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Abstract
This paper presents a method to derive the virtual fields for identifying constitutive model
parameters using the Virtual Fields Method (VFM). The VFM is an approach to identify
unknown constitutive parameters using deformation fields measured across a given volume
of interest. The general principle for solving identification problems with the VFM is first
to derive parametric stress field, where the stress components at any point depend on the
unknown constitutive parameters, across the volume of interest from the measured defor-
mation fields. Applying the principle of virtual work to the parametric stress fields, one can
write scalar equations of the unknown parameters and solve the obtained system of equa-
tions to deduce the values of unknown parameters. However, no rules have been proposed
to select the virtual fields in identification problems related to nonlinear elasticity and there
are multiple strategies possible that can yield different results. In this work, we propose a
systematic, robust and automatic approach to reconstruct the systems of scalar equations
with the VFM. This approach is well suited to finite-element implementation and can be
applied to any problem provided that full-field deformation data are available across a vol-
ume of interest. We also successfully demonstrate the feasibility of the novel approach by
multiple numerical examples. Potential applications of the proposed approach are numerous
in biomedical engineering where imaging techniques are commonly used to observe soft
tissues and where alterations of material properties are markers of diseased states.

Keywords Nonlinear elasticity · Virtual fields method · Finite-element method ·
Hyperelasticity · Material identification · Soft biological tissues
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List of symbols
A Index in tensorial expressions
Ao Matrix obtained after assembling the N linear equations of the VFM
α Material parameter (used in the Mooney-Rivlin model)
bo Second member vector obtained after assembling the
N linear equations of the VFM
B Index in tensorial expressions
B Domain of interest in a solid-like body
Bh Domain B tessellated into a finite number of non-overlapping elements
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Be Domain of an element e

B̂ Isochoric part of the left Cauchy–Green tensor
β Vector of material parameters
βn Material parameter
βo Initial estimation of the vector of unknown constitutive parameters used to define an

intermediate configuration
δβo Deviation between βo and the vector of actual material parameters
β̃ Identified vector of material properties from measured displacements
c1, c2 Material parameters (used in the Veronda-Westmann model)
χβ Mapping function of the deformation
�h Part of the boundary of B where traction are applied
C Index in tensorial expressions
C o Fourth order material stiffness tensor
C Right Cauchy–Green tensor
Co Right Cauchy–Green tensor predicted by solving the forward problem with the βo

material parameters
δCo Deviation between the actual right Cauchy–Green tensor and Co

Ĉ Isochoric part of the right Cauchy–Green tensor
D Index in tensorial expressions
Do Fourth order tensor
Dev Deviatoric part in the reference configuration
dev Deviatoric part in the current configuration
E Green-Lagrange strain tensor
Eo Green-Lagrange strain tensor predicted by solving the forward problem with the βo

material parameters
δEo Deviation between the actual Green-Lagrange strain tensor and Eo

ε̃ Measurement of the actual infinitesimal strain tensor between the intermediate
configuration and the current configuration

e Element of the discretised domain of interest
E Material parameter, Young’s modulus equivalent in the Neo-Hookean model
E Set of elements in discretised domain of interest
F Deformation gradient tensor
Fo Deformation gradient tensor predicted by solving the forward problem with the βo

material parameters
δFo Deviation between the actual deformation gradient tensor and Fo

F̂ Isochoric part of the deformation gradient tensor
Fo(n) Force vector obtained in the finite-element implementation used to derive the virtual

field δuo(n)

� Strain energy density function
H̃ Measurement of the actual deformation gradient between the intermediate

configuration and the current configuration
h Traction vector
i Index in tensorial expressions
I1 First invariant of C
Î1 Isochoric part of the first invariant of C
j Index in tensorial expressions
J Jacobian of the deformation
J o Jacobian of the deformation predicted by solving the forward problem with the βo

material parameters
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k Index in tensorial expressions
KKK

o Fourth order stiffness tensor
Ko(n) Stiffness matrix obtained in the finite-element implementation used to derive the

virtual field δuo(n)

κ Material parameter (compressibility modulus)
κR Reference configuration
κβ Current configuration
LLL

o 4th order tensor relating δTo and δFo

L Linear operator such as δuo(n) = L(To
,βn

) in the solution of Eq. (42)
l Index in tensorial expressions
μ Material parameter (shear modulus)
N Number of material properties
n Index varying between 1 and N

n Normal vector
N Shape function used for the discretised field
ν Material parameter, Poisson’s ratio equivalent in the Neo-Hookean model
∇κ Gradient operator on the κ configuration
∇κ . Divergence operator on the κ configuration
q Index varying between 1 and N

S Piola-Kirchhoff stress tensor
So Piola-Kirchhoff stress tensor predicted by solving the forward problem with the βo

material parameters
δSo Deviation between the actual Piola-Kirchhoff stress tensor and So

Sβn Sensitivity of S to material parameter βn

Ŝ Deformation-dependent part of the Piola-Kirchhoff stress tensor
Ŝβn Sensitivity of Ŝ to material parameter βn

Ŝ
o

βn
Sensitivity of Ŝ

o
to material parameter βn

T Cauchy stress tensor
To Cauchy stress tensor predicted by solving the forward problem with the βo material

parameters
δTo Deviation between the actual Cauchy stress tensor and To

Tβn Sensitivity of T to material parameter βn

T̂ Deformation-dependent part of the Cauchy stress tensor
T̂βn Sensitivity of T̂ to material parameter βn

t Time variable
u Displacement field vector
U Part of the strain energy density function describing the volumetric response
Uo U estimated by solving the forward problem with the βo material parameters
Uo

βn
Sensitivity of Uo to material parameter βn

ũ Measurement of the actual displacement field vector
δuo(n) Virtual displacement field vector
Ŵ Part of the strain energy density function describing the deviatoric response
Ŵ o Ŵ estimated by solving the forward problem with the βo material parameters
Ŵ o

βn
Sensitivity of Ŵ o to material parameter βn

X Position vector in reference configuration
x Position vector in current configuration
xo Position vector in current configuration predicted by solving the forward problem

with the βo material parameters
δxo Deviation between the actual position vector and xo
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1 Introduction

One of the objectives in computational biomechanics is to make predictions: given for in-
stance a complete and patient-specific reconstruction of the aorta and surrounding tissues,
we can predict the deformations induced by a deployed stent graft during surgical repair of
an aneurysm [1–3]. More generally, we could predict the deformations of the aorta under
the action of any radial forces applied in an experiment. This problem of predicting the re-
sult of measurements is called the simulation problem, or the forward problem. The inverse
problem consists of using the experimental measurements, such as the displacement field,
to infer the values of the parameters that characterize the system, such as unknown material
parameters [4–11], unknown boundary conditions, or even sometimes the unknown initial
geometry of the solid before the application of mechanical loading (load-free configuration
in finite deformations [12, 13]).

A subcategory of inverse problems is made by identification problems [6, 14], where a
finite number of unknown material parameters have to be recovered from experimental mea-
surements. Such inverse problems can be solved by defining a cost function that estimates
the absolute error between the model predictions and the measurements. The cost function is
minimized in the least-squares sense. In general situations, the model is solved numerically
using a finite-element model updating technique (FEMU) [6, 14–19].

In the more and more common situations when full-field measurements are available
[7, 20–25], an alternative to FEMU is possible: the Virtual Fields Method (VFM), which
has been shown to be more direct and robust with respect to unknown boundary conditions
in these situations [26].

The general principle for solving identification problems with the VFM is first to de-
rive parametric stress field across the volume of interest from the measured deformation
field, stress components at any position for a given deformation depending on a number of
unknown constitutive parameters. Applying the principle of virtual work to the parametric
stress field gives scalar equations for the unknown parameters. The system of equations can
be solved for the values of unknown parameters.

There are currently multiple strategies possible for the selection of virtual fields when the
VFM is applied in nonlinear elasticity. A simple and efficient approach, well suited for ten-
sile tests, is to define virtual displacements varying linearly from one boundary to the other.
This approach was recently applied successfully in biaxial tension by Kazerooni et al [27]
to identify the parameters of a Holzapfel model [28] for the skin. For other types of load-
ing, for instance, Zhang et al. [23] introduced analytical expressions of virtual fields which
were written in the cylindrical coordinate system using the arctan function. For inflation
experiments, Bersi et al. [29] used virtual fields that permitted to derive local equilibrium
equations relating the intraluminal pressure and the wall tensile stresses. These virtual fields
were valid for the very specific problem of inflation of thin-wall cylinder-like structures.
The extension to thick-wall was solved in further papers [25, 30] by weighting locally the
virtual fields with a Gaussian function, which was successfully centered at the middle of
square patches in order to identify the distribution of material properties across the whole
cylinder.

Although the approaches discussed above were all successful in solving specific iden-
tification problems, a general and unified VFM approach is still needed for the following
reasons:

1. the expression of virtual fields used in most of previous studies [27, 30, 31] was well
adapted to the 2D geometries such as membranes or shells but there is a range of samples
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or materials in which boundary conditions or geometries or both cannot be straightfor-
wardly designed or chosen to be 2D. With the acquisition of fully volumetric deformation
fields which is expanding for soft tissues [23–25, 32–35], there is a need for a method
that can provide virtual fields for any 3D geometry and virtual field.

2. In previous studies cited above, the VFM was used to identify the parameters of incom-
pressible hyperelastic materials. The compressibility modulus was usually disregarded.
To identify simultaneously the compressibility and shear moduli of a hyperelastic ma-
terial, two independent virtual fields are needed in order to separate the hydrostatic and
deviatoric contributions of the stress. This problem was solved a decade ago for linear
elasticity [36, 37] but it remained an open question for nonlinear elasticity.

In this paper, we introduce an original approach addressing these essential questions. An
application of this method to identifying material properties of the lamina cribrosa (LC)
in the optic nerve head (ONH), using optical coherence tomography (OCT) imaging data,
demonstrates the viability of the technique. The paper is organized as follows: We first
elaborate the theoretical aspects of the proposed VFM approach in Sect. 2. Subsequently,
several numerical examples and an application are presented to test the feasibility of the
method in Sect. 3. We then discuss the results and the proposed approach in Sect. 4 and end
with a conclusion in Sect. 5.

2 Materials and Methods

2.1 Definition of the Problem

A solid-like body, or part of it, denoted B, is considered in a reference configuration κR(B).
Under the application of loads, it is assumed that the solid has a nonlinear elastic response
which is governed by a finite number N of material properties (defining local constitutive
equations and their possible spatial variations).

These are denoted as a vector β = (β1, β2, . . . , βq, . . . , βn, . . . , βN).
At time t , after the application of traction h(t) on a part of the boundary of B, denoted

by �h, B undergoes a motion described by a mapping χβ , depending on material properties
β , from a reference configuration κR(B) to a current configuration κβ(B), such as

x = χβ(X, t) = X + u(β,X, t) , (1)

where X and x are position vectors relative to reference and current configurations and u is
the displacement vector field. In the following, we introduce the deformation gradient

F = ∂χβ(X, t)

∂X
= I + ∂u(β,X, t)

∂X
, (2)

the right Cauchy–Green tensor

C = FT F, (3)

and the Jacobian

J = det(F). (4)
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We also introduce the isochoric right Cauchy–Green tensor

Ĉ = F̂
T

F̂, (5)

where we denote the isochoric part of the deformation gradient as

F̂ = J−1/3F. (6)

We assume that an experimental measurement of the displacement field u(X, t) is avail-
able across the solid at time t . The measured displacement field ũ(t) may be different than
the actual displacement u(X, t) because of measurement noise.

The inverse / identification problem consists of finding the values of the approximate
parameters β̃ that minimizes the absolute error between u(β̃,X, t) and ũ(X, t).

2.2 Constitutive and Equilibrium Equations

Equilibrium equations in κβ(B) must be satisfied by the Cauchy stress T, which may be
written, in absence of accelerations and body forces, as

∇κβ
.T = 0 on χβ(B, t),

T.n = h(t) on χβ(�h, t).
(7)

In Eq. (7), the equilibrium on the boundaries is only written where known tractions are
applied as we will use these equilibrium equations to solve the identification problem and
we do not want to introduce supplemental unknowns such as the reaction tractions on the
boundaries where Dirichlet boundary conditions would be applied.

In this paper, we focus on compressible hyperelastic materials. It is assumed that their
strain energy density function � can be written in an uncoupled form as

� = U(J,β) + Ŵ (Ĉ,β), (8)

where U(J,β) describes the volumetric response and Ŵ (Ĉ,β) describes the deviatoric re-
sponse.

The second Piola-Kirchhoff stress S can be written as

S = 2
d�

dC
= dU

dJ
JC−1 + 2J−2/3 Dev

(
∂Ŵ

∂Ĉ

)
, (9)

where

Dev

(
∂Ŵ

∂Ĉ

)
=
(

∂Ŵ

∂Ĉ

)
− 1

3

[(
∂Ŵ

∂Ĉ

)
: Ĉ

]
Ĉ

−1
. (10)

In the following, we introduce Ŝ = 2 ∂Ŵ

∂Ĉ
. The Cauchy stress T can be written as

T = J−1FT SF = dU

dJ
I + dev

(
T̂
)

, (11)

where T̂ = J−1F̂ŜF̂
T

, and

dev
(

T̂
)

= T̂ − 1

3
Tr
(

T̂
)

I . (12)



General Finite-Element Framework of the Virtual Fields Method. . . 271

Moreover, we introduce

S,βq = ∂S
∂βq

= dU,βq

dJ
JC−1 + J−2/3Dev

(
Ŝ,βq

)
, (13)

and

T,βq = ∂T
∂βq

= dU,βq

dJ
I + J−1dev

(
F̂ Ŝ,βq F̂

T
)

, (14)

where

Ŝ,βq = ∂Ŝ
∂βq

= 2
∂ ∂Ŵ

∂Ĉ

∂βq

= 2
∂ ∂Ŵ

∂βq

∂Ĉ
= 2

∂Ŵ,βq

∂Ĉ
, (15)

Ŵ,βq = ∂Ŵ

∂βq

and U,βq = ∂U

∂βq

. (16)

2.3 Definition of an Intermediate Configuration

2.3.1 Decomposition of the Deformation Gradient

Let us start with a set of parameters βo which corresponds to an initial estimation of the
unknown constitutive parameters based on existing literature on the same tissue for instance.

Unstressed “intermediate configuration” were traditionally used in the literature for the
multiplicative split of the deformation gradient in finite strain plasticity [38]. We define here
a stressed intermediate configuration κβo (B) for which the solid with the vector of material
properties βo is at equilibrium (Fig. 1). We emphasize that this is a different use of the
“intermediate configuration” terminology than in finite strain plasticity [38].

Then, let the position in the intermediate (stressed) configuration be denoted by xo =
χβo (X, t), corresponding to displacement uo(X, t) = xo − X.

We assume that a small displacement δxo superimposed upon the large deformation uo,
yields the current position x at time t for which the solid with a vector of material properties
β = βo + δβo is at equilibrium. We assume that δβo is a small variation of βo such as

||δxo|| � ||uo||,
||δβo|| � ||βo||. (17)

The small displacement δxo corresponds to the deformation between the intermediate
configuration (at which the solid with βo material properties is at equilibrium) and the cur-
rent configuration (at which the solid with β = βo + δβo material properties is at equilib-
rium).

The current position can thus be written as

x = xo + δxo. (18)

The deformation gradient associated with mappings from the reference to the intermedi-
ate is thus given by

Fo = ∂χβo (X, t)

∂X
. (19)
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Fig. 1 The relationship of the reference, intermediate and current configurations

The deformation gradient representing a mapping from the intermediate configuration to
the current configuration (corresponding to the variations of the configuration for a variation
of material properties δβo) may be expressed as I + δFo where

δFo = ∂δxo

∂xo
. (20)

Then, gradients of the successive motions are obtained with the chain rule, such as

F = ∂x
∂xo

∂xo

∂X
= ∂x

∂xo
Fo =

[
∂(xo + δxo)

∂xo

]
Fo = ∂xo

∂xo
Fo + ∂δxo

∂xo
Fo = Fo + δFo Fo . (21)

Then, the identification problem can be formulated as, find the values of δβo that mini-
mizes the error between δxo and ũ − uo.

2.3.2 Cauchy Stress Tensor

Using Eq. (9) and Eq. (11) specifically with Fo deformation gradient, the second Piola-
Kirchhoff stress So and Cauchy stress To in the intermediate configuration may be written
respectively

So = dUo

dJ
J o

(
Co

)−1 + 2 (J o)
−2/3 Dev

(
∂Ŵ o

∂Ĉ

)
,

To = dUo

dJ
I + 2 (J o)

−1 dev

(
F̂o ∂Ŵ o

∂Ĉ
F̂o

T

)
,

(22)

where Uo = U(J o,βo) and Ŵ o = Ŵ (F̂o,βo).
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Note that the Cauchy stress To must satisfy the equilibrium equations on the κβo config-
uration (further denoted κo) which may be rewritten

∇.To = 0 on χβo (B, t) ,

To.n = h(t) on χβo (�h, t) .
(23)

The second Piola-Kirchhoff stress S can be related to So using a Taylor expansion of first
order. For that we substitute into Eq. (9), β = βo + δβo and C = Co + δCo, which yields

S � So + δSo � So + ∂S
∂C

: δCo +
N∑

q=1

δβo
q So

,βq
, (24)

where

So
,βq

= dUo
,βq

dJ
J o

(
Co

)−1 + 2 (J o)
−2/3 Dev

(
∂Ŵ o

,βq

∂Ĉ

)
. (25)

Neglecting the second order terms in the deformations from the intermediate to the cur-
rent configuration, it may be written

δCo = ((
δFo + I

)
Fo
)T ((

δFo + I
)

Fo
)− FoT Fo

= FoT
((

δFo + I
)T (

δFo + I
)− I

)
Fo

= FoT
(
δFo + (

δFo
)T + (

δFo
)T

δFo
)

Fo

� 2FoT δEo Fo ,

(26)

where δEo = 1
2

(
δFo + (

δFo
)T + (

δFo
)T

δFo
)

signifies the infinitesimal strain induced by a

slight variation of material properties when δFo is small.
Finally,

δSo =KKK
o :

(
FoT δEo Fo

)
+

N∑
q=1

δβo
q So

,βq
, (27)

where

KKK
o = 2

∂So

∂C
. (28)

Next, we can derive the Cauchy stress T for the current configuration from To as

T = det(Fo + δFo)−1 (J o)−1
(
I + δFo

)
Fo

(
So + δSo

) (
Fo
)T (

I + δFo
)T

� To + δTo ,
(29)

where

δTo = −Tr(δEo)To + δFoTo + To
(
δFo

)T
+

N∑
n=1

δβn To
,βn

+ (J o)
−1 Fo

[
KKK

o :
(

FoT δFo Fo
)] (

Fo
)T

,
(30)
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and

To
,βq

= dUo
,βq

dJ
I + 2 (J o)

−1 dev

(
F̂o

∂Ŵ o
,βq

∂Ĉ
F̂o

T

)
. (31)

Equation 30 may be rewritten by introducing a 4th order tensor LLLo such as

δTo =LLL
o : δFo +

N∑
q=1

δβq To
,βq

. (32)

The components of the LLLo tensor may be written such as

L
o
ijkl = 1

2
(C o

ijkl + Do
ijkl + C o

ij lk − Do
ij lk) , (33)

where, the summation convention being adopted for the repeated indices,

C o
ijkl = −δklT

o
ij + δikT

o
lj + T o

ikδjl + (J o)−1 Fo
iAF o

jBF o
kCF o

lDK
o
ABCD ,

Do
ijkl = δikT

o
lj + T o

ikδjl .
(34)

Equilibrium must be satisfied in the current configuration. Given that Eq. (23) is satisfied
by To on the intermediate configuration, and assuming that the intermediate configuration
is infinitesimally close to the current configuration (owing to δβo/βo � 1), we can assume
that the following equations are satisfied by δTo,

∇κo .δTo = 0 on χβo (B, t) ,

δTo.n = 0 on χβo (�h, t) .
(35)

The equilibrium equations may be rewritten such as

N∑
q=1

δβq ∇.To
,βq

= −∇κo .
(
LLL

o : δFo
)

on χβo (B, t) ,

N∑
q=1

δβq To
,βn

.n = − (
LLL

o : δFo
)
.n on χβo (�h, t) .

(36)

In the following, for the sake of simplification, the following abuse of notation will be
used for the gradient and divergence in the κo configuration: ∇ ≡ ∇κo .

2.4 The Virtual Fields Method

δTo should satisfy the equilibrium equations (Eq. (36)) written just above. These equations
can be written in their weak form such as∫

χβo (B,t)

δTo : ∇δuo(n)dV o = 0 , (37)

where δuo(n) is a virtual displacement field which equals zero on χβo (∂B\�h) (boundary
where traction are not applied). In δuo(n), the index (n) indicates that at least N virtual fields
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are necessary to establish a system of N equations of the N unknown material properties
βn.

As full-field measurements are available, δFo and δEo from Eq. (30) can be replaced by
their measures denoted respectively H̃ and ε̃, such as

H̃ = ∇(ũ − uo) , ε̃ = 1

2
(H̃ + H̃

T
) , (38)

yielding

N∑
q=1

δβo
q

∫
χβo (B)

To
,βq

: ∇δuo(n)dV o

= −
∫

χβo (B)

(
−Tr(ε̃)To + H̃To + ToH̃

T
)

: ∇δuo(n)dV o

−
∫

χβo (B)

(
(J o)

−1 Fo
[
KKK

o :
(

FoT ε̃Fo
)] (

Fo
)T ) : ∇δuo(n)dV o .

(39)

Equation 39 may be rewritten by introducing the LLLo tensor such as

N∑
q=1

δβo
q

∫
χβo (B)

To
,βq

: ∇δuo(n)dV o

= −
∫

χβo (B)

(
LLL

o : H̃
)

: ∇δuo(n)dV o

= −
∫

χβo (B)

H̃ :
(
LLL

oT : ∇δuo(n)
)

dV o .

(40)

The previous equation can be written N times with N virtual fields δuo(n). The obtained
system of equations may be written such as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
χβo (B)

To
,β1

: ∇δuo(1)dV o . . .

∫
χβo (B)

To
,βN

: ∇δuo(1)dV o

...
. . .

...

∫
χβo (B)

To
,β1

: ∇δuo(N)dV o . . .

∫
χβo (B)

To
,βN

: ∇δuo(N)dV o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎜⎝

δβo
1

...

δβo
N

⎞
⎟⎟⎟⎟⎟⎠= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
χβo (B)

H̃ :
(
LLL

oT : ∇δuo(1)
)

dV o

...

∫
χβo (B)

H̃ :
(
LLL

oT : ∇δuo(N)
)

dV o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

In the next section we provide a methodology to choose the set of N virtual fields.
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2.5 Derivation of the Virtual Fields for Parameter Identification

In the previous subsection, we showed that the unknown constitutive parameters can be
identified by solving a linear system of equations. To establish this system of equations, one
needs to define N virtual fields denoted δuo(n), such that [Ao] is invertible. The invertibility
is ensured by relating each virtual field δuo(n) to the sensitivity of the Cauchy stress to
each unknown parameter, denoted as To

,βn
in Eq. (31) and introduced in Eq. (30), since it is

assumed that the different To
,βn

constitute a set of N linearly independent tensorial functions.
Therefore, a possible choice of N linearly independent virtual fields could simply be:

δuo(n) = ∇.To
,βn

. However, the virtual field must equal zero on χβo (∂B\�h) and remain
continuous. To meet these requirements and benefit from the linear independence between
the To

,βn
fields, we defined δuo(n) as the vectorial fields satisfying

∇.
(
LLL

oT : ∇δuo(n)
) = ∇.

(
To

,βn

)
on χβo (B, t),(

LLL
oT : ∇δuo(n)

)
.n = (

To
,βn

)
.n on χβo (�h),

δuo(n) = 0 on χβo (∂B\�h).

(42)

The virtual fields δuo(n) are eventually obtained by solving the linear elastic problems
defined in Eq. (42) using the finite-element method (Sect. 2.6). Let us introduce the L linear
operator such as δuo(n) = L(To

,βn
) is the solution of Eq. (42).

Moreover using the integration by parts, we can write

∫
χβo (B)

H̃ :
(
LLL

oT : ∇δun
)

dV o =
∮

χβo (�h)

(ũ − uo).
(
LLL

oT : ∇δun
)

.n dSo

−
∫

χβo (B)

(ũ − uo).∇.
(
LLL

oT : ∇δun
)

dV o ,

∫
χβo (B)

H̃ :
(
LLL

oT : ∇δun
)

dV o =
∮

χβo (�h)

(ũ − uo).
(
To

,βn

)
.n dSo

−
∫

χβo (B)

(ũ − uo).∇.
(
To

,βn

)
dV o ,

∫
χβo (B)

H̃ :
(
LLL

oT : ∇δun
)

dV o =
∫

χβo (B)

H̃ : To
,βn

dV o.

(43)

Then we can build the system of equations of Eq. (41) by replacing each δuo(n) by their
expression coming from Eq. (42), and use also the simplifications derived in Eq. (43), yield-
ing

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
χβo (B)

To
,β1

: ∇L(To
,β1

)dV o . . .

∫
χβo (B)

To
,βN

: ∇L(To
,β1

)dV o

...
. . .

...

∫
χβo (B)

To
,β1

: ∇L(To
,βN

)dV o . . .

∫
χβo (B)

To
,βN

: ∇L(To
,βN

)dV o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δβo
1

δβo
2

...

δβo
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
χβo (B)

H̃ : To
,β1

dV o

...

∫
χβo (B)

H̃ : To
,βN

dV o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

This system of equations can be rewritten

[Ao]{δβo} = {bo} . (45)

Then, the unknown constitutive parameters can be obtained as

β = βo + [Ao]−1{bo} . (46)

2.6 Finite-Element Implementation

The numerical implementation of the proposed method requires the use of finite-element
analyses at two different levels:

1. find the intermediate configuration and the deformation gradient Fo by solving the partial
differential equations (PDEs) of the forward problem (Eq. (23)) with a set of parame-
ters βo,

2. compute integrals in Eq. (41) or Eq. (44) to identify the unknown constitutive parameters.

In this section, we propose a possible numerical implementation. As standard in finite-
elements [39–42]), the computational domain B is discretised into a finite number of non-
overlapping elements e ∈ E such that

B ≈ Bh = ⋃
e∈E

Be ,

χβo (B) ≈ χβo (Bh) = ⋃
e∈E

χβo (Be) .
(47)

The fields are discretised using the following standard vectorial shape functions NNN (X)

as

uo(X) =
Nw∑
a=1

uo
aNNN

a(X) ,

ũ(X) =
Nw∑
a=1

ũaNNN
a(X) ,

δuo(n)(X) =
Nw∑
a=1

δuo(n)
a NNN a(X) ,

(48)

where uo
a are nodal variables for the uo field, ũa are nodal variables for the uo field and

δuo(n)
a are nodal variables for the δuo(n) field.
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A standard finite-element discretisation enables the following discrete form for the com-
ponents of Eq. (44),

{bo}n =
∫

χβo (B)

H̃ : To
,βn

dV o

=
Nw∑
a=1

(
ũa − uo

a

)
F o(n)

a

= (
FFF o(n)

)T (
ũ − uo

)
,

(49)

where FFF o(n) is obtained such as

F o(n)
a =

∫
χβo (B)

∇NNN (xo) : To
,βn

dV o , (50)

and

[Ao]qn =
∫

χβo (B)

To
,βq

: ∇L(To
,βn

)dV o

=
Nw∑
a=1

Nw∑
b=1

F o(n)
a [K o]−1

ab F
o(q)

b

= (
FFF o(n)

)T [KKK o]−1FFF o(q) ,

(51)

where KKK o, which is the stiffness matrix needed to solve the elastic problem of Eq. (42) to
derive the virtual fields, and which satisfies KKK oδuo(n) = FFF o(n), is obtained such as

K o
ab =

∫
χβo (B)

(∇NNN (xo)) :
(
LLL

oT
(xo)

)
: (∇NNN (xo)) dV o . (52)

Finally, the expression of [Ao] and {bo} with this finite-element discretisation are

{bo}n = − (
FFF o(n)

)T (
ũ − uo

)
, (53)

and

[Ao]qn = (
FFF o(n)

)T [
KKK o

]−1
FFF o(q) . (54)

2.7 Convergence of Parameter Identification

Based on the details discussed in the previous subsection, it is possible to derive δβo from
the choice of an initial guess of βo by solving Eq. (45). The question that remains to be
solved is how to choose βo. In practice, an initial estimation of the unknown constitutive pa-
rameters based on existing literature on the same tissue can be used to initiate the resolution.
However, this does not guarantee the criterion in Eq. (17) is satisfied. Then, a non infinitesi-
mal deviation between the intermediate configuration and the reference configuration would
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Fig. 2 Flowchart of the proposed
inverse method

cause Eq. (36) to not be satisfied on χβo (B, t). Therefore, the concept of “intermediate con-
figuration” has to be iterative. From the choice of a first set of parameters βo, an intermediate
configuration can be found by solving the forward problem in Eq. (23). Evaluating [Ao] and
{bo} (from equations 53 and 54) using the obtained L

oL
o

L
o and To

,βn
expressions (from equations

33 and 31) provides an update for βo. The process is repeated until the deviation between
uo and ũ becomes small enough (Fig. 2).

The convergence criterion of the inverse algorithm is that the relative difference between
the current estimation of material properties βo and its update [Ao]−1{bo} is less than the
tolerance delta ∥∥[Ao]−1{bo}∥∥∥∥βo

∥∥ < 10−6 . (55)

Although deriving analytically the convergence rate is not possible, we verified numer-
ically in the following results that a quadratic convergence was obtained for cases where
existence and uniqueness of the solution are guaranteed.

2.8 Examples of Hyperelastic Constitutive Models

In the following sections, we applied the VFM method and algorithm in Fig. 2 to deter-
mine the parameters of 3 hyperelastic strain energy potentials commonly used to describe
collagenous tissues.
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2.8.1 Neo-Hookean Model

For the Neo-Hookean constitutive model, the strain energy density function is

� = 1

2

[
μ(Î1 − 3) + κ(lnJ )2

]
, (56)

where Î1 = Tr
(

Ĉ
)

= J−2/3Tr (C).

The strain energy density function depends linearly on two unknown constitutive param-
eters denoted μ and κ . Then in an identification problem, the vector of unknown parameters
would be: β = (μ, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ )C−1 + μ

(
J−2/3I − 1

3
Î1C−1

)
. (57)

The associated Cauchy stress is written as

T = J−1

[
κ(lnJ )I + μ(B̂ − 1

3
Î1I)

]
. (58)

The sensitivity of the second Piola-Kirchhoff stress to each parameter is written

S,β1 = ∂S
∂β1

= J−2/3I − 1
3 Î1C−1,

S,β2 = ∂S
∂β2

= (lnJ )C−1.
(59)

The sensitivity of the Cauchy stress to each parameter is written

T,β1 = ∂T
∂β1

= J−1(B̂ − 1
3 Î1I),

T,β2 = ∂T
∂β2

= J−1(lnJ )I.
(60)

Therefore,

To = μoTo
,β1

+ κoTo
,β2

, (61)

with

To
,β1

= (J o)−1(B̂o − 1
3 Î o

1 I),
To

,β2
= (J o)−1[ln(J o)]I. (62)

Moreover, we have

KKKKKKKKK
o = μo

KKK
o
,β1

+ κo
KKK

o
,β2

, (63)

with

KKK
o
,β1

= − 2
3J−2/3

(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)+ 2
9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 	 (Co)−1,

KKK
o
,β2

= (J o)−1(Co)−1 ⊗ (Co)−1 − (lnJ o)(Co)−1 	 (Co)−1,

(64)

where C−1 	 C−1 = − ∂C−1

∂C and ⊗ represents the dyadic multiplication symbol.
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2.8.2 Mooney-Rivlin Model

For the Mooney-Rivlin constitutive model, the strain energy density function is

� = 1

2

[
μ(Î1 − 3) + α(Î2 − 3) + 1

2
κ(lnJ )2

]
, (65)

where Î2 = J−4/3I2 = J−4/3Tr
(

Ĉ
)

= J−2/3Tr (C).

The strain energy density function depends linearly on three unknown constitutive pa-
rameters denoted μ, α and κ . Then in an identification problem, the vector of unknown
parameters would be: β = (μ,α, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ )C−1 + μ

(
J−2/3I − 1

3
Î1C−1

)
+ α

(
J−2/3Î1I − 2

3
Î2C−1 − J−4/3C

)
. (66)

The associated Cauchy stress is written

T = J−1

[
κ(lnJ )I + μ(B̂ − 1

3
Î1I) + α(Î1B̂ − 2

3
Î2I − B̂2)

]
. (67)

The sensitivity of the second Piola-Kirchhoff stress to each parameter is written

S,β1 = ∂S
∂β1

= J−2/3I − 1
3 Î1C−1,

S,β2 = ∂S
∂β2

= J−2/3Î1I − 2
3 Î2C−1 − J−4/3C,

S,β3 = ∂S
∂β3

= (lnJ )C−1.

(68)

The sensitivity of the Cauchy stress to each parameter is written

T,β1 = ∂T
∂β1

= J−1(B̂ − 1
3 Î1I),

T,β2 = ∂T
∂β2

= J−1(Î1B̂ − 2
3 Î2I − B̂2),

T,β3 = ∂T
∂β3

= J−1(lnJ )I.
(69)

Therefore,

To = μoTo
,β1

+ αoTo
,β2

+ κoTo
,β3

, (70)

with

To
,β1

= (J o)−1
[
B̂o − 1

3 Î o
1 I
]
,

To
,β2

= (J o)−1
[
Î o

1 B̂o − 2
3 Î o

2 I − (B̂o)2
]
,

To
,β3

= (J o)−1[ln(J o)]I.
(71)

Moreover, we have

KKK
o = μo

KKK
o
,β1

+ αo
KKK

o
,β2

+ κo
KKK

o
,β3

, (72)
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with

KKK
o
,β1

= − 2
3J−2/3

(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)+ 2
9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 	 (Co)−1,

KKK
o
,β2

= 2J−4/3 (I ⊗ I − I) − 4
3 Î1J

−2/3
(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 8

9 Î2(Co)−1 ⊗ (Co)−1 + 4
3 Î2(Co)−1 	 (Co)−1

+ 4
3J−4/3

[
Co ⊗ (Co)−1 + (Co)−1 ⊗ Co

]
,

KKK
o
,β3

= (J o)−1(Co)−1 ⊗ (Co)−1 − (lnJ o)(Co)−1 	 (Co)−1,

(73)

where I is the fourth order identity tensor.

2.8.3 Veronda-Westmann Model

In the two previous constitutive models, the strain energy density function depends linearly
on the material properties. In this subsection, the Veronda-Westmann model [43] which
involves an exponential function of a material property introduced. The strain energy density
function is written such as

� = c1

2

(
ec2(Î1−3) − 1

)
− c1c2

2
(Î2 − 3) + 1

2
κ(lnJ )2, (74)

where c1, c2 and κ are material properties. Note that c2 is a parameter controlling the nonlin-
ear behavior of the Veronda-Westmann solid, and μ = c1c2 is the shear modulus controlling
the linear behavior of the Veronda-Westmann solid. In the following, we rewrite the model
such as

� = μ

2c2

(
ec2(Î1−3) − 1

)
− μ

2
(Î2 − 3) + 1

2
κ(lnJ )2. (75)

The strain energy density function depends linearly on two unknown constitutive param-
eters denoted μ and κ , and non linearly on the unknown parameter c2. In the identification
problem, the vector of unknown parameters would be written: β = (μ, c2, κ).

The second Piola-Kirchhoff stress is written

S = κ(lnJ )C−1 + μ

[(
J−2/3I − 1

3
Î1C−1

)
ec2(Î1−3)

+
(

J−2/3Î1I − 2

3
Î2C−1 − J−4/3C

)]
. (76)

The associated Cauchy stress is written

T = J−1

[
κ(lnJ )I + μ

(
(B̂ − 1

3
Î1I)ec2(Î1−3) + (Î1B̂ − 2

3
Î2I − B̂2)

)]
. (77)

The sensitivity of the second Piola-Kirchhoff stress to each parameter is written

S,β1 = ∂S
∂β1

=
(
J−2/3I − 1

3 Î1C−1
)

ec2(Î1−3)

+
(
J−2/3Î1I − 2

3 Î2C−1 − J−4/3C
)

,

S,β2 = ∂S
∂β2

= μ(Î1 − 3)
(
J−2/3I − 1

3 Î1C−1
)

ec2(Î1−3),

S,β3 = ∂S
∂β3

= (lnJ )C−1.

(78)
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The sensitivity of the Cauchy stress to each parameter is written

T,β1 = ∂T
∂β1

= J−1
[
(B̂ − 1

3 Î1I)ec2(Î1−3) + (Î1B̂ − 2
3 Î2I − B̂2)

]
,

T,β2 = ∂T
∂β2

= J−1μ(Î1 − 3)(B̂ − 1
3 Î1I)ec2(Î1−3),

T,β3 = ∂T
∂β3

= J−1(lnJ )I.

(79)

Then we approximate To such as

To = μoTo
,β1

+ co
2To

,β2
+ κoTo

,β3
, (80)

with

To
,β1

= (J o)−1
[
(B̂o − 1

3 Î o
1 I)eco

2(Î o
1 −3) + (Î o

1 B̂o − 2
3 Î o

2 I − (B̂o)2)
]
,

To
,β2

= (J o)−1μo(Î o
1 − 3)(B̂o − 1

3 Î o
1 I)eco

2(Î o
1 −3),

To
,β3

= (J o)−1[ln(J o)]I.
(81)

Moreover, we also approximate

KKK
o = μo

KKK
o
,β1

+ co
2KKK

o
,β2

+ κo
KKK

o
,β3

, (82)

with

KKK
o
,β1

=
[
− 2

3J−2/3
(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)+ 2
9 Î1(Co)−1 ⊗ (Co)−1

+ 2
3 Î1(Co)−1 	 (Co)−1

]
eco

2(Î o
1 −3) + 2J−4/3 (I ⊗ I − I)

− 4
3 Î1J

−2/3
(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)+ 8
9 Î2(Co)−1 ⊗ (Co)−1

+ 4
3 Î2(Co)−1 	 (Co)−1 + 4

3J−4/3
[
Co ⊗ (Co)−1 + (Co)−1 ⊗ Co

]
+2co

2

[
J−4/3I ⊗ I − 1

3J−2/3Î o
1

(
(Co)−1 ⊗ I + I ⊗ (Co)−1

)
+ 1

9 (Î o
1 )2(Co)−1 ⊗ (Co)−1

]
eco

2(Î o
1 −3),

KKK
o
,β2

= μo(Î o
1 − 3)eco

2(Î o
1 −3)

[− 2
3J−2/3

(
I ⊗ (Co)−1 + (Co)−1 ⊗ I

)
+ 2

9 Î1(Co)−1 ⊗ (Co)−1 + 2
3 Î1(Co)−1 	 (Co)−1

]
+2μo

(
1 + co

2(Î
o
1 − 3)

)
eco

2(Î o
1 −3)

[
J−4/3I ⊗ I

− 1
3J−2/3Î o

1

(
(Co)−1 ⊗ I + I ⊗ (Co)−1

)+ 1
9 (Î o

1 )2(Co)−1 ⊗ (Co)−1
]
,

KKK
o
,β3

= (J o)−1(Co)−1 ⊗ (Co)−1 − (lnJ o)(Co)−1 	 (Co)−1.

(83)

2.9 Case Study for Verification

Using the previous formulas derived for the Neo-Hookean, the Mooney-Rivlin and the
Veronda-Westmann models, it is straightforward to implement the novel VFM method and
apply it to solve identification problems based on full-field data. Note also that the approach
also extends naturally to more complex strain energy density functions involving exponen-
tial functions with invariants I4 and I6 [28] for instance. In the next section we show results
for the 3 constitutive models, which were previously introduced, and discuss the conver-
gence and the feasibility of the proposed approach in the case of compression and tension
tests onto 2 simple geometries (Fig. 3):
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Fig. 3 The geometry and finite-element meshes used to verify the implementation of the novel VFM approach

1. Compression is applied on a cube of 1 cm edge which is fully fixed on its bottom face
(Fig. 3a). For the sake of verification of the approach, the cube is simply discretized
uniformly by 4 × 4 × 4 elements.

2. We also consider another geometric model as presented in (Fig. 3b) where we apply
tension on the top face and fix the bottom face.

In both cases, full-field displacement measurements were simulated by solving finite-
element models using the open source software FEBio [44]. For each case, the full-field
displacement measurements were simulated with a set of target material properties, named
the target, and the proposed VFM approach was employed to recover the target for the
Neo-Hookean, the Mooney-Rivlin and the Veronda-Westmann model, using different ini-
tialization values to assess the convergence of the method.

2.10 Case Study for Validation

The proposed VFM method will be used in this case study to determine the material prop-
erties of the LC, a connective tissue structure in the ONH of great interest to researchers
studying development and progression of glaucoma [45]. The LC in humans is approxi-
mately 1.5 mm - 2.0 mm in diameter and 450 microns thick and is located in the back of
the eye. The mechanics of the LC is thought [46] to play an important role in mediating
the progressive vision loss associated with glaucoma, a degenerative disease that is a lead-
ing cause of blindness worldwide [47]. As shown in Fig. 4, the LC is situated beneath the
prelaminar neural tissue (PLNT). We further split the LC into an anterior region (ALC), 250
μm posterior to the anterior posterior surface, and a posterior region (PLC), which includes
the remainder of the imageable volume of the LC.

Spectral domain OCT imaging (Heildelberg Engineering) was applied to acquire 24 ra-
dial scans centered about the ONH of the left eye of a glaucoma patient. The OCT imaging
was performed at Johns Hopkins University’s Wilmer Eye Institute in the Glaucoma Center
of Excellence, and was approved by the appropriate Institutional Review Board. The follow-
ing structural features were marked in the 24 radial scans to segment the tissue structures
of the ONH as described in Midgett et al. [48]: Bruch’s membrane opening, the anterior
boundary of the PLNT, the anterior LC surface, and the boundary of the imageable volume
below the anterior LC surface. The manual marking were imported into Cubit (Coreform,
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Fig. 4 (a) Schematic showing the solid model of the optical nerve head (ONH). The anterior (top) face is
subjected to the intra-ocular pressure. The posterior (bottom) face is in direct contact with the optic nerve. (b)
Cross sectional view of the ONH solid model showing the 3 regions with different material properties: the
prelaminar neural tissue (PLNT), the anterior lamina cribosa (ALC) and the posterior lamina cribosa (PLC).
(c) Displacement field caused by reducing the intraocular pressure of 10 mmHg (colorbar in mm)

Orem, UT, USA) to construct surface geometries using closed splines. The PLNT, ALC, and
PLC volumes were defined by extruding a cylinder from Bruch’s membrane posteriorly to
intersect the anterior PLNT surface and the anterior LC surface (for the PLNT), the anterior
ALC surface and a surface positioned 250 microns posterior to the anterior ALC surface
(for the ALC), and that posterior surface and a surface marking the end of the imageable
volume of the LC (see Fig. 4a). The final solid volume was meshed in Cubit linear 4-node
tetrahedral elements and exported into FEBio, where the linear elements were converted
to 10-node quadratic tetrahedral elements [49] to avoid mesh locking and improve accu-
racy. The compressible Neo-Hookean constitutive model (Eq. (56)) was chosen for all three
materials.

To validate the present VFM method, we simulated a displacement field by solving the
forward problem with target parameter values, which are reported in Table 1. In the forward
problem, zero displacement boundary conditions were applied to the posterior and lateral
surfaces. To account for the 10 mmHg pressure decrease, a pressure boundary condition was
applied to the ONH surface, with a magnitude of −10 mmHg. The induced displacement is
shown in Fig. 4c.

Eventually the proposed VFM approach was employed to process the simulated displace-
ment fields and recover the target compressibility modulus values for each separate material.

3 Results

3.1 Neo-Hookean Model

In this section, we tested the feasibility of the proposed VFM approach for the com-
pressible neo-Hookean model using the 10-mm-edge cubic specimen under compression
shown in Fig. 3a. The cube was discretized uniformly by 4 × 4 × 4 elements. We applied
a deformation of 2 mm to the cubic specimen. The target values of material properties
were: Young’s modulus Ē = 10 MPa and Poisson’s ratio ν̄ = 0.3, which corresponds to
μ = E

2(1+ν)
= 3.85 MPa and κ = E

3(1−2ν)
= 8.33 MPa. We choose three different initial guess

pairs (Eo = 40 MPa, νo = 0.45), (Eo = 5 MPa, νo = 0.45) and (Eo = 40 MPa, νo = 0.15).
The convergence plots for each case are shown in Fig. 5 for the objective function value and
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Fig. 5 Evolution of the objective function relative value ||uo − ũ||/||ũ|| (log-log representation) for the iden-
tification of each unknown parameter of the neo-Hookean model with the novel VFM approach, using initial
guesses Eo = 40 MPa, νo = 0.45 in (a), Eo = 5 MPa, νo = 0.45, in (b) and Eo = 40 MPa, νo = 0.15 in (c)

in Fig. 6 for the evolution of the obtained parameter values. The material parameters were
recovered regardless of the initial guesses. Convergence was reached after 4 to 6 iterations
indicating the quadratic convergence of the new VFM approach.

3.2 Mooney-Rivlin Model

Then, we tested the feasibility of the proposed VFM approach for the Mooney-Rivlin model,
which includes three unknown material parameters. In this case, the material property vector
was denoted β = [μ,α,κ]. Note that when α = 0, the Mooney-Rivlin model simplifies into
the neo-Hookean model. For the verification of the VFM, we used again the cubic model un-
der compression. The target material properties were set to β̄ = [5 MPa,10 MPa,10 MPa].
We chose two different sets of initial guess to evaluate the material identification problem.
Convergence plots for each material parameters are shown in Fig. 7. The material parame-
ters were recovered regardless of the initial guesses. Convergence was reached after 4 to 6
iterations indicating the quadratic convergence of the new VFM approach with the Mooney-
Rivlin model.

3.3 Veronda-Westmann Model

Usually, to estimate the material parameters of the Veronda-Westmann model, displacement
data with multiple loading stages are required due to the exponential term. In this work, we
attempted to use only one loading stage to estimate the material parameters in the Veronda-
Westmann model using the novel VFM approach. For that, we used the geometric model on
the right hand side of Fig. 3. We applied tension on the top face and fix the bottom face.
A deformation of 2 mm was applied. The target material parameters were c̄1 = 0.1 MPa,
c̄2 = 10, κ̄ = 10 MPa. We used two different initial guesses. The initial guesses of the ma-
terial parameters were c0

1 = 0.2 MPa, c2 = 30, κ = 20 MPa. Another initial guess is set to
c0

1 = 0.5 MPa, c2 = 5, κ = 5 MPa
The convergence performance of each material parameters is shown in Fig. 8. We ob-

served that 12 iterations were needed this time to reach convergence. Although the proposed
VFM approach was capable of estimating material properties of the Veronda-Westmann
solid using only one loading stage with a quadratic convergence, the convergence rate was
slower due to the nonlinearity of the constitutive equations.
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Fig. 6 Convergence plots for the identification of each unknown parameter of the Neo-Hookean model with
the novel VFM approach, using initial guesses Eo = 40 MPa, νo = 0.45 in (a) and (b), Eo = 5 MPa,
νo = 0.45 in (c) and (d) and Eo = 40 MPa, νo = 0.15 in (e) and (f)

3.4 Sensitivity to the Compressibility Parameters

Most biological tissues are nearly or truly incompressible. Thus, the sensitivity of the pro-
posed method to the compressibility should be investigated. For incompressible materials,
fewer material properties have to be identified compared to the associated compressible con-
stitutive model. Thus, we considered the Neo-Hookean model as an example and focused on
compressible cases with Poisson’s ratio ν = 0.45 and Young’s modulus Ē = 10 MPa, which
corresponds to μ = E

2(1+ν)
= 3.45 MPa and κ = E

3(1−2ν)
= 33.33 MPa.

We chose two different initial guess pairs (Eo = 5 MPa, νo = 0.499), (Eo = 20 MPa and
νo = 0.499). The convergence plots for each case are shown in Fig. 9. We observed that it
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Fig. 7 Convergence plots of the novel VFM approach for each parameter of the Mooney-Rivlin model
using two sets of initial guesses: (a, b and c): βo = [4 MPa,6 MPa,30 MPa] and (d, e and f)
βo = [20 MPa,20 MPa,50 MPa]

took 8 iterations for convergence, slightly more than the more compressible cases where ν

was taken equal to 0.3.

3.5 Case Study for Validation

The patient-specific geometry of the ONH, which was reconstructed using OCT data
(Fig. 4), was split into 3 parts with different compressibility moduli. It was assumed that
each part had the same shear modulus μ = 0.2 MPa. Identifying the 3 unknown compress-
ibility moduli with the VFM requires to define 3 independent virtual fields across the volume
of interest. As any kinematically admissible virtual displacement field is a possible option,
there are an infinite number of choices for these virtual fields. However, only very specific
virtual fields ensure that the final system of equations is well conditioned and it may be
cumbersome to determine these virtual fields by trial and errors. Here we applied the new
VFM approach, where systems of equations are automatically built, without trial and error
verifications, on the patient-specific geometry of the lamina cribrosa. As our VFM approach
is iterative, values need to be chosen for initializing the compressibility moduli at the first
iteration. We drew randomly these initial values within the range [1–5] MPa. The VFM al-
ways converged towards the target moduli. The largest error was obtained when the initial
values were 5 MPa for the 3 compressibility moduli. Results obtained in that case are re-
ported in Table 1. Errors below 1% can be reached after only 4 iterations of the new VFM
approach.
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Fig. 8 Convergence plots of the novel VFM approach for each parameter of the Veronda-Westmann model
with initial guesses c0

1 = 0.2 MPa, c2 = 30, κ = 20 MPa in (a), (b) and (c), and initial guesses c0
1 = 0.5 MPa,

c2 = 5, κ = 5 MPa in (d), (e) and (d)

Table 1 Results obtained with the novel VFM for identifying compressibility modulus values of the 3 sepa-
rate regions in the ONH using simulated data

Reference κ Identified κ after
4 iterations

Relative
error

Identified κ after
5 iterations

Relative
error

PLNT 2.29 MPa 2.31 MPa 0.82% 2.284 MPa 0.35%

ALC 2.5 MPa 2.51 MPa 0.55% 2.495 MPa 0.22%

PLC 2.71 MPa 2.72 MPa 0.37% 2.706 MPa 0.08%

4 Discussion

In this paper, we proposed a novel general framework to solve identification problems in
hyperelasticity with the VFM. For that, we employed the finite-element method and gener-
ated the virtual fields by solving novel equations derived in this paper. The main advantage
of the new approach for generating the virtual fields is that it can be applied to any kind of
geometric shapes.

The VFM was previously applied to identify multiaxial hyperelastic properties of murine
dissecting aneurysm samples [25, 29, 30] or hyperelastic properties in human ocular tissues
[23]. This permitted significant progress especially in the characterization of heterogeneous
material properties of lesions exhibiting complex morphologies, with different regions char-
acterized by localized changes in tissue composition, microstructure, and properties. This
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Fig. 9 Convergence plots for the identification of each unknown parameter of the neo-Hookean model with
Poisson’s ratio ν = 0.45, using initial guesses Eo = 5 MPa, νo = 0.499 in (a) and (b), and Eo = 20 MPa,
νo = 0.499 in (c) and (d)

was rendered possible by combining extension-distension data with full-field multimodality
measurements of wall strain and thickness to inform the inverse material characterization
using the virtual fields method.

Latest key advances were the use of a digital volume correlation data [23, 25] that al-
lowed for characterization of properties in the bulk of soft tissues. However, despite these
progresses, generic rules had never been defined for the choice of virtual fields. For in-
stance, in [23], analytical expressions of virtual fields were written in the cylindrical coordi-
nate system using the arctan function. In [29], virtual fields were also defined analytically,
permitting to yield expressions generalizing the Laplace’s law for pressurized membranes.

The main difficulty of these previous studies was to ensure that the choice of virtual
fields can provide enough equations to identify all the unknown constitutive parameters.
A subsequent difficulty is to build systems of equations which are well conditioned. More-
over, in these previous studies focused on nearly incompressible solids, the identification
of compressibility parameters was avoided by selecting virtual fields which would filter out
the effects of the hydrostatic pressure in the principle of virtual power. This was generally
required as the volume changes could not be measured with enough accuracy by optical
techniques, causing too much uncertainty on the local values of the hydrostatic pressure
anyhow. Generating virtual fields that can filter out the hydrostatic pressure was never easy
with analytic functions. The use of a finite-element implementation of the VFM simplified
this task [50] but the novel approach presented in the current paper further generalizes this
for any situation. There is a price to pay though as the approach proposed in the current
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paper is iterative, requiring to choose a first guess of the unknown material parameters and
repeating the identification a number of time. Fortunately, we found that the convergence of
this iterative approach was always quadratic.

It is important to emphasize that any kinematically admissible virtual displacement with a
non-zero volume change is always an option to identify material properties of compressible
materials with the VFM. However, only very specific virtual fields can ensure that the final
system of equations is well conditioned and it can be cumbersome to determine these virtual
fields by trial and errors. For complex geometries and when there are several parameters
to identify, as in the ONH problem shown in this paper, it is convenient to use our novel
VFM approach, which automatically generates the virtual fields as solutions of Eq. (42).
Although these specific virtual fields satisfy the equilibrium conditions written in Eq. (42),
virtual fields in general do not have to satisfy such equations.

To test the feasibility of the novel VFM approach, we first utilized the simplest hyperelas-
tic model: the Neo-Hookean model. This model remains very popular for many biological
tissues as for instance ocular tissues [23]. The novel VFM approach, which is iterative,
showed a fast and quadratic convergence for neo-Hookean identification. Additionally, we
employed the proposed approach for more sophisticated model, such as the Mooney-Rivlin
model and the Veronda-Westmann model. The estimation results demonstrated that the pro-
posed method is able to identify the hyperelastic parameters of such models, and even that
constitutive equations involving an exponential could still be identified with high accuracy
even using a single loading stage.

We then applied the proposed VFM method to the clinically-relevant challenge of ex-
tracting material properties of ONH tissues from full-field OCT data. Modeling the LC in
living subjects is difficult, as this tissue is strongly inhomogeneous and exhibits very large
variations in strain. In addition, OCT imaging does not allow the user to definitively probe
the tissue itself and often cannot fully resolve tissue boundaries, complicating inverse finite
element methods which rely upon strictly defined geometry to delineate tissues and material
models. Results obtained on simulated data are very promising, showing that our VFM ap-
proach can remove these difficulties by providing material properties in different regions of
the ONH. Future use on experimental measurements will allow to examine regional stiffness
variations, which otherwise may have been neglected.

Despite these significant improvements of the VFM, the content of the current paper
remains mostly theoretical, introducing the concepts, verifying them for simple cases and
validating the approach on a first case study. The main limitation of the current approach
is that it was developed in Matlab. It needs to be fully incorporated into a finite-element
package to optimize computational costs and constitute a systematic alternative to FEMU
techniques [10, 11] for all identification problems in hyperelasticity based on full-field dis-
placement measurements.

Another limitation of the VFM is that it requires full-field data to achieve parameter
identification. Although it performs very well when these full-field data are available, other
methods based on the FEMU approach [10] do not have this limitation. For many years, full-
field data were mostly available in two-dimensional bodies (membranes, shells) on which
displacement fields could be measured using the DIC technique [22, 27, 31]. However, bulk
measurements of displacements fields using digital volume correlation and imaging tech-
niques such as Optical Coherence Tomography or Magnetic Resonance Imaging are becom-
ing commonplace in soft tissues [23–25, 32–35], offering more and more applications for
the VFM in the biomedical field.
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5 Conclusions

In this paper we presented a novel framework of the virtual fields method based on finite-
element implementation and automatic generation of virtual fields. The proposed approach
makes a great improvement in the theoretical aspects of the VFM as the choice of virtual
fields is usually critical in the VFM. Future work will be focused on applying this finite-
element based VFM into more complex cases with potential mechanobiological and clinical
applications.
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