhibit an initial inflation, meaning that they all start
from �P = 0 when e = 0 or a/A = 1, and all such graphs initially increase with e. However
as e continues to increase, one of three behavior types is possible, depending on the values of
κ and η. Type (a) behavior is one of continued monotone �P increase as e → ∞. Type (b)
behavior involves increase to a local maximum followed by monotone decrease with �P →
0 in an asymptotic fashion as e → ∞. Type (c) behavior involves three separate intervals of
�P response; the first interval involves increase to a local maximum, followed by decrease
to a local minimum (with �P > 0), and then concluding with monotone graphical increase
as e → ∞.

Type (b) behavior is restricted to the neo-Hookean case (κ = 1) and this behavior type
occurs for all aspect ratios η when the material is neo-Hookean. Type (a) behavior will occur
if the Mooney-Rivlin parameter κ < 0.823 (an exact root expression involving cubics will
provide additional precision [5]), and this is again true for all aspect ratios η. For 0.823 <

κ < 1, either type (a) or type (c) behavior is possible depending on the aspect ratio η. If the
shell is sufficiently thick then type (a) behavior occurs. If it is sufficiently thin then type (c)
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Fig. 4 Mooney-Rivlin material response for a spherical shell with η = B/A = 2 showing the effect of κ . The
neo-Hookean case κ = 1 gives type (b) behavior. Type (a) response occurs for 0 ≤ κ < 0.848 as shown by the
κ = 0.8 response curve. Type (c) response occurs for 0.848 < κ < 1 as shown by the κ = 0.9 response curve.
Left panel shows pressure as a function of e and right panel shows pressure as a function of a/A

behavior occurs. The relation between η and κ that delineates between these two behaviors
can be characterized exactly and elegantly, not only for the Mooney-Rivlin material, but also
for more general incompressible isotropic hyperelastic materials (in which case additional
behavior types are not ruled out [5]).

For our purposes in what follows, we shall continue to provide certain demonstrations
using the Mooney-Rivlin base response for a spherical shell with η = B/A = 2. Then, using
the procedure as described in [26], one finds that the transition between type (a) and type (c)
behavior occurs for η = 2 when κ ∼= 0.847526. This is illustrated in Fig. 4 where, for η = 2,
one finds that: κ = 0.8 gives type (a) behavior, κ = 0.9 gives type (c) behavior, and κ = 1.0
gives type (b) behavior.

6 The Residual Stress Integrals

The residual stress effect is governed by the integral for Pτ in (5.6). Because the residual
stress fields under consideration occur as linear combinations of powers of R, it is useful to
first observe that

τ̄RR = cRq ⇒ λ2τ̄�� − λ−4τ̄RR = c
(
λ2(1 + 1

2q) − λ−4
)
Rq.

This motivates the definition

Pτ̄ |q ≡
∫ b

a

(
(2 + q)λ2 − 2λ−4

)
Rq dr

r
. (6.1)

The integral for Pτ in (5.6) will now be expressed in terms of these Pτ̄ |q . For example, the
residual stress field (4.1), (4.2) makes

Pτ = α2

A2

(
Pτ̄ |2 − (A + B)Pτ̄ |1 + AB Pτ̄ |0

)
. (6.2)

6.1 Explicit Integration of Pτ̄ |q

The explicit integration of Pτ̄ |q is complicated by the fact that now R appears in the in-
tegrand, along with λ and r . This prompts the introduction of dummy integration variable
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β = (λ3 − 1)1/3 whereupon

R = e1/3A

β
, λ = (β3 + 1)1/3,

dr

r
= − dβ

β4 + β
. (6.3)

This motivates the additional non-dimensionalized quantity

P ∗
τ̄ |q = Pτ̄ |q

Aq
. (6.4)

One now finds that

P ∗
τ̄ |q = −2e

q
3

∫ e
1
3 /η

e
1
3

(
q + 2

2
− 1

(β3 + 1)2

)
dβ

(β3 + 1)
1
3 βq+1

. (6.5)

Whether or not (6.5) integrates simply depends upon the value of q . Simple integration,
in the sense of not requiring representation in terms of special functions, occurs for q =
0,2,5,8, . . .2 + 3n, . . . In particular, we find that

P ∗
τ̄ |0 = 5 + 4β3

2(1 + β3)
4
3

∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.6)

P ∗
τ̄ |2 = e

2
3

2 − 4β3 − 5β6

2β2(1 + β3)
4
3

∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.7)

P ∗
τ̄ |5 = e

5
3

2 + 5β3 + 16β6 + 12β9

2β5(1 + β3)
4
3

∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.8)

P ∗
τ̄ |8 = e

8
3

10 + 16β3 − 22β6 − 132β9 − 99β12

10β8(1 + β3)
4
3

∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.9)

and

P ∗
τ̄ |11 = e

11
3

40 + 55β3 − 28β6 + 126β9 + 756β12 + 567β15

40β11(1 + β3)
4
3

∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

. (6.10)

However other values of q do not lead to such simple expressions. For example q = 1 gives

P ∗
τ̄ |1 =e

1
3

(
β−1

2F1

[ − 1
3 , 7

3 , 2
3 ,−β3

] − 3β2
2F1

[
2
3 , 7

3 , 5
3 ,−β3

]

− 3
5β5

2F1
[

5
3 , 7

3 , 8
3 ,−β3

])∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.11)
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where 2F1[·, ·, ·, ·] is the hypergeometric function (see, e.g., [1]) that is defined by the series

2F1(a, b, c, z) = � (c)

� (a)� (b)

∞∑
n=0

� (a + n)� (b + n)

� (c + n)

zn

n! . (6.12)

Here �(·) is the classical gamma function, which has many formal expressions [19], includ-
ing

�(ξ) =
∫ ∞

0
t ξ−1 e−t dt. (6.13)

All of the P ∗
τ̄ |q as functions of e for e > 0 as given by (6.6) - (6.11) are found to take on

positive values. Beginning from the initial value P ∗
τ̄ |q

∣∣∣
e=0

= ηq − 1, the graphs are found to

increase to a maximum and to then subsequently decrease toward zero as e tends to infinity.
This behavior is established in the next subsection.

6.2 Behavior of P ∗
τ̄ |q for Small and Large e

It is useful to obtain simplified expressions for both the small e and large e behavior of P ∗
τ̄ |q

as functions of the parameters η and q . This is especially true for those q , such as q = 1,
that do not give straight forward expressions for P ∗

τ̄ |q .
To obtain the small e response we rewrite (6.5) as

P ∗
τ̄ |q = e

q
3

∫ e
1
3 /η

e
1
3

g(q,β)
dβ

βq+1
(6.14)

with

g(q,β) = 1

(β3 + 1)
1
3

(
−q − 2 + 2

(β3 + 1)2

)
. (6.15)

Because g(q,β) has the small β expansion

g(q,β) = −q + a1β
3 + a2β

6 + a3β
9 + O(β12) (6.16)

with

a1 = −4 + 1
3q, a2 = 22

3 − 2
9q, a3 = 46

9 + 14
81q,

it follows from (6.14) that

P ∗
τ̄ |q = eq/3

(
β−q + a1

3 − q
β3−q + a2

6 − q
β6−q + a3

9 − q
β9−q + O(β12−q)

)∣∣∣∣∣
β=e

1
3 /η

β=e
1
3

, (6.17)

provided q 
= 0,3,6,9. The cases q = 0,3,6,9 . . . can be considered separately, with q =
3,6,9 . . . each yielding up an alternative log term in the above expression.

Finally, evaluating (6.17) between the upper and lower limits now shows that the small e

expansion for P ∗
τ̄ |q begins as

P ∗
τ̄ |q = ηq − 1 − 1

3

(
12 − q

3 − q

)
(ηq−3 − 1)e + O(e2), (6.18)
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Fig. 5 The solid curves in panels (a) - (c) show the P ∗̄
τ |q response graphs as a function of e for η = 2.

Panel (a) is for q = 0 as given by (6.6). Panel (b) is for q = 1 as given by (6.11). Panel (c) is for q = 2 as
given by (6.7). The dashed curves in each of these panels depicts the associated small e (red) and large e

(blue) response as given by (6.18) and (6.19), respectively. The final panel (d) shows all six graphs P ∗̄
τ |q for

q = 0,1,2,5,8,11 on a common plot. Because the initial value P ∗̄
τ |q

∣∣∣
e=0

= ηq − 1 = 2q − 1, only the cases

q = 8 and q = 11 are well resolved in the last panel, with the other cases crowded near the e-axis

provided q 
= 3 (with q = 3 easily treated as its own special case).
For large e consider the large β behavior of g(q,β) using (6.15), namely g(q,β) ∼

−(q + 2)/β as β → ∞. This gives

P ∗
τ̄ |q ∼ −(q + 2)e

q
3

∫ e
1
3 /η

e
1
3

dβ

βq+2
=

(
q + 2

q + 1

)
(ηq+1 − 1)e−1/3, as e → ∞. (6.19)

The first three panels of Fig. 5 – which consider separately q = 0,1,2 – provides graphical
verification that the small e and large e results give good approximations to the exact inte-
grals on an appropriate range. The final panel of this figure puts all of the graphs for (6.6) -
(6.11) on a common plot, so as to also show results for the remaining cases q = 5,8,11.

6.3 Consequences for Pτ

The Pτ integral for each of the previously exhibited τRR fields (4.1), (4.3), (4.4), (4.5) are
expressed in terms of the nondimensionalized P ∗

τ̄ |q as follows:

(4.1) ⇒ Pτ = α2

(
P ∗

τ̄ |2 − (1 + η)P ∗
τ̄ |1 + ηP ∗

τ̄ |0
)
, (6.20)

(4.3) ⇒ Pτ = α5

(
P ∗

τ̄ |5 −
(

η5−1
η2−1

)
P ∗

τ̄ |2 +
(

η2(η3−1)

η2−1

)
P ∗

τ̄ |0
)

, (6.21)

(4.4) ⇒ Pτ = α8

(
P ∗

τ̄ |8 −
(

η8−1
η5−1

)
P ∗

τ̄ |5 +
(

η5(η3−1)

η5−1

)
P ∗

τ̄ |0
)

, (6.22)

(4.5) ⇒ Pτ = α11

(
P ∗

τ̄ |11 −
(

η11−1
η8−1

)
P ∗

τ̄ |8 +
(

η8(η3−1)

η8−1

)
P ∗

τ̄ |0
)

. (6.23)
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The coefficients αi in (6.20) - (6.23) have units of stress. Here it is important to note (see,
e.g., Fig. 2) that setting αi = 1 corresponds to very different residual stress field magnitudes
for the four cases i = 1, . . .4. In order to fairly contrast the different fields, we observe
that τ��(B) is a dominant residual stress value in Fig. 2. This motivates introducing the
non-dimensional

α∗
i = τ��(B)/μ. (6.24)

Consequently, using (4.2), (4.7), (4.8), (4.9), one finds that

α2 = 2

η (η − 1)
α∗

2 μ, α5 = 2(η2 − 1)

η2 (3η5 − 5η3 + 2)
α∗

5 μ, (6.25)

α8 = 2(η5 − 1)

η5 (3η8 − 8η3 + 5)
α∗

8 μ, α11 = 2(η8 − 1)

η8 (3η11 − 11η3 + 8)
α∗

11 μ. (6.26)

The final quantities to nondimensionalize are the Pτ in (6.20) - (6.23). The previous
nondimensionalization P ∗

o = Po/μ from the first of (5.7) motivates

P ∗
τ = Pτ/μ (6.27)

whereupon (5.4) is expressed in the nondimensionalized form

�P/μ = P ∗
o + P ∗

τ , (6.28)

where P ∗
o continues to be given by (5.8). More importantly, P ∗

τ in (6.28) now follows from
(6.20) - (6.23) in terms of α∗

i . For example,

(4.1) ⇒ P ∗
τ = 2α∗

2

η(η − 1)

(
P ∗

τ̄ |2 − (1 + η)P ∗
τ̄ |1 + ηP ∗

τ̄ |0
)
, (6.29)

(4.3) ⇒ P ∗
τ = 2(η2 − 1)α∗

5

η2(3η5 − 5η3 + 2)

(
P ∗

τ̄ |5 −
(

η5−1
η2−1

)
P ∗

τ̄ |2 +
(

η2(η3−1)

η2−1

)
P ∗

τ̄ |0
)

. (6.30)

Similar style expressions, albeit more complicated ones, follow for P ∗
τ upon using (6.26)

in the remaining two cases of (6.22) and (6.23). Together this gives four expressions for
P ∗

τ : one each for (4.1), (4.3), (4.4) and (4.5). Each of these is a function of e on e > 0 as
determined by the parameters η > 1 and α∗

i . In each case, and for all parameter values η and
α∗

i , one may verify that (6.18) gives that P ∗
τ = 0 when e = 0.

The advantage of introducing the unit-free coefficient α∗
i is that the various alternative

residual stress fields are now expressed in terms of the readily interpretable scaling ratio
τ��(B)/μ. For α∗

i > 0 we find that each of the P ∗
τ decreases with e from its initial zero

value to a local minimum before again increasing so as to asymptotically give P ∗
τ → 0 as

e → ∞. The first panel of Fig. 6 shows this behavior for (4.1) and (4.4) on the interval
0 ≤ e ≤ 25. The panel shows how this behavior is also reliably predicted upon using the
small and large e results for the individual parts P ∗

τ̄ |q that make up each P ∗
τ . The second

panel of Fig. 6 confirms that these trends hold also for the remaining two cases by showing
P ∗

τ on the interval 0 ≤ e ≤ 40 for all four cases (4.1), (4.3), (4.4) and (4.5). The new scaling
(6.24) now results in the case (4.1) providing the dominant affect for a common value of the
dimensionless ratio τ��(B)/μ.
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Fig. 6 Behavior of P ∗
τ as a function of e for the four cases (4.1), (4.3), (4.4) and (4.5). All graphs are for

η = 2 and α∗
i

= 1. Panel (a) shows the case (4.1) in purple and the case (4.4) in green. Small and large
e approximations are shown in the same color using dashed lines. Panel (b) supplies the remaining graphs
for (4.3) and (4.5). The general behavior for α∗

i
> 0 is monotone decrease to a local minimum followed by

asymptotic increase back toward the e-axis. Changing the sign of α∗
i

so as to make α∗
i

< 0 reflects all curves
about the horizontal e-axis

7 Effect of Residual Stress on the Pressure-Inflation Relation

The vanishing of P ∗
τ both at e = 0 and as e → ∞ indicates that the residual stress effect

on the inflation behavior is most consequential for intermediate values of e for the residual
stress fields under consideration here. For example, the basic τRR and τ�� field pair given
by (4.1) and (4.2) generates (6.29) for P ∗

τ . If α∗
2 > 0 then this P ∗

τ is negative, with an η

dependent value of e that locates its internal minimum. For η = 2 this internal minimum
is at e ∼= 3.9543. Consequently, it is at this e-value that the residual stress will most affect
the inflation graph. Figure 7 exhibits this tendency, where for demonstration purposes the
Mooney-Rivlin parameter κ = 0.75 is employed. The baseline curve for no residual stress is
type (a) for κ = 0.75. As confirmed by the figure, the effect of the residual stress field (4.1),
(4.2) on the inflation graph is largest near e = 4. Positive values of α∗

2 correspond to τRR <

0 in the shell interior and these lower the inflation graphs. Conversely, interior residual
stresses τRR > 0 raise the graph. This reflects the same tendency for the corresponding 2-
D cylindrical geometry problem described in [16]. Similar results follow for the other τRR

fields (4.3), (4.4) and (4.5), although the overall effect is smaller for the same value of
τ��(B) because of the overall ordering of the various P ∗

τ graphs as previously exhibited in
Fig. 6.

The specific nature of (2.15), with its separate additive contributions, accounts for the
straight forward additive residual stress effect in (6.28) that serves to modify the base re-
sponse graph (the red curve in Fig. 7). In particular, for η = 2 and stress field (4.1), (4.2),
the residual stress will continue to have its largest effect on the inflation graph near e = 4
for other values of the Mooney-Rivlin parameter κ . Indeed, the same holds true if W in
(2.15) is modified so as to replace the Mooney-Rivlin form with an alternative base material
response.

Staying with the Mooney-Rivlin base response, but considering alternative values of κ ,
recall from the discussion at the end of Sect. 5 that the value κ ∼= 0.847526 provides the
transition between type (a) and type (c) inflation response for η = 2 when no residual stress
is present. The question thus arises as to whether residual stress can alter the type of the
inflation response away from its base behavior? The answer to this question is “Yes”. As
shown in our final two figures, residual stress can cause a base type (a) response to become
type (c), and it can also cause a base type (c) response to become type (a). Technically, such
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Fig. 7 Inflation graphs as determined by (6.28) for a η = B/A = 2 spherical shell consisting of a hyperelastic
base material described by a κ = 0.75 Mooney-Rivlin stored energy density W . The residual stress field is
given by (4.1) and (4.2). The affect of the residual stress is accounted for in the theory via (2.15) which
augments the Mooney-Rivlin energy density with the term 1

2 ((tr(τC) − tr(τ )). The central curve in red
is the base inflation response (α∗

2 = 0) corresponding to no residual stress. Solid blue curves correspond
progressively to α∗

2 = 0.5, 1, 2. Dashed blue curves correspond progressively to α∗
2 = −0.5, −1, −2

Fig. 8 Type (a) monotonic
inflation response occurring for
η = 2 and κ = 0.84 in the
absence of residual stress (red)
becomes type (c) nonmonotonic
response for the residual stress
field pair given by (4.1) and (4.2)
with α∗

2 = −1 (dashed blue)

a result can be made to follow from the decreasing-increasing behavior of P ∗
τ for α∗

i > 0 and
its converse increasing-decreasing behavior for α∗

i < 0. Namely, prior to the consideration
of residual stress, the transition between type (a) and type (c) behavior is characterized by an
inflation graph that is locally flat at some value of e. Specifically, this e locates an inflection
point of the base response graph. By contriving to make the inflection point of the base
response graph have an e-value that is suitably located with respect to the single extrema
of a P ∗

τ graph, one can chose α∗
i to push the base response graph into either type (a) or

type (c) behavior. More generally, starting with a base response graph that is just to one side
of the (a)-to-(c) transition, namely either a definite type (a) response or a definite type (c)
response, one can by continuity execute a similar push so as to transition the inflation graph
to the other type of response behavior.

To provide a demonstration of a type (a) base response that becomes type (c) for a specific
residual stress field, consider η = 2 and κ = 0.84. This corresponds to type (a) response in
the absence of residual stress (the red curve in Fig. 8). The residual stress field pair given by
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Fig. 9 Type (c) nonmonotonic
inflation response occurring for
η = 2 and κ = 0.86 in the
absence of residual stress (red)
becomes type (a) monotonic
response for the residual stress
field pair given by (4.1) and (4.2)
with α∗

2 = 1 (blue)

(4.1) and (4.2) with α∗
2 = −1 is then found to give a type (c) inflation response graph (the

dashed blue curve in Fig. 8). Conversely we exhibit a type (c) base response that becomes
type (a) for a specific residual stress field by taking η = 2 and κ = 0.86. This corresponds
to type (c) response in the absence of residual stress (the red curve in Fig. 9). The residual
stress field pair given by (4.1) and (4.2) with α∗

2 = 1 is then found to give a type (a) inflation
response graph (the solid blue curve in Fig. 9).

8 Concluding Remarks

The specific additive form W = Wo + Wτ that is used in this study is motivated by, and in
keeping with, prototypical forms that are utilized in previous works. These additive forms
are now beginning to see usage in computational treatments (e.g., [8, 22]) that address fun-
damental questions of bifurcation, imperfection sensitivity and symmetry breaking defor-
mations, all of which are issues that are beyond the scope of this article. In the context of
W = Wo + Wτ we have made use of Wτ given by the first of (2.13). For spherical symmetry
this gave rise to integrals (5.6) which had readily determined properties for certain residual
stress field expressions. Specifically, a τRR field that is a linear combination of terms in Rq

leads to the consideration of individual integrals given by (6.1). These were then used in
the context of Wo given by a Mooney-Rivlin form. The M-R form is of special interest for
sphere problems, since it can give either monotone or nonmonotone inflation response as
determined by the M-R parameters and the shell thickness. Thus for example it was possi-
ble to show how residual stress could potentially cause a nonmonotone response to become
monotone, or vice versa, without changing the problem geometry or the constitutive law.
Here it is to be noted that the same integrals (6.1) will arise in an alternative treatment that
retains W = Wo + Wτ with Wτ given by the first of (2.13) but with an alternative choice for
Wo.

More generally, it is immediate that the form W = Wo + Wτ with Wτ given by either
of (2.13) has the property that the material response reduces to that of a conventional in-
compressible hyperelastic solid with stored energy Wo in the event that the residual stress
τ vanishes. It is important to realize that a separate issue, and one that is not addressed in
this paper, is whether or not a given non-vanishing τ could be associated with a specific
relaxed configuration that is different from the reference configuration (meaning that there
is no residual stress in the relaxed configuration). In other words, whether the hyperelastic
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response from the residually stressed reference configuration using W = Wo + Wτ matches
the response from the relaxed configuration using W = Wo or perhaps a suitably modified
Wo (meaning a Wo that does not incorporate a residual stress).

Because this issue is not addressed here, care must be taken in describing the mean-
ing of findings encapsulated in, for example, Figs. 8 or 9. That is why our monotone vs.
nonmonotone statement in the preceding paragraph avoids describing the results in terms
of a residually stressed M-R material. Addressing these types of subtle issues gives rise to
broader notions of how to frame such considerations in a fundamental way [11]. Within the
specific context of Mooney-Rivlin type response these issues are addressed in [2], where
there is a special focus on conditions of plane strain.

Our attention here was also limited to residual stress fields with radial normal stress
in the three-term form τRR = k0 + k1R

q1 + k2R
q2 for suitably chosen integer exponents

q2 > q1 > 0; these being the simplest nontrivial forms consistent with (3.9). However, such
τRR fields are of one sign, and the resulting τ�� fields have exactly one internal node. For the
purpose of constructing more general residual stress fields that are amenable to the treatment
presented here, one may consider the general form containing n terms (n ≥ 3):

τRR(R) = α3n−4

(
c1R

0 + c2R
2 + c3R

5 + · · · + cn−1R
3n−7 + R3n−4

)
. (8.1)

This form, with exponents given in the above particular way, is potentially highly workable
for additional analysis because it generates integrals Pτ̄ |q given by (6.1) in terms of specific
quotient expressions that do not make use of special functions. Note that the τrr fields given
by (4.3), (4.4) and (4.5) are all special cases of the form (8.1), but (4.1) is not. For example,
(4.5) is n = 5 with c2 = c3 = 0 and c1 and c4 given by complicated expressions. In general
for (8.1), the parameter α3n−4 can be regarded as an overall strength-of-field parameter,
whereupon the degrees of freedom conferred by the parameters c1 to cn−1 is reduced by two
so as to meet the boundary conditions (3.9). Thus the general form (8.1) effectively provides
n-3 degrees of freedom beyond that of the overall strength-of-field for tuning the form of
the residual stress fields.
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