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Abstract
The lack of experimental investigations on graphene fostered researchers to focus on its me-
chanical modeling. Being graphene a one-atom-thick sheet, many authors developed con-
tinuum membrane models to analyze its mechanical behavior. However, an entirely non-
linear approach in finite elasticity has not been presented so far. In this work, the equi-
librium problem of anisotropic hyperelastic graphene membranes is addressed. Strain and
stress measures are expressed under the hypothesis of homogeneous deformations and the
boundary-value problem is formulated for a graphene membrane subjected to biaxial loads.
The stability of the equilibrium configurations is assessed through an energy criterion. Ex-
plicit relations between stretches and stresses of the membrane are derived for the cases of
uniaxial and equibiaxial loads. Unexpectedly, bifurcation and multiple equilibrium solutions
are found when graphene is subjected to equibiaxial loads. A linearization of the finite the-
ory is presented and the expressions of Young’s modulus and Poisson’s ratio of graphene are
derived. The formulation proposed in this work may be the basis for accurate investigations
of the mechanics of graphene subjected to large deformations.

Keywords Finite elasticity · Graphene · Membrane · Anisotropy

Mathematics Subject Classification (2000) 74B20 · 74G05 · 74K15

1 Introduction

Graphene is a one-atom-thick sheet composed of carbon atoms arranged in a hexagonal
lattice [37]. The remarkable mechanical, thermal and electrical properties of this material
[15, 36] make it suitable for many applications in various research fields, such as micro-
and nano-electronics [63], biomedicine [49], energy generation and storage [42, 44] and
composite materials [38]. Experimental activities showed that a small amount of graphene
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added to a polymer matrix produces a significant enhancement of the mechanical properties
[10, 45]. This is why in the recent years many new technologies, for instance in mechanical
and aerospace engineering, involve the use of graphene to obtain strong, light and durable
materials.

A deep understanding of the mechanical behavior of graphene is required in order to
fully exploit its potentialities. However, due to the technical difficulties connected to the
small scale of the problem, only a few experimental tests were carried out [12, 23, 28, 41].
For this reason, there is the necessity of reliable models for the mechanical behavior of
graphene.

Graphene modeling can be done mainly with three different approaches: atomistic, equiv-
alent continuum and molecular mechanics. Atomistic simulations, such as molecular dy-
namics (MD), density functional theory (DFT) and ab initio, are probably the ones that pro-
vide the most detailed description of the chemical interactions at the nanoscale. Molecular
mechanics makes use of concepts of classical mechanics to analyze the hexagonal lattice as
a structure composed of nodes (atoms) connected by continuum elements (chemical bonds).
Both atomistic and molecular mechanics approaches require a large computational effort
even for systems composed of a small number of atoms. Many parameters are involved
in these simulations, therefore it is easy to find conflicting results in the literature (see,
e.g., [6, 8, 14, 61, 62]). Hence, many authors often neglect the discrete nature of the lattice
structure and develop continuum models [1, 11, 46]. This is the simplest approach from a
computational point of view and also the most effective for practical engineering applica-
tions. Thus, simulations based on continuum mechanics are necessary for characterizing the
mechanical properties and the mechanics of deformation of graphene [51].

Being graphene a two-dimensional material, continuum elastic models are generally de-
veloped using membrane or plate theories. Ansari et al. [4] and Shen et al. [50] evaluated
the natural frequencies of graphene sheets using nonlocal plate models that take into account
size effects. Gong et al. [19] considered a modified non-local plate model and demonstrated
that good predictions can be obtained by fitting the model parameters to the numerical re-
sults deriving from atomistic models or experimental data. Caillerie et al. [7] developed
an equivalent macroscopic membrane model by means of a discrete homogenization tech-
nique and Mianroodi et al. [33] developed a nonlinear membrane model for large amplitude
vibrations of single layer graphene sheets. One of the most recent contributions regarding
continuum graphene membranes is the work by Höller et al. [20]. In that contribution, the
authors proposed a hyperelastic formulation governed by a polynomial stored energy func-
tion that takes into account for the anisotropy of graphene for large deformations. Their
work was inspired by the first anisotropic hyperelastic model for graphene membranes pro-
posed by Kumar and Parks [25]. The assumption of anisotropic behavior is due to the fact
that graphene is isotropic only for small deformations [17, 21]. Therefore, an accurate de-
scription of the response of graphene when subjected to large deformations must take into
account its anisotropy.

The behavior of membranes subjected to finite in-plane deformations has been investi-
gated for a long time. Treloar [57] was the first to carry out experiments on rubber mem-
branes subjected to equibiaxial loads. He discovered that, in some cases, for a critical value
of the external load the membrane experiences asymmetric stable deformations. In other
words, the membrane loses its square shape and assumes the shape of a rectangle. It was
in fact demonstrated from a theoretical point of view that, depending on the stored energy
function adopted for the material, bifurcation and stable asymmetric solutions may take
place [22, 26, 53]. The surprising thing is that this behavior is observed for isotropic hypere-
lastic membranes. The nonlinearities of the boundary-value problem generate an unexpected
lack of symmetry of the solution even in a completely symmetric layout.
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Höller et al. [20] derived the expressions of strain and stress tensors for continuum
graphene membranes and estimated the coefficients of the polynomial stored energy func-
tion by fitting the results of DFT simulations. However, a solution of the boundary-value
problem was not given. Solving the boundary-value problem is the only way to investigate
the mechanical response of graphene membranes and, eventually, discover unexpected mul-
tiple equilibrium solutions. In this regard, the expressions of strain and stress tensors are not
enough. Therefore, in the present paper, we make use of equilibrium equations and boundary
conditions to derive the general solution of the boundary-value problem. The expressions of
the equilibrium solutions for the cases of uniaxial and equibiaxial loads are obtained. This
allows to derive the relations between external loads and stretches and between stretches
themselves. Such relations describe the equilibrium paths of graphene subjected to uniaxial
and equibiaxial loads. Hence, the novelty of the present work is that we propose a fully non-
linear solution to the equilibrium problem of anisotropic hyperelastic graphene membranes.
This solution allows to deeply understand the mechanics of deformation of graphene.

The paper is structured as follows. Section 2 introduces the basic notions of the theory of
anisotropic hyperelastic graphene membranes. The general form of the stored energy func-
tion is given and the expressions of Piola-Kirchhoff and Cauchy stress tensors are derived.
The boundary-value problem is formulated in Sect. 3 and its solutions for the cases of uni-
axial loads and equibiaxial loads are given in Sects. 4 and 5, respectively. The stability of
the equilibrium configurations is assessed through an energy criterion, which is outlined
in Sect. 6. The nonlinear formulation of the equilibrium is linearized in Sect. 7 by intro-
ducing the hypothesis of small deformation field. The expressions of Young’s modulus and
Poisson’s ratio are thus derived. Numerical results expressing the mechanical behavior of
graphene sheets are presented in Sect. 8 and, as a consequence, a reparametrization of the
stored energy function is proposed in Sect. 9. Conclusions are drawn in Sect. 10.

2 Anisotropic Hyperelasticity for Graphene

Graphene is considered as a two-dimensional membrane, which is defined by the closure B
of the domain B of the two-dimensional Euclidean space E. The boundary ∂B is Lipschitz-
continuous and the domain is non-empty, connected and bounded. The undeformed con-
figuration B is considered as reference configuration, while the deformed configuration is
given by the deformation ϕ : B → V , which is a smooth enough, injective and orientation-
preserving vector field [27]. V denotes the vector space associated with E.

The Cartesian coordinate system in the graphene plane is defined by the orthonormal ba-
sis of vectors nx and ny , which represent zigzag and armchair directions, respectively. The
principal strain directions are identified by the unit vectors n1 and n2. The angle that direc-
tion 1 forms with zigzag direction is φ, namely cosφ = n1 · nx (Fig. 1). The representation
of the Green-Lagrange strain tensor in the principal reference system is

E = E1n1 ⊗ n1 + E2n2 ⊗ n2,

where ⊗ denotes the dyadic product.
The isotropicization theorem [43] allows to express the strain energy density of an

anisotropic hyperelastic material as a function of a set of invariants that take into account
the material symmetry group. Given the particular symmetry and periodicity of the graphene
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honeycomb lattice, Kumar and Parks [25] introduced the following invariants of the Green-
Lagrange strain tensor E:

I1 = trE = E1 + E2,

I2 = 1

2

[
(trE)2 − tr

(
E2

)] = E1E2,

I3 = (M · E)3 − 3 (M · E) (N · E)2 = (E1 − E2)
3 cos (6φ) ,

(1)

where (·) denotes the second-order tensor contraction and the geometric tensors M and N
are defined as

M = nx ⊗ nx − ny ⊗ ny, N = nx ⊗ ny + ny ⊗ nx .

The invariants I1 and I2 expressed by (1) are the isotropic principal invariants of the Green-
Lagrange strain tensor. The material anisotropy in the constitutive response of graphene is
captured by the third invariant I3. Note that anisotropy activates only at large deformations
and when E1 �= E2.

In order to develop a stored energy function that includes higher order dependencies on
the components of tensor E, Höller et al. [20] introduced a set of so-called main invariants,
which are defined as combinations of invariants I1, I2 and I3 as follows:

J1 = I 2
1 − 2I2, J2 = I 3

1 − 3I1I2, J3 = I1I2, J4 = I 4
1 − 4I 2

1 I2 + 2I 2
2 ,

J5 = I 2
2 , J6 = I 2

1 I2 − 2I 2
2 , J7 = I 5

1 − 5I 3
1 I2 + 5I1I

2
2 , J8 = I 3

1 I2 − 3I1I
2
2 ,

J9 = I1I
2
2 , J10 = I3I1, J11 = I3(I

2
1 − 2I2).

(2)
The first nine main invariants are associated with isotropic material behavior, while the
contribution of anisotropy is involved only in invariants J10 and J11. Given relations (2), the
stored energy function for graphene proposed in [20] is

ω(I1, I2, I3) =
3∑

k=1

ckIk +
11∑

h=1

ch+3Jh (3)

where c1–c14 are polynomial fitting coefficients with dimension of energy per unit area.
Note that, for three-dimensional solids, the stored energy function has dimension of energy
per unit volume. However, being graphene a one-atom-thick layer, it is assumed to be a
two-dimensional material. This explains the physical dimension of coefficients c1–c14.

The second Piola-Kirchhoff stress tensor is energetically conjugated to the Green-
Lagrange strain tensor. Therefore, its expression (with dimension of force over length) read

� = ∂ω

∂E
(I1, I2, I3) =

3∑

k=1

∂ω

∂Ik

∂Ik

∂E
. (4)

The derivatives of the principal invariants with respect to the Green-Lagrange strain tensor
are [20]

∂I1

∂E
= I,

∂I2

∂E
= I1I − E,

∂I3

∂E
= S, (5)
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Fig. 1 Graphene analyzed as a continuum membrane: Symmetry and periodicity of the graphene honeycomb
lattice allows to investigate the material behavior considering only directions between zigzag and armchair
directions (φ ∈ [0,π/6])

with

S = 3
[
(M · E)2 − (N · E)2]M − 6 [(M · E) (N · E)] N. (6)

Using (5) and (6), the expression of the second Piola-Kirchhoff stress tensor (4) become

� = β1I + β2E + β3S, (7)

where

β1 = c1 + c2I1 − 3c5I2 + c6

(
I 2

1 + I2

) − 4c7I1I2 + 2c8I1I2 + c9

(
I 3

1 − 2I1I2

)

+ 5c10

(
I 2

2 − I 2
1 I2

) + c11

(
I 4

1 − 3I 2
2 − 3I 2

1 I2

) + c12

(
I 2

2 + 2I 2
1 I2

) + c13I3,

β2 = − c2 + 2c4 + 3c5I1 − c6I1 + 4c7

(
I 2

1 − I2

) − 2c8I2 + c9

(
4I2 − I 2

1

)

+ 5c10

(
I 3

1 − 2I1I2

) + c11

(
6I1I2 − I 3

1

) − 2c12I1I2 + 2c14I3,

β3 = c3 + c13I1 + c14
(
I 2

1 − 2I2
)
.

We assume that graphene in undeformed configuration relates to zero stresses. With this
position, we immediately observe that c1 = 0.

Leaving out rigid rotations, the deformation gradient in the principal reference system is
written in function of the principal stretches λ1 and λ2 with the diagonal form

F = λ1n1 ⊗ n1 + λ2n2 ⊗ n2.

Introducing the right Cauchy-Green deformation tensor C = FT F, the following relation
between Green-Lagrange strain tensor and deformation gradient holds

E = 1

2
(C − I) = 1

2

(
FT F − I

)
, (8)

from which the second Piola-Kirchhoff stress tensor (7) assumes the form

� =
(

β1 − β2

2

)
I + β2

2
C + β3S,
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with tensor S that is rewritten as

S = 3

4

[
(M · C)2 − (N · C)2]M − 3

2
[(M · C) (N · C)] N.

The first Piola-Kirchhoff stress tensor is then computed by applying the transformation

TR = F� =
(

β1 − β2

2

)
F + β2

2
FFT F + β3FS.

The representation of TR in the reference system identified by the principal strain directions,
n1 and n2, is

TR11 = λ1

[
β1 + β2

2

(
λ2

1 − 1
) + 3

4
β3

(
λ2

1 − λ2
2

)2
cos (6φ)

]
,

TR12 = −3

4
β3λ1

(
λ2

1 − λ2
2

)2
sin(6φ),

TR21 = −3

4
β3λ2

(
λ2

1 − λ2
2

)2
sin(6φ),

TR22 = λ2

[
β1 + β2

2

(
λ2

2 − 1
) − 3

4
β3

(
λ2

1 − λ2
2

)2
cos(6φ)

]
.

(9)

Note that, in general, in this reference system TR is not diagonal. This means that the prin-
cipal strain directions do not coincide with the principal stress directions. The only cases
in which these directions coincide is when φ = nπ/6, ∀n ∈ Z, for which TR12 = TR21 = 0.
Hence, this happens only when the principal strain directions correspond to the zigzag and
armchair directions.

The first Piola-Kirchhoff stress tensor can be written in terms of components with respect
to the base frame nx–ny according to TR = ∑2

i=1

∑2
j=1 TRij ni ⊗ nj , yielding

TRxx = TR11 cos2(φ) + TR22 sin2(φ) − (
TR12 + TR21

)
sin(φ) cos(φ),

TRxy = TR12 cos2(φ) − TR21 sin2(φ) + (
TR11 − TR22

)
sin(φ) cos(φ),

TRyx = TR21 cos2(φ) − TR12 sin2(φ) + (
TR11 − TR22

)
sin(φ) cos(φ),

TRyy = TR11 sin2(φ) + TR22 cos2(φ) + (
TR12 + TR21

)
sin(φ) cos(φ),

(10)

where components TRij (i = 1,2 and j = 1,2) are given in (9).
The stress tensors described above represent measures of stress referred to the unde-

formed configuration of the membrane (Lagrangian analysis). An alternative way of inves-
tigating the elastic behavior of graphene is in terms of Eulerian quantities, which are asso-
ciated with the deformed configuration. The measure of stress consistent with the deformed
configuration is the Cauchy stress tensor, defined by the transformation

T = 1

detF
TRFT = 1

detF
FFT

[
β1I + β2

2

(
FFT − I

)
]

+ β3

detF
FSFT .
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The components of the Cauchy stress tensor in the principal strain system are

T11 = λ1

λ2

[
β1 + β2

2

(
λ2

1 − 1
) + 3

4
β3

(
λ2

1 − λ2
2

)2
cos (6φ)

]
,

T12 = T21 = −3

4
β3

(
λ2

1 − λ2
2

)2
sin(6φ),

T22 = λ2

λ1

[
β1 + β2

2

(
λ2

2 − 1
) − 3

4
β3

(
λ2

1 − λ2
2

)2
cos(6φ)

]
.

(11)

3 Boundary-Value Problem

Graphene is regarded as a square membrane with side l, which is thus identified by the
closure of region B = {(x, y) : |x| < l/2, |y| < l/2}. The membrane is stretched and main-
tained in equilibrium by tensile surface forces applied uniformly and orthogonally to the
four edges. These forces are considered as dead load, namely not dependent on the defor-
mation. Body forces are not taken into account. As required by the plane stress condition, the
two faces of the membrane are traction-free. The boundary-value problem assumes thus the
form of a pure traction problem [39, 40], which is governed by the following field equation
and boundary conditions:

Div TR = o, ∀ x, y ∈ B,

TRnx = sxnx, for x = l

2
and |y| ≤ l

2
,

TRny = syny, for y = l

2
and |x| ≤ l

2
,

(12)

where sx and sy are assigned positive constants that specify the intensity of the external
loads, with dimension of force per unit length.

Solutions to the governing equations (12) are sought in the class of homogeneous defor-
mations, namely in the set of deformations with constant deformation gradient. Note that
this is an appropriate assumption when dealing with the equilibrium problem of membranes
subjected to in-plane loads, as observed by other theoretical and experimental works (see,
e.g., [22, 53, 57]). In this case, the solution of the equilibrium problem does not depend on
the length of the side of the membrane [26].

Under the assumption of homogeneous deformations, the local equilibrium (12)1 is triv-
ially satisfied by a constant stress field, which must fulfill the remaining boundary conditions
(12)2 and (12)3. Introducing (9) and (10) into (12)2 and (12)3 and operating a linear combi-
nation among the four equations, we derive the system

1

8
[4δ1 + η1 cos (6φ)] (λ1 + λ2) = sx + sy,

1

16
[8δ2 cos(2φ) + η2 cos(4φ) + κ cos(8φ)] (λ1 − λ2) = sx − sy,

[8δ2 sin(2φ) − η2 sin(4φ) + κ sin(8φ)] (λ1 − λ2) = 0,

β3 sin(6φ) (λ1 − λ2)
3 = 0,

(13)
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where, for the sake of clarity, the following quantities were introduced:

κ = (
λ2

1 − λ2
2

)3
(c13 + α2c14) ,

η1 = (λ1 − λ2)
3 (λ1 + λ2)

[
(λ1 + λ2)

2 (c13 + α1c14) + 6β3

]
,

η2 = (λ1 + λ2)
3 (λ1 − λ2)

[
(λ1 − λ2)

2 (c13 + α2c14) + 12β3

]
,

δ1 = 2γ1 + α1γ2, δ2 = 2γ1 + α2γ2,

γ1 = β1 − c13I3, γ2 = β2 − 2c14I3,

α1 = λ2
1 − λ1λ2 + λ2

2 − 1, α2 = λ2
1 + λ1λ2 + λ2

2 − 1.

System (13) describes the equilibrium of the graphene membrane. In the following sections,
solutions will be investigated in the cases of uniaxial loads along zigzag and armchair direc-
tions and equibiaxial loads.

4 Equilibrium Solutions for Uniaxial Loads

4.1 Zigzag Load

When the load is applied along the zigzag direction (sy = 0), the governing equations (13)
of the boundary-value problem become

1

8
[4δ1 + η1 cos (6φ)] (λ1 + λ2) = sx,

1

16
[8δ2 cos(2φ) + η2 cos(4φ) + κ cos(8φ)] (λ1 − λ2) = sx,

[8δ2 sin(2φ) − η2 sin(4φ) + κ sin(8φ)] (λ1 − λ2) = 0,

β3 sin(6φ) (λ1 − λ2)
3 = 0.

From the second equation, we notice that for symmetric solutions (λ1 = λ2), the intensity
of the external load sx is always equal to zero. This means that the only possible symmetric
solution in this case is the undeformed configuration λ1 = λ2 = 1. Considering only asym-
metric solutions (λ1 �= λ2), we obtain

1

8
[4δ1 + η1 cos (6φ)] (λ1 + λ2) = sx,

1

16
[8δ2 cos(2φ) + η2 cos(4φ) + κ cos(8φ)] (λ1 − λ2) = sx,

8δ2 sin(2φ) − η2 sin(4φ) + κ sin(8φ) = 0,

β3 sin(6φ) = 0.

(14)

Meaningful solutions to this system of equations can be found only with φ = 0,1 for which

1The last equation of system (14) would be satisfied also when β3 = 0, ∀ φ. However, the combination of
this condition with (14)3 provides as solutions only isolated configurations that have no physical meaning.
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sx = 1

8
(4δ1 + η1) (λ1 + λ2) ,

(8δ2 + η2 + κ) (λ1 − λ2) − 2 (4δ1 + η1) (λ1 + λ2) = 0.

(16)

Equation (16)1 gives the relation between stress and stretch along zigzag direction, while
(16)2 is the implicit relation between stretches along zigzag and armchair directions (λ1 and
λ2, respectively).

4.2 Armchair Load

When the load is applied along the armchair direction (sx = 0), the governing equations (13)
of the boundary-value problem become

1

8
[4δ1 + η1 cos (6φ)] (λ1 + λ2) = sy,

− 1

16
[8δ2 cos(2φ) + η2 cos(4φ) + κ cos(8φ)] (λ1 − λ2) = sy,

[8δ2 sin(2φ) − η2 sin(4φ) + κ sin(8φ)] (λ1 − λ2) = 0,

β3 sin(6φ) (λ1 − λ2)
3 = 0.

(17)

Again, the only symmetric solution is the undeformed configuration λ1 = λ2 = 1, for which
sy = 0. Considering asymmetric solutions (λ1 �= λ2), as done in Sect. 4.1, we observe that
meaningful solutions exist only for φ = 0. Therefore, also for the case of armchair uniaxial
load, the first principal direction is found to be the zigzag direction. In this case, system (17)
reads

sy = 1

8
(4δ1 + η1) (λ1 + λ2) ,

(8δ2 + η2 + κ) (λ1 − λ2) + 2 (4δ1 + η1) (λ1 + λ2) = 0.

(18)

Equation (18)1 gives the relation between stress and stretch along armchair direction, while
(18)2 is the implicit relation between stretches along armchair and zigzag directions (λ2 and
λ1, respectively).

Therefore, such solutions are discarded. The only two interesting cases are φ = 0 and φ = π/6, for which
(14)3 is satisfied even with β3 �= 0. Substituting φ = π/6 into (14)2 and (14)3 we obtain

sx = 1

32
(8δ2 − η2 − κ) (λ1 − λ2) ,

8δ2 − η2 − κ = 0,

(15)

which clearly gives as solution sx = 0, for all the values of λ1 and λ2 that satisfy relation (15)2. It goes
without saying that, again, this solution has no physical meaning. Therefore, the case φ = π/6 is discarded.
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5 Equilibrium Solutions for Equibiaxial Loads

The equibiaxial loading condition is defined by sx = sy = s. In this circumstance, system
(13) becomes

[4δ1 + η1 cos (6φ)] (λ1 + λ2) = 16s,

[8δ2 cos(2φ) + η2 cos(4φ) + κ cos(8φ)] (λ1 − λ2) = 0,

[8δ2 sin(2φ) − η2 sin(4φ) + κ sin(8φ)] (λ1 − λ2) = 0,

β3 sin(6φ) (λ1 − λ2)
3 = 0.

(19)

This set of equations provides two classes of solutions, which are discussed in the following.

5.1 Symmetric Solutions Under Equibiaxial Loads

Considering symmetric solutions, system (19) turns into

λ1 = λ2 = λ,

s = 1

2

[
2γ1 + γ2

(
λ2 − 1

)]
λ.

(20)

The solutions of this class do not depend on angle φ. Since the principal stretches are equal,
the membrane undergoes a homothetic transformation, maintaining its square shape. The
strain ellipse degenerates into a circle and every direction is principal.

5.2 Asymmetric Solutions Under Equibiaxial Loads

The graphene membrane subjected to equibiaxial loads may admit asymmetric solutions,
characterized by λ1 �= λ2. Since φ ∈ [0,π/6], equation (19)4 is satisfied only for φ = 0
and φ = π/6.2 Asymmetric solutions to equibiaxial loads can be thus observed only when
the first principal strain direction corresponds to the zigzag or the armchair direction. Two
classes of solutions are derived:

φ = 0

⎧
⎨

⎩

s = 1
16 (4δ1 + η1) (λ1 + λ2) ,

κ + 8δ2 + η2 = 0
(21)

φ = π

6

⎧
⎨

⎩

s = 1
16 (4δ1 − η1) (λ1 + λ2) ,

κ − 8δ2 + η2 = 0
(22)

When a certain intensity of the load is reached, bifurcation of the equilibrium path takes
place and the membrane loses its square shape, becoming a rectangle that follows solutions
(21) and (22).

This result shows that, adopting a stored energy function of the form expressed by (3),
the boundary-value problem admits multiple solutions. This surprising behavior was also
observed by other researches when dealing with rubber membranes subjected to equibiaxial
loads (see, e.g., [22, 26, 53, 57]).

2As already observed in Sect. 4.1, the last equation of system (19) would be satisfied also when β3 = 0, ∀
φ. However, the combination of this condition with (19)2 and (19)3 leads to unphysical solutions. Therefore,
such solutions are discarded.
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6 Stability of the Equilibrium Configurations

The stability of the equilibrium solutions is assessed through an energy criterion [54, 55].
An equilibrium configuration is stable if the Hessian matrix K of the total potential energy
E is positive definite [65]. The equilibrium solutions are said to be neutrally stable when
K is positive semi-definite and unstable when K is indefinite. In other words, for stable
equilibrium configurations all the eigenvalues of the Hessian matrix are positive, while if one
eigenvalue is zero and the remaining are positive the equilibrium is neutrally stable. When
at least one eigenvalue is negative the equilibrium is unstable [29]. Along the equilibrium
paths, configurations where the equilibrium is neutrally stable correspond to critical points.
A critical point can be classified as limit point, where the external load is stationary, or
bifurcation point, where the equilibrium path is no longer unique and multiple branches of
equilibrium appear [56].

The total potential energy of the graphene membrane is defined as

E (ϕ) =
∫

B
ω̃ (F) da −

∫

∂B
s · ϕ dl, (23)

where s is the density of external force per unit length in undeformed configuration and
ω̃ (F) = ω(I1, I2, I3). Recalling the boundary condition TRn = s and applying the diver-
gence theorem, equation (23) turns into

E (ϕ) =
∫

B
(ω̃ (F) − TR · F) da, (24)

where the dependence on ϕ appears through its gradient F. Since the deformation field is
assumed to be homogeneous, the integrand of (24) is constant. We can thus replace the total
potential energy by its specific counterpart (energy per unit area in undeformed configura-
tion):

ẽ (F) = ω̃ (F) − TR · F. (25)

The expression of the specific energy (25) in terms of principal stretches λ1 and λ2 is

e (λ1, λ2) = ω (I1, I2, I3) − (s1λ1 + s2λ2) . (26)

The principal invariants I1, I2 and I3 in (26) are functions of stretches λ1 and λ2 through
relations

I1 = 1

2

(
λ2

1 + λ2
2 − 2

)
,

I2 = 1

4

(
λ2

1 − 1
) (

λ2
2 − 1

)
,

I3 = 1

8

(
λ2

1 − λ2
2

)3
cos (6φ) ,

(27)

which are obtained by introducing (8), that defines the link between E and F, into (1).
The Hessian matrix of the specific potential energy reads

[K] =

⎡

⎢
⎢⎢
⎣

∂2e

∂λ2
1

∂2e

∂λ1∂λ2

∂2e

∂λ2∂λ1

∂2e

∂λ2
2

⎤

⎥
⎥⎥
⎦

.
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Note that the contribution of loads to the specific potential energy e is linear with respect
to stretches λ1 and λ2 (see (26)). Thus, the Hessian matrix does not depend on vector s.
Therefore, although the equilibrium configurations are determined by the applied loads,
their stability is not directly related to s.

The second partial derivatives of the specific potential energy are computed by applying
the chain rule

∂2e

∂λi∂λj

=
3∑

h=1

3∑

k=1

∂2ω

∂Ih∂Ik

∂Ih

∂λi

∂Ik

∂λj

+
3∑

h=1

∂ω

∂Ih

∂2Ih

∂λi∂λj

, i, j = 1,2. (28)

From the expression of the stored energy function (3), the following derivatives are com-
puted:

∂ω

∂I1
= 2I1c4 + 3

(
I 2

1 − I2
)
c5 + I2c6 + 4

(
I 3

1 − 2I1I2
)
c7 + 2I1I2c9

+ 5
(
I 4

1 − 3I 2
1 I2 + I 2

2

)
c10 + 3

(
I 2

1 − I2

)
I2c11 + I 2

2 c12 + I3 (c13 + 2I1c14) ,

∂ω

∂I2
= c2 − 2c4 − I1 (3c5 − c6) + 4

(−I 2
1 + I2

)
c7 + 2I2c8 + (

I 2
1 − 4I2

)
c9

− 5
(
I 3

1 − 2I1I2

)
c10 + (

I 3
1 − 6I1I2

)
c11 + 2I1I2c12 − 2I3c14,

∂ω

∂I3
= c3 + I1c13 + (

I 2
1 − 2I2

)
c14,

∂2ω

∂I 2
1

= 2
{
c4 + 3I1c5 + (

6I 2
1 − 4I2

)
c7 + 10I 3

1 c10 + I2 [c9 + 3I1 (−5c10 + c11)] + I3c14

}
,

∂2ω

∂I 2
2

= 2 [2c7 + c8 − 2c9 + I1 (5c10 − 3c11 + c12)] ,

∂2ω

∂I 2
3

= 0,

∂2ω

∂I2∂I1
= ∂2ω

∂I1∂I2
= −3c5 + c6 − 8I1c7 + 2I1c9 + 5

(−3I 2
1 + 2I2

)
c10

+ 3
(
I 2

1 − 2I2

)
c11 + 2I2c12,

∂2ω

∂I3∂I1
= ∂2ω

∂I1∂I3
= c13 + 2I1c14,

∂2ω

∂I3∂I2
= ∂2ω

∂I2∂I3
= −2c14. (29)

From the definition of the principal invariants given in (27), we derive

∂I1

∂λi

= λi,
∂I2

∂λi

= 1

2
λi

(
λ2

j − 1
)
,

∂I3

∂λi

= ±3

4
λi

(
λ2

i − λ2
j

)2
cos (6φ) ,

∂2I1

∂λ2
i

= 1,
∂2I2

∂λ2
i

= 1

2

(
λ2

j − 1
)
,

∂2I3

∂λ2
i

= ±3

4

(
5λ4

i − 6λ2
i λ

2
j + λ4

j

)
cos (6φ) ,

(30)
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∂2I1

∂λi∂λj

= 0,
∂2I2

∂λi∂λj

= λ1λ2,
∂2I3

∂λi∂λj

= −3λ1λ2

(
λ2

1 − λ2
2

)
cos (6φ) ,

with i, j = 1,2 and i �= j .3 Substituting (29), (30) and (27) into (28), we obtain the following
expressions of the scalar components of the Hessian matrix in terms of principal stretches
λ1 and λ2:

∂2e

∂λ2
i

= 1

16

{
8
(−1 + λ2

j

)
c2 ± 12

(
5λ4

i − 6λ2
i λ

2
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j
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c3 cos(6φ)

+16
(−1 + 3λ2

i

)
c4 + 12

(
1 − 6λ2

i + 5λ4
i

)
c5
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j
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i
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j
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i

(
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j + 2λ4
j
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c14 cos(6φ)

}
,

∂2e

∂λi∂λj

= 4c2 + 12
(−λ2

i + λ2
j

)
c3 cos(6φ) + 4

(−2 + λ2
i + λ2

j

)
c6

+ 4
(−1 + λ2

i

) (−1 + λ2
j

)
c8 + 3

(
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i + λ4
i − 2λ2
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j

)
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+ 2
(−2 + 3λ2

i − 3λ4
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j + λ6
j

)
c11

+ 3
(−1 + λ2

i

) (−1 + λ2
j

) (−2 + λ2
i + λ2

j

)
c12

− 6(λi − λj )(λi + λj )
(−2 + λ2

i + λ2
j
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− 6(λi − λj )(λi + λj )
[
1 + λ4

i − λ2
j + λ4

j − λ2
i

(
1 + λ2

j
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c14 cos(6φ) = ∂2e

∂λj∂λi

,

with i, j = 1,2 and i �= j . The eigenvalue problem is then stated by writing the characteristic
equation

det (K − τ I) =
(

τ − ∂2e

∂λ2
1

)(
τ − ∂2e

∂λ2
2

)
−

(
∂2e

∂λ1∂λ2

)2

= 0,

whose solution provides the eigenvalues

τ1,2 = 1

2

⎧
⎨

⎩
∂2e

∂λ2
1

+ ∂2e

∂λ2
2

∓
[

4

(
∂2e

∂λ1∂λ2

)2

+
(

∂2e

∂λ2
1

− ∂2e

∂λ2
2

)2
] 1

2

⎫
⎬

⎭
. (31)

3Symbol ± refers to + when i = 1 and to − when i = 2.
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An equilibrium configuration is stable if both eigenvalues τ1 and τ2 are positive. Neutrally
stable configurations are found when τ1 = 0 and τ2 > 0. This condition marks the transition
between stable and unstable regions.

7 Linearized Theory

In this section, the solutions derived for the finite elastic theory are linearized by introduc-
ing the hypothesis of small deformation field. Hereinafter, the components of the Green-
Lagrange strain tensor E1 and E2 are replaced by symbols ε1 and ε2 respectively, while
nominal stresses sx and sy with σx and σy respectively. This for the sole purpose of consis-
tency with the common notation employed in linear elasticity.

From the definition of the Green-Lagrange strain tensor (8), the following relations be-
tween stretch and strain components are derived:

λ1 = √
2ε1 + 1,

λ2 = √
2ε2 + 1,

(32)

where we recall that E1 and E2 have been replaced by ε1 and ε2. The hypothesis of small
deformation field allows to develop (32) in Taylor series in the variables ε1 and ε2, obtaining

λ1 	 1 + ε1,

λ2 	 1 + ε2.
(33)

Introducing (33) into (9) and (11), which give the expressions of the first Piola-Kirchhoff
and the Cauchy stress tensors respectively, we obtain the following approximated form:

[TR] = [T] 	
[

2c4ε1 + c2ε2 0
0 c2ε1 + 2c4ε2

]
.

This result shows that in the infinitesimal theory, as it is well known, the two stress measures
coincide. Therefore, from now on in this section, tensor T is simply called stress tensor.
Furthermore, we notice that the representation of the stress tensor in the principal strain
system is diagonal. This indicates that in the linearized theory principal strain and stress
directions coincide.

The linearization of boundary conditions (13) reduces to the following system of three
scalar equations:4

(c2 + 2c4) (ε1 + ε2) = σx + σy,

(2c4 − c2) (ε1 − ε2) cos(2φ) = σx − σy,

16 sin(2φ) (2c4 − c2) (ε1 − ε2) = 0,

(34)

where we recall that sx and sy have been replaced by σx and σy . With the intent of deriving
expressions for the Young’s modulus and Poisson’s ratio of graphene, we consider the two
uniaxial load cases along zigzag and armchair directions. In both cases, with the exception

4The term (λ1 − λ2)3 in (13)4 tends to zero. Hence, (13)4 is trivially satisfied for small deformations.
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of the undeformed configuration, solutions exist only for ε1 �= ε2 and φ = 0,5 which means
that the first principal direction corresponds to the zigzag direction, allowing us to write
ε1 = εx and ε2 = εy . In light of the above, in case of zigzag uniaxial load (σy = 0), the
solution of system (34) is

σx =
(

2c4 − c2
2

2c4

)
εx,

εy = − c2

2c4
εx.

(35)

Considering, with σy = 0, the Navier’s inverse relationships σx = Eεx and εy = −νεx , the
solution given in (35) allows us to write the expressions of Young’s modulus and Poisson’s
ratio for graphene

E = 2c4 − c2
2

2c4
, ν = c2

2c4
. (36)

The same result can be derived considering the case of armchair uniaxial load (σx = 0), for
which the solution of system (34) is

σy =
(

2c4 − c2
2

2c4

)
εy,

εx = − c2

2c4
εy.

Again, the Navier’s inverse relationships σy = Eεy and εx = −νεy provide the expressions
of Young’s modulus and Poisson’s ratio given in (36). The fact that both Young’s modulus
and Poisson’s ratio along zigzag and armchair directions coincide demonstrates the isotropy
of graphene for small deformations.

In case of equibiaxial loads σx = σy = σ , system (34) reduces to

(c2 + 2c4) (ε1 + ε2) = 2σ,

(2c4 − c2) (ε1 − ε2) cos(2φ) = 0,

16 sin(2φ) (2c4 − c2) (ε1 − ε2) = 0.

(37)

Asymmetric solutions (ε1 �= ε2) are found only if c2 = 2c4, which obviously does not rep-
resent a general case, therefore it must not be considered. Hence, when the deformation is
small, the case of equibiaxial loads admits only the symmetric solution (εx = εy = ε), for
which system (37) gives

σ = (c2 + 4c4) ε.

Note that this solution corresponds to the classical linear elastic solution σ = Eε/(1 − ν)

for membranes subjected to equibiaxial loads, with Young’s modulus E and Poisson’s ratio
ν given by (36).

5For the case of uniaxial zigzag or armchair load, if ε1 = ε2 = ε equation (34)2 reduce to σx = 0 or σy = 0
for all values of ε. This is obviously a meaningless solution, thus for both uniaxial load cases it must be
ε1 �= ε2. Having excluded the case of ε1 = ε2, (34)3 is satisfied for all φ only when c2 = 2c4. It goes without
saying that this is a particular case that is not valid in general. Therefore, for uniaxial loads along zigzag and
armchair directions, (34)3 is satisfied only when φ = 0.
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Table 1 Fitting coefficients c1–c14 estimated by Höller et al. [20], which are valid for a Green-Lagrange
strain range between −0.14 and +0.28. The physical unit of the coefficients is eV/Å2

c1 c2 c3 c4 c5 c6 c7

0 3.8973 −0.7042 11.0117 −31.5634 −16.8571 55.2799

c8 c9 c10 c11 c12 c13 c14

52.8899 41.2553 −67.6440 −49.9970 −44.1325 6.1151 −7.9357

Symbols Åand eV indicate respectively Angstrom, as unit of length (1 Å= 10−10 m), and electronvolt, as

unit of energy (1 eV = 1.6022 × 10−19 N m)

8 Results

In this section, numerical solutions of the equilibrium equations are given for the cases of
uniaxial loads (armchair and zigzag) and equibiaxial loads. Graphene is considered a two-
dimensional material, thus the values of stress quantities are given with dimension of force
over length. Coefficients c1–c14 of the stored energy function (3) were estimated in [20] by
fitting the energy landscapes of graphene determined through DFT simulations for principal
strains EI and EII ranging from −0.14 to 0.28 and for loading angles ranging from 0 to π/6.
The resulting estimated parameters are listed in Table 1 and are considered in the present
section.

8.1 Uniaxial Loads

The equilibrium equations for zigzag load, expressed by (16), and for armchair load, given
by (18), are solved numerically with software Wolfram Mathematica [59] by increasing step
by step a kinematic control parameter. In detail, for the case of zigzag uniaxial load, control
parameter is λx (or λ1) with initial value 1 and final value 1.28, with an increasing step
of 10−4. For each step, system (16) is solved using the FindRoot command, obtaining as
solution the corresponding values of λy and sx . Likewise, λy (or λ2) is the control parameter
of the armchair uniaxial load case, ranging from 1 to 1.28 with increasing step of 10−4.
System (18) is solved with the same strategy and the solution is obtained in terms of λx and
sy values.

The resulting equilibrium paths along zigzag and armchair directions are depicted respec-
tively in Figs. 2(a) and 2(b). In both cases we observe a softening behavior and we notice that
for small deformations (λx 	 1 and λy 	 1) the two curves coincide, whereas for large defor-
mations the effect of anisotropy arises. In fact, as already mentioned, anisotropy of graphene
is contained in the third invariant of equation (1), which plays a role only when the defor-
mation field is large. In particular, as also other authors reported (see, e.g., [14, 17, 35]),
graphene is stronger along the zigzag direction.

The stability of the equilibrium solutions is investigated by computing eigenvalues τ1 and
τ2 from (31) with φ = 0, because this is the only case for which equilibrium solutions for
both the uniaxial load cases exist. A contour plot of the eigenvalues on λx–λy plane is shown
in Fig. 3. The green colored region satisfies the condition that both τ1 and τ2 are positive,
therefore it represents the region of stability of the equilibrium configurations. The boundary
of this region indicates the configurations of neutrally stable equilibrium, for which τ1 = 0
and τ2 > 0. The intersections of such boundary with the projection of the equilibrium paths
on λx–λy plane give the configurations at which the equilibrium loses its stability. These
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Fig. 2 Equilibrium paths in terms of nominal stress vs. stretch for the uniaxial load cases (stable solutions:
continuous lines, unstable solutions: dashed lines)

Fig. 3 Projection of elastic
stability region and equilibrium
paths on λx–λy plane for the
uniaxial load cases. The
boundary of the stable region
represents the neutrally stable
configurations and its
intersections with the equilibrium
paths (red and blue points)
indicate the configurations at
which the equilibrium loses its
stability

configurations are indicated in Figs. 3 and 2 with red and blue points for the zigzag and
armchair uniaxial load cases, respectively.

The set of numerical solutions obtained for the uniaxial loads (λx , λy and sx for zigzag
load and λy , λx and sy for armchair load) allows to compute the Poisson’s ratio of the
graphene membrane as a function of the deformation, along both zigzag (νxy ) and armchair
(νyx ) directions

νxy = 1 − λy

λx − 1
, νyx = 1 − λx

λy − 1
.

The trend of νxy and νyx with the increasing of uniaxial deformation are depicted in
Figs. 4(a) and 4(b), respectively. The values of νxy and νyx in initial configuration coin-
cide due to the isotropy of graphene for small deformations. The two curves deviate as the
deformation increases. This is a consequence of the anisotropy for large deformations.

Table 2 shows a comparison of the results presented in this work with other results avail-
able in the literature. The mechanical properties of graphene are usually given referring to
the engineering strains εx = λx − 1 and εy = λy − 1. This notation is thus used in Table 2,
with the purpose of providing a straightforward and comprehensible comparison.
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Fig. 4 Trend of Poisson’s ratio with the increasing of uniaxial deformation (stable solutions: continuous lines,
unstable solutions: dashed lines)

Table 2 Uniaxial stress and strain at the limit configuration (εx,cr = λx,cr − 1 and εy,cr = λy,cr − 1) and
comparison with other results available in the literature

Model sx,cr (nN/nm) εx,cr sy,cr (nN/nm) εy,cr

Present work Continuum 36.07 0.204 34.01 0.186

Genoese et al. [17] MM 44.44 0.280 34.80 0.192

Nazarloo et al. [35] MM 40.90 0.228 32.09 0.183

Galhofo et al. [14] MM 48.28 0.211 38.42 0.187

Georgantzinos et al. [18] MM 40.80 0.269 31.96 0.198

Marenić et al. [31] MM 40.80 0.2 30.60 0.15

Yanovsky et al. [62] MD 46.43 0.123 30.32 0.123

Zhao et al. [64] MD 35.70 0.2 30.26 0.13

Wang et al. [58] MD 35.70 0.220 30.60 0.130

Ansari et al. [3] MD – – 39.34 0.202

Xu [61] MD 33.32 0.24 28.22 0.16

Liu et al. [30] ab initio 41.14 0.266 37.40 0.194

Shao et al. [48] ab initio 39.93 0.27 – –

Lee et al. [28] Experimental 43.55 0.25 – –

MM = molecular mechanics; MD = molecular dynamics

The variability of the results given in Table 2 is due to different modeling strategies and
interatomic potentials employed. As pointed out by Genoese et al. [16], the same potential
with different sets of parameters may lead to sensible changes in the results. We observe that
the values of sx,cr and εx,cr derived in this work are significantly underestimated with respect
to the ones given in the experimental work of Lee et al. [28] and to many others in Table 2.
Given the lack of experimental observation, it is hard to say which modeling strategy and
potential are the best ones. However, we believe that the parametrization given in Table 1 can
be adjusted in order to obtain a mechanical response of graphene that is more consistent with
other works and especially with the experimental observation of [28]. A reparametrization
of the stored energy function will be thus proposed in Sect. 9.
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Fig. 5 Projection of elastic stability regions with φ = 0 and φ = π/6 and equilibrium paths on λ1–λ2 plane
for the case of equibiaxial loads. The symmetric solution loses its stability after the configuration indicated
with the orange point and asymmetric solutions appear

8.2 Equibiaxial Loads

The symmetric solution in case of equibiaxial loads is given in closed form by (20). Asym-
metric solutions for φ = 0 and φ = π/6 are also admitted respectively as solutions of (21)
and (22). These solutions are derived numerically with the same strategy described in the
previous section. Namely, for φ = 0 control parameter λ1 is increased from initial value
1 to final value 1.28 with step 10−4, while for φ = π/6 the same is done with control
parameter λ2. For each step, systems (21) and (22) are solved using the FindRoot com-
mand.

Figure 5 shows the projection of the equilibrium paths on λ1–λ2 plane. Only the sym-
metric solution is found until the critical configuration characterized by λcr = 1.1808 and
scr = 38.063 nN/nm. At this point, bifurcation instability takes place and the two asymmet-
ric solutions are observed.

The elastic stability regions of Fig. 5 are obtained by computing eigenvalues τ1 and τ2

from (31) for the limit cases of φ = 0 and φ = π/6. The boundaries of the two stable regions
intersect in correspondence of the bifurcation point, after which the symmetric solution is
unstable. Namely, when a perturbation is applied and s > scr, the square membrane abandons
the symmetric path and it randomly transforms into one of the two possible asymmetric
configurations, becoming a rectangle. As depicted in the zoom of Fig. 5, the asymmetric
solutions with φ = 0 and φ = π/6 are stable only for a very small range of deformation.
When the curves intersect the boundaries of the corresponding stability regions, the solutions
become unstable, as represented by the red and blue points in Fig. 5. Given the very small
region where such solutions are stable, it is hard to say if it is even possible to observe them
in a real experiment.

The equilibrium path of the symmetric solution in the plane λ–s is represented in Fig. 6.
We notice that, when equibiaxial loads are applied to the graphene membrane, the limit
value of load smax = 38.754 nN/nm is not reached by the system because a bifurcation in-
stability occurs at the critical load scr = 38.063 nN/nm. Asymmetric solutions appear in
correspondence of the critical load, as shown in the three-dimensional representation of the
equilibrium paths given in Fig. 7. The stretch corresponding to the critical configuration is
λcr = 1.1808.
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Fig. 6 Representation of the
symmetric solution in case of
equibiaxial loads in the plane λ–s

(stable solutions: continuous
lines, unstable solutions: dashed
lines)

Fig. 7 Three-dimensional view of the equilibrium paths for equibiaxial loads: after bifurcation, asymmetric
solutions for φ = 0 and φ = π/6 are found (stable solutions: continuous lines, unstable solutions: dashed
lines)

The solution of the boundary-value problem (19) allowed thus to conclude that, when
equibiaxial loads are applied to graphene, the solution is unique and symmetric until the
critical configuration (λcr, scr). Asymmetric solutions take place and they are stable only
for a very small range of deformation. The most interesting result is that the strength of
graphene subjected to equibiaxial loads is not given by the limit value smax. The stability
analysis revealed that this configuration is never observed, because bifurcation instability
occurs at a previous critical configuration, where the equilibrium along the symmetric path
loses its stability.

A final remark is related to the critical value scr = 38.063 nN/nm experienced by
graphene under equibiaxial loads. As reported in the previous section, the critical config-
urations in case of uniaxial loads are characterized by sx,cr = 36.07 nN/nm and sy,cr = 34.01
nN/nm. We observe that scr is higher than both sx,cr and sy,cr. However, it is unlikely that the
graphene membrane exhibits an ultimate strength scr for equibiaxial loads that is higher than
the uniaxial strength in zigzag direction sx,cr, along which it is well known that graphene
shows the highest strength. In fact, the case of equibiaxial loads was analyzed also by other
authors through MM simulations (see, e.g, [13, 35]), obtaining a value of scr always less than
sx,cr. It goes without saying that there is still lack of results and experiments for graphene
subjected to equibiaxial loads, but the fact that the parametrization of Table 1 leads to this
unlikely outcome points out once again the need for a reparametrization of the stored energy
function.
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Table 3 Comparison of Young’s modulus and Poisson’s ratio with previous studies in the literature

Method E (nN/nm) ν

Present work Continuum 341.81 0.177

Chang and Gao [8] MM 360.29 0.159

Genoese et al. [16] MM 386.58 0.195

Meo and Rossi [32] MM 321.30 –

Alzebdeh [2] MM 408.00 0.195

Milowska et al. [34] DFT 357.00 0.169

Kudin et al. [24] ab initio 337.96 0.149

Liu et al. [30] ab initio 357.00 0.186

Shao et al. [48] ab initio 350.01 –

Lee et al. [28] Experimental 333.54 –

Koenig et al. [23] Experimental 347 –

MM = molecular mechanics; MD = molecular dynamics

8.3 Elastic Constants of Graphene

Numerical values of Young’s modulus and Poisson’s ratio are computed from (36) by using
the values of coefficients c2 and c4 given in Table 1, obtaining E = 341.81 nN/nm and
ν = 0.177. A comparison with the elastic constants given by other studies is reported in
Table 3. Although different methods and potentials are employed in the literature, the results
show a quite good agreement.

9 Reparametrization of the Stored Energy Function

As pointed out in Sect. 8.1, the limit values of sx and εx derived with the parametrization
of Table 1 are significantly underestimated with respect to the experimental results given
by Lee et al. [28]. In general, underestimation of the limit values of both sx and sy is also
found with respect to other MM simulations (see Table 2). For this reason, in this section
we propose a new parametrization of coefficients c1–c14, which gives results that are more
consistent with experimental observation and other models found in the literature.

Firstly, parameters c2 and c4 are adjusted to obtain certain values of Young’s modulus
and Poisson’s ratio. For the Young’s modulus we considered the value E = 333.54 nN/nm
as the most reliable, which is given by the experiment carried out through atomic force
microscope by Lee et al. [28]. For the Poisson’s ratio the value considered is ν = 0.159,
given by Chang and Gao [8]. This because it is obtained with a very effective stick-and-
spring approach that makes use of simple harmonic potentials with parameters that have
a clear physical meaning and, in linear elasticity, have been often considered reliable for
predictions of elastic properties of graphene [32, 47, 60]. The coefficients c2 and c4 that
give such values of E and ν are computed using (36) and are reported in Table 4.

The other parameters are collected into parameter vector p = [c3 c5 c6 c7 c8 c9 c10 c11 c12

c13 c14]T and their values are estimated by performing a nonlinear constrained optimiza-
tion with function fmincon in the software MATLAB [9]. The optimization is performed in
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Table 4 Values of fitting coefficients c1–c14 after the reparametrization of the stored energy function. The
physical unit of the coefficients is eV/Å2

c1 c2 c3 c4 c5 c6 c7

0 3.3959 −0.8407 10.6788 −30.6195 −15.0228 58.4312

c8 c9 c10 c11 c12 c13 c14

52.8739 41.2276 −66.4791 −56.0075 −44.1331 8.3565 −7.7249

order to obtain critical configurations (εx,cr, sx,cr) and (εy,cr, sy,cr) that are as close as pos-
sible to the ones considered most reliable, on the basis of the information available from
other works found in the literature. In particular, for the zigzag uniaxial load, the critical
values assumed as goal of the optimization are the ones given by Lee et al. [28] through
experimental tests (εx,cr = 0.25 and sx,cr = 43.55 nN/nm, see Table 2). For the armchair
uniaxial load, reliable experimental results were not found. Thus, the goal of the optimiza-
tion are the values computed by Genoese et al. [17] through MM simulations (εy,cr = 0.192
and sy,cr = 34.80 nN/nm, see Table 2). This because in the work by Genoese et al. [17] a
modified Morse potential was employed, with a parametrization that was adjusted on the
basis of a thorough analysis of the most recent atomistic simulations for graphene. It goes
without saying that this is a decision based on the information available, which does not
guarantee that this result is the most accurate. However, the reliability of MM simulations
with modified Morse potential is supported by many authors (see, e.g., [5, 18, 35, 52]).

The optimization in MATLAB is performed as a single-objective optimization with non-
linear constraints. In detail, the relations between uniaxial stress and stretch for the cases
of zigzag and armchair loads, expressed by (16)1 and (18)1 respectively, are written in a
MATLAB function and will be refferred as sx(λ1, λ2,p) and sy(λ1, λ2,p). The following
objective function is then defined:

obj(p) =
√(

sx,cr − max
λ1

sx(λ1, λ2,p)

)2

+
(

sy,cr − max
λ2

sy(λ1, λ2,p)

)2

, (38)

where sx,cr = 43.55 nN/nm and sy,cr = 34.80 nN/nm are the goal values. The implicit re-
lations between stretches λ1 and λ2, expressed by (16)2 and (18)2, are introduced as non-
linear constraints in another MATLAB function. In order to achieve also the goal values
of deformations εx,cr = 0.25 (λx,cr = 1.25) and εy,cr = 0.192 (λy,cr = 1.192), the following
lower and upper bounds for the stretches are defined: λ1 ∈ [1.24,1.26] for zigzag load and
λ2 ∈ [1.18,1.20] for armchair load. In this way, the objective function (38) allows to ob-
tain the goal values of stress in correspondence of stretches that range in intervals close to
εx,cr and εy,cr. Meanwhile, the implicit relations between stretches are satisfied through the
nonlinear constraints.

Parameter vector p contains eleven parameters to be optimized under only two nonlinear
constraints. Therefore, the optimization problem described above does not admit a unique
solution. The optimization was thus guided by defining as initial guess the coefficients given
by Höller et al. [20] (see Table 1). As a result, the best fitting parameters estimated through
optimization are listed in Table 4. The corresponding equilibrium paths along zigzag and
armchair directions are depicted respectively in Figs. 8(a) and 8(b). We notice that, with the
new set of coefficients c1–c14, the critical values of stress along both directions coincide with
the goal values of the optimization. The stretch λx,cr = 1.252 is also very close to the one
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Fig. 8 Equilibrium paths for the uniaxial load cases after reparametrization of the stored energy function
(stable solutions: continuous lines, unstable solutions: dashed lines)

Fig. 9 Poisson’s ratio with the increasing of uniaxial deformation after reparametrization of the stored energy
function (stable solutions: continuous lines, unstable solutions: dashed lines)

given by Lee et al. [28]. Larger gap is observed between λy,cr = 1.200 and the corresponding
value 1.192 given by Genoese et al. [17]. However, as previously pointed out, it is not sure
that such value is the most accurate, especially because it does not derive from experimental
observation. Therefore, the results provided by the optimized set of coefficients are still
considered reliable.

The trend of Poisson’s ratio with the increasing of deformation is shown in Fig. 9. As
expected, the initial value ν = 0.159 provided by the new values of coefficients c2 and c4

corresponds to the one proposed by Chang and Gao [8].
The symmetric solution in case of equibiaxial loads obtained with the new parametriza-

tion of the stored energy function is shown in Fig. 10. We observe that the limit value of
load smax = 44.297 nN/nm can not be reached because a bifurcation instability occurs at the
critical load scr = 42.908 nN/nm. The zoom of Fig. 11 shows that the asymmetric solutions
with φ = 0 and φ = π/6 are stable for a small range of deformation.

Compared to the result obtained with the parametrization proposed by Höller et al. [20]
(Fig. 7), the asymmetric solutions are stable for a larger part of the equilibrium paths. This
shows that the region of stability of the asymmetric solutions depends on the values of co-
efficients c1–c14 assumed for the stored energy function. As far as we know, there is still no
experimental evidence of this behavior in case of graphene membranes subjected to equib-
iaxial loads. Hence, the information available do not allow to guarantee that such solutions
can actually be observed. However, the results obtained for uniaxial loads with the new
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Fig. 10 Representation of the
symmetric solution in case of
equibiaxial loads in the plane
λ–s, obtained after
reparametrization of the stored
energy function (stable solutions:
continuous lines, unstable
solutions: dashed lines)

Fig. 11 Three-dimensional view of the equilibrium paths for equibiaxial loads after reparametrization of
the stored energy function: after bifurcation, asymmetric solutions for φ = 0 and φ = π/6 are found (stable
solutions: continuous lines, unstable solutions: dashed lines)

parametrization show good agreement with the ones found in the literature that are consid-
ered most reliable. A more thorough and comprehensive optimization of the parameters of
the stored energy function can be carried out when new experimental data will be available.

10 Conclusions

This paper presented a formulation for equilibrium and stability of graphene membranes
in the fully nonlinear context of finite elasticity. The solutions were derived under the as-
sumption of homogeneous deformations. An anisotropic form of stored energy function was
considered, from which the expressions of Piola-Kirchhoff and Cauchy stress tensors were
obtained. Consequently, the boundary-value problem was formulated and the stability of the
equilibrium configurations was investigated through an energy criterion. The finite theory
was linearized by introducing the hypothesis of small deformation field. The expressions of
Young’s modulus and Poisson’s ratio of graphene were obtained.

In previous works on hyperelastic graphene membranes [20, 25], the authors limited their
analysis to the derivation of strain and stress quantities. However, a complete characteriza-
tion of the mechanics of graphene requires a solution of the boundary-value problem. In fact,
the solutions proposed in this work revealed unexpected behaviors that were not observed
in previous works in the literature. Explicit relations between stretches and stresses of the
membrane were derived for the cases of uniaxial loads along zigzag and armchair directions
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and for equibiaxial loads. It was discovered that graphene subjected to equibiaxial loads
experiences bifurcation and asymmetric solutions appear other than the symmetric one.

The results were put in comparison with those given by other works found in the litera-
ture. In general, an underestimation of the mechanical properties was found. It was therefore
decided to propose a reparametrization of the coefficients of the stored energy function. This
allowed to obtain a mechanical behavior of graphene as close as possible to the one consid-
ered most reliable, with particular regard to the experimental investigation carried out by
Lee et al. [28].

The formulation proposed in this work may be the basis for reliable models in the grow-
ing field of structural mechanics of graphene.
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