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Abstract
We consider a recently introduced geometrically nonlinear elastic Cosserat shell model in-
corporating effects up to order O(h5) in the shell thickness h. We develop the corresponding
geometrically nonlinear constrained Cosserat shell model, we show the existence of mini-
mizers for the O(h5) and O(h3) case and we draw some connections to existing models
and classical shell strain measures. Notably, the role of the appearing new bending tensor
is highlighted and investigated with respect to an invariance condition of Acharya (Int. J.
Solids Struct. 37(39):5517–5528, 2000) which will be further strengthened.
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1 Introduction

Recently [20] we have established a novel geometrically nonlinear Cosserat shell model
including terms up to order O(h5) in the shell-thickness h, by extending the techniques
from [30–33, 44]. The dimensional descent was obtained starting with a 3D-parent Cosserat
model and assuming an appropriate 8-parameter ansatz for the shell-deformation through
the thickness. This is the derivation approach and it has allowed us to arrive at specific novel
strain and curvature measures. See also [7] for an alternative derivation of a O(h3) Cosserat
shell model. In this way, we obtain a kinematical model which is similar, but it does not
coincide, with the kinematical model of 6-parameter shells. The theory of 6-parameter shells
was developed for shell-like bodies made of Cauchy materials, see the monographs [12, 27]
or the papers [19, 37]. We have remarked that even if we restrict our model to order O(h3),
the obtained minimization problem is not the same as that previously considered in the
literature, since the influence of the curved initial shell configuration appears explicitly in
the expression of the coefficients of the energies for the reduced two-dimensional variational
problem and additional bending-curvature and curvature terms are present.

In order to improve our understanding of the new Cosserat shell model, it is useful to
consider certain extreme limit cases. The investigated limit case considered in this paper,
i.e., letting the Cosserat couple modulus μc → ∞, is similar to that considered in the case
of the Cosserat plate model [30] and is naturally suggested by the situation for the three
dimensional Cosserat model, which will now be explained.

The underlying nonlinear elastic 3D-problem is the two-field Cosserat variational prob-
lem

I (ϕξ ,Fξ ,Rξ ,αξ ) =
∫

�ξ

[
Wmp(Eξ ) + Wcurv(αξ )

]
dV (ξ) − �(ϕξ ,Rξ )

→ min. w.r.t. (ϕξ ,Rξ ) , (1.1)

where

Fξ :=∇ξϕξ = polar(F )︸ ︷︷ ︸
�=Rξ in general

√
FT

ξ Fξ ∈R
3×3

the deformation gradient ,

Rξ ∈ SO(3) microrotation tensor (independent tensor field) ,

Uξ :=R
T

ξ Fξ ∈ R
3×3 the non-symmetric Biot-type stretch tensor ,

Eξ :=Uξ −1 ∈ R
3×3 the non-symmetric strain tensor , (1.2)

αξ :=R
T

ξ Curlξ Rξ ∈R
3×3 the second order dislocation density tensor [34] ,

Wmp(Eξ ) :=μ‖dev symEξ‖2 + μc ‖skewEξ‖2 + κ

2
[tr(sym(Eξ ))]2 physically linear ,

Wcurv(αξ ) :=μL2
c

(
b1 ‖dev symαξ‖2 + b2 ‖skewαξ‖2 + b3 [tr(αξ )]2

)
curvature energy ,

�(ϕξ ,Rξ ) represents the external loading potential .

Here, �ξ ⊂ R
3 is a three-dimensional domain, see Fig. 1. The elastic material constituting

the body is assumed to be homogeneous and isotropic and the reference configuration �ξ is
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Fig. 1 Kinematics of the 3D-Cosserat model and the 3D-constrained Cosserat model (μc → ∞)

assumed to be a natural state. All the body configurations are referred to a fixed right Carte-
sian coordinate frame with unit vectors ei along the axes Oxi . A generic point of �ξ will be
denoted by (ξ1, ξ2, ξ3). The deformation of the body occupying the domain �ξ is described
by a vector map ϕξ : �ξ ⊂ R

3 → R
3 (called deformation) and by a microrotation tensor

Rξ : �ξ ⊂ R
3 → SO(3) attached at each point. We denote the current configuration (de-

formed configuration) by �c := ϕξ (�ξ ) ⊂ R
3. Moreover, μ > 0 denotes the shear modulus,

κ > 0 is the bulk modulus and μc ≥ 0 is the Cosserat couple modulus.
For Cosserat couple modulus μc → ∞ and characteristic length Lc → 0 the previous

Cosserat model approximates the classical (Cauchy-elastic) Biot variational problem

I (ϕξ ,Fξ ) =
∫

�ξ

Wmp(Eξ ) dV (ξ) − �(ϕξ ) → min. w.r.t. ϕξ , (1.3)

where

Fξ := ∇ξϕξ = polar(Fξ )

√
FT

ξ Fξ ∈ R
3×3

the deformation gradient,

Rξ := polar(Fξ ) ∈ SO(3) continuum rotation (dependent tensor field),

Uξ :=
√

FT
ξ Fξ ∈ Sym+(3) the positive definite symmetric Biot stretch tensor,

Eξ := Uξ −1 ∈ Sym+(3) the symmetric strain tensor , (1.4)

Wmp(Eξ ) := μ‖devEξ‖2 + κ

2
[tr(Eξ )]2 physically linear isotropic response ,

�(ϕξ ) represents the external loading potential .

Now, we consider �ξ ⊂ R
3 to be a three-dimensional curved shell-like thin domain,

see Fig. 1. We take the fictitious Cartesian (planar) configuration of the body �h. This
parameter domain �h ⊂ R

3 is a right cylinder of the form

�h =
{
(x1, x2, x3)

∣∣∣ (x1, x2) ∈ ω, −h

2
< x3 <

h

2

}
= ω ×

(
−h

2
,

h

2

)
,
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Fig. 2 Kinematics of the 2D-constrained Cosserat shell model (μc → ∞). Here, Q∞ is the elastic rotation
field, Q0 is the initial rotation from the fictitious planar Cartesian reference ω configuration to the initial
configuration ωξ , and R∞ is the total rotation field from the fictitious planar Cartesian reference configuration
ω to the deformed configuration ωc

where ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂ω and the constant length

h > 0 is the thickness of the shell. For shell–like bodies we consider the domain �h to be
thin, i.e., the thickness h is small. The diffeomorphism 
 : R3 → R

3 describing the reference
configuration (i.e., the curved surface of the shell), will be chosen in the specific form


(x1, x2, x3) = y0(x1, x2) + x3 n0(x1, x2), n0 = ∂x1y0 × ∂x2y0

‖∂x1y0 × ∂x2y0‖ , (1.5)

where y0 : ω → R
3 is a function of class C2(ω). If not otherwise indicated, by ∇
 we

denote ∇
(x1, x2,0), so that ∇
 = (∇y0 |n0). We use the polar decomposition [35] of ∇


and write

∇
 = Q0 U0 , Q0 = polar(∇
) ∈ SO(3), U0 ∈ Sym+(3). (1.6)

Further, let us define the map ϕ : �h → �c, ϕ(x1, x2, x3) = ϕξ (
(x1, x2, x3)). We
view ϕ as a function which maps the fictitious planar reference configuration �h into
the deformed configuration �c . We also consider the elastic microrotation Qe,s : �h →
SO(3), Qe,s(x1, x2, x3) := Rξ(
(x1, x2, x3)). In [20], by assuming that the elastic microro-
tation is constant through the thickness, i.e., Qe,s(x1, x2, x3) = Qe,s(x1, x2), and considering
an 8-parameter quadratic ansatz in the thickness direction for the reconstructed total defor-
mation ϕs : �h ⊂ R

3 →R
3 of the shell-like body, i.e.,

ϕs(x1, x2, x3) =m(x1, x2) +
(

x3�m(x1, x2) + x2
3

2
�b(x1, x2)

)
Qe,s(x1, x2)∇
.e3 , (1.7)

where m : ω ⊂ R
2 → R

3 represents the total deformation of the midsurface, �m, �b : ω ⊂
R

2 → R allow in principal for symmetric thickness stretch (�m �= 1) and asymmetric thick-
ness stretch (�b �= 0) about the midsurface1

�m =1 − λ

λ + 2μ
[〈QT

e,s(∇m|0)[∇
]−1,13
〉− 2] , (1.8)

1They may be written in terms of the Poisson ratio of the isotropic and homogeneous material ν = λ
2 (λ+μ)

.
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�b = − λ

λ + 2μ

〈
Q

T

e,s(∇(Qe,s∇
.e3)|0)[∇
]−1,13

〉

+ λ

λ + 2μ

〈
Q

T

e,s(∇m|0)[∇
]−1(∇n0|0)[∇
]−1,13

〉
,

we have obtained a completely two-dimensional minimization problem, see Fig. 2, in which
the energy density is expressed in terms of the following tensor fields (the same strain mea-
sures are also considered in [8, 9, 12, 19, 27] but with different motivations) on the surface ω

Em,s := Q
T

e,s(∇m|Qe,s∇
.e3)[∇
]−1 −13 /∈ Sym(3),

elastic shell strain tensor, (1.9)

Ke,s :=
(

axl(Q
T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0
)
[∇
]−1 /∈ Sym(3)

elastic shell bending–curvature tensor.

In the constrained Cosserat shell model, i.e., letting μc → ∞, the elastic microrotation
Qe,s is not any more an independent tensor field (trièdre caché, Cosserat [18]). A direct
consequence of the assumption μc → ∞ is that the elastic microrotation Qe,s is coupled to
the midsurface displacement vector field m, through

Qe,s → Q∞ := polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T ∈ SO(3).

(1.10)

Considering Fig. 3, in this paper we determine the precise form of the Koiter-type limit
problem appearing for μc → ∞. We recall that (see Appendix A.2), in the absence of
external loads, in matrix format and for a nonlinear elastic shell, the variational problem
for the classical isotropic Koiter shell model is to find a deformation of the midsurface
m : ω ⊂ R

2 →R
3 minimizing:

∫
ω

{
h

(
μ‖[∇
]−T 1

2

(
I�m − I�y0

) [∇
]−1‖2 + λμ

λ + 2μ
tr
[
[∇
]−T

(
I�m − I�y0

) [∇
]−1
]2
)

+ h3

12

(
μ‖[∇
]−T

(
II�m − II�y0

)[∇
]−1‖2

+ λμ

λ + 2μ
tr
[
[∇
]−T

(
II�m − II�y0

)[∇
]−1
]2
)}

det∇
da. (1.11)

Here Im := [∇m]T ∇m ∈ R
2×2 and IIm := −[∇m]T ∇n ∈ R

2×2 are the matrix representa-
tions of the first fundamental form (metric) and the second fundamental form on m(ω),

respectively, n = ∂x1m × ∂x2m

‖∂x1m × ∂x2m‖ , and with Lm we identify the Weingarten map (or shape

operator) on m(ω) with its associated matrix defined by Lm = I−1
m IIm ∈ R

2×2, with similar
definitions for Iy0 , IIy0 , n0 and Ly0 on the surface y0(ω), see Sect. 2 for further notations.

In comparison with this nonlinear Koiter model, in the obtained new constrained elastic
Cosserat shell model, the pure membrane energy is expressed in terms of the difference

√
[∇
]−T I�m [∇
]−1 −

√
[∇
]−T I�y0 [∇
]−1 (1.12)
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Fig. 3 A schematic representation of the appearing models. Here, ϕ = x + u(x) is the 3D-deformation,
u is the three-dimensional displacement, F = ∇ϕ is the deformation gradient, R ∈ SO(3) represents the
Cosserat microrotation, m = y0 + v(x) is the midsurface deformation, v is the midsurface displacement,
Aϑ ∈ so(3) is the infinitesimal microrotation, Im := [∇m]T ∇m ∈ R

2×2 and IIm := −[∇m]T ∇n ∈ R
2×2

are the matrix representations of the first fundamental form (metric) and the second fundamental form on

m(ω), respectively, n = ∂x1m × ∂x2m

‖∂x1m × ∂x2m‖ , and with Lm we identify the Weingarten map (or shape oper-

ator) on m(ω) with its associated matrix defined by Lm = I−1
m IIm ∈ R

2×2, with similar definitions for
Iy0 , IIy0 , n0 and Ly0 on the surface y0(ω). The tensor Glin

Koiter = 1
2 [Im − Iy0 ]lin = sym[(∇y0)T (∇v)]

represents the infinitesimal change of metric, Rlin
Koiter = [IIm − IIy0 ]lin is the infinitesimal change of

curvature, and we have used the linear approximation of the normal n = n0 + δn + h.o.t., where
δn = 1√

det Iy0

(
∂x1y0 × ∂x2v + ∂x1v × ∂x2y0

)− tr(I−1
y0 sym((∇y0)T ∇v))n0 is the increment of the normal

when y0 → y0 + v(x). The dimensional reduction is undertaken in the sense of an engineering ansatz and
κ denotes a typical principal curvature. The relations concerning the third column of this table will be made
explicit in [22]
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and not in terms of

[∇
]−T 1

2

(
I�m − I�y0

)[∇
]−1 = [∇
]−T GKoiter [∇
]−1, (1.13)

as it is the case in the classical Koiter shell model. This is a consequence of the fact that
in the parent three-dimensional energy, we are starting from the non-symmetric Biot-type
stretch tensor (similar to the right stretch tensor U = √

FT F ), while the Koiter shell model
is typically constructed considering a quadratic form in terms of the right Cauchy-Green
deformation tensor C = U 2 = FT F . We notice that in our constrained Cosserat shell model
there does not exist a pure bending energy, the bending terms (those involving the second
fundamental form) are always coupled with membrane terms (those involving the first fun-
damental form). The presence of energies depending on the difference of the square roots
of the first fundamental forms is consistent with new estimates of the distance between two
surfaces [16, 17] obtained in [28]. There, it is shown that the difference v = m − y0 is com-
pletely controlled by

‖
√

[∇
]−T I�m [∇
]−1 −
√

[∇
]−T I�y0 [∇
]−1‖ (1.14)

and

‖
√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1 −

√
[∇
]̂ I−1

y0
[∇
]T [∇
]−T II�y0

[∇
]−1‖. (1.15)

The sum of the two expressions appears in the constrained Cosserat plate model (∇
 =
1), too, see Eq. (3.69), while an additional term is present in our membrane-bending energy
which has a format that cannot be guessed: it is a quadratic form in terms of the change of
curvature tensor

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

m − L�
y0

)[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]
(̂

I−1
m II�m − Î−1

y0
II�y0

)
[∇
]−113 (1.16)

=
√

[∇
]−T Îm [∇
]−1 [∇
]
(̂

I−1
m II�m − Î−1

y0
II�y0

)
[∇
]−1

√
[∇
]−T Îy0 [∇
]−1.

Therefore, our particular cases follow the recent trends of considering new shell models
which are similar (but not equivalent) to the Koiter shell model with the aim to lead to
improved modelling results, especially for not so thin shells. Of course, for in-extensional
deformations Im = Iy0 (pure bending mode, flexure), our change of curvature tensor (1.16)
turns into

√
[∇
]−T Îy0 [∇
]−1[∇
]

(̂
I−1
y0

II�m − Î−1
y0

II�y0

)
[∇
]−1

=
√

[∇
]̂ I−1
y0

[∇
]T [∇
]−T
(

II�m − II�y0

)
[∇
]−1 = [∇
]−T

(
II�m − II�y0

)
[∇
]−1

= [∇
]−T RKoiter [∇
]−1

and coincides with the curvature tensor considered in the Koiter shell model (1.11), cf. [28].
In a forthcoming paper [22] we will see that the linearization of the strain measures

of our constrained Cosserat shell model naturally leads to the same strain measures that are
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h max{ sup
(x1,x2)∈ω

|κ1|, sup
(x1,x2)∈ω

|κ2|} < 2 (1.18)

Fig. 4 Left: h
2 < R. Here, R = 1

κ denotes a typical radius of principal curvature. Right: The classical condi-
tion ensuring just injectivity of the parametrization

preferred in the later works by Sanders and Budiansky [10, 11] and by Koiter and Simmonds
[24], who called the resulting theory the “best first-order linear elastic shell theory”.

In [20] the geometrically nonlinear constrained Cosserat shell model including terms up
to order O(h5) is constructed under the assumption

h max{ sup
(x1,x2)∈ω

|κ1|, sup
(x1,x2)∈ω

|κ2|} <
1

2
, (1.17)

where κ1, κ2 are the principal curvatures. Condition (1.17) guarantees that det∇
(x3) =
1 − 2 Hx3 + Kx2

3 �= 0 for all x3 ∈ [− h
2 , h

2

]
, i.e., it excludes self-intersection of the ini-

tially curved shell parametrized by 
, see [20, Proposition A.2.]. However, condition (1.17)
can be weakened since the classical condition (1.18) is necessary and sufficient (see the
Appendix A.3.1) to assure that det∇
(x3) = 1 − 2 Hx3 + Kx2

3 �= 0 for all x3 ∈ [− h
2 , h

2

]
.

Therefore, without further remarks and computations, the model presented in [20] is valid
under weakened conditions (1.18) on the thickness h. Clearly, in terms of the principal radii
of curvature R1 = 1

|κ1| , R2 = 1
|κ2| , see Fig. 4, the condition (1.18) is equivalent to

h < 2R1, h < 2R2 in ω ⇔ h < 2 min{ inf
(x1,x2)∈ω

R1, inf
(x1,x2)∈ω

R2} (1.19)

(and not h � 2 min{ inf
(x1,x2)∈ω

R1, inf
(x1,x2)∈ω

R2} as is the modelling thin shell assumption for

the classical Koiter model). For models which coincide to leading order with the classical
Koiter model for small enough thickness [4, 5], the existence of the solution is proven under
the conditions (1.19).

For the geometrically nonlinear Cosserat shell model including terms up to order O(h5)

[20], we have shown the existence of the solution [21] for the theory including O(h5) terms,
as well as the existence of the solution for the theory including terms up to order O(h3). In
Appendix A.3.1 we show that condition (1.17) on the thickness, under which the existence
result presented in [21] was shown, can be weakened, but the new condition still remains
more restrictive than (1.18), i.e., the following existence result holds true

Theorem 1.1 (Existence result for the theory including terms up to order O(h5)) Assume
that the external loads satisfy the conditions

f ∈ L2(ω,R3), t ∈ L2(γt ,R
3), (1.20)

and the boundary data satisfy the conditions

m∗ ∈ H1(ω,R3), Q
∗
e,s ∈ H1(ω,SO(3)). (1.21)
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Assume that the following conditions concerning the initial configuration are satisfied: y0 :
ω ⊂R

2 → R
3 is a continuous injective mapping and

y0 ∈ H1(ω,R3), Q0(0) ∈ H1(ω,SO(3)), ∇x
(0) ∈ L∞(ω,R3×3),

det[∇x
(0)] ≥ a0 > 0 ,
(1.22)

where a0 is a constant. Then, for sufficiently small values of the thickness h such that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α with α <

√
2

3
(29 − √

761) � 0.97083 (1.23)

and for constitutive coefficients such that μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and
b3 > 0, the minimization problem (2.4)–(2.8) admits at least one minimizing solution pair
(m,Qe,s) ∈ A, where the admissible set A of solutions is defined by

Aunconstr. =
{
(m,Qe,s) ∈ H1(ω,R3)×H1(ω,SO(3))

∣∣ m
∣∣
γd

= m∗, Qe,s

∣∣
γd

= Q
∗
e,s

}
, (1.24)

and the boundary conditions are to be understood in the sense of traces.

We noted that, in order to prove the existence of the solution, while in the theory in-
cluding O(h5) the condition on the thickness h is similar to that originally considered in
the modelling process, in the sense that it is independent of the constitutive parameters,
in the O(h3)-case the coercivity is proven under more restrictive conditions on the thick-
ness h which are depending on the constitutive parameters. This remains also true when the
problem of the existence of solution in the nonlinear constrained Cosserat shell model is
considered, as we show in Sects. 3.3 and 3.4.

Even if the condition (1.17) suggest that the existence of the solution is still valid for
Lc → 0, this turns out to be false, since the presence of the extra Cosserat curvature en-
ergy, i.e., the condition Lc > 0, is essential in our proof. The missing extra curvature en-
ergy, which in classical shell models is not present, is responsible for the typical non-well-
posedness of the classical models in the nonlinear case. Note that this also applies to Naghdi-
type shell models with one independent director.

This paper is now structured as follows. After fixing our notation we briefly recapitulate
the unconstrained Cosserat shell model. Then in Sect. 3 we turn our attention to the con-
straint Cosserat shell model which introduces several symmetry constraints in the model.
These symmetry constraints are put into perspective with the underlying modeling of the
three-dimensional problem. We prove conditional existence results since after all the prob-
lem may now be over-constrained. This motivates to introduce a modified model in Sect. 4,
in which certain symmetry requirements are waived. Unconditional existence theorems are
then presented. In Sect. 5 we express the strain measures in the Cosserat shell model in
terms of classical quantities and finally in Sect. 6 we discuss the new invariance condition
for bending tensors.

2 The Geometrically Nonlinear Cosserat Shell Model up to O(h5)

2.1 Notation

In this paper, for a, b ∈ R
n we let

〈
a, b

〉
Rn denote the scalar product on R

n with associ-
ated (squared) vector norm ‖a‖2

Rn = 〈
a, a

〉
Rn . The standard Euclidean scalar product on
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the set of real n × m second order tensors R
n×m is given by

〈
X,Y

〉
Rn×m = tr(X Y T ), and

thus the (squared) Frobenius tensor norm is ‖X‖2
Rn×m = 〈

X,X
〉
Rn×m . The identity tensor on

R
n×n will be denoted by 1n, so that tr(X) = 〈

X,1n

〉
, and the zero matrix is denoted by 0n.

We let Sym(n) and Sym+(n) denote the symmetric and positive definite symmetric ten-
sors, respectively. We adopt the usual abbreviations of Lie-group theory, i.e., GL(n) = {X ∈
R

n×n |det(X) �= 0} the general linear group, SO(n) = {X ∈ GL(n)|XT X = 1n, det(X) = 1}
with corresponding Lie-algebras so(n) = {X ∈R

n×n |XT = −X} of skew symmetric tensors
and sl(n) = {X ∈ R

n×n | tr(X) = 0} of traceless tensors. For all X ∈ R
n×n we set symX =

1
2 (XT + X) ∈ Sym(n), skewX = 1

2 (X − XT ) ∈ so(n) and the deviatoric part devX =
X − 1

n
tr(X) · 1n ∈ sl(n) and we have the orthogonal Cartan-decomposition of the Lie-

algebra gl(n) = {sl(n) ∩ Sym(n)} ⊕ so(n) ⊕R·1n, X = dev symX + skewX + 1
n

tr(X)1n.
For vectors ξ, η ∈R

n, we have the tensor product (ξ ⊗η)ij = ξi ηj . A matrix having the three
column vectors A1,A2,A3 will be written as (A1 |A2 |A3). For a given matrix M ∈ R

2×2

we define the 3D-lifted quantities

M̂ =
(

M11 M12 0
M21 M22 0

0 0 1

)
∈ R

3×3

and M� =
(

M11 M12 0
M21 M22 0

0 0 0

)
∈ R

3×3, M� = M̂ 1
�

2. (2.1)

We make use of the operator axl : so(3) → R
3 associating with a skew-symmetric matrix

A ∈ so(3) the vector axl(A) := (−A23,A13,−A12)
T . The corresponding inverse operator

will be denoted by Anti :R3 → so(3).
For an open domain � ⊆ R

3, the usual Lebesgue spaces of square integrable functions,
vector or tensor fields on � with values in R, R3, R3×3 or SO(3), respectively will be
denoted by L2(�;R), L2(�;R3), L2(�;R3×3) and L2(�;SO(3)), respectively. Moreover,
we use the standard Sobolev spaces H1(�;R) [2, 23, 26] of functions u. For vector fields
u = (u1, u2, u3)

T with ui ∈ H1(�), i = 1,2,3, we define ∇ u := (∇ u1 |∇ u2 |∇ u3)
T . The

corresponding Sobolev-space will be denoted by H1(�;R3). A tensor Q : � → SO(3) hav-
ing the components in H1(�;R) belongs to H1(�;SO(3)). For tensor fields P with rows
in H(curl ;�), i.e., P = (

PT .e1 |PT .e2 |PT .e3
)T

with (P T .ei)
T ∈ H(curl ;�), i = 1,2,3, we

define CurlP := (
curl (P T .e1)T | curl (P T .e2)T | curl (P T .e3)T

)T
. The corresponding Sobolev-

space will be denoted by H(Curl;�).
In writing the norm in the corresponding Sobolev-space we will specify the space. The

space will be omitted only when the Frobenius norm or scalar product is considered. In
the formulation of the minimization problem we have considered the Weingarten map (or
shape operator) on y0(ω) defined by its associated matrix Ly0 = I−1

y0
IIy0 ∈ R

2×2, where
Iy0 := [∇y0]T ∇y0 ∈ R

2×2 and IIy0 := −[∇y0]T ∇n0 ∈ R
2×2 are the matrix representations

of the first fundamental form (metric) and the second fundamental form of the surface
y0(ω), respectively. Then, the Gauß curvature K of the surface y0(ω) is determined by
K := det(Ly0) and the mean curvature H through 2 H := tr(Ly0). We have also used the
tensors defined by

Ay0 := (∇y0|0) [∇
]−1 ∈ R
3×3, By0 := −(∇n0|0) [∇
]−1 ∈ R

3×3, (2.2)
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and the so-called alternator tensor Cy0 of the surface [45]

Cy0 := det(∇
) [∇
]−T

(
0 1 0

−1 0 0
0 0 0

)
[∇
]−1. (2.3)

2.2 The Unconstrained Cosserat Shell Model

In [20], we have obtained the following two-dimensional minimization problem for the de-
formation of the midsurface m : ω→R

3 and the microrotation of the shell Qe,s : ω→SO(3)

solving on ω ⊂R
2: minimize with respect to (m,Qe,s) the functional

I (m,Qe,s) =
∫

ω

[
Wmemb

(
Em,s

)+ Wmemb,bend

(
Em,s, Ke,s

)
(2.4)

+ Wbend,curv

(
Ke,s

)]
det∇
da − �(m,Qe,s) ,

where the membrane part Wmemb

(
Em,s

)
, the membrane–bending part Wmemb,bend

(
Em,s, Ke,s

)
and the bending–curvature part Wbend,curv

(
Ke,s

)
of the shell energy density are given by

Wmemb

(
Em,s

)=
(
h + K

h3

12

)
Wshell

(
Em,s

)
,

Wmemb,bend

(
Em,s, Ke,s

)=
(h3

12
− K

h5

80

)
Wshell

(
Em,s By0 + Cy0Ke,s

)
(2.5)

− h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)

+ h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)

+ h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)
,

Wbend,curv

(
Ke,s

)=
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+
(h3

12
− K

h5

80

)
Wcurv

(
Ke,sBy0

)

+ h5

80
Wcurv

(
Ke,sB

2
y0

)
,

with

Wshell(X) = μ‖symX‖2 + μc‖skewX‖2 + λμ

λ + 2μ

[
tr(X)

]2

= μ‖dev symX‖2 + μc‖skewX‖2 + 2μ(2λ + μ)

3(λ + 2μ)
[tr(X)]2, (2.6)

Wshell(X,Y ) = μ
〈
symX, sym Y

〉+ μc

〈
skewX, skew Y

〉+ λμ

λ + 2μ
tr(X) tr(Y ),

Wmp(X) = μ‖symX‖2 + μc‖skewX‖2 + λ

2

[
tr(X)

]2

= Wshell(X) + λ2

2 (λ + 2μ)
[tr(X)]2,
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Wcurv(X) = μL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + b3 [tr(X)]2

)
, ∀X,Y ∈R

3×3.

Contrary to other 6-parameter theory of shells [12, 13, 19, 36] the membrane-bending
energy is expressed in terms of the specific tensor Em,s By0 + Cy0Ke,s . This tensor represents
a nonlinear change of curvature tensor, since in the linear constrained Cosserat model [22]
it reduces to the change of curvature tensor considered by Anicic and Léger [6] and more
recently by Šilhavỳ [39].

The parameters μ and λ are the Lamé constants of classical isotropic elasticity, κ =
2μ+3λ

3 is the infinitesimal bulk modulus, b1, b2, b3 are non-dimensional constitutive curva-
ture coefficients (weights), μc ≥ 0 is called the Cosserat couple modulus and Lc > 0 intro-
duces an internal length which is characteristic for the material, e.g., related to the grain size
in a polycrystal. The internal length Lc > 0 is responsible for size effects in the sense that
thinner samples are relatively stiffer than thicker samples. If not stated otherwise, we assume
that μ > 0, κ > 0, μc > 0, b1 > 0, b2 > 0, b3 > 0. All the constitutive coefficients are now
deduced from the three-dimensional formulation, without using any a posteriori fitting of
some two-dimensional constitutive coefficients.

The potential of applied external loads �(m,Qe,s) appearing in (2.4) is expressed by

�(m,Qe,s) = �ω(m,Qe,s) + �γt (m,Qe,s) , with (2.7)

�ω(m,Qe,s) =
∫

ω

〈
f,u

〉
da + �ω(Qe,s) and �γt (m,Qe,s) =

∫
γt

〈
t, u

〉
ds + �γt (Qe,s) ,

where u(x1, x2) = m(x1, x2) − y0(x1, x2) is the displacement vector of the midsurface,
�ω(m,Qe,s) is the potential of the external surface loads f , while �γt (m,Qe,s) is the po-
tential of the external boundary loads t . The functions �ω ,�γt : L2(ω,SO(3)) →R are ex-
pressed in terms of the loads from the three-dimensional parental variational problem [20]
and they are assumed to be continuous and bounded operators. Here, γt and γd are measur-
able nonempty subsets of the boundary of ω such that γt ∪ γd = ∂ω and γt ∩ γd = ∅. On γt

we have considered traction boundary conditions, while on γd we have the Dirichlet-type
boundary conditions:

m
∣∣
γd

= m∗ simply supported (fixed, welded), Qe,s

∣∣
γd

= Q
∗
e,s , clamped, (2.8)

where the boundary conditions are to be understood in the sense of traces.
In our model the total energy is not simply the sum of energies coupling the pure mem-

brane and the pure bending effect, respectively. Two mixed coupling energies are still present
after the dimensional reduction of the variational problem from the geometrically nonlinear
three-dimensional Cosserat elasticity.

Considering materials for which μc > 0 and the Poisson ratio ν = λ
2(λ+μ)

and Young’s

modulus E = μ(3λ+2μ)

λ+μ
are such that2 − 1

2 < ν < 1
2 and E > 0 the Cosserat shell model

admits global minimizers [21]. Under these assumptions on the constitutive coefficients,
together with the positivity of μ, μc, b1, b2 and b3, and the orthogonal Cartan-decomposition
of the Lie-algebra gl(3) and with the definition

Wshell(X) :=W∞
shell(symX) + μc‖skewX‖2 ∀X ∈ R

3×3, (2.9)

2These conditions are equivalent to μ > 0 and 2λ + μ > 0, which assure the positive definiteness of

the quadratic form Wshell(X) = μ‖symX‖2 + μc‖skewX‖2 + λμ

λ + 2μ

[
tr(X)

]2 = μ‖dev symX‖2 +

μc‖skewX‖2 + 2μ(2λ + μ)

3(λ + 2μ)
[tr(X)]2.
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W∞
shell(S) :=μ‖S‖2 + λμ

λ + 2μ

[
tr(S)

]2 ∀S ∈ Sym(3),

it follows that there exists positive constants c+
1 , c+

2 ,C+
1 and C+

2 such that for all X ∈ R
3×3

the following inequalities hold

C+
1 ‖S‖2 ≥ W∞

shell(S) ≥ c+
1 ‖S‖2 ∀S ∈ Sym(3),

C+
1 ‖symX‖2 + μc ‖skewX‖2 ≥ Wshell(X) (2.10)

≥ c+
1 ‖symX‖2 + μc ‖skewX‖2 ∀X ∈R

3×3,

C+
2 ‖X‖2 ≥ Wcurv(X) ≥ c+

2 ‖X‖2 ∀X ∈R
3×3.

Here, c+
1 and C+

1 denote the smallest and the largest eigenvalues, respectively, of the
quadratic form W∞

shell(X). Hence, they are independent of μc.

3 The Limit Problem for Infinite Cosserat Couple Modulus μc → ∞
In this section we consider the case μc → ∞, since then the constraint Rξ = polar(Fξ )

is enforced in the starting three-dimensional variational problem. In that case, the parental
three-dimensional model turns into the Toupin couple stress model [42, Eq. 11.8].

3.1 Constrained Elastic Cosserat Shell Models

Let us see what is happening to the dimensionally reduced model under the same circum-
stances. The following lemma gives us information on the constitutive restrictions under
which the energy density remains bounded.

Lemma 3.1 For sufficiently small values of the thickness h such that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α with α <

√
2

3
(29 − √

761) � 0.97083 (3.1)

and for constitutive coefficients satisfying μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and
b3 > 0, the energy density

W(Em,s,Ke,s) = Wmemb

(
Em,s

)+ Wmemb,bend

(
Em,s, Ke,s

)+ Wbend,curv

(
Ke,s

)
(3.2)

satisfies the estimate

W(Em,s,Ke,s) ≥h
7

48
Wshell

(
Em,s

)+ h3

12

37

80
Wshell

(
Em,sBy0 + Cy0 Ke,s

)
(3.3)

+ h5

80

1

6
Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)+ h
47

48
Wcurv

(
Ke,s

)
.

Proof The proof is similar to the proof of Theorem 4.1 from [21] and the proof given in
Appendix A.3.2. �
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In the remainder of this paper, the strain tensors corresponding to the constrained elastic
Cosserat shell models will be denoted with the subscript ·∞, i.e., Q∞, E∞, K∞ etc.

Therefore, since the membrane energy and the membrane-bending energy have to remain
finite when μc → ∞, in view of Lemma A.2 and (2.10) we have to impose [42, 43] that

‖skew(E∞)‖ = 0, ‖skew(E∞ By0 + Cy0K∞)‖ = 0,

‖skew((E∞ By0 + Cy0K∞)By0)‖ = 0.
(3.4)

We notice that the constraints (3.4) will imply that Q∞ and m are not independent vari-
ables. Therefore, we need to take into account all the compatibility conditions between

Q∞
∣∣∣
γd

and the values of m on γd imposed by the limit case μc → ∞. More precisely, antic-

ipating the implications of the constraints (3.4), we assume in the limit case μc → ∞ that
a solution (m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3)) has to satisfy the following compatibility
conditions (in the sense of traces) on the boundary

m
∣∣
γd

= m∗ =⇒ Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖ . (3.5)

The assumption E∞ ∈ Sym(3) and the above compatibility condition imply that Q∞ =
polar

[
(∇m|n)[∇
]−1

] ∈ SO(3), where n = ∂x1 m×∂x2 m

‖∂x1 m×∂x2 m‖ is the unit normal vector to the de-

formed midsurface, and polar(X) ∈ SO(3) denotes the orthogonal part of the invertible ma-
trix X ∈ GL+(3) in the polar decomposition [35], i.e., X = polar(X)U with U ∈ Sym+(3).
Indeed, we have

skew(E∞) = 0

⇔ QT
∞(∇m|Q∞∇
.e3)[∇
]−1 ∈ Sym(3)

⇔ QT
∞(∇m|Q∞∇
.e3)[∇
]−1 = [∇
]−T (∇m|Q∞∇
.e3)

T Q∞

⇔ QT
0 QT

∞(∇m|Q∞∇
.e3)U
−1
0 = U−1

0 (∇m|Q∞∇
.e3)
T Q∞Q0

⇔ U0Q
T
0 QT

∞(∇m|Q∞∇
.e3)U
−1
0 = (∇m|Q∞∇
.e3)

T Q∞Q0 (3.6)

⇔
(∗ ∗ 0

∗ ∗ 0
0 0 1

)
QT

0 QT
∞(∇m|Q∞∇
.e3)

(∗ ∗ 0
∗ ∗ 0
0 0 1

)
= (∇m|Q∞∇
.e3)

T Q∞Q0

⇔
(∗ ∗ 0

∗ ∗ 0
0 0 1

)(∗ ∗ 0
∗ ∗ 0
∗ ∗ 1

)(∗ ∗ 0
∗ ∗ 0
0 0 1

)
= (∇m|Q∞∇
.e3)

T Q∞Q0

⇔
(∗ ∗ 0

∗ ∗ 0
∗ ∗ 1

)(∗ ∗ 0
∗ ∗ 0
0 0 1

)
= (∇m|Q∞∇
.e3)

T Q∞Q0

⇔
(∗ ∗ 0

∗ ∗ 0
∗ ∗ 1

)
=
(∗ ∗ 〈

∂x1m,Q∞Q0.e3
〉

∗ ∗ 〈
∂x2m,Q∞Q0.e3

〉
0 0 1

)
.

Thus, the vector Q∞Q0.e3 is collinear with n. Moreover, since Q∞Q0 ∈ SO(3) and due to
the compatibility conditions (3.5), we have Q∞Q0.e3 = n.

Hence, E∞ = QT∞(∇m|Q∞∇
.e3)[∇
]−1 −13 ∈ Sym(3) implies QT∞(∇m|n)[∇
]−1 ∈
Sym(3), and therefore

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1 Ũ−1, (3.7)
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Fig. 5 In the limit μc → ∞, the
blue 3-frame (trièdre mobile) is
replaced by the red 3-frame
(trièdre caché) being tangent to
the surface and prescribing a
specific in-plane drill rotation

where Ũ ∈ Sym+(3) is defined by

(∇m|n)[∇
]−1 = [polar
(
(∇m|n)[∇
]−1

)] Ũ . (3.8)

The constraint Q∞ = polar
(
(∇m|n)[∇
]−1

)
not only adjusts the “trièdre mobile” [18]

to be tangential to the surface (equivalent to Q∞Q0.e3 = n, Kirchhoff-Love normality as-
sumption), see Fig. 5 such that the third column coincides with the normal to the surface, but
also chooses a specific in-plane drill rotation, coming from the planar polar decomposition.

Using Ũ 2 = Ũ T Ũ = (
(∇m|n)[∇
]−1

)T
(∇m|n)[∇
]−1 = [∇
]−T Îm [∇
]−1, we de-

duce

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T , (3.9)

with the lifted quantity Îm ∈ R
3×3 given by Îm := (∇m|n)T (∇m|n). Moreover, since

Q∞∇
.e3 = Q∞Q0.e3 = n, the latter identity leads to

E∞ = [polar
(
(∇m|n)[∇
]−1

)]T (∇m|n)[∇
]−1 −13 = Ũ −13

=
√

[∇
]−T Îm[∇
]−1 −13. (3.10)

An alternative expression of E∞ containing only classical quantities can be obtained us-
ing Remark A.1 from Appendix A.1, i.e., A2

y0
= Ay0 = (∇y0|0) [∇
]−1 = [∇
]−T Îy0 ×

1
�

2 [∇
]−1 = [∇
]−T I�y0
[∇
]−1 which implies3

Ay0 =
√

[∇
]−T I�y0 [∇
]−1. (3.11)

Indeed, we obtain

E∞ = E∞Ay0 =
√

[∇
]−T Îm[∇
]−1

√
[∇
]−T I�y0 [∇
]−1 −

√
[∇
]−T I�y0 [∇
]−1

=
√

[∇
]−T Îm[∇
]−1

√
[∇
]−T I�y0 [∇
]−1 −

√
[∇
]−T I�y0 [∇
]−1. (3.12)

3In our assertion, the square root of a positive semidefinite matrix X is the unique positive semidefinite matrix
Y , denoted by

√
X, such that Y 2 = X. If X is positive definite, then its square root is also positive definite.

For an idempotent positive semidefinite matrix A, meaning A2 = A, by the definition, its square root is the
matrix itself

√
A = A.
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In the following, we proceed to compute E∞ By0 + Cy0K∞ which is appearing in the
expression of the membrane-bending energy. From Remark A.1 we note the identity

QT
∞ (∇[Q∞∇
(0).e3] |0) [∇
]−1 = Cy0K∞ − By0 , (3.13)

which, together with the other identities from Remark A.1, leads to

Cy0K∞ =QT
∞ (∇[Q∞∇
(0).e3] |0) [∇
]−1 + By0 = QT

∞(∇[Q∞Q0.e3]|0)[∇
]−1 + By0

=QT
∞(∇n|0)[∇
]−1 + By0 = [polar

(
(∇m|n)[∇
]−1

)]T (∇n|0)[∇
]−1 + By0

=
[
(∇m|n)[∇
]−1

√
[∇
]̂ I−1

m [∇
]T
]T

(∇n|0)[∇
]−1 + By0 (3.14)

= −
√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1 +

√
[∇
]̂ I−1

y0
[∇
]T [∇
]−T II�y0

[∇
]−1.

Because
√

[∇
]−T Îm [∇
]−1 [∇
]̂ I−1
m [∇
]T =

√
[∇
]̂ I−1

m [∇
]T [∇
]−T Îm [∇
]−1,

it follows
√

[∇
]−T Îm [∇
]−1 [∇
]̂ I−1
m [∇
]T =

√
[∇
]̂ I−1

m [∇
]T . Using also the two

formulae Î−1
y0

II�y0
= L�

y0
,̂I−1

m II�m = L�
m, we may write

E∞ By0 + Cy0K∞ =
(√

[∇
]−T Îm [∇
]−1 −13

)
[∇
]−T II�y0

[∇
]−1

−
√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1 + [∇
]−T II�y0

[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]−T II�y0
[∇
]−1

−
√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]−T II�y0
[∇
]−1 (3.15)

−
√

[∇
]−T Îm [∇
]−1[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]̂I−1
y0

II�y0
[∇
]−1

−
√

[∇
]−T Îm [∇
]−1[∇
]̂ I−1
m II�m[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1.

In view of the identity 13 =
√

[∇
]−T Îy0 [∇
]−1, the quantity E∞ By0 + Cy0K∞ can equiv-
alently be written in the alternative form

E∞ By0 + Cy0K∞ =
√

[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1

√
[∇
]−T Îy0 [∇
]−1,

(3.16)

and therefore we see how both pairs Îy0 ,L�
y0

and Îm,L�
m, together, influence the constitutive

quantity E∞ By0 + Cy0K∞. Since (E∞ By0 + Cy0K∞)By0 is also an argument of an energy
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term defining the membrane-bending energy, i.e., Wshell

(
(E∞ By0 + Cy0K∞)By0

)
, we have

to compute as well

(E∞ By0 + Cy0K∞)By0 =
√

[∇
]−T Îm [∇
]−1 [∇
]L�
y0

[∇
]−1[∇
]−T II�y0
[∇
]−1

−
√

[∇
]−T Îm [∇
]−1[∇
]L�
m[∇
]−1[∇
]−T II�y0

[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]L�
y0̂

I−1
y0

II�y0
[∇
]−1 (3.17)

−
√

[∇
]−T Îm [∇
]−1[∇
]L�
m̂I−1

y0
II�y0

[∇
]−1

=
√

[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
L�

y0
[∇
]−1.

Note that for Q∞ = polar
(
(∇m|n)[∇
]−1

)
, which is a consequence of the limit μc →

∞, it follows that E∞ ∈ Sym(3), while the other two requirements (3.4)2,3, which are also
implied by the limit μc → ∞ are not automatically satisfied. The remaining additional con-
straints in the minimization problem are

E∞ By0 + Cy0K∞
!∈ Sym(3) ⇔

√
[∇
 ]−T Îm [∇
 ]−1 [∇
 ]

(
L�

y0
− L�

m

)
[∇
 ]−1 (3.18)

!= [∇
 ]−T
(
(L�

y0
)T − (L�

m)T
)
[∇
 ]T

√
[∇
 ]−T Îm [∇
 ]−1,

and

(E∞ By0 + Cy0K∞)By0

!∈ Sym(3)

⇔
√

[∇
 ]−T Îm [∇
 ]−1 [∇
 ]
(

L�
y0

− L�
m

)
L�

y0
[∇
 ]−1 (3.19)

!= [∇
 ]−T (L�
y0

)T
(
(L�

y0
)T − (L�

m)T
)
)[∇
 ]T

√
[∇
 ]−T Îm [∇
 ]−1 .

If Lc > 0 is finite and non-vanishing, the bending-curvature energy is still present in the
minimization problem. The latter energy is expressed in terms of K∞, which for μc → ∞
turns into

K∞ =
(

axl(
√

[∇
]̂ I−T
m [∇
]T [∇
]−T (∇m|n)T ∂x1

(
(∇m|n)[∇
]−1

√
[∇
]̂ I−1

m [∇
]T
))

(3.20)

| axl(
√

[∇
]̂ I−T
m [∇
]T [∇
]−T (∇m|n)T ∂x2

(
(∇m|n)[∇
]−1

√
[∇
]̂ I−1

m [∇
]T
)) |0

)
[∇
]−1.

In view of the constitutive restrictions imposed by the limit case μc → ∞, the variational
problem for the constrained Cosserat O(h5)-shell model is to find a deformation of the
midsurface m : ω ⊂ R

2 →R
3 minimizing on ω:

I =
∫

ω

[(
h + K

h3

12

)
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1
)

+
(h3

12
− K

h5

80

)
W∞

shell

(√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1

)
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− h3

3
HW∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
[∇
]−1

)
(3.21)

+ h3

6
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
L�

y0
[∇
]−1

)

+ h5

80
W∞

mp

(√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
L�

y0
[∇
]−1

)

+
(
h − K

h3

12

)
Wcurv

(
K∞

)+
(h3

12
− K

h5

80

)
Wcurv

(
K∞By0

)

+ h5

80
Wcurv

(
K∞B2

y0

)]
det∇
da

− �(m,Q∞),

such that

E∞ By0 + Cy0K∞
!∈ Sym(3)

⇔
√

[∇
 ]−T Îm [∇
 ]−1 [∇
 ]
(

L�
y0

− L�
m

)
[∇
 ]−1

!= [∇
 ]−T
(
(L�

y0
)T − (L�

m)T
)
[∇
 ]T

√
[∇
 ]−T Îm [∇
 ]−1,

(E∞ By0 + Cy0K∞)By0

!∈ Sym(3) (3.22)

⇔
√

[∇
 ]−T Îm [∇
 ]−1 [∇
 ]
(

L�
y0

− L�
m

)
L�

y0
[∇
 ]−1

!= [∇
 ]−T (L�
y0

)T
(
(L�

y0
)T − (L�

m)T
)
)[∇
 ]T

√
[∇
 ]−T Îm [∇
 ]−1 ,

where

K∞ =
(

axl(QT
∞ ∂x1Q∞) | axl(QT

∞ ∂x2Q∞) |0
)
[∇
]−1,

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T , (3.23)

W∞
shell(S) = μ‖S‖2 + λμ

λ + 2μ

[
tr (S)

]2
, W∞

shell(S,T ) = μ
〈
S,T

〉+ λμ

λ + 2μ
tr(S) tr(T ),

W∞
mp(S) = μ‖S‖2 + λ

2

[
tr (S)

]2 ∀ S,T ∈ Sym(3),

Wcurv(X) = μL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + b3 [tr(X)]2

) ∀ X ∈ R
3×3.
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3.2 3D Versus 2D Symmetry Requirements for μc → ∞

As already mentioned in Sect. 3.1, in the starting three-dimensional variational problem
(1.1), the limit μc → ∞ leads to the constraint

skew(Uξ −13) = 0 ⇔ Rξ = polar(Fξ ), (3.24)

and the parental three-dimensional model turns into the Toupin couple stress model [42,
Eq. 11.8].

Motivated by modelling arguments, after obtaining a suitable form of the relevant coeffi-
cients �m, �b , in [20] we have based the expansion of the three-dimensional elastic Cosserat
energy on a further simplified expression for the (reconstructed) deformation gradient Fξ ,
namely

Fs,ξ = ∇xϕs(x1, x2, x3)[∇x
(x1, x2, x3)]−1 (3.25)

∼= F̃e,s := (∇m|�e
m Qe,s(x1, x2)∇x
(x1, x2,0) e3)[∇x
(x1, x2, x3)]−1

+ x3(∇
[
Qe,s(x1, x2)∇x
(x1, x2,0) e3

] |�e
b Qe,s(x1, x2)∇x
(x1, x2,0) e3)

× [∇x
(x1, x2, x3)]−1.

Corresponding to this ansatz of the deformation gradient, the tensor Ẽξ = Uξ − 13 is ap-
proximated by

Ẽs := Ue,s −13 = Q
T

e,s F̃e,s −13, (3.26)

which admits the following expression with the help of the usual strain measures in the
nonlinear 6-parameter shell theory

Ẽs = 1

det∇
(x3)

{
Em,s + x3

[
Em,s(By0 − 2 H Ay0) + Cy0 Ke,s

]

+ x2
3

[
Cy0 Ke,s(By0 − 2 H Ay0)

]}

− λ

(λ + 2μ)

[
tr(Em,s) + x3 tr(Em,sBy0 + Cy0Ke,s)

]
(0|0|n0) (0|0|n0)

T . (3.27)

We substitute the expansion of the factor
1

det∇
(x3)
in the form

1

det∇
(x3)
= 1

1 − 2 Hx3 + Kx2
3

= 1 + 2 Hx3 + (4 H2 − K) x2
3 + O(x3

3 ) (3.28)
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and get

Ẽs =
[
1 + 2 Hx3 + (4 H2 − K) x2

3 + O(x3
3 )
]

×
{
Em,s + x3

[
Em,s(By0 − 2 H Ay0) + Cy0 Ke,s

]
+ x2

3

[
Cy0 Ke,s(By0 − 2 H Ay0)

]}

− λ

λ + 2μ

[
tr(Em,s) + x3 tr(Em,sBy0 + Cy0Ke,s)

]
(0|0|n0) (0|0|n0)

T . (3.29)

If we multiply out all terms and use the relation B2
y0

= 2 H By0 − K Ay0 , then we obtain

Ẽs = 1
[
Em,s − λ

λ + 2μ
tr(Em,s) (0|0|n0) (0|0|n0)

T
]

(3.30)

+ x3

[
(Em,s By0 + Cy0Ke,s) − λ

(λ + 2μ)
tr(Em,sBy0 + Cy0Ke,s) (0|0|n0) (0|0|n0)

T
]

+ x2
3

[
(Em,s By0 + Cy0Ke,s)By0

]
+ O(x3

3 ).

Since {1, x3, x
2
3 } are linear independent, from the last relation we see that the symmetry

constraint Ẽξ ≈ Es ∈ Sym(3) imposed by the limit case μc → ∞ implies the symmetry
constraints on the tensors Em,s , (Em,s By0 + Cy0Ke,s) and (Em,s By0 + Cy0Ke,s)By0 , i.e.,

Em,s ∈ Sym(3), (Em,s By0 + Cy0Ke,s) ∈ Sym(3) and

(Em,s By0 + Cy0Ke,s)By0 ∈ Sym(3).
(3.31)

This fact has in essence the following physical significance:

For μc → ∞, the (through the thickness reconstructed) strain tensor Ẽs for the 3D
shell is symmetric.

The terms of order O(x3
3 ) are not relevant here, since we have taken a quadratic ansatz

for the deformation.
Since Ẽs = Q

T

e,s F̃e,s − 13, this condition is equivalent to: the Biot-type stretch tensor

Ue,s = Q
T

e,s F̃e,s for the 3D shell is symmetric. In conclusion, from (3.30) we see that the
tensor (Em,s By0 + Cy0Ke,s) can be viewed as a bending tensor for shells in the sense of
Anicic and Léger [6] and Šilhavỳ [39].

3.3 Conditional Existence for the O(h5)-Constrained Elastic Cosserat Shell Model

In this subsection we give a conditional existence result regarding the O(h5)-constrained
elastic Cosserat shell model. First, it is important to define the appropriate admissi-
ble set of solutions, since Q∞ and m are not any more independent: Q∞ is deter-
mined by Q∞ = polar[(∇m|n)[∇
]−1], once m ∈ H1(ω,R3) is known. However, Q∞ =
polar[(∇m|n)[∇
]−1] has to belong to H1(ω,SO(3)), which does not directly follow from
m ∈ H1(ω,R3). Hence, since the existence result of the solution for the unconstrained elas-
tic Cosserat shell model assures the desired regularity for Q∞, we follow the same method
as in [21]. We notice that the existence result presented in [21] is valid in the case of no
boundary conditions upon Q∞, too.4 In the definition of the admissible set of solution, we

4Since SO(3) is compact, a property that does not transfer to the linearized problem.
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need to take into account all the compatibility conditions between Q∞
∣∣∣
γd

and the values of

m on γd imposed by the limit case μc → ∞. The set A of admissible functions is therefore
defined by

A =
{

(m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣∣∣ m
∣∣
γd

= m∗,

Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖
U := QT

∞(∇m|Q∞Q0.e3)[∇
]−1 ∈ L2(ω,Sym+(3)) (3.32)

K1 := QT
∞(∇m|Q∞Q0.e3)[∇
]−1By0

+ QT
∞(∇(Q∞Q0.e3)|0)[∇
]−1 ∈ L2(ω,Sym(3))

K2 := QT
∞(∇m|Q∞Q0.e3)[∇
]−1B2

y0

+ QT
∞(∇(Q∞Q0.e3)|0)[∇
]−1By0 ∈ L2(ω,Sym(3))

}
,

which incorporates a weak reformulation of the symmetry constraint in (3.22), in the sense
that all the derivatives are considered now in the sense of distributions, and the boundary
conditions are to be understood in the sense of traces. However, a priori it is not clear
if the set A is non-empty. In view of (3.22), we note that if m ∈ H2(ω,R3) is such that
Ly0 = Lm and m

∣∣
γd

= m∗, then by choosing Q∞ = polar[(∇m|n)[∇
]−1] ∈ SO(3) we ob-
tain (m,Q∞) ∈ A. In general, A may be empty. Therefore we propose:

Theorem 3.2 (Conditional existence result for the theory including terms up to order
O(h5)) Assume that the admissible set A is non-empty and the external loads satisfy the
conditions f ∈ L2(ω,R3), t ∈ L2(γt ,R

3), and the boundary data satisfy the conditions
m∗ ∈ H1(ω,R3) and polar(∇m∗ |n∗) ∈ H1(ω,SO(3)). Assume that the following conditions
concerning the initial configuration are satisfied:5 y0 : ω ⊂ R

2 → R
3 is a continuous injec-

tive mapping and

y0 ∈ H1(ω,R3), Q0 = polar(∇
) ∈ H1(ω,SO(3)),

∇
 ∈ L∞(ω,R3×3), det∇
 ≥ a0 > 0 ,
(3.33)

where a0 is a positive constant. Then, for sufficiently small values of the thickness h satisfy-
ing

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α with α <

√
2

3
(29 − √

761) � 0.97083 (3.34)

and for constitutive coefficients such that μ > 0, 2λ + μ > 0, b1 > 0, b2 > 0, b3 > 0 and
Lc > 0, the minimization problem (3.21) admits at least one minimizing solution m such that
(m,Q∞) ∈ A.

5For shells with little initial regularity. Classical shell models typically need to assume that y0 ∈ C3(ω,R3).
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Proof The proof follows similar steps as in [21] for the proof of the existence of solution for
the unconstrained O(h5) elastic Cosserat shell model and is similar to the proof of Propo-
sition A.2 from Appendix A.3.1. Here, we provide only certain milestones, to guide the
reader and explain those details that differ in comparison to [21]. First, it follows that for
sufficiently small values of the thickness h such that (3.34) is satisfied and for constitutive
coefficients satisfying μ > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0, the energy density

W∞(E∞,K∞) = W∞
memb

(
E∞

)+ W∞
memb,bend

(
E∞, K∞

)+ Wbend,curv

(
K∞

)
(3.35)

is coercive, where W∞
memb and W∞

memb,bend are the membrane energy and the membrane-
bending energy corresponding to the limit case μc → ∞. This means that there exists a
constant a+

1 > 0 such that

W∞(E∞,K∞) ≥ a+
1

(‖E∞‖2 + ‖K∞‖2
) ∀ (m,Q∞) ∈ A, (3.36)

where a+
1 depends on the constitutive coefficients (but not on the Cosserat couple modulus

μc). Indeed, all the steps used in the proof of Proposition A.2 from Appendix A.3.1 remain
valid by considering μc → ∞ since for all (m,Q∞) ∈ A it follows that E∞ ∈ Sym(3) and
E∞By0 + Cy0 K∞ ∈ Sym(3).

Moreover, under the same hypothesis and using the same arguments as above, it follows
that for μc → ∞, too, the energy density W∞(E∞,K∞) is uniformly convex in (E∞,K∞)

for all (m,Q∞) ∈ A, i.e., there exists a constant a+
1 > 0 such that

D2W∞(E∞,K∞). [(H1,H2), (H1,H2)] ≥ a+
1 (‖H1‖2 + ‖H2‖2) ∀H1,H2 ∈R

3×3. (3.37)

The assumptions on the external loads and the boundedness of �S0 and �∂S0
f

imply that

there exists a constant c > 0 such that6

|�(m,Q∞) | ≤ C
(‖m‖H1(ω) + 1

)
, ∀ (m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3)). (3.38)

Considering

R∞(x1, x2) = Q∞(x1, x2)Q0(x1, x2,0) ∈ SO(3), (3.39)

we write

E∞ =Q0[RT

∞(∇m|Q∞∇
.e3) − QT
0 (∇y0|n0)][∇
]−1 = Q0(R

T

∞ ∇m − QT
0 ∇y0|0)[∇
]−1.

(3.40)

Using this expression for E∞ we obtain

‖E∞‖2 ≥ λ2
0 ‖(RT

∞ ∇m − QT
0 ∇y0|0)‖2 ≥ λ2

0‖∇m‖2
L2(ω)

− c1 ‖∇m‖L2(ω) + c2, (3.41)

where λ0 is the smallest eigenvalue of the positive definite matrix Î−1
y0

and c1 > 0, c2 > 0 are
some positive constants. Similarly, we deduce that

‖K∞‖2 ≥ λ2
0 ‖(axl(QT

∞ ∂x1Q∞) | axl(QT
∞ ∂x2Q∞))‖2. (3.42)

6By c and ci , i ∈ N, we will denote (positive) constants that may vary from estimate to estimate but will
remain independent of m, ∇m and Q∞ .
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In view of the coercivity of the internal energy and (3.33), (3.38) and (3.41), and after
using the Poincaré–inequality we deduce that the functional I (m,Q∞) is bounded from
below on A, i.e.,

I (m,Q∞) ≥ c1‖m − m∗‖2
H1(ω)

+ c2 ∀ (m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3)), (3.43)

where c1 > 0 and c2 ∈ R. Hence, there exists an infimizing sequence
{
(mk,Qk)

}∞
k=1

in A,
such that

lim
k→∞

I (mk,Qk) = inf
{
I (m,Q∞)

∣∣ (m,Q∞) ∈ A
}
. (3.44)

Since we have I (m∗,Q∗∞) < ∞, in view of the conditions on the boundary data, the infimiz-
ing sequence

{
(mk,Qk)

}∞
k=1

can be chosen such that

I (mk,Qk) ≤ I (m∗,Q∗
∞) < ∞ , ∀k ≥ 1. (3.45)

Using (3.43) and (3.45) we remark that the sequence
{
mk

}∞
k=1

is bounded in H1(ω,R3).

Hence, we can consider a subsequence of
{
mk

}∞
k=1

(not relabeled) which converges weakly
in H1(ω,R3). According to Rellich’s selection principle, it converges strongly in L2(ω,R3),
i.e., there exists an element m̂ ∈ H1(ω,R3) such that

mk ⇀ m̂ in H1(ω,R3), and mk → m̂ in L2(ω,R3). (3.46)

We skip further details, since they mimic the proof of existence theorem from [21], and
we use only the fact that there exists a subsequence of

{
Qk

}∞
k=1

∈ H1(ω,SO(3)) (not rela-

beled) and an element Q̂∞ ∈ H1(ω,SO(3)) with

Qk ⇀ Q̂∞ in H1(ω,R3×3), and Qk → Q̂∞ in L2(ω,R3×3). (3.47)

Let us next construct the limit strain and curvature measures

Ê∞ : = Q̂
T

∞(∇m̂|Q̂∞∇
.e3)[∇
]−1 −13 = Q0(R̂
T

∞ ∇m̂ − QT
0 ∇y0|0)[∇
]−1, (3.48)

K̂∞ : =
(

axl(Q̂
T

∞ ∂x1Q̂∞) | axl(Q̂
T

∞ ∂x2Q̂∞) |0
)
[∇
]−1.

Note that using

QT
∞ ∂xi

Q∞ = Q0 R
T

∞ ∂xi
(R∞ QT

0 )

= Q0(R
T

∂xi
R∞)QT

0 − Q0(Q
T
0 ∂xi

Q0)QT
0 , i = 1,2,3 (3.49)

and the identity axl(QAQT ) = Q axl(A) for all Q ∈ SO(3) and for all A ∈ so(3), we
obtain

K̂∞ = Q0

(
axl(R̂

T

∞∂x1 R̂∞)−axl(QT
0 ∂x1Q0)

∣∣ axl(R̂
T

∞∂x2R̂∞)−axl(QT
0 ∂x2Q0)

∣∣ 0
)
[∇
]−1.

(3.50)

In the next steps of the proof, all the arguments from [21] hold true and we conclude that

E (k)
∞ : = Q0(R

T

k ∇mk − QT
0 ∇y0|0)[∇
]−1 ⇀ Ê∞ (3.51)



106 I.-D. Ghiba et al.

in L2(ω,R3×3), where R̂k(x1, x2) := Q̂k(x1, x2)Q0(x1, x2,0) ∈ SO(3), as well as

K(k)
∞ := Q0

(
axl(R

T

k ∂x1Rk)−axl(QT
0 ∂x1Q0)

∣∣ axl(R
T

k ∂x2Rk)−axl(QT
0 ∂x2Q0)

∣∣ 0
)
[∇
]−1

⇀ K̂∞ (3.52)

in L2(ω,R3×3). The admissible set A defined by (3.32) is closed under weak convergence.
Indeed, since the set of symmetric matrices is closed under weak convergence, we find

Uk := E (k)∞ +13 ⇀ U := Ê∞ +13 in L2(ω,Sym(3)),

K
(k)

1 := E (k)∞ By0 + Cy0K(k)∞ ⇀ K1 := Ê∞ By0 + Cy0K̂∞ in L1(ω,Sym(3)),

K
(k)

2 := E (k)∞ B2
y0

+ Cy0K(k)∞ By0 ⇀ K2 := Ê∞ B2
y0

+ Cy0K̂∞By0 in L1(ω,Sym(3)),

(3.53)
whenever the sequence

{
(mk,Qk)

}∞
k=1

⊆ A is weakly convergent to (m̂, Q̂∞) ∈ H1(ω,R3)×
H1(ω,SO(3)). Moreover, by virtue of the relations (mk,Qk) ∈ A and (3.46), (3.47), we

derive that m̂ = m∗ and Q̂∞Q0.e3 = ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖ on γd in the sense of traces. The

second boundary condition is satisfied, since a similar procedure with that used in (3.5)–(3.7)

shows that (3.53) and the compatibility of the boundary conditions imply that Q̂∞Q0.e3 =
n̂ := ∂x1m̂ × ∂x2m̂

‖∂x1m̂ × ∂x2m̂‖ and Q̂∞ = polar[(∇m̂|̂n)[∇
]−1]. Hence, we obtain that the limit pair

satisfies (m̂, Q̂∞) ∈ A and, in view of convexity in the chosen strain and curvature measures
(3.51), (3.52) and (3.53), we also have

∫
ω

W∞(Ê∞, K̂∞)det∇
da ≤ lim inf
n→∞

∫
ω

W∞(E (k)
∞ ,K(k)

∞ )det∇
da. (3.54)

Taking into account the assumptions on the external loads, the continuity of the load poten-
tial functions, and the convergence relations (3.46)2 and (3.47)2, we deduce

�(m̂, Q̂∞) = lim
n→∞�(mk,Qk). (3.55)

From (3.54) and (3.55) we get

I (m̂, Q̂∞) ≤ lim inf
n→∞ I (mk,Qk) . (3.56)

Finally, the relations (3.44) and (3.56) show that I (m̂, Q̂∞) = inf
{
I (m,Q∞)

∣∣ (m,Q∞) ∈
A
}
. Since (m̂, Q̂∞) ∈ A, we conclude that (m̂, Q̂∞) is a minimizing solution pair of our

minimization problem, in which Q̂∞ = polar
(
(∇m̂|̂n)[∇
]−1

)
, Ê∞ By0 + Cy0K̂∞ ∈ Sym(3)

and (Ê∞ By0 + Cy0K̂∞)By0 ∈ Sym(3). �

3.4 Conditional Existence for the O(h3)-Constrained Elastic Cosserat Shell Model

In the O(h5)-shell model and for μc → ∞ the assumptions

‖skew(Em,s)‖ = 0, ‖skew(Em,s By0 + Cy0Ke,s)‖ = 0, (3.57)
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are not sufficient to ensure that the energy density is finite, we need to require additionally

‖skew[(Em,s By0 + Cy0Ke,s)By0 ]‖ = 0. (3.58)

This condition is necessary since the energy term h5

80
1
6Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)
must

remain finite for μc → ∞. However, in the O(h3)-shell model the latter energy term is not
anymore present and there is no need to impose the extra symmetry condition (3.58). Indeed,
if we restrict our model to order O(h3), then the internal energy density reads

W(h3)(Em,s,Ke,s) =
(
h + K

h3

12

)
Wshell

(
Em,s

)+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

− h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)

+ h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)
, (3.59)

which, under the restrictions (3.57), can be expressed as

W(h3)
∞ (Em,s,Ke,s) =

(
h + K

h3

12

)
Wshell

(
symEm,s

)+ h3

12
Wshell

(
sym(Em,s By0 + Cy0Ke,s)

)

− h3

3
HWshell

(
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

)
(3.60)

+ h3

6
Wshell

(
symEm,s, sym[(Em,sBy0 + Cy0 Ke,s)By0 ]

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)

and which remains finite for μc → ∞.
In view of the above constitutive restrictions (3.57) imposed by the limit case, the vari-

ational problem for the constrained Cosserat O(h3)-shell model is to find a deformation of
the midsurface m : ω ⊂ R

2 →R
3 minimizing on ω:

I =
∫

ω

[(
h + K

h3

12

)
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1−
√

[∇
]−T Îy0 1
�

2 [∇
]−1
)
,

+ h3

12
W∞

shell

(√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1

)

− h3

3
HW∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
[∇
]−1

)
(3.61)

+ h3

6
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
L�

y0
[∇
]−1

)
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+
(
h − K

h3

12

)
Wcurv

(
K∞

)+ h3

12
Wcurv

(
K∞By0

)]
det∇
da − �(m,Q∞),

such that

E∞ By0 + Cy0K∞
!∈ Sym(3) ⇔

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
−L�

m

)
[∇
]−1

!= [∇
]−T
(
(L�

y0
)T− (L�

m)T
)
[∇
]T

√
[∇
]−T Îm [∇
]−1,

where

K∞ = (axl(QT
∞ ∂x1Q∞) | axl(QT

∞ ∂x2Q∞) |0)[∇
]−1,

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T , (3.62)

W∞
shell(S) = μ‖S‖2 + λμ

λ + 2μ

[
tr (S)

]2
, W∞

shell(S,T ) = μ
〈
S,T

〉+ λμ

λ + 2μ
tr(S) tr(T ),

W∞
mp(S) = μ‖S‖2 + λ

2

[
tr (S)

]2 ∀ S,T ∈ Sym(3),

Wcurv(X) = μL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + b3 [tr(X)]2

) ∀ X ∈R
3×3.

We consider the admissible set A(h3) of solutions to be defined by

A(h3) =
{

(m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣∣∣ m
∣∣
γd

= m∗,

Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖
U := QT

∞(∇m|n)[∇
]−1 ∈ L2(ω,Sym(3)) (3.63)

K1 := QT
∞(∇m|n)[∇
]−1By0 + QT

∞(∇n|0)[∇
]−1 ∈ L2(ω,Sym(3))

}
,

where the boundary conditions are to be understood in the sense of traces. As in the case
of the constrained Cosserat shell model up to O(h5), the set A(h3) may be empty. In [21]
and Appendix A.3.3 we have shown that if the constitutive coefficients are such that μ >

0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0, b3 > 0 and Lc > 0 and if the thickness h satisfies at
least one of the following conditions:

(i) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < α and h2 < (5−2
√

6)(α2−12)2

4α2
c+

2
max{C+

1 ,μc} with

0 < α < 2
√

3;

(ii) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < 1
a

and a > max
{

1 +
√

2
2 ,

1+
√

1+3
max{C+

1 ,μc}
min{c+1 ,μc }
2

}
,
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where c+
1 and C+

1 denote the smallest and the largest eigenvalues, respectively, of the
quadratic form W∞

shell(X), then the energy density

W(h3)(E∞,K∞) =
(
h + K

h3

12

)
Wshell

(
E∞

)+ h3

12
Wshell

(
E∞ By0 + Cy0K∞

)

− h3

3
HWshell

(
E∞,E∞By0 + Cy0 K∞

)

+ h3

6
Wshell

(
E∞, (E∞By0 + Cy0 K∞)By0

)

+
(
h − K

h3

12

)
Wcurv

(
K∞

)+ h3

12
Wcurv

(
K∞By0

)
(3.64)

is coercive. However, this result is not suitable for the limit case μc → ∞ since the above
conditions imposed upon the thickness would imply h → 0 for μc → ∞. We circumvent
the problem by proving the following result.

Proposition 3.3 (Coercivity in the theory including terms up to order O(h3)) Assume that
the constitutive coefficients are such that μ > 0, 2λ + μ > 0, b1 > 0, b2 > 0, b3 > 0 and
Lc > 0 and let c+

2 denote the smallest eigenvalue of Wcurv(S), and c+
1 and C+

1 > 0 denote
the smallest and the largest eigenvalues of the quadratic form W∞

shell(S). If the thickness h

satisfies one of the following conditions:

(i) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < α and h2 < (5−2
√

6)(α2−12)2

4α2
c+

2
C+

1
with

0 < α < 2
√

3;

(ii) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < 1
a

and a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
,

then the internal energy density

W∞
(h3)

(E∞,K∞) =
(
h + K

h3

12

)
W∞

shell

(
E∞

)+ h3

12
W∞

shell

(
E∞ By0 + Cy0K∞

)

− h3

3
HW∞

shell

(
E∞,E∞By0 + Cy0 K∞

)

+ h3

6
W∞

shell

(
E∞, (E∞By0 + Cy0 K∞)By0

)

+
(
h − K

h3

12

)
Wcurv

(
K∞

)+ h3

12
Wcurv

(
K∞By0

)
(3.65)

is coercive on A(h3), in the sense that there exists a constant a+
1 > 0 such that

W∞
(h3)

(E∞,K∞) ≥ a+
1

(‖E∞‖2 + ‖K∞‖2
) ∀(m,Q∞) ∈ A(h3), (3.66)

where a+
1 depends on the constitutive coefficients but is independent of the Cosserat couple

modulus μc.

Proof The proof is similar with the proof of Proposition 4.1 from [21] and Proposition A.3
from the appendix, the only difference consists in using ‖X‖ ≥ ‖symX‖, ∀X ∈ R

3×3 and
the positive definiteness conditions (2.10). �

Once the coercivity is proven, the following existence result follows easily:
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Theorem 3.4 (Conditional existence result for the constrained theory including terms up
to order O(h3)) Assume that the admissible set A(h3) is non-empty and the external loads
satisfy the conditions f ∈ L2(ω,R3), t ∈ L2(γt ,R

3), the boundary data satisfy the condi-
tions m∗ ∈ H1(ω,R3) and polar(∇m∗ |n∗) ∈ H1(ω,SO(3)), and that the following condi-
tions concerning the initial configuration are fulfilled: y0 : ω ⊂ R

2 → R
3 is a continuous

injective mapping and

y0 ∈ H1(ω,R3), Q0 = polar(∇
) ∈ H1(ω,SO(3)),

∇
 ∈ L∞(ω,R3×3), det∇
 ≥ a0 > 0 ,
(3.67)

where a0 is a positive constant. Assume that the constitutive coefficients are such that μ > 0,
2λ+μ > 0, b1 > 0, b2 > 0, b3 > 0 and Lc > 0. Then, if the thickness h satisfies at least one
of the following conditions:

(i) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < α and h2 < (5−2
√

6)(α2−12)2

4α2
c+

2
C+

1
with

0 < α < 2
√

3;

(ii) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < 1
a

and a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
,

where c+
2 denotes the smallest eigenvalue of Wcurv(S), and c+

1 and C+
1 > 0 denote the small-

est and the biggest eigenvalues of the quadratic form W∞
shell(S), the minimization problem

corresponding to the energy density defined by (3.61) admits at least one minimizing solu-
tion m such that the pair (m,Q∞) ∈ A(h3).

3.5 The Constrained Elastic Cosserat Plate Model

In the case of Cosserat plates (planar shell) there is no initial curvature and we have

(x1, x2, x3) = (x1, x2, x3) together with

∇
(x3) = 13, y0(x1, x2) = (x1, x2,0), Q0 = 13, n0 = e3, d0
i = ei, (3.68)

Bid = 03, Cid =
(

0 1 0
−1 0 0
0 0 0

)
∈ so(3), Iid = 12, IIid = 02 Lid = 02,

K = 0 , H = 0.

Therefore, all O(h5)-terms of our constrained elastic Cosserat shell model given in
Sect. 3.3 as well as all the mixed terms are automatically vanishing and we obtain that
the variational problem of the constrained Cosserat plate model is to find a deformation of
the midsurface m : ω ⊂ R

2 →R
3 minimizing on ω:

I =
∫

ω

[
hW∞

shell

(√
Î�m −1

�

2

)+ h3

12
W∞

shell

(√̂
I−1
m II�m

)+ hWcurv

(
K∞

)]
da − �(m,Q∞),

(3.69)

such that

CidK∞
!∈ Sym(3) ⇔

√̂
Im L�

m

!∈ Sym(3) ⇔
√̂

Im Î−1
m II�m

!∈ Sym(3)

⇔
√̂

I−1
m II�m

!∈ Sym(3), (3.70)
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where

Q∞ = polar(∇m|n) = (∇m|n)

√̂
I−1
m , (3.71)

K∞ =
(

axl(
√̂

I−T
m (∇m|n)T ∂x1

(
(∇m|n)

√̂
I−1
m

)) | axl(
√̂

I−T
m (∇m|n)T ∂x2

(
(∇m|n)

√̂
I−1
m

)) ∣∣0) .

We already observe that the bending tensor
√̂

I−1
m II�m is invariant under m → α m, α > 0

(cf. the discussion in Sect. 6.1). Note that the scaling m → α m, α > 0 is certainly not con-

nected to a bending type deformation. Therefore, it does make sense that
√̂

I−1
m II�m remains

invariant.
The existence of minimizers for this problem was already discussed in [30]. The consid-

ered admissible set Aplate of solutions is [30]

Aplate =
{

(m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣∣∣ m
∣∣
γd

= m∗,

Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖

U := QT
∞(∇m|n) ∈ L2(ω,Sym(3)), K1 := QT

∞(∇n|0) ∈ L2(ω,Sym(3))

}
,

where the boundary conditions are to be understood in the sense of traces. The restriction

K1 := QT∞(∇n|0)
!∈ L2(ω,Sym(3)) ⇔

√̂
I−1
m II�m

!∈ Sym(3) is not automatically satisfied, in
general. However, it is satisfied for pure bending, i.e., when no change of metric is present
(∇m|n) ∈ SO(3) ⇔ Im = Iy0 , situation when G�∞ = 0, R�∞ = II�m ∈ Sym(3). Therefore, if
there exists a solution of the pure bending problem, i.e., the situation (∇m|n) ∈ SO(3), when
U ∈ diag and IIm ∈ diag, such that Im = Iy0 , then the set Aplate is not empty.

In the constrained planar case, the change of metric tensor is given by G�∞ =
√

I�m −1�

2 ∈
Sym(3), the bending strain tensor becomes R�∞ =

√̂
I−1
m II�m

!∈ Sym(3) (which is not au-
tomatically satisfied if Q∞ = polar(∇m|n)), the transverse shear deformation vector van-
ishes T∞ = (0,0) and the vector of drilling bending reads N∞ := eT

3

(
axl(QT∞∂x1Q∞) |

axl(QT∞∂x2Q∞)
)
.

4 Modified Constrained Cosserat Shell Models

4.1 A Modified O(h5)-Constrained Cosserat Shell Model. Unconditional Existence

As we have seen in Sect. 3.2, the symmetry restrictions

Em,s ∈ Sym(3), (Em,s By0 + Cy0Ke,s) ∈ Sym(3)

and (Em,s By0 + Cy0Ke,s)By0 ∈ Sym(3) (4.1)

assure that the (through the thickness reconstructed) strain tensor Ẽs for the 3D-shell is
symmetric. However, the (reconstructed) strain tensor Ẽs for the 3D shell represents in itself
only an approximation of the true tensor Ẽξ = Uξ −13 in the limit case μc → ∞, too.
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The considered ansatz for the (reconstructed) deformation gradient Fξ given by F̃e,s in
(3.25) does not assure, in the absence of the other two symmetry conditions, that Em,s ∈
Sym(3) implies that the (reconstructed) strain tensor Ẽs for the 3D-shell is symmetric. This
is not surprising because in the general Cosserat model the strain tensor Ẽξ = Uξ −13 is not
symmetric anyway, so the choice of an ansatz for the (reconstructed) deformation gradient
F̃e,s which would lead to a symmetric strain tensor was not our purpose.

In the existence proof we have seen that the admissible set may be empty for general
boundary conditions. Therefore, the existence Theorem 3.2 is only conditional. With this
motivation, we want to modify the resulting constrained Cosserat shell model such that the
new constrained model allows for an unconditional existence proof. In order to do so, we
relax the symmetry conditions and further on impose only the first symmetry condition

Em,s ∈ Sym(3). (4.2)

In addition, looking back at (3.18), (3.19) and (3.21), we assume that the energy density
depends only on the (symmetric parts)

Em,s, sym(Em,s By0 + Cy0Ke,s) and sym
[
(Em,s By0 + Cy0Ke,s)By0

]
, (4.3)

instead of

Em,s, (Em,s By0 + Cy0Ke,s) and (Em,s By0 + Cy0Ke,s)By0 . (4.4)

For the (reconstructed) strain tensor Ẽs for the 3D shell we would then propose the modified
ansatz7

Ẽs = 1
[
Em,s − λ

λ + 2μ
tr(Em,s) (0|0|n0) (0|0|n0)

T
]

(4.5)

+ x3

[
sym(Em,s By0 + Cy0Ke,s) − λ

(λ + 2μ)
tr(Em,sBy0 + Cy0Ke,s) (0|0|n0) (0|0|n0)

T
]

+ x2
3 sym

[
(Em,s By0 + Cy0Ke,s)By0

]
+ O(x3

3 ),

which is symmetric once Em,s is symmetric.
Therefore, taking into account the modified constitutive restrictions imposed by the limit

μc → ∞, the variational problem for the constrained Cosserat O(h5)-shell model is now to
find a deformation of the midsurface m : ω ⊂R

2 →R
3 minimizing on ω:

I =
∫

ω

[(
h + K

h3

12

)
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1
)
,

+
(h3

12
− K

h5

80

)
W∞

shell

(
sym

[√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1

])

− h3

3
HW∞

shell

(√
[∇
]−T Îm1

�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

sym
[√[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
[∇
]−1

])
(4.6)

7It does add nothing to the shell model itself.
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+ h3

6
W∞

shell

(√
[∇
]−T Îm1

�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

sym
[√[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
L�

y0
[∇
]−1

])

+ h5

80
W∞

mp

(
sym

[√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
L�

y0
[∇
]−1

])

+
(
h − K

h3

12

)
Wcurv

(
K∞

)+
(h3

12
− K

h5

80

)
Wcurv

(
K∞By0

)

+ h5

80
Wcurv

(
K∞B2

y0

)]
det∇
da

− �(m,Q∞),

where

K∞ =
(

axl(QT
∞ ∂x1Q∞) | axl(QT

∞ ∂x2Q∞) |0
)
[∇
]−1,

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T , (4.7)

W∞
shell(S) = μ‖S‖2 + λμ

λ + 2μ

[
tr (S)

]2
, W∞

shell(S,T ) = μ
〈
S,T

〉+ λμ

λ + 2μ
tr(S) tr(T ),

W∞
mp(S) = μ‖S‖2 + λ

2

[
tr (S)

]2 ∀ S,T ∈ Sym(3),

Wcurv(X) = μL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + b3 [tr(X)]2

) ∀ X ∈ R
3×3.

The set Amod of admissible functions is accordingly defined by

Amod =
{

(m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣∣∣ m
∣∣
γd

= m∗,

Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖

U := QT
∞(∇m|Q∞Q0.e3)[∇
]−1 ∈ L2(ω,Sym+(3))

}
,

which incorporates a weak reformulation of the imposed symmetry constraint Em,s ∈
Sym(3).

Theorem 4.1 (Unconditional existence result for the modified theory including terms up
to order O(h5)) Assume that the external loads satisfy the conditions f ∈ L2(ω,R3), t ∈
L2(γt ,R

3), and the boundary data satisfy the conditions m∗ ∈ H1(ω,R3) and polar(∇m∗ |
n∗) ∈ H1(ω,SO(3)). Assume that the following conditions concerning the initial configura-
tion are satisfied:8 y0 : ω ⊂R

2 → R
3 is a continuous injective mapping and

y0 ∈ H1(ω,R3), Q0 = polar(∇
) ∈ H1(ω,SO(3)),

∇
 ∈ L∞(ω,R3×3), det∇
 ≥ a0 > 0 ,
(4.8)

8For shells with little initial regularity. Classical shell models typically need to assume that y0 ∈ C3(ω,R3).
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where a0 is a positive constant. Then, for sufficiently small values of the thickness h such
that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α with α <

√
2

3
(29 − √

761) � 0.97083 (4.9)

and for constitutive coefficients such that μ > 0, 2λ + μ > 0, b1 > 0, b2 > 0, b3 > 0 and
Lc > 0, the minimization problem (4.6) admits at least one minimizing solution m such that
(m,Q∞) ∈ Amod.

Proof The proof is similar to the proof of Theorem 3.2, excluding the discussion of the
other two symmetry constraints appearing in the definition of the admissible set in Theorem
3.2. The essential difference is that the admissible set Amod is not empty since, e.g., for
m ∈ H2(ω,R3) and Q∞ = polar[(∇m|n)[∇
]−1] we have (m,Q∞) ∈ Amod. �

4.2 A Modified O(h3)-Constrained Cosserat Shell Model. Unconditional Existence

Another particularity of the new modified constrained Cosserat shell model is that the ad-
missible set is the same for both the modified constrained theory including terms up to order
O(h5) and the modified constrained theory including terms up to order O(h3).

Indeed, by considering the new variational problem for the constrained Cosserat O(h3)-
shell model, i.e., to find a deformation of the midsurface m : ω ⊂ R

2 → R
3 minimizing on

ω:

I =
∫

ω

[(
h + K

h3

12

)
W∞

shell

(√[∇
]−T Îm1
�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1
)
,

+
(h3

12
− K

h5

80

)
W∞

shell

(
sym

[√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
[∇
]−1

])

− h3

3
HW∞

shell

(√
[∇
]−T Îm1

�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

sym
[√[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
[∇
]−1

])
(4.10)

+ h3

6
W∞

shell

(√
[∇
]−T Îm1

�

2 [∇
]−1 −
√

[∇
]−T Îy0 1
�

2 [∇
]−1,

sym
[√[∇
]−T Îm [∇
]−1 [∇
]

(
L�

y0
− L�

m

)
L�

y0
[∇
]−1

])

+ h5

80
W∞

mp

(
sym

[√[∇
]−T Îm [∇
]−1 [∇
]
(

L�
y0

− L�
m

)
L�

y0
[∇
]−1

])

+
(
h − K

h3

12

)
Wcurv

(
K∞

)+
(h3

12
− K

h5

80

)
Wcurv

(
K∞By0

)

+ h5

80
Wcurv

(
K∞B2

y0

)]
det∇
da

− �(m,Q∞),

where

K∞ =
(

axl(QT
∞ ∂x1Q∞) | axl(QT

∞ ∂x2Q∞) |0
)
[∇
]−1,
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Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T ,

W∞
shell(S) = μ‖S‖2 + λμ

λ + 2μ

[
tr (S)

]2
, W∞

shell(S,T ) = μ
〈
S,T

〉+ λμ

λ + 2μ
tr(S) tr(T ),

W∞
mp(S) = μ‖S‖2 + λ

2

[
tr (S)

]2 ∀ S,T ∈ Sym(3), (4.11)

Wcurv(X) = μL2
c

(
b1 ‖dev symX‖2 + b2 ‖skewX‖2 + b3 [tr(X)]2

) ∀ X ∈ R
3×3,

the following existence results holds:

Theorem 4.2 (Unconditional existence result for the modified theory including terms up
to order O(h3)) Assume that the external loads satisfy the conditions f ∈ L2(ω,R3), t ∈
L2(γt ,R

3), the boundary data satisfy the conditions m∗ ∈ H1(ω,R3) and polar(∇m∗ |n∗) ∈
H1(ω,SO(3)), and that the following conditions concerning the initial configuration are
fulfilled: y0 : ω ⊂ R

2 → R
3 is a continuous injective mapping and

y0 ∈ H1(ω,R3), Q0 = polar(∇
) ∈ H1(ω,SO(3)),

∇
 ∈ L∞(ω,R3×3), det∇
 ≥ a0 > 0 ,
(4.12)

where a0 is a positive constant. Assume that the constitutive coefficients are such that μ > 0,
2λ+μ > 0, b1 > 0, b2 > 0, b3 > 0 and Lc > 0. Then, if the thickness h satisfies at least one
of the following conditions:

(i) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < α and h2 < (5−2
√

6)(α2−12)2

4α2
c+

2
C+

1
with

0 < α < 2
√

3;

(ii) hmax{supx∈ω |κ1|, supx∈ω |κ2|} < 1
a

and a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
,

where c+
2 denotes the smallest eigenvalue of Wcurv(S), and c+

1 and C+
1 > 0 denote the small-

est and the biggest eigenvalues of the quadratic form W∞
shell(S), the minimization problem

corresponding to the energy density defined by (4.10) admits at least one minimizing solu-
tion m such that the pair (m,Q∞) ∈ Amod.

4.3 A Modified Constrained Cosserat Plate Model. Unconditional Existence

In the case of the Cosserat plate theory, the modified constrained model is to find a defor-
mation of the midsurface m : ω ⊂R

2 → R
3 minimizing on ω:

I =
∫

ω

[
hW∞

shell

(√
Î�m −1

�

2

)+ h3

12
W∞

shell

(
sym(

√̂
I−1
m II�m)

)+ hWcurv

(
K∞

)]
da − �(m,Q∞),

(4.13)

where

Q∞ = polar(∇m|n) = (∇m|n)

√̂
I−1
m , (4.14)

K∞ =
(

axl(
√̂

I−T
m (∇m|n)T ∂x1

(
(∇m|n)

√̂
I−1
m

)) | axl(
√̂

I−T
m (∇m|n)T ∂x2

(
(∇m|n)

√̂
I−1
m

)) ∣∣0) .
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The admissible set is now

Amod
plate =

{
(m,Q∞) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣∣∣ m
∣∣
γd

= m∗,

Q∞Q0.e3

∣∣
γd

= ∂x1m
∗ × ∂x2m

∗

‖∂x1m
∗ × ∂x2m

∗‖ U := QT
∞(∇m|n) ∈ L2(ω,Sym(3))

}
,

which is non-empty.

Theorem 4.3 (Unconditional existence result for the modified constrained Cosserat
plate theory) Assume that the external loads satisfy the conditions f ∈ L2(ω,R3), t ∈
L2(γt ,R

3), the boundary data satisfy the conditions m∗ ∈ H1(ω,R3) and polar(∇m∗ |n∗) ∈
H1(ω,SO(3)). Assume that the constitutive coefficients are such that μ > 0, 2λ + μ > 0,
b1 > 0, b2 > 0, b3 > 0 and Lc > 0. Then, the minimization problem corresponding to the
energy density defined by (4.13) admits at least one minimizing solution m such that the pair
(m,Q∞) ∈ Amod

plate.

5 Strain Measures in the Cosserat Shell Model

Using the Remark (A.27), we can express the strain tensors of the unconstrained Cosserat
shell model using the (referential) fundamental forms Iy0 , IIy0 , IIIy0 and Ly0 (instead of using
the matrices Ay0 , By0 and Cy0 ), i.e.,

Em,s = [∇
]−T

(
(Qe,s∇y0)T ∇m − Iy0 0

(Qe,sn0)T ∇m 0

)
[∇
]−1

= [∇
]−T

(
G 0

T 0

)
[∇
]−1,

Cy0Ke,s = [∇
]−T

(
(Qe,s∇y0)T ∇(Qe,sn0) + IIy0 0

0 0

)
[∇
]−1

= − [∇
]−T

(
R 0

0 0

)
[∇
]−1,

Em,sBy0 = [∇
]−T

(
G Ly0 0

T Ly0 0

)
[∇
]−1,

Em,sB
2
y0

= [∇
]−T

(
G L2

y0
0

T L2
y0

0

)
[∇
]−1, (5.1)

Cy0Ke,sBy0 = − [∇
]−T
(
RLy0

)� [∇
]−1,

Cy0Ke,sB
2
y0

= − [∇
]−T
(
RL2

y0

)� [∇
]−1,

Em,sBy0 + Cy0Ke,s = − [∇
]−T

(
R− G Ly0 0

T Ly0 0

)
[∇
]−1,

Em,sB
2
y0

+ Cy0Ke,sBy0 = − [∇
]−T

(
(R− G Ly0 )Ly0 0

T L2
y0

0

)
[∇
]−1,
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where

G := (Qe,s∇y0)
T ∇m − Iy0 /∈ Sym(2) the non-symmetric change of metric tensor,

R := − (Qe,s∇y0)
T ∇(Qe,sn0) − IIy0 /∈ Sym(2) (5.2)

the non-symmetric bending strain tensor,

T := (Qe,sn0)
T ∇m = (〈

Qe,sn0, ∂x1m
〉
,
〈
Qe,sn0, ∂x2m

〉)
the transverse shear deformation (row) vector.

The definition of G is related to the classical change of metric tensor in the Koiter model

GKoiter := 1

2

[
(∇m)T ∇m − (∇y0)

T ∇y0
]= 1

2
(Im − Iy0) ∈ Sym(2), (5.3)

while the bending strain tensor may be compared with the classical bending strain tensor in
the Koiter shell model and the Naghdi-shell model [29, p. 11] with one independent director
field d : ω ⊂R

2 → R
3

RKoiter := −[(∇m)T ∇n − (∇y0)
T ∇n0] = IIm − IIy0 ∈ Sym(2), (5.4)

RNaghdi := −[sym((∇m)T ∇d) − (∇y0)
T ∇y0] = −[sym((∇m)T ∇d) − IIy0 ] ∈ Sym(2).

Since, in our constrained Cosserat shell model

E∞ =
√

[∇
]−T I�m [∇
]−1 −
√

[∇
]−T I�y0 [∇
]−1 ∈ Sym(3), (5.5)

using its alternative expression, see (A.30),

E∞ = [∇
]−T

(
G∞ 0

T∞ 0

)
[∇
]−1 (5.6)

we deduce that in the constrained Cosserat shell model it follows that the change of metric
tensor (in-plane deformation) must also be symmetric

G∞ := (Q∞∇y0)
T ∇m − Iy0∈ Sym(2), (5.7)

the transverse shear deformation vector

T∞ := (Q∞n0)
T ∇m = (〈

Q∞n0, ∂x1m
〉
,
〈
Q∞n0, ∂x2m

〉)= (0,0), (5.8)

is zero, while the bending strain tensor reads

R∞ := − (Q∞∇y0)
T ∇n − IIy0 /∈ Sym(2) (5.9)

and which remains non-symmetric, even if in the minimization problem the extra constraints
(coming from μc → ∞ and bounded energy)

E∞By0 + Cy0K∞
!∈ Sym(2) ⇔ R∞ − G∞ Ly0

!∈ Sym(2),

(E∞By0 + Cy0K∞)By0

!∈ Sym(2) ⇔ (R∞ − G∞ Ly0)Ly0

!∈ Sym(2)

(5.10)
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are imposed.9 Hence, in the constrained Cosserat shell model, we have the following conse-
quences of the imposed assumptions when μc → ∞:

G∞∈ Sym(2) ⇔ (∇y0)
T QT

∞(∇m) = (∇m)T Q∞ (∇y0)

⇔ 〈
Q∞∂x1y0, ∂x1m

〉= 〈
Q∞∂x2y0, ∂x1m

〉
and (5.12)

T∞ = (0,0) ⇔ (Q∞n0)
T ∇m = (0,0).

It is clear that
〈
Q∞n0, ∂xαm

〉 = (Q∞n0)
T ∂xαm = 0 and

〈
n, ∂xαm

〉 = 0 imply that Q∞n0 is
collinear with n. Since Q∞ ∈ SO(3) and due to the compatibility (3.5) with the boundary
conditions, we obtain Q∞n0 = n. The above restrictions (5.12) are natural in the constrained
nonlinear Cosserat shell model, they are also the underlying hypotheses of the classical
Koiter model. Moreover, the conditions G∞ ∈ Sym(2) and T∞ = (0,0), i.e., (5.12), coincide
with the conditions imposed by Tambača10 [41, page 4, Definition of the set AK ].

Due to the equality

[∇
]−T

(
G∞ 0

0 0

)
[∇
]−1 = E∞ =

√
[∇
]−T I�m [∇
]−1 −

√
[∇
]−T I�y0 [∇
]−1,

(5.13)

we find the expression of the change of metric tensor considered in the constrained Cosserat
shell model, in terms of the first fundamental form

G�
∞ = [∇
]T

(√
[∇
]−T I�m [∇
]−1 −

√
[∇
]−T I�y0 [∇
]−1

)
[∇
]−1 ∈ Sym(3). (5.14)

As we may see from (2.5), (3.21) and (A.30), in the constrained Cosserat shell model
the energy is expressed in terms of three strain measures: the change of metric tensor G∞ ∈
Sym(2), the nonsymmetric quantity G∞ Ly0 −R∞ which represents the change of curvature
tensor and the elastic shell bending–curvature tensor

K∞ :=
(

axl(QT
∞ ∂x1Q∞) | axl(QT

∞ ∂x2Q∞) |0
)
[∇
]−1 /∈ Sym(3),

where

Q∞ = polar
(
(∇m|n)[∇
]−1

)= (∇m|n)[∇
]−1
√

[∇
]̂ I−1
m [∇
]T ∈ SO(3). (5.15)

The choice of the name the change of curvature for the nonsymmetric quantity G∞ Ly0 −
R∞ will be justified in a forthcoming paper [22], in the framework of the linearized the-
ory. The bending strain tensor R∞ generalizes the linear Koiter-Sanders-Budiansky bending
measure [11, 24] which vanishes in infinitesimal pure stretch deformation of a quadrant of a
cylindrical surface [1], while the classical bending strain tensor tensor in the Koiter model
does not have this property (cf. the invariance discussion in Sect. 6.2).

9However, in the modified constrained Cosserat shell model presented in Sect. 4.1 the energy density is
expressed in terms of

sym(R∞ − G∞ Ly0 ) ∈ Sym(2) and sym[(R∞ − G∞ Ly0 )Ly0 ] ∈ Sym(2). (5.11)

10Tambača [41, page 4, Definition of the set Af ] also requires Q∞∇y0 = ∇m, in order to arrive at the pure
bending shell model. In this case G∞ = 0 and R∞ = −(∇m)T ∇n − IIy0 = IIm − IIy0 ∈ Sym(2).
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For the bending-curvature energy density Wbend,curv we can write its tensor argument K∞
in terms of the tensor Cy0 K∞ and the vector KT∞ n0, using Remark A.1 and according to the
decomposition

K∞ = Ay0 K∞ + (0|0|n0) (0|0|n0)
T K∞

= Cy0(−Cy0K∞) + (0|0|n0) (0|0|KT
∞ n0)

T . (5.16)

We can express Cy0K∞ in terms of the bending strain tensor R∞, see (A.29) and (3.14)

Cy0K∞ = − [∇
 ]−T R�
∞[∇
]−1 (5.17)

= −
√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1+

√
[∇
]̂ I−1

y0
[∇
]T [∇
]−T II�y0

[∇
]−1.

From here, we find that in the constrained Cosserat shell model, the non-symmetric bending
strain tensor has the following expression in terms of the first and second fundamental form

R�
∞ = [∇
 ]T

(√
[∇
]̂ I−1

m [∇
]T [∇
]−T II�m[∇
]−1 (5.18)

−
√

[∇
]̂ I−1
y0

[∇
]T [∇
]−T II�y0
[∇
]−1

)
∇
.

Moreover, for in-extensional deformations Im = Iy0 (pure flexure), the bending strain
tensor turns into

R�
∞ = [∇
 ]T

√
[∇
]̂ I−1

y0
[∇
]T [∇
]−T

(
II�m − II�y0

)[∇
]−1∇
 = II�m − II�y0

= R�

Koiter ∈ Sym(3).

Here, the bending strain tensor is incorporated into both the membrane-bending energy

W∞
memb,bend

(
E∞, K∞

)

=
(h3

12
− K

h5

80

)
W∞

shell

([∇
 ]−T [R∞ − 2G∞ Ly0 ]�[∇
 ]−1
)

+ h3

3
HW∞

shell

([∇
 ]−T (G∞)�[∇
 ]−1, [∇
 ]−T [R∞ − 2G∞ Ly0 ]�[∇
 ]−1
)

− h3

6
W∞

shell

([∇
 ]−T (G∞)�[∇
 ]−1, [∇
 ]−T [(R∞ − 2G∞ Ly0)Ly0 ]�[∇
 ]−1
)

+ h5

80
W∞

mp

([∇
 ]−T [(R∞ − 2G∞ Ly0)Ly0 ]�[∇
 ]−1
)

and the bending-curvature energy

Wbend,curv

(
K∞

)=
(
h − K

h3

12

)
Wcurv

(
K∞

)+
(h3

12
− K

h5

80

)
Wcurv

(
K∞By0

)
(5.19)

+ h5

80
Wcurv

(
K∞B2

y0

)
.

The remaining part KT∞ n0 from (5.16) is completely characterized by the (row) vector

N∞ := nT
0

(
axl(QT

∞∂x1Q∞) | axl(QT
∞∂x2Q∞)

)
(5.20)
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which is called the vector of drilling bendings [38]. The vector of drilling bendings N∞ does
not vanish in general and it is present only due to the bending-curvature energy.

The membrane-bending energy is expressed in terms of G∞, (R∞ − 2G∞ Ly0)
� and

[(R∞ − 2G∞ Ly0)Ly0 ]� and the non-modified constrained variational problem imposes the
following additional symmetry conditions, see (3.22) and (A.30):

(R∞ − 2G∞ Ly0)
� = [∇
]T

√
[∇
]−T Îm [∇
]−1 [∇
]

(
L�

m − L�
y0

) !∈ Sym(3) and

[(R∞ − 2G∞ Ly0)Ly0 ]� = [∇
]T
√

[∇
]−T Îm [∇
]−1 [∇
]
(

L�
m − L�

y0

)
L�

y0

!∈ Sym(3).

(5.21)

In the modified constrained Cosserat shell model presented in Sect. 4.1 these constraints
are excluded from the variational formulation, since the energy density is then expressed in
terms of sym(R∞ − G∞ Ly0) ∈ Sym(2) and sym[(R∞ − G∞ Ly0)Ly0 ] ∈ Sym(2). It is clear
that using the properties of the occurring quadratic forms, we may rewrite the membrane-
bending energy only as quadratic energies having G∞ and R∞ as arguments, while the
bending-curvature energy may be written in terms of R∞ and N∞. However, the coercivity
estimate of the total energy

W∞(E∞,K∞) = W∞
memb

(
E∞

)+ W∞
memb,bend

(
E∞, K∞

)+ Wbend,curv

(
K∞

)
(5.22)

i.e.,

W∞(E∞,K∞) ≥ h

12
a+

1 ‖E∞‖2 + h3

12
a+

2 ‖E∞By0 + Cy0 K∞‖2 + a+
3

h3

6
‖K∞‖2, a+

i > 0,

(5.23)

or equivalently

W∞(E∞,K∞) ≥ h

12
a+

1 ‖[∇
 ]−T (G∞)�[∇
 ]−1‖2 (5.24)

+ h3

12
a+

2 ‖[∇
 ]−T [R∞ − 2G∞ Ly0 ]�[∇
 ]−1‖2 + a+
3

h3

6
‖K∞‖2, a+

i > 0,

indicates that the total energy is controlled by the values of G∞, (R∞ − 2G∞ Ly0) and K∞
individually. We have not been able to identify a similar coercivity inequality showing that
the total energy is controlled by the values of G∞, R∞ and K∞ alone. Moreover, the as-
sumptions which follow from considering μc → ∞ are also expressed naturally in terms of

R∞ − 2G∞ Ly0 , i.e., the conditions R∞ − 2G∞ Ly0

!∈ Sym(3) and (R∞ − 2G∞ Ly0)Ly0

!∈
Sym(3), see estimate (3.66) and Sect. 3.2.

This line of thought, beside some other arguments presented in the linearised framework
by Anicic and Léger [6], see also [3], and more recently by Šilhavỳ [39], suggest that the
triple G∞, R∞ − 2G∞ Ly0 and K∞ are appropriate measures to express the change of metric
and of the curvatures H and K, while the bending and drilling effects are both additionally
incorporated in the bending-curvature energy through the elastic shell bending-curvature
tensor K∞.

In order to make connections with existing works in the literature on 6-parameter shell
models [12, 13, 19], see also [20, Sect. 6], we conclude that the membrane-bending energy
W∞

memb,bend

(
E∞, K∞

)
defined by (5.19), i.e., the influence of the change of curvature tensor

R∞ − 2G∞ Ly0 , is omitted if a constrained Cosserat shell model would be derived from
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Fig. 6 A radial expansion of a
cylinder preserves the tangent
planes and therefore it should
produce a zero bending strain
tensor. However, the metric of the
surface is changed, the curvature
changes (the principal radius of
curvature is changed), but the
normal is conserved. The radial
expansion occurs rather because
of in-plane stretch

other available simpler 6-parameter shell models [12, 13, 19], even if the bending strain
tensor R∞ is present (through the presence of the curvature energy).

6 Scaling Invariance of Bending Tensors

6.1 Revisiting Acharya’s Invariance Requirements for a Bending Strain Tensor

This brings us to the question of how to model the physical notion of bending: a clear under-
standing of bending measures will certainly lead to a clear definition of its work conjugate
pair when the equilibrium equations are established. Alongside, it helps to have a proper
formulation of the traction boundary conditions, when needed. In this context, Acharya [1,
page 5519] has proposed a set of modelling requirements for a bending strain tensor in any
first order nonlinear shell theory:

AR1 “Being a strain measure, it should be a tensor that vanishes in rigid deformations”.
AR2 “It should be based on a proper tensorial comparison of the deformed and under-

formed curvature fields [IIm and IIy0 ]”.
AR3 “A vanishing bending strain at a point should be associated with any deformation that

leaves the orientation of the unit normal field locally unaltered around that point.”

The first two requirements AR1 and AR2 are satisfied by all considered nonlinear bend-
ing tensors in the literature and both are physically intuitive, while the third requirement
AR3 suggests that a nonzero bending tensor should only be associated with a change of
the orientation of tangent planes and that, for instance, a radial expansion of a cylinder (see
Fig. 6) should give a zero bending strain measure, since it produces no further bending
deformation of the shell (but changes the curvature).

It is easy to see that RKoiter = IIm − IIy0 satisfies AR2 and AR1, since rigid deformations
keep the second fundamental form. But the latter is in general not the case for deformations
which leave the normal field unaltered, so that RKoiter does not satisfy AR3, for calculations,
see (6.24).

In [1, Eq. (8) and (10)] Acharya has proposed a bending strain tensor RAcharya for a first-
order nonlinear elastic shell theory which in our notation reads (see Appendix A.4)

the first proposal:

R̃Acharya=−
(

[∇
 ]−T II�m[∇
 ]−1−
√

[∇
 ]−T I�m [∇
 ]−1[∇
 ]−T II�y0
[∇
 ]−1

)
/∈ Sym(3),
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the second proposal: RAcharya= sym(R̃Acharya) ∈ Sym(3). (6.1)

Acharya’s bending tensors are similar to but do not coincide with the bending tensor appear-
ing in our nonlinear constrained Cosserat-shell model which reads

R�
∞ =[∇
 ]T

(√
[∇
]̂ I−1

m [∇
]T [∇
]−T II�m[∇
]−1 − [∇
]−T II�y0
[∇
]−1

)
∇
 (6.2)

=[∇
 ]T
√

[∇
]̂ I−1
m [∇
]T

(
[∇
]−T II�m[∇
]−1

−
√

[∇
]−T Îm[∇
]−1[∇
]−T II�y0
[∇
]−1

)
∇
 /∈ Sym(3).

Interestingly, it is possible to express R̃Acharya through our nonlinear bending tensor R�∞.
It holds (see Appendix A.4)

R̃Acharya = −
√

[∇
]−T I�m[∇
]−1

︸ ︷︷ ︸
not invertible

[∇
 ]−T R�
∞[∇
 ]−1. (6.3)

From (6.3), we might believe that R̃Acharya vanishes when R�∞ vanishes, while the reverse
might not be true. However, since

Î−1
m I�m = 1

�

2 (6.4)

we have

[∇
]T
√

[∇
]̂ I−1
m [∇
]T

√
[∇
]−T I�m[∇
]−1[∇
 ]−T = 1

�

2 (6.5)

and we deduce
√

[∇
]−T I�m[∇
]−1[∇
 ]−T II�y0
=
√

[∇
]−T Îm[∇
]−1[∇
 ]−T II�y0
, (6.6)

and Acharya’s bending tensor admits the alternative form

R̃Acharya = −
√

[∇
]−T Îm[∇
]−1

︸ ︷︷ ︸
invertible

[∇
 ]−T R�
∞[∇
 ]−1. (6.7)

Therefore,

R̃Acharya = 0 ⇐⇒ R�
∞ = 0. (6.8)

The nonlinear bending strain tensor RAcharya would satisfy all three requirements AR1 - AR3
“if locally pure stretch deformations are the only ones that leaves the orientation of tangent
planes unaltered locally under deformation.” Incidentally, the tensor (6.1)2 introduced by
Acharya reduces, after linearization as well to the Koiter-Sanders-Budiansky “best” bending
measure, see [22] for details. According to Acharya, his nonlinear bending measure should
only be seen as a mathematical “better alternative” for modelling the physical bending pro-
cess since “the set of deformations that leave the orientation of tangent planes unaltered
locally can be divided into two classes - deformations that have a pure stretch deformation
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Fig. 7 [Multiplicative view] The initial curved midsurface y0(ω) and deformed midsurface m(ω), connected
by a pure elastic stretch Ue ∈ Sym+(3). It leaves the normal unaltered if Ue (∇y0 |n0) = (∇m |n0), i.e.,

n = ∂x1 m×∂x2 m

‖∂x1 m×∂x2 m‖ = n0

gradient locally, and those that have their local rotation tensor field consisting of either [in-
plane] drill rotations or the identity tensor.” Acharya has shown that his nonlinear bending
strain measure vanishes in pure stretch deformations that leave the normal unaltered, while
the other classical bending strain measures fail to do so, but RAcharya does not necessarily
vanish for deformations whose rotation tensor is a “drill” rotation. Thus, RAcharya does not
satisfy AR3 in general. While physically appealing, condition AR3 may, therefore, be too
strict to be applicable in general. Hence we will introduce and investigate in the following a
weaker invariance requirement. To this end let us introduce

Definition 6.1 Let m be a deformation of the midsurface y0. Denoting by n and n0 normal
fields on the surface m and y0, respectively, we say that the midsurface deformation m is
obtained from a pure elastic stretch (see Fig. 7) provided that Ue := (∇m |n) (∇y0 |n0)

−1 =
(∇m |n) [∇
]−1 is symmetric and positive-definite, i.e., belongs to Sym+(3).

Remark 6.2 Ue is invertible by definition.

With this definition, Acharya’s essential invariance requirement can be stated as

AR3∗ A vanishing bending strain at a point should be associated with any deformation
obtained from a pure elastic stretch that leaves the orientation of the unit normal
field locally unaltered around that point.

Example 6.1 Of special interest for us are deformations, which leave the unit normal field
locally unaltered in a point. So, introducing locally orthogonal coordinates on the given
curved initial configuration (which is always possible, cf. e.g., [25])

〈∂x1y0, ∂x2y0〉 = 0, (6.9)

the partial derivatives of m must be linear combinations

∂x1m = α ∂x1y0 + β ∂x2y0 and ∂x2m = a ∂x1y0 + b ∂x2y0 (6.10a)
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(in order to leave the unit normal field invariant), where we require additionally

α b − β a︸ ︷︷ ︸
orientation

> 0 and { a ‖∂x1y0‖2 = β ‖∂x2y0‖2

︸ ︷︷ ︸
symmetry

and α ≥ β ≥ 0, b ≥ a ≥ 0︸ ︷︷ ︸
positive-definiteness

}. (6.10b)

The first condition (6.10b)1 appears in the calculation of ∂x1m×∂x2m and guarantees the ex-
istence and the orientation preservation of the normal, whereas the second condition (6.10b)2

implies (∇m |0)[∇
 ]−1 is symmetric and positive-definite so that it is exactly the desired
condition for the class of pure elastic stretches (in particular, (∇m)T ∇y0 is symmetric).
Indeed, we get (using orthogonal coordinates) for the inverse of ∇
 = (∇y0 |n0)

[∇
 ]−1 =
⎛
⎝γ (∂x1y0)

T

δ (∂x2y0)
T

nT
0

⎞
⎠ , where γ = 1

‖∂x1y0‖2
and δ = 1

‖∂x2y0‖2
. (6.11)

Recall, that for vectors a, b, c, d, e, f ∈ R
3 it holds

(a |b | c) (d | e |f )T = a ⊗ d + b ⊗ e + c ⊗ f (6.12)

so that we obtain

Ue = (∇m|n)[∇
 ]−1 != (α ∂x1y0 + β ∂x2y0|a ∂x1y0 + b ∂x2y0|n0)(γ ∂x1y0|δ ∂x2y0|n0)
T

= α γ ∂x1y0 ⊗ ∂x1y0 + β γ ∂x2y0 ⊗ ∂x1y0 + a δ ∂x1y0 ⊗ ∂x2y0

+ b δ ∂x2y0 ⊗ ∂x2y0 + n0 ⊗ n0 (6.13)

which is symmetric provided that a δ = β γ , cf. (6.10b)2 and (6.11), since

UT
e = α γ ∂x1y0 ⊗ ∂x1y0 + a δ ∂x2y0 ⊗ ∂x1y0 + β γ ∂x1y0 ⊗ ∂x2y0

+ b δ ∂x2y0 ⊗ ∂x2y0 + n0 ⊗ n0 . (6.14)

Furthermore, Ue is positive-definite because

Ue = (α − β)γ ∂x1y0 ⊗ ∂x1y0 + β γ (∂x1y0 ⊗ ∂x1y0 + ∂x2y0 ⊗ ∂x1y0)

+ a δ (∂x1y0 ⊗ ∂x2y0 + ∂x2y0 ⊗ ∂x2y0) + (b − a) δ ∂x2y0 ⊗ ∂x2y0 + n0 ⊗ n0

a δ=β γ= (α − β)γ ∂x1y0 ⊗ ∂x1y0 + β γ (∂x1y0 + ∂x2y0) ⊗ (∂x1y0 + ∂x2y0)

+ (b − a) δ ∂x2y0 ⊗ ∂x2y0 + n0 ⊗ n0 (6.15)

is a sum of four positive (semi-)definite matrices since we required α ≥ β ≥ 0 and b ≥ a ≥
0. Acharya’s examples [1, Sect. 6] satisfy both conditions (6.10b).11

11Indeed, the biaxial stretching of a cylinder [1, Sect. 6.2] satisfies (6.10b) with a = β = 0 (see [1, Eq. (34)])
and for the uniform normal deflection [1, Sect. 6.1] we have m = y0 + c n0 where c ∈ R is a fixed factor.
Hence,

∂x1m = ∂x1y0 + c ∂x1n0 and ∂x2m = ∂x2y0 + c ∂x2n0.
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6.2 Investigation of the Invariance Requirement for a Bending Tensor

Using (6.12) we have always (not only in orthogonal coordinates)

(∇y0 |0)[∇
]−1 = (∇y0 |n0)[∇
]−1 − (0 |0 |n0)[∇
]−1 (6.12)= 13 − n0 ⊗ n0, (6.16)

since eT
3 [∇
]−1 = nT

0 because [∇
]−1 =
⎛
⎝ · · ·

· · ·
nT

0

⎞
⎠ where ∇
 = (∇y0 |n0).

We now show, that both tensors RAcharya and R�∞ satisfy the three requirements AR1,
AR2 and AR3∗. Due to (6.7), it is sufficient to prove this property only for one of these
tensors. In this subsection, we show that RAcharya satisfy the three requirements AR1, AR2
and AR3∗, while a direct proof corresponding to these properties of R�∞ is presented, only
for completeness, in Appendix A.5.

The expressions of both tensors (6.1) and (6.2) fulfill condition AR2. Moreover, for
a rigid deformation y0 → m = Q̂y0, Q̂ ∈ SO(3) the fundamental forms coincide, Im =
Iy0 and IIm = IIy0 , due to the identities ∇m = Q̂∇y0, ∇n = ∇(Q̂n0) = Q̂∇ n0. Hence,
for a rigid deformation, we obtain
√

[∇
 ]−T I�m [∇
 ]−1 =
√

[∇
 ]−T I�y0 [∇
 ]−1 =
√

[∇
 ]−T (∇y0|0)T (∇y0|0)[∇
 ]−1

=
√

((∇y0|0)[∇
 ]−1)T (∇y0|0)[∇
 ]−1

(6.16)= √
(13 − n0 ⊗ n0)(13 − n0 ⊗ n0)

= 13 − n0 ⊗ n0, (6.17)

since 13 −n0 ⊗n0 is positive semi-definite because 〈(13 −n0 ⊗n0) ξ, ξ 〉 = ‖ξ‖2 −〈n0, ξ 〉2 ≥
0 for all ξ ∈R

3. Keeping in mind that [∇
 ]−1n0 = e3 it follows that for a rigid deformation
we have

R̃Acharya = −[∇
 ]−T II�m [∇
 ]−1+
√

[∇
 ]−T I�m [∇
 ]−1[∇
 ]−T II�y0
[∇
 ]−1 (6.18)

(6.17)= −[∇
 ]−T II�y0
[∇
 ]−1 + (13 − n0 ⊗ n0)[∇
 ]−T II�y0

[∇
 ]−1

= −n0 ⊗ n0 [∇
 ]−T II�y0
[∇
 ]−1 = n0 ⊗ ([∇
 ]−T II�y0

[∇
 ]−1n0)

= n0 ⊗ ([∇
 ]−T II�y0
e3) = 03.

Thus, using also (6.7), we have shown, that both tensors vanish for rigid deformations, so
that both satisfy AR1.

It remains to check AR3∗ for R̃Acharya and R�∞ for pure elastic stretches that in addition
leave the unit normal field unaltered in a point, i.e., we have

Ue := (∇m |n) (∇y0 |n0)
−1 ➀= (∇m |n0) [∇
]−1 = (∇m |0) [∇
]−1 + (0 |0 |n0) [∇
]−1

So that, a ‖∂x1y0‖2 (6.10a)= 〈∂x2m,∂x1y0〉 = c 〈∂x2n0, ∂x1y0〉 (∗)= c 〈∂x1n0, ∂x2y0〉 = 〈∂x1m,∂x2y0〉 (6.10a)=
β ‖∂x2y0‖2 where in (∗) we made use of the symmetry of the second fundamental form. Furthermore, since

‖n0‖2 = 1 implies that 〈∂xi
n0, n0〉 = 0 we have ∂x1n0 = θ1 ∂x1y0 + θ2 ∂x2y0 and ∂x2n0 = ϑ1 ∂x1y0 +

ϑ2 ∂x2y0 so that ∂x1m × ∂x2m = ((1 + c θ1)(1 + c ϑ2) − c2 θ2ϑ1) ∂x1y0 × ∂x2y0, implying that the range of
the fixed value c should be adjusted in such a way that the prefactor is positive and 1 + c θ1 ≥ c θ2 ≥ 0 as well
as 1 + c ϑ2 ≥ c ϑ1 ≥ 0, which are exactly the requirements for the positive-definiteness improved in (6.10b).
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(6.12)= (∇m |0) [∇
]−1 + n0 ⊗ n0
➁∈ Sym+(3), (6.19)

where ➀ requires that the unit normal field is left unaltered and ➁ requires m to be obtained
from a pure elastic stretch. Thus,

Ue n0 = (∇m |0) [∇
]−1 n0 + (n0 ⊗ n0) n0 = (∇m |0) e3 + n0 = n0 (6.20)

and, since the matrix Ue is invertible, also U−1
e n0 = n0. With I�m = (∇m|0)T (∇m|0) we

obtain

[∇
 ]−T I�m [∇
 ]−1 = [∇
 ]−T (∇m|0)T (∇m|0) [∇
 ]−1

(6.19)= (Ue − n0 ⊗ n0)
T (Ue − n0 ⊗ n0)

= (Ue − n0 ⊗ n0)
2 (6.21)

since Ue is symmetric (by requirement (6.19)). Moreover, the positive definite square root of
Ue fulfills also

√
Ue n0 = n0, thus (

√
Ue −n0 ⊗n0)

2 = (
√

Ue −n0 ⊗n0)(
√

Ue −n0 ⊗n0)
T =

Ue − n0 ⊗ n0 is positive semi-definite and we conclude

√
[∇
 ]−T I�m [∇
 ]−1 [∇
 ]−T (∇y0|0)T =

√
(Ue − n0 ⊗ n0)2 ((∇y0|0)[∇
]−1)T

(6.16)= (Ue − n0 ⊗ n0)(13 − n0 ⊗ n0) = Ue − Ue n0 ⊗ n0

(6.20)= Ue − n0 ⊗ n0 . (6.22)

Using (6.19) and (6.22) in the expression (6.1) it now follows that Acharya’s bending ten-
sor vanishes for pure elastic stretches that in addition leave the unit normal field unaltered.
Indeed, having II�m = −(∇m|0)T (∇n|0) = −(∇m|0)T (∇n0|0), so that again using the sym-
metry of Ue we obtain

R̃Acharya
(6.1)= [∇
]−T (∇m|0)T (∇n0|0)[∇
]−1

−
√

[∇
 ]−T I�m [∇
 ]−1 [∇
 ]−T (∇y0|0)T (∇n0|0)[∇
]−1

(6.19)=
(6.22)

(Ue − n0 ⊗ n0)
T (∇n0|0)[∇
]−1 − (Ue − n0 ⊗ n0) (∇n0|0)[∇
]−1 = 03,

(6.23)

all in all, we have shown, that R̃Acharya satisfies AR1, AR2 and AR3∗.
Continuing, our derived bending tensor R�∞ has the same properties as Acharya’s bend-

ing tensor RAcharya, due to (6.7).
We have already shown, that RKoiter = IIm − IIy0 satisfies AR1, AR2 but it does not

satisfy AR3∗ as we show presently. Consider [∇
]−T (II�m − II�y0
) [∇
]−1. Indeed, the latter

expression does not satisfy AR3∗ since

[∇
]−T (II�m − II�y0
) [∇
]−1 = −[∇
]−T (∇m|0)T (∇n0|0)[∇
]−1 (6.24)

+ [∇
]−T (∇y0|0)T (∇n0|0)[∇
]−1

(6.19)=
(6.16)

−(Ue − n0 ⊗ n0) (∇n0|0)[∇
]−1 + (13 − n0 ⊗ n0) (∇n0|0)[∇
]−1
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= −(Ue −13) (∇n0|0)[∇
]−1

does not generally vanish for deformations obtained from a pure elastic stretch that leave the
normal field unaltered. From (6.24) it follows that R�

Koiter = −[∇
]T (Ue −13) (∇n0|0) �= 0
under the same circumstances.

Finally, let us strengthen further the additional invariance requirements on the bending
tensor by postulating

AR3∗
plate For a planar reference geometry (IIy0 ≡ 02) the bending tensor should be invariant

under the scaling m → α m, α > 0.

It is clear that the simple scaling m → α m, α > 0 corresponds to an additional in-plane
stretch, while there is no additional bending involved. Therefore, AR3∗

plate should be adopted
as a suitable requirement for a true bending tensor expression. Furthermore, the new condi-
tion AR3∗

plate allows to differentiate between Acharya’s ad hoc bending tensors R̃Acharya and

RAcharya and our derived bending tensor R�∞. Indeed,

Remark 6.3 The bending tensor R�∞ satisfies AR3∗
plate while R̃Acharya and RAcharya do not

have this invariance property, since in the planar referential configuration (∇
 = 1, Iid = 1,
IIid = 02) Acharya’s bending tensors reduce to −II�m, which violate AR3∗

plate. Both R�∞ and
RAcharya reduce after linearisation [22] to the Sanders and Budiansky bending tensor of the
[10, 11, 24] “best first-order linear elastic shell theory”.

Remark 6.4 Let us mention the explicit dependence of the bending tensors on the two con-
figurations y0 and m such as R̃Acharya(m(x1, x2), y0(x1, x2)). Since the scaling α y0, α > 0,
leaves the normals invariant we have of course R̃Acharya(α y0, y0) ≡ 03 and R∞(α y0, y0) ≡
03. Now, for a planar reference configuration y0(x1, x2) = (x1, x2,0)T =: id1,2 we obtain the
scaling

R̃Acharya(α m, id1,2) = R�

Koiter(α m, id1,2) = αR�

Koiter(m, id1,2) = α R̃Acharya(m, id1,2)

(6.25)
but we have the scaling invariance

R�
∞(α m, id1,2) = α

|α|R
�
∞(m, id1,2)

α>0= R�
∞(m, id1,2). (6.26)

7 Conclusion

We have thoroughly investigated a recently introduced isotropic nonlinear Cosserat shell
model. We focussed on what happens when the independent Cosserat rotation is made to
coincide with the continuum rotation. This case can be steered in the model under consid-
eration by sending the Cosserat couple modulus μc → ∞. In this way we obtained a con-
strained Cosserat shell, which incorporates strong symmetry requirements on the appearing
strain and bending-curvature tensors. For such a class of constrained models we proposed
conditional existence theorems for the resulting minimization problem: conditional, since
we cannot exclude that the admissible set is empty. This led us to consider a modified shell
model in which certain symmetry requirements are waived. Then unconditional existence
follows easily. A conceptual advantage of the constrained Cosserat shell model is that it
can be entirely expressed in “classical” quantities from differential geometry (first and sec-
ond fundamental forms of the initial and deformed surface, respectively). We have provided
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the necessary calculations for this identification which allowed us to compare the resulting
model with other classical models, like the Koiter shell model. While the membrane part of
the constrained model incorporates only the respective first fundamental forms it turns out
that our constrained model incorporates a bending tensor which always couples bending and
membrane effects. This was neither expected nor aimed at originally. To our great surprise,
the new bending tensor satisfies a generalized invariance condition, previously introduced
by Acharya, while the Koiter bending tensor does not. We added a new invariance condi-
tion in the same spirit which allows us to differentiate further between existing proposals
for bending tensors. By identifying a true bending tensor validated by the novel invariance
requirements AR3∗ and AR3∗

plate we observe a clear advantage of the constrained Cosserat
shell model compared to more classical approaches: the obtained bending tensor measures
really only bending (change in normals) and the additional Cosserat curvature tensor mea-
sures the remaining total curvature. Classical shell approaches do not have the possibility
to incorporate a curvature tensor and their proposed bending tensors are not invariant under
scaling. We also expect manifest differences in predicting the small-scale wrinkling behav-
iors between a theory that shows scaling invariance of the bending tensor versus a theory
that does not. Since in the development of the model we took great care to approximate the
shell as exact as possible it seems to be the simplifying assumptions in the classical Koiter
shell model that destroy the mentioned, physically appealing invariance condition. In this
respect more research seems to be necessary to generally ascertain the invariance condition
in any first order nonlinear shell model. In a follow up paper [22], we will linearize the
model and compare it to available linear shell models. The obtained clear and consistent
structure of the Cosserat model together with the sound invariance conditions which are au-
tomatically satisfied make us confident that the new Cosserat shell model will find its place
when isotropic thin shell theory need to be actually applied in a FEM-context. In that case,
however, it will rather be the unconstrained Cosserat shell model that will be implemented
in order to obtain second order equilibrium equations.

Appendix

A.1 Useful Identities

We provide some properties of the tensors in the variational formulation of the shell models
from [20, 21]:

Remark A.1 The following identities are satisfied:

(i) tr[Ay0 ] = 2, det[Ay0 ] = 0; tr[By0 ] = 2 H, det[By0 ] = 0,
Ay0 = [∇
]−T I�y0

[∇
]−1 = 13 − (0|0|∇
.e3) [∇
]−1 = 13 − (0|0|n0) (0|0|n0)
T ,

By0 = [∇
]−T II�y0
[∇
]−1

(ii) By0 satisfies the equation of Cayley-Hamilton type B2
y0

− 2 H By0 + K Ay0 = 03;
(iii) Ay0 By0 = By0 Ay0 = By0 , A2

y0
= Ay0 , Cy0 ∈ so(3), C2

y0
= −Ay0 , ‖Cy0‖2 =

2;
(iv) Q

T

e,s (∇[Qe,s∇
.e3] |0) [∇
]−1 = Cy0Ke,s − By0 ;
(v) Cy0Ke,sAy0 = Cy0Ke,s , Em,sAy0 = Em,s .

Further, in view of I−1
y0

IIy0 = Ly0 and considering also the third fundamental form defined
by IIIy0 = IIy0 Ly0 , we note the relations

[∇
]−1 By0 = L�
y0

[∇
]−1 and B2
y0

= [∇
]−T III�y0
[∇
]−1. (A.1)
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A.2 The Classical Nonlinear Koiter Shell Model in Cartesian Matrix Notation

In this subsection, we consider the variational problem for the geometrically nonlinear Koi-
ter energy for a nonlinear elastic shell [15, page 147] and we rewrite it in matrix format.
The problem written in tensor format [15, page 147], [40, Eq. (1) and Eq. (101)] is to find a
deformation of the midsurface m : ω ⊂ R

2 →R
3 minimizing on ω:

1

2

∫
ω

{
h
〈
C

iso
shell.

1

2

(
Im − Iy0

)
,

1

2

(
Im − Iy0

)〉+ h3

12

〈
C

iso
shell.

(
IIm − IIy0

)
,
(
IIm − IIy0

)〉}
det∇
 da

(A.2)
where the fourth order constitutive tensor C

iso
shell : Sym(2) → Sym(2) for isotropic elastic

shells in the Koiter model is given by [14]

C
iso
shell =

[
μ
(
aαγ aβτ + aατ aβγ

)+ 2λμ

λ + 2μ
aαβaγ τ

]
eα ⊗ eβ ⊗ eγ ⊗ eτ . (A.3)

Since our model is completely written in matrix format, we also transform the above
classical minimization problem in matrix format. To this aim, let us remark that in (A.2), for
a second order symmetric tensor X = Xαβeα ⊗ eβ , we have

〈
C

iso
shell.X, X

〉 =
[
μ
(
aαγ aβτ + aατ aβγ

)+ 2μλ

2μ + λ
aαβaγ τ

]
XαβXγτ (A.4)

= μ
(
aαγ aβτXαβXγτ + aατ aβγ XαβXγτ

)+ 2μλ

2μ + λ

(
aαβXαβ

)(
aγ τXγτ

)

= 2μ
(
aαγ aβτXαβXγτ

)+ 2μλ

2μ + λ

(
aαβXαβ

)2
.

A little calculation shows

‖[∇
]−T X� [∇
]−1‖2 = ‖P −T X̂ P −1‖2

= ‖(ai ⊗ ei) (Xαβ eα ⊗ eβ) (ej ⊗ aj )‖2 =‖Xαβ aα ⊗ aβ‖2

= tr
[(

Xαβ aα ⊗ aβ
) (

Xγδ aγ ⊗ aδ
)T ] = tr

[
XαβXδγ aβγ

(
aα ⊗ aδ

)]

= XαβXγδ aβγ aαδ = aαγ aβτXαβXγτ ,

(A.5)

where P = ∇
, and similarly

tr
[
[∇
]−T X� [∇
]−1

]
= tr

[
P −T X� P −1

]
= tr

[
(ai ⊗ ei) (Xαβ eα ⊗ eβ) (ej ⊗ aj )

]
(A.6)

= tr
[
Xαβ aα ⊗ aβ

]
= Xαβ

〈
aα, aβ

〉 = aαβ Xαβ .

If we substitute (A.5) and (A.6) into (A.4), we obtain

〈
C

iso
shell.X, X

〉 = 2μ‖[∇
]−T X� [∇
]−1‖2 + 2λμ

λ + 2μ
tr
[
[∇
]−T X� [∇
]−1

]2
, (A.7)

which holds for any symmetric tensor X = Xαβeα ⊗ eβ .
Writing the equation (A.7) for the symmetric matrix X = 1

2 (Im − Iy0) and respectively
the matrix X = IIm − IIy0 , then we obtain the following relations

〈
C

iso
shell.

1

2

(
Im − Iy0

)
,

1

2

(
Im − Iy0

)〉 =2μ‖[∇
]−T 1

2

(
I�m − I�y0

) [∇
]−1‖2 (A.8)
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+ 2μλ

2μ + λ
tr
[
[∇
]−T 1

2

(
I�m − I�y0

) [∇
]−1
]2

,

〈
C

iso
shell.

(
IIm − IIy0

)
,
(
IIm − IIy0

)〉 =2μ‖[∇
]−T
(
II�m − II�y0

) [∇
]−1‖2

+ 2μλ

2μ + λ
tr
[
[∇
]−T

(
II�m − II�y0

) [∇
]−1
]2

.

Hence, putting all together, in matrix format and for a nonlinear elastic shell, the vari-
ational problem for the Koiter energy is to find a deformation of the midsurface m : ω ⊂
R

2 → R
3 minimizing on ω

∫
ω

{
h

(
μ‖[∇
]−T 1

2

(
I�m − I�y0

)
︸ ︷︷ ︸

GKoiter

[∇
]−1‖2 + λμ

λ + 2μ
tr
[
[∇
]−T

(
I�m − I�y0

) [∇
]−1
]2
)

+ h3

12

(
μ‖[∇
]−T

(
II�m − II�y0

)
︸ ︷︷ ︸

RKoiter

[∇
]−1‖2

+ λμ

λ + 2μ
tr
[
[∇
]−T

(
II�m − II�y0

) [∇
]−1
]2
)}

det∇
 da. (A.9)

The main feature of the classical Koiter model is that it is just the sum of the correctly
identified membrane term and bending terms (under inextensional deformation).

A.3 Thickness Versus Invertibility and Coercivity

A.3.1 Invertibility Conditions for the Parametrized Initial Surface �

We note that det∇
(x3) = 1 − 2H x3 +K x2
3 = (1 − κ1 x3)(1 − κ2 x3) > 0 ∀x3 ∈ [−h/2, h/2]

if and only if 1 − κ1 x3 and 1 − κ2 x3 have the same sign. However, 1 − κ1 x3 cannot be
negative, since for κ1 < 0 this will imply that 1 < κ1 x3 ∀x3 ∈ [−h/2, h/2] which is not true
if x3 > 0, while for κ1 ≥ 0 this will imply that 1 < κ1 x3 ∀x3 ∈ [−h/2, h/2] which is not true
if x3 < 0. Therefore, 1 − 2H x3 + K x2

3 > 0 ∀x3 ∈ [−h/2, h/2] if and only if 1 > κ1 x3 and
1 > κ2 x3 ∀x3 ∈ [−h/2, h/2]. These conditions are equivalent with |κ1| h/2 < 1 and |κ2| h/2 < 1,
i.e., equivalent with (1.18).

A.3.2 Coercivity for the O(h5) Model

The decisive point in the proof of the existence where the condition on the thickness is
used is only in the proof of the coercivity of the internal energy density. Therefore, in this
appendix, we extend the result regarding the coercivity of the internal energy to the following
result:

Proposition A.2 (Coercivity in the theory including terms up to order O(h5)) For suffi-
ciently small values of the thickness h such that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α with α <

√
2

3
(29 − √

761) � 0.97083 (A.10)
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and for constitutive coefficients satisfying μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and
b3 > 0, the energy density

W(Em,s,Ke,s) = Wmemb

(
Em,s

)+ Wmemb,bend

(
Em,s, Ke,s

)+ Wbend,curv

(
Ke,s

)
(A.11)

is coercive in the sense that there exists a constant a+
1 > 0 such that W(Em,s,Ke,s) ≥

a+
1

(‖Em,s‖2 + ‖Ke,s‖2
)
, where a+

1 depends on the constitutive coefficients.

Proof From the assumptions h |κ1| < α, h |κ2| < α, it follows that

h2|K| = h2 |κ1| |κ2| < α2 and 2h |H | = h |κ1 + κ2| < 2α. (A.12)

Therefore, for α <

√
20
3 it follows h − K h3

12 > h − h
12α2 > 0 and h3

12 − h3

80 α2 > 0. On the
other hand, from [21, Proposition 3.1.] we have

W(Em,s,Ke,s) ≥
(
h − h

12
δ + K

h3

12
− h2

6
ε |H|

)
Wshell

(
Em,s

)
(A.13)

+
(h3

12
− K

h5

80
− h4

6 ε
|H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

+
( h5

80
− h5

12 δ

)
Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

) ∀ ε > 0 and δ > 0.

Using the inequalities (A.12), we deduce

W(Em,s,Ke,s) ≥ h

12

(
12 − δ − α2 − 2 ε α

)
Wshell

(
Em,s

)
(A.14)

+ h3

12

(
1 − 3

20
α2 − 1

3 ε
α
)

Wshell

(
Em,sBy0 + Cy0 Ke,s

)

+ h5

80

(
1 − 20

3 δ

)
Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

) ∀ ε > 0 and δ > 0.

Let us remark for 0 < α <

√
20
3 , if there exist δ > 20

3 and ε > 40α

20−3α2 such that

12 − δ − α2 − 2 ε α > 0 ⇔ 12 − α2 > δ + 2 ε α >
20

3
+ 2

40α2

20 − 3α2
(A.15)

then α <

√
2
3 (29 − √

761) � 0.97083. Since the map (δ, ε) �→ δ +2 ε α is linear, it increases

in gradient direction and hence, the condition α <

√
2
3 (29 − √

761) � 0.97083 is also suffi-

cient for the existence of δ > 20
3 and ε > 40α

20−3α2 such that (A.15) is satisfied.

W(Em,s,Ke,s) ≥h
[1

3
− K

h2

12
− h

3
|H|

]
Wshell

(
Em,s

)
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+ h3

12

(
1 − |K| 12h2

80
− h |H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

+
(
h − |K| h3

12

)
Wcurv

(
Ke,s

)
. (A.16)

In view of (A.14) and (2.10), we see that there exist positive constants b+
1 , b+

2 , b+
3 > 0 such

that

W(Em,s,Ke,s) ≥ h

12
b+

1 Wshell

(
Em,s

)+ h3

12
b+

2 Wshell

(
Em,sBy0 + Cy0 Ke,s

)+ hb+
3 Wcurv

(
Ke,s

)

≥ h

12
b+

1 min{c+
1 ,μc} ‖Em,s‖2 + h

12
b+

2 min{c+
1 ,μc} ‖Em,sBy0 + Cy0 Ke,s‖2

+ hb+
3 c+

2 ‖Ke,s‖2. (A.17)

The desired constant a+
1 from the conclusion can be chosen as a+

1 = min
{ h

12
b+

1 min{c+
1 ,μc},

h

12
b+

2 min{c+
1 ,μc}, hb+

3 c+
2

}
. �

A.3.3 Coercivity for the O(h3) Model

In this subsection we investigate if the conditions which assure the existence of the solution
may be relaxed in the Cosserat shell model up to O(h3), too. In fact, as in the previous
subsection, it is enough to prove some new coercivity results under weakened conditions on
the thickness. We recall that in the Cosserat shell model up to O(h3) the shell energy density
W(h3)(Em,s,Ke,s) is given by (3.65).

Proposition A.3 (The first coercivity result in the theory including terms up to order O(h3))
For sufficiently small values of the thickness h such that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} < α and

h2 <
(5 − 2

√
6)(α2 − 12)2

4α2

c+
2

max{C+
1 ,μc} with 0 < α < 2

√
3

(A.18)

and for constitutive coefficients satisfying the constitutive coefficients are such that μ >

0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0 and where c+
2 denotes the smallest

eigenvalue of Wcurv(S), and C+
1 > 0 denotes the largest eigenvalues of the quadratic form

W∞
shell(S), the total energy density W(h3)(Em,s,Ke,s) is coercive, in the sense that there exists

a constant a+
1 > 0 such that W(h3)(Em,s,Ke,s) ≥ a+

1

(‖Em,s‖2 +‖Ke,s‖2
)
, where a+

1 depends
on the constitutive coefficients.

Proof Similarly as in the proof presented in [21, Proposition 4.1], we obtain the estimate

W(h3)(Em,s,Ke,s) ≥
(
h − K

h3

12
− 1

12
ε h − 1

6
δ |H|h2

)
Wshell

(
Em,s

)

− 1

12 ε
h5 Wshell

(
Cy0 Ke,sBy0

)
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− 1

6 δ
|H|h4 Wshell

(
Cy0 Ke,s

)+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

) ∀ ε > 0 and δ > 0,

(A.19)

which after imposing the conditions −h2|K| > −α2 and −h |H | > −α, using (A.12), (2.10)
and since the Frobenius norm is sub-multiplicative and ‖Cy0‖2 = 2, leads to

W(h3)(Em,s,Ke,s) ≥ h

12

(
12 − α2 − ε − 2α δ

)
Wshell

(
Em,s

)+ h3

12
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

− 1

6 δ
α h3 Wshell

(
Cy0 Ke,s

)− 1

12 ε
h5 Wshell

(
Cy0 Ke,sBy0

)

+ h

12
(12 − α2)Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)

≥ h

12

(
12 − α2 − ε − 2α δ

)
min{c+

1 ,μc}‖Em,s‖2

+ h3

12
min{c+

1 ,μc}‖Em,sBy0 + Cy0Ke,s‖2 (A.20)

− 1

3δ
αh3 max{C+

1 ,μc}‖Ke,s‖2 − 1

6 ε
h5 max{C+

1 ,μc}‖Ke,sBy0‖2

+ h

12
(12 − α2)c+

2 ‖Ke,s‖2 + h3

12
c+

2 ‖Ke,sBy0‖2

for all α, δ, ε > 0 such that 12 − α2 − ε − 2α δ > 0 and 12 − α2 > 0. Since ‖By0‖2 =
4 H2 − 2 K, it follows

W(h3)(Em,s,Ke,s) ≥ h

12

(
12 − α2 − ε − 2α δ

)
min{c+

1 ,μc}‖Em,s‖2

+ h3

12
min{c+

1 ,μc}‖Em,sBy0 + Cy0 Ke,s‖2

+ h

12

[
(12 − α2) c+

2 − 4

δ
α max{C+

1 ,μc}h2

− 2

ε
h4 max{C+

1 ,μc} (4 H2 − 2 K)
]
‖Ke,s‖2 + h3

12
c+

2 ‖Ke,sBy0‖2

Using again that h is small, we obtain −h2 (4 H2 − 2 K) ≥ −h2 (4 H2 + 2 |K|) ≥ −6α2 and

W(h3)(Em,s,Ke,s) ≥ h

12

(
12 − α2 − ε − 2α δ

)
min{c+

1 ,μc}‖Em,s‖2 (A.21)

+ h

12

[
(12 − α2) c+

2 − 4

δ
α max{C+

1 ,μc}h2

− 2

ε
h2 max{C+

1 ,μc}6α2
]
‖Ke,s‖2.
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We consider δ = γ ε and we choose ε > 0 and γ > 0 such that

12 − α2

1 + 2αγ
> ε > 4

α + 3α2γ

γ (12 − α2)

max{C+
1 ,μc}

c+
2

h2. (A.22)

This choice of the variable ε > 0 is possible if and only if (12−α2)2γ

4 (a+2αγ ) (α+3α2γ )
>

h2 max{C+
1 ,μc}

c+
2

.

At this point we use that

max
γ>0

(12 − α2)2γ

4 (a + 2αγ ) (α + 3α2γ )
= (5 − 2

√
6)(α2 − 12)2

4α2
,

and this maximum value is attained for γ = 1√
6a

. Hence, we arrive at the following condition
on the thickness h:

h2 <
(5 − 2

√
6)(α2 − 12)2

4α2

c+
2

max{C+
1 ,μc} , (A.23)

which proves the coercivity if the condition from the hypothesis is satisfied. �

The condition (A.18) on the thickness does not represent a relaxation of the con-
dition imposed in [21, Proposition 4.1], i.e., not in the sense of the relaxed condition
(A.10) which is found for the O(h5) Cosserat shell model. Indeed, since the map α �→
(5−2

√
6)(α2−12)2

4α2
c+

2
max{C+

1 ,μc} is monotone decreasing on [0,2] (the interval of the values of the

parameter α for which the construction of the model has sense), a large value for α will relax
the first condition (A.18)1 while the other condition (A.18)2 on the thickness will become
more restrictive. Since the second condition (A.18)2 is expressed in terms of all constitutive
parameters, through c+

2 and max{C+
1 ,μc}, while the first condition (A.18)1 depends on the

curvatures of the referential configuration, the largest value of the parameter α in the coer-
civity result would be chosen as the best compromise between the conditions (A.18)1 and
(A.18)2. In conclusion, in comparison to the conditions imposed in [21, Proposition 4.1], for
a specific material and a specific referential configuration the new condition (A.18) would
offer a largest interval of values for the upper bound of the thickness.

We also note that in [21, Proposition 4.1], because the condition of the form (A.18)2 from
the hypothesis of Proposition A.3 depends on the length scale Lc , we have proved another
coercivity result which avoids this aspect:

Proposition A.4 (The second coercivity result in the theory including terms up to order
O(h3)) For sufficiently small values of the thickness h such that

hmax{sup
x∈ω

|κ1|, sup
x∈ω

|κ2|} <
1

a
with a > max

{
1 +

√
2

2
,

1 +
√

1 + 3
max{C+

1 ,μc}
min{c+

1 ,μc}
2

}
,

(A.24)

and for constitutive coefficients satisfying the constitutive coefficients are such that μ >

0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0 and let c+
1 and max{C+

1 ,μc} > 0 denote
the smallest and the largest eigenvalues of the quadratic form W∞

shell(S), the total energy

density W(h3)(Em,s,Ke,s) is coercive, in the sense that there exists a constant a+
1 > 0 such

that W(h3)(Em,s,Ke,s) ≥ a+
1

(‖Em,s‖2 + ‖Ke,s‖2
)
, where a+

1 depends on the constitutive co-
efficients.
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A.4 Acharya’s Bending Tensor in Cartesian Matrix Notation

For comparison purpose, let us mark all the vectors and tensors defined by Acharya [1, Page
5520] with the subscript A (e.g., f A, b∗

A, (Eα)A). We express them using our notations as
follows:

XA = y0 , NA = n0 , xA = m, nA = n ,

(Eα)A = aα = ∂xαy, (Eα)A = aα etc.
(A.25)

Let us denote by [T A] the 3 × 3 matrix of the components in the basis {ei ⊗ ej } for any
tensor T defined by Acharya [1, Page 5519]. Then, we have

[f A] =
[( ∂x

∂X

)
A

]
= [m,α ⊗ aα] = [(m,α ⊗ eα)(ei ⊗ ai)] = (∇m|0) [∇x
]−1 (A.26)

and

[BA] =
[(∂N

∂X

)
A

]
= [n0,α ⊗ aα] = [(n0,α ⊗ eα)(ei ⊗ ai)] = (∇n0|0) [∇x
]−1, (A.27)

so that

[BA] = −By0 = −[∇x
]−T II�y0
[∇x
]−1. (A.28)

Furthermore, we have

[b∗
A] =

[
f T

A

(∂n

∂x

)
A

f A

]
=
[
f T

A

( ∂n

∂X

)
A

]
= [f A]T

[( ∂n

∂X

)
A

]

and using (A.41) we get

[b∗
A] = [∇x
]−T (∇m|0)T (∇n|0) [∇x
]−1 = −[∇x
]−T II�m [∇x
]−1. (A.29)

By virtue of (A.28) and (A.29), the classical bending strain measure can be written as [1,
Eq. 3]

[KA] = [b∗
A] − [BA] = −[∇x
]−T (IIm − IIy0)

� [∇x
]−1. (A.30)

For the tensor UA we obtain using equation (A.28) the expression

[UA] =
√

[f T
A f A ] =√[f A]T [f A ] =√[∇x
]−T (∇m|0)T (∇m|0) [∇x
]−1

=
√

[∇x
]−T I�m [∇x
]−1 .

(A.31)

Thus, the bending tensor defined by Acharya [1, Eq. 8] is given by

[K̃A] = [b∗
A] −

[
UA

(∂N

∂X

)
A

]
= [b∗

A] − [UA] [BA] .

Inserting here the relations (A.28), (A.29) and (A.31), we obtain that the bending tensor K̃A

defined in the paper by Acharya [1, Eq. 7 and 8] can be written in our matrix notation as
follows:

R̃Acharya := K̃A = −[∇x
]−T II�m [∇x
]−1 +
√

[∇x
]−T I�m [∇x
]−1 [∇x
]−T II�y0
[∇x
]−1.

(A.32)



136 I.-D. Ghiba et al.

Since 1�

2II�m = II�m and 1�

2[∇
 ]T Îm = I�m, the following relation between the nonlinear
bending tensor R̃Acharya introduced by Acharya and our nonlinear bending tensor R�∞ holds

R̃Acharya = −
(

[∇
 ]−T1
�

2[∇
 ]T [∇
 ]−T II�m[∇
 ]−1

−
√

[∇
 ]−T1
�

2[∇
 ]T [∇
 ]−T Îm [∇
 ]−1[∇
 ]−T II�y0
[∇
 ]−1

)

= − [∇
 ]−T1
�

2[∇
 ]T
(

[∇
 ]−T II�m[∇
 ]−1

−
√

[∇
 ]−T Îm [∇
 ]−1[∇
 ]−T II�y0
[∇
 ]−1

)
(A.33)

= − [∇
 ]−T1
�

2[∇
 ]T
√

[∇
]−T Îm[∇
]−1[∇
 ]−T R�
∞[∇
 ]−1

= −
√

[∇
]−T 1
�

2̂Im[∇
]−1[∇
 ]−T R�
∞[∇
 ]−1

= −
√

[∇
]−T I�m[∇
]−1[∇
 ]−T R�
∞[∇
 ]−1,

where we have used
√

[∇
 ]−T1
�

2[∇
 ]T = [∇
 ]−T1
�

2[∇
 ]T ⇔ ([∇
 ]−T1
�

2[∇
]T )2 =
[∇
 ]−T1

�

2[∇
]T [∇
 ]−T1
�

2[∇
]T = [∇
 ]−T (1
�

2)
2[∇
]T = [∇
 ]−T1

�

2[∇
]T and (6.2).

A.5 A Direct Proof of the Fact That R�∞ Satisfies AR1, AR2 and AR3∗

It is obvious that the tensor (6.1) satisfies condition AR2, see Sect. 6.2. Moreover, using
similar calculations as in Sect. 6.2, for a rigid deformation, we have
√

[∇
]̂ I−1
m [∇
]T = {[∇
 ]−T Îm [∇
 ]−1}− 1

2 = {[∇
 ]−T (I�m + e3 ⊗ e3) [∇
 ]−1}− 1
2

= {[∇
 ]−T I�m [∇
 ]−1 + [∇
 ]−T e3 ⊗ e3 [∇
 ]−1}− 1
2

(6.17)= {(13 − n0 ⊗ n0)
2 + n0 ⊗ n0}− 1

2 = {13 − n0 ⊗ n0 + n0 ⊗ n0}− 1
2 = 13,

(A.34)

so that we conclude

R�
∞ = [∇
 ]T

(√
[∇
]̂ I−1

m [∇
]T [∇
]−T II�m[∇
]−1 − [∇
]−T II�y0
[∇
]−1

)
∇


(A.34)= [∇
 ]T
(
13 [∇
]−T II�y0

[∇
]−1 − [∇
]−T II�y0
[∇
]−1

)
∇
 = 03, (A.35)

which means that R�∞ satisfies AR1.
In order to show that R�∞ satisfies AR3∗, using

(Ue − n0 ⊗ n0)
2 = U2

e − Ue n0 ⊗ n0 − n0 ⊗ n0 Ue + n0 ⊗ n0
(6.20)= U2

e − n0 ⊗ n0, (A.36)

we deduce that
√

[∇
]̂ I−1
m [∇
]T = {[∇
 ]−T Îm [∇
 ]−1}− 1

2
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= {[∇
 ]−T I�m [∇
 ]−1 + [∇
 ]−T e3 ⊗ e3 [∇
 ]−1}− 1
2

(6.21)= {(Ue − n0 ⊗ n0)
2 + n0 ⊗ n0}− 1

2 = {U2
e − n0 ⊗ n0 + n0 ⊗ n0}− 1

2

= U−1
e , (A.37)

where we have used that Ue is positive-definite. Together with the definition of the symmet-
ric matrix Ue we get

√
[∇
]̂ I−1

m [∇
]T [∇
 ]−T (∇m|0)T (A.37)=
(6.19)

U−1
e (Ue − n0 ⊗ n0) = 13 − U−1

e n0 ⊗ n0

(6.20)= 13 − n0 ⊗ n0. (A.38)

Again, using the intermediate steps (6.16) and (A.38) in the expression (6.2) we obtain
R�∞ = 03 since

R�
∞

(6.2)= [∇
 ]T
(√

[∇
]̂ I−1
m [∇
]T [∇
]−T II�m[∇
]−1 − [∇
]−T II�y0

[∇
]−1
)
∇


= [∇
 ]T
(

−
√

[∇
]̂ I−1
m [∇
]T [∇
]−T (∇m|0)T (∇n0|0)[∇
]−1

+ [∇
]−T (∇y0|0)T (∇n0|0)[∇
]−1
)
∇


(6.16)=
(A.38)

[∇
 ]T
(

− (13 − n0 ⊗ n0) (∇n0|0)[∇
]−1

+ (13 − n0 ⊗ n0) (∇n0|0)[∇
]−1
)
∇
 = 03, (A.39)

so that also R�∞ satisfies AR1, AR2 and AR3∗.

A.6 Alternative Representation of Energy in Terms of the New Strain Tensors

We present in the following an alternative formulation of the unconstrained Cosserat-shell
model from (3.21). In this section, for a matrix of the form X = (XS |0) [∇
 ]−1 ∈ R

3×3,
we consider the matrix XC = [∇
 ]T XS ∈ R

3×2, i.e.,

X = [∇
 ]−T (XC |0) [∇
 ]−1. (A.40)

For the bilinear form Wshell(X,Y ) given in (2.6) we have then the transformations

Wshell(X,Y ) = WS
shell(X

S,Y S) = WC
shell(X

C,Y C), (A.41)

where, e.g.,

WC
shell(X

C,Y C) =μ 〈 sym
([∇
 ]−T (XC |0) [∇
 ]−1

)
, sym

([∇
 ]−T (Y C |0) [∇
 ]−1
) 〉

+ μc〈 skew
([∇
 ]−T (XC |0) [∇
 ]−1), skew

([∇
 ]−T (YC |0) [∇
 ]−1) 〉
+ λμ

λ + 2μ
tr([∇
 ]−T (XC |0) [∇
 ]−1) tr([∇
 ]−T (Y C |0) [∇
 ]−1).

(A.42)
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We note that the last relation can be written using the first fundamental form Iy0 and its
square root in the following alternative ways:

WC
shell(X

C,Y C) = μ 〈 sym (XC |0), sym
(
Î−1
y0

(Y C |0) Î−1
y0

) 〉
+ μc〈 skew (XC |0), skew

(
Î−1
y0

(Y C |0) Î−1
y0

) 〉
+ λμ

λ + 2μ
tr
(
(XC |0)Î−1

y0

)
tr
(
(Y C |0) Î−1

y0

)

= μ 〈 sym
(
Î−1/2
y0

(XC |0)Î−1/2
y0

)
, sym

(
Î−1/2
y0

(Y C |0) Î−1/2
y0

) 〉 (A.43)

+ μc 〈 skew
(
Î−1/2
y0

(XC |0)Î−1/2
y0

)
, skew

(
Î−1/2
y0

(Y C |0) Î−1/2
y0

) 〉
+ λμ

λ + 2μ
tr
(
Î−1/2
y0

(XC |0)Î−1/2
y0

)
tr
(
Î−1/2
y0

(YXC |0) Î−1/2
y0

)
.

Moreover, if we decompose the matrix XC ∈ R
3×2 in two block matrices (the matrix

12×3 XC ∈R
2×2 and the matrix eT

3 XC ∈R
1×2), then we can write the bilinear form as

WC
shell(X

C,Y C) = Winplane(12×3X
C,12×3Y

C) + μ + μc

2

〈
eT

3 XC I−1
y0

, eT
3 Y C

〉
, (A.44)

where we define for any X,Y ∈ R
2×2 the bilinear form

Winplane(X,Y ) =μ 〈 symX, sym
(
I−1
y0

Y I−1
y0

) 〉 + μc〈 skewX, skew
(
I−1
y0

Y I−1
y0

) 〉
+ λμ

λ + 2μ
tr
(
X I−1

y0

)
tr
(
Y I−1

y0

)

=μ 〈 sym
(
I−1/2
y0

X I−1/2
y0

)
, sym

(
I−1/2
y0

Y I−1/2
y0

) 〉
+ μc 〈 skew

(
I−1/2
y0

X I−1/2
y0

)
, skew

(
I−1/2
y0

Y I−1/2
y0

) 〉
+ λμ

λ + 2μ
tr
(
I−1/2
y0

X I−1/2
y0

)
tr
(
I−1/2
y0

Y I−1/2
y0

)
. (A.45)

Analogous results hold for the quadratic form Wcurv(X,X).
We can decompose the 3×2 matrices in two block matrices (2×2 and 1×2) and express

the strain energy densities Wmemb and Wmemb,bend as functions of the matrices G∞ and R∞
(we have used that T∞ vanishes) in the following form

Wmemb

(
Em,s

)+ Wmemb,bend

(
Em,s, Ke,s

)= W̃memb

(
G∞

)+ W̃memb,bend

(
G∞,R∞

)

=
(
h + K

h3

12

)
Winplane

(
2G∞

)
︸ ︷︷ ︸

in-plane deformation

(A.46)

+ ( h3

12
− K

h5

80

)
Winplane

(
2G∞ Ly0 −R∞

)− h3

12
2Winplane

(
2G∞, (2G∞ Ly0 −R∞)L∗

y0

)+ h5

80
Winpλ

(
2G∞ , (Ly0 −R∞)Ly0

)
︸ ︷︷ ︸

in-plane deformation-bendings coupling terms

,

where L∗
y0

= Cof Ly0 = 2 H12 − Ly0 , Winplane is given by (A.45) and we have denoted

Winpλ(X,Y ) :=μ
〈
symX, sym

(
I−1
y0

Y I−1
y0

)〉+ μc

〈
skewX, skew

(
I−1
y0

Y I−1
y0

)〉
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+ λ

2
tr
(
X I−1

y0

)
tr
(
Y I−1

y0

)

= μ 〈 sym
(
I−1/2
y0

X I−1/2
y0

)
, sym

(
I−1/2
y0

Y I−1/2
y0

) 〉
+ μc 〈 skew

(
I−1/2
y0

X I−1/2
y0

)
, skew

(
I−1/2
y0

Y I−1/2
y0

) 〉 (A.47)

+ λ

2
tr
(
I−1/2
y0

X I−1/2
y0

)
tr
(
I−1/2
y0

Y I−1/2
y0

)
.

We can see in the expression (A.46) the different parts of the energy corresponding to in-
plane deformation, transverse shear, or coupling terms with bending.

Finally, the bending-curvature energy density Wbend,curv can be written as function of R∞
and N∞ as follows

Wbend,curv

(
Ke,s

)= W̃bend,curv

(
R∞,N∞

)

=
(
h − K

h3

12

)
Wcurvpls

(
R∞

)+
(h3

12
− K

h5

80

)
Wcurvpls

(
R∞Ly0

)+ h5

80
Wcurvpls

(
R∞L2

y0

)
︸ ︷︷ ︸

bending strain tensor

(A.48)

+ μL2
c

b1 + b2

2

[(
h − K

h3

12

)〈
N∞ I−1

y0
,N∞

〉+ ( h3

12
− K

h5

80

)〈
(N∞ Ly0 )I−1

y0
, (N∞ Ly0 )

〉+ h5

80

〈
(N∞ L2

y0
)I−1

y0
, (N∞ L2

y0
)
〉]

︸ ︷︷ ︸
drilling bendings

,

where we have denoted for any 2 × 2 matrix X the quadratic form (positive definite)

Wcurvpls(X) :=μL2
c

[
b1〈 symX, sym

(
I−1
y0

X I−1
y0

) 〉 +
(

8b3 + b1

3

)
〈 skewX, skew

(
I−1
y0

X I−1
y0

) 〉

+ b2 − b1

2

[
tr
(
X I−1

y0

)]2
]

(A.49)

=μL2
c

[
b1 ‖sym

(
I−1/2
y0

X I−1/2
y0

)‖2 +
(

8b3 + b1

3

)
‖ skew

(
I−1/2
y0

X I−1/2
y0

)‖2

+ b2 − b1

2

[
tr
(
I−1/2
y0

X I−1/2
y0

) ]2
]
.

Thus, the model can be expressed entirely in terms of the change of metric tensor G∞,
the bending strain tensor R∞ and the vector of drilling bendings N∞, through the relations
(A.46) and (A.48).
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