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Abstract
The multiscale elasticity model of solids with singular geometrical perturbations of mi-
crostructure is considered for the purposes, e.g., of optimum design. The homogenized
linear elasticity tensors of first and second orders are considered in the framework of pe-
riodic Sobolev spaces. In particular, the sensitivity analysis of second order homogenized
elasticity tensor to topological microstructural changes is performed. The derivation of the
proposed sensitivities relies on the concept of topological derivative applied within a mul-
tiscale constitutive model. The microstructure is topologically perturbed by the nucleation
of a small circular inclusion that allows for deriving the sensitivity in its closed form with
the help of appropriate adjoint states. The resulting topological derivative is given by a
sixth order tensor field over the microstructural domain, which measures how the second
order homogenized elasticity tensor changes when a small circular inclusion is introduced
at the microscopic level. As a result, the topological derivatives of functionals for multiscale
models can be obtained and used in numerical methods of shape and topology optimiza-
tion of microstructures, including synthesis and optimal design of metamaterials by taking
into account the second order mechanical effects. The analysis is performed in two spatial
dimensions however the results are valid in three spatial dimensions as well.

Keywords Second order homogenized elasticity tensor · Topological derivative ·
Asymptotic analysis · Synthesis and optimal design of metamaterials

Mathematics Subject Classification 35J57 · 49K40 · 74Q05 · 74P20 · 49Q10 · 35C20

1 Introduction

The study of synthesis and design of materials involving multiscale effects gave rise to a
wide interest in Engineering, Mechanics, and Mathematics during the two past decades,
and it broadened the application scope, among others structural mechanics, biomechanics,
aerospace engineering, wave propagation in solids, and acoustics. The research works on this
subject have increased with the emergence of recent experimental and manufacturing tech-
niques, computational methods and tools, and theoretical developments. The various length
scales of this type of materials allow the elaboration of multiscale constitutive theories, the
so-called theory of homogenization, in order to explain, more accurately than standard phe-
nomenological approaches, their macroscopic response under loading for example. The first
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developments has been made for periodic structures [18, 30, 34, 36, 45, 46, 54, 61], and
since then the framework has not stopped expanding to fit more general and complex mod-
els. An introduction to homogenization and related mathematical framework can be found
in [23, 62].

In this context, the design of the microstructure is a major issue, as well for a mixture of
different materials, as for the arrangement of a single one. For example, in [6] and [42] mi-
crostructural topologies that produce negative macroscopic Poisson’s ratio are obtained with
a relaxation-based technique. To find out new microstructures producing exotic behaviours
at the macroscopic scale, we can cite the use of classical shape optimization method (see,
e.g., [35, 60]), based on shape gradient of the desired criterion, with respect to a smooth
variation of the boundary. More recently, the combination of shape gradient concept and
level-set method (investigated in [53]), has produced several results in structural optimiza-
tion, the reader can see for instance [2, 5, 20, 52, 55, 63]. This approach depends deeply
on the initial guess for the microstructure, because it does not allow for topology changes.
Relaxed formulation based on homogenization theory has been developed in [1, 3, 4, 17],
and provide topology variations in certain cases.

Another strategy is based on the concept of topological derivative, which was rigorously
introduced in [57]. The idea is to compute a topological asymptotic expansion of the in-
vestigated criterion with respect to an infinitesimal topological perturbation of the domain.
The reader may find the use of this concept in topology optimization in [5, 9, 21]. In the
framework of homogenized model of elastic materials, the topological derivative of the first
order homogenized elasticity tensor has been calculated in [31, 32] in the case of void and
soft inclusion, respectively, and in [12] in the case of a soft material inclusion, completed
with a numerical investigation. More recently the topological derivative of the second-order
macroscopic model associated with scalar waves in periodic media has been evaluated in
[19], making use of integral equations together with the periodic Green’s function.

In the present paper, the elasticity system in periodic media is considered. The mi-
crostructure of the underlying material is topologically perturbed by the nucleation of a
small circular inclusion endowed with different material properties from the background.
In this case, the asymptotic behaviour of the perturbed displacement solutions is computed,
allowing the evaluation of the sensitivity of the second-order homogenized elasticity tensor
with respect to topological microstructural changes. The resulting topological derivative is
given by a symmetric sixth-order tensor field over the RVE (Representative Volume Ele-
ment) domain that measures how the second-order homogenized elasticity tensor changes
when a small circular inclusion is introduced at the microscale level. This information is
crucial for the synthesis and optimal design of microsctructures having a macroscopic be-
haviour depending on the second order derivative of the average displacement. We start by
describing in Sect. 2 a homogenization scheme (see [56]), which leads to the formal def-
inition of higher-order homogenized tensors. For this we need the solutions of auxiliary
problems posed on the RVE, in the framework of periodic homogenization by asymptotic
expansions. Then we undertake in Sect. 3 a perturbation of the RVE by including a new
material characterised by a finite contrast, and contained in a small ball. After a substantial
introduction to the topological derivative concept through Sect. 3.1, we recall in Sect. 3.2
the formula of the topological asymptotic of the classical first-order homogenized tensor
derived in [12, 31, 32]. We also calculate the topological derivative associated with a simple
higher-order homogenized tensor for introducing the method. In Sect. 3.3 we finally de-
rive in details the topological derivative of the second-order homogenized tensor. The paper
ends with some concluding remarks in Sect. 4. The proofs of certain lemmas are send back
to Appendix B.
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Fig. 1 The domain D is paved with the unit cell domain �, weighted by the parameter τ

2 Homogenization

This section describes the multi-scale method to calculate the homogenized coefficients of
an elasticity problem written for a periodic media, in order to calculate their topological
sensitivities with respect to a configurational perturbation in the periodic cell. Let �,D ⊂ R2

be two domains. We denote by Dτ the periodic medium consisting of the domain T D, for
T > 0, paved with the periodic cell t�, for t > 0, where we have set τ = t/T . We define
y = x/t and Y = x/T for all x ∈ Dτ (see Fig. 1). Let the vector field uτ (x) ∈ R2 be the
displacement, solution of the elasticity system in Dτ . We assume that u can be expanded as

uτ (x) = T (u0(Y, y) + τu1(Y, y) + · · · + τnun(Y, y) + · · · ), (2.1)

where the functions ui(Y, ·) are �-periodic for i ≥ 0. Using this expansion in the equilibrium
and constitutive equations, we obtain a family of auxiliary problems, and we can write uτ

thanks to a sequence of tensor fields (H∇i (y))i�0 called corrector fields, each one of order
i + 2, and thanks to a sequence of macroscopic vector fields (Ui(Y ))i�0 assumed to be
constant on a cell. This gives

T −1uτ (x) = U 0(Y ) (2.2)

+ τ
(
U 1(Y ) + H∇1(y)∇s

Y U 0(Y )
)

+ τ 2
(
U 2(Y ) + H∇1(y)∇s

Y U 1(Y ) + H∇2(y)∇Y ∇s
Y U 0(Y )

)

+ τ 3
(
U 3(Y ) + H∇1(y)∇s

Y U 2(Y ) + H∇2(y)∇Y ∇s
Y U 1(Y ) + H∇3(y)∇2

Y ∇s
Y U 0(Y )

)

+ · · · ,
where the (i + 2)-order tensor H∇i operates for all j ≥ 0 on the (i + 1)-order tensor
∇ i−1

Y ∇s
Y Uj , denoting the resulting vector by H∇i∇ i−1

Y ∇s
Y Uj . Writing formally U(Y ) =∑∞

i=0 τ iU i(Y ), the above expansion suggests to seek approximations of uτ in the form of
truncations with respect to different order of τ of the following form

T −1uτ (x) = U(Y ) + τH∇1(y)∇s
Y U(Y ) + · · · + τ kH∇k(y)∇k−1∇s

Y U(Y ) for k ≥ 0. (2.3)

Therefore, we seek the total field uτ as the sum of a macroscopic displacement field U

and its i-th derivative weighted by τ i and a corrector field, for 1 ≤ i ≤ k. Calculating the
homogenized elastic energy induced by this truncations, we can identify the homogenized
tensors. We recall how to obtain formally the auxiliary equations and the corrector fields in
the framework of the multi-scale method (see, e.g., [23, 28]).
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2.1 Auxiliary Equations

Let us write the auxiliary problems in their strong formulations. For a load f ∈ L2(Dτ ), and
a Dirichlet data uD ∈ H 1/2(∂Dτ ), the displacement vector field uτ from (2.1) is given by the
solution of the following boundary value problem:

{ −divx(σx(u
τ )) = f in Dτ ,

uτ = uD on ∂Dτ ,
(2.4)

where the second order tensor field σx(u
τ ), called the total stress tensor, is specified through-

out the constitutive law (2.5), and it depends linearly on the total strain tensor εx(u
τ ). The

right lower index of a differential operator denotes the differentiation variable. We first deter-
mine the convention used for classical tensor calculus. Let u and v be two vectors, A and B

be two second order tensors, and T be a fourth order tensor, we write TA = TijklAkl ei ⊗ ej ,
AB = AikBkj ei ⊗ ej , A · B = AijBij , Au = Aijuj ei , and u · v = uivi , where (e1, e2) is an
orthonormal basis of R2, using the Einstein summation convention. Then we define

σx(u
τ ) :=C

t εx(u
τ ), (2.5)

εx(u
τ ) := ∇s

xu
τ := 1

2

(∇x(u
τ ) + ∇x(u

τ )	)
, (2.6)

C
t (x) :=C(x/t), (2.7)

where the elasticity tensor C = (Cijkl)1≤i,j,k,l≤2 is a fourth order tensor such that for all
indices i, j, k, l = 1,2 we have: Cijkl ∈ L∞(�), is �-periodic, Cijkl = Cj ikl = Cklij , and
there exists two real numbers 0 < a < b such that |CA| ≤ b|A| for any second order tensor
A, and CA · A ≥ a|A|2 when A is symmetric. Assuming that ∂x = T −1(∂Y + τ−1∂y), and
in view of ansatz (2.1), we can formally write εx(u

τ ) = τ−1∇s
yu

0 + ∑∞
i=0 τ iεi where εi :=

∇s
Y ui + ∇s

yu
i+1. Let us define in the same way σ i :=Cεi . Introducing expansion (2.1) of uτ

in the equilibrium equation (2.4), we obtain a sequence of equations relating to the order of
τ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇s
yu

0 = 0, (a)

divy(σ
0) = 0, (b)

divy(σ
1) + divY (σ 0) + Tf = 0, (c)

divy(σ
i+1) + divY (σ i) = 0 for i ≥ 1. (d)

(2.8)

Each of these equations is written on a unit cell �, with the �-periodicity of ui as boundary
condition. The corresponding boundary value problems, also named auxiliary problems, can
be solved by induction. The first equation (2.8a) determines u0(Y, y) = U 0(Y ).

Let us rewrite the second equation (2.8b) setting E0 := ∇s
Y U 0:

divy

(
C∇s

yu
1 +C(ei ⊗s ej )E

0
ij

) = 0, (2.9)

with

a ⊗s b := a ⊗ b + b ⊗ a

2
, (2.10)

for all vectors a, b ∈ R2. By linearity we can write

u1(Y, y) = U 1(Y ) + ũij (y)E0
ij (Y ), (2.11)
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where the vector field ũij is the solution of the �-periodic boundary value problem on the
unit cell � for the first auxiliary equation:

divy

(
C∇s

y ũij +C(ei ⊗s ej )
) = 0. (2.12)

Before solving the third auxiliary problem, let us evaluate the average on the unit cell of
equation (2.8c). We assume that f = T −1F(Y ). This gives us that:

divY (〈σ 0〉) + F = 0, (2.13)

where for all tensor fields A

〈A〉 := 1

V

∫

�

A(y)dy, (2.14)

and where V = |�| denotes the scaled area of the RVE, |�| being the Lebesgue measure
of �. We can show that 〈σ 0〉 = C

hE0, where the homogenized tensor Ch is constant. Now
let us rewrite the equation (2.8c) setting E1 := ∇s

Y U 1 and K0 := ∇Y E0, taking into account
(2.13), and defining the vector field uij (y) := (ei ⊗s ej )y + ũij (y). We find

divy

(
C∇s

yu
2
) + divy(CE1) + [divy(C(ũij ⊗s ek)) + (C∇s

yuij −C
h(ei ⊗s ej ))ek]K0

ijk = 0.

(2.15)
Once again by linearity we can write the solution u2 in the following way

u2(Y, y) = U 2(Y ) + ũij (y)E1
ij (Y ) + ˜̃uijk(y)K0

ijk(Y ), (2.16)

where the vector field ˜̃uijk is the solution of the �-periodic boundary value problem on the
unit cell � for the second auxiliary equation:

divy

(
C∇s

y
˜̃uijk

)
+ divy

(
C(ũij ⊗s ek)

) + (C∇s
yuij −C

h(ei ⊗s ej ))ek = 0. (2.17)

2.2 First-Order Truncation

We recall that Y = x/T , y = x/t and τ = t/T , with x ∈ R2. Motivated by expan-
sion (2.3), we introduce the macroscopic displacement field U(Y ) ∈ R2, and the macro-
scopic deformation is defined as E(Y ) = ∇sU(Y ). We write ũ(Y, y) = ũij (y)Eij (Y ), where
Eij (Y ) = E(Y ) · (ei ⊗s ej ). We also introduce the expansion

uτ (Y, y) = U(Y ) + τ ũ(Y, y). (2.18)

The displacement fields ũij are solutions of the following canonical set of variational prob-
lems

ũij ∈ V :
∫

�

σy(ũij ) · εy(η) +
∫

�

C(ei ⊗s ej ) · εy(η) = 0, ∀η ∈ W, (2.19)

where σy(ũij ) =Cεy(ũij ) and the spaces W and V are defined as follows

W := H 1
per (�;R2)/R, (2.20)

V := {
η ∈ H 1

per (�;R2)
∣
∣ 〈η〉 = 0

}
, (2.21)
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where H 1
per (�;R2) is the completion of the space of functions in C∞(R2,R2) which are

�-periodic, in the norm of H 1(�;R2). From these elements we have

εx(u
τ ) = 1

T

[
εY (uτ ) + 1

τ
εy(u

τ )

]
= 1

T

(
εy(uij )Eij + τ(ũij ⊗s ∇Y Eij )

)
, (2.22)

where

uij := (ei ⊗s ej )y + ũij , (2.23)

with ũij solutions to the set of canonical variational problems (2.19). Then we calculate
the average of the elastic energy 1

2σx(u
τ ) · εx(u

τ ) on the RVE domain �, denoted by Wh,
in order to identify the homogenized elasticity tensors. From now on we set T = 1 for
convenience. We find

1

2V

∫

�

σx(u
τ ) · εx(u

τ ) = 1

2V

∫

�

{
Eklσy(ukl) · εy(uij )Eij

+ τ
(
Eklσy(ukl) · (ũij ⊗s ∇Y Eij )

+ Eijσy(uij ) · (ũkl ⊗s ∇Y Ekl)
)

+ τ 2(ũij ⊗s ∇Y Eij ) ·C(ũkl ⊗s ∇Y Ekl)
}
. (2.24)

We assume that terms of odd order τ in the expression of the homogenized elastic energy
are equal to zero. This property may be proved thanks to the parity of the fields in the case
of a centrosymmetric cell (see [56]). Thus, from now on we consider that the unit cell �

is centrosymmetric. Denoting Kijk(Y ) = K(Y) · (ei ⊗ ej ⊗ ek), with K(Y) = ∇E(Y ), we
obtain

Wh = Wh(E,K) = 1

2
EijC

h
ijklEkl + τ 2 1

2
KijkD

�

ijkpqrKpqr + o(τ 2), (2.25)

which defines the two following homogenized elasticity tensors: the fourth order tensor
C

h = (Ch
ijkl)1≤i,j,k,l≤2, and the sixth-order tensor D� = (D

�

ijkpqr )1≤i,j,k,p,q,r≤2 given by

C
h
ijkl := 1

V

∫

�

σy(uij ) · εy(ukl), (2.26)

and

D
�

ijkpqr := 1

V

∫

�

C(ũij ⊗s ek) · (ũpq ⊗s er ). (2.27)

2.3 Second-Order Truncation

We introduce the expansion

uτ (Y, y) = U(Y ) + τ ũ(Y, y) + τ 2 ˜̃u(Y, y), (2.28)

where ˜̃u(Y, y) = ˜̃uijk(y)Kijk(Y ), with Kijk(Y ) = K(Y) · (ei ⊗ ej ⊗ ek) and K(Y) = ∇E(Y ).
The displacement fields ˜̃uijk are solutions of the following canonical set of variational prob-
lems
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˜̃uijk ∈ V :
∫

�

σy( ˜̃uijk) · εy(η) +
∫

�

C(ũij ⊗s ek) · εy(η) =
∫

�

(σy(uij ) −C
h(ei ⊗s ej ))ek · η, ∀η ∈ W. (2.29)

Let us calculate the strain tensor of uτ :

εx(u
τ ) = εy(uij )Eij + τ(ũij ⊗s ek + εy( ˜̃uijk))Kijk + τ 2( ˜̃uijk ⊗s el )∂yl

Kijk. (2.30)

Same as before, we need to calculate 1
2σx(u

τ ) · εx(u
τ ) in order to evaluate the average of

the elastic energy on the cell and then identify the macroscopic energy law. Since the unit
cell is assumed to be centrosymmetric, it turns out that the odd order terms in τ are null,
and performing a formal macroscopic integration by parts in order to turn the coupled terms
Eij ∂yk

Kpqr into KijkKpqr (see [56]), we calculate

Wh = 1

2
EijC

h
ijklEkl + τ 2 1

2
KijkDijkpqrKpqr + o(τ 2), (2.31)

where D= (Dijkpqr )1≤i,j,k,p,q,r≤2 is the homogenized sixth-order tensor given by

Dijkpqr := 1

V

∫

�

C(ũij ⊗s ek + εy( ˜̃uijk)) · (ũpq ⊗s er + εy( ˜̃upqr))

− 1

V

∫

�

(
σy(uij ) · ( ˜̃upqr ⊗s ek) + σy(upq) · ( ˜̃uijk ⊗s er )

)
. (2.32)

By setting η = ˜̃upqr as test function in (2.29), we obtain the following equality

∫

�

σy( ˜̃uijk) · εy( ˜̃upqr) +
∫

�

C(ũij ⊗s ek) · εy( ˜̃upqr) =
∫

�

(σy(uij ) −C
h(ei ⊗s ej ))ek · ˜̃upqr ,

(2.33)
which allows to write (2.32) as

Dijkpqr = 1

V

∫

�

C(ũij ⊗s ek + εy( ˜̃uijk)) · (ũpq ⊗s er )

− 1

V

∫

�

(
C

h(ei ⊗s ej ) · ( ˜̃upqr ⊗s ek) + σy(upq) · ( ˜̃uijk ⊗s er )
)

, (2.34)

since σy(uij )ek · ˜̃upqr = σy(uij ) · ( ˜̃upqr ⊗s ek). So far, we have defined the homogenized
tensors Ch, D� and D. In the following section, we slightly change the RVE, write the new
tensors deriving from the perturbed RVE, and explore their behaviour regarding the size of
such a perturbation.

3 Topological Sensitivity

The topological optimization framework is as follows. The original domain � is composed
of two phases of isotropic materials, the first one represented by the domain �1, and the
second represented by �γ , such that � = �1 ∪�γ ∪
γ , where 
γ = ∂�γ ∩� with ∂� and
∂�γ being Lipschitz continuous. These two phases result in a piecewise constant elasticity
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Fig. 2 Introduction of an inclusion centered at ŷ into the domain �. The resulting domain is denoted by �ρ,ŷ

tensor denoted by C, which is defined as follows. Let C0 = 2μI+λI⊗ I, where the so-called
Lamé coefficients μ,λ ∈ R are chosen such that C0 satisfies the conditions from Sect. 2.1,
and with I and I used to denote the second and the fourth order identity tensors, respectively.
Thus C(y) = C0 if y ∈ �1, and C(y) = γ0C0 if y ∈ �γ , with 0 < γ0 < ∞.

We consider the nucleation of a finite number of small disjoint circular inclusions within
the unit cell �. The inclusions are spatially distributed far from each other and in such a way
that the centrosymmetry of the RVE is preserved, which allows for focusing the attention
over a single inclusion. From there, � is subjected to a perturbation confined in a small
circular open set Bρ(ŷ) of radius ρ and center at an arbitrary point ŷ of �, such that Bρ(ŷ) ⊂
�, and which does not touch the interface 
γ (see Fig. 2). Then, the region occupied by
Bρ(ŷ) is filled by an inclusion with different material property from the background. The
material properties of the perturbed domain are characterized by the piecewise constant
function γρ of the form

γρ(x) :=
{

1 ifx ∈ � \ Bρ ,

γ (x) ifx ∈ Bρ ,
where γ (x) :=

{
γ0 ifx ∈ �1 ,

γ −1
0 ifx ∈ �γ .

(3.1)

Namely the elasticity tensor is given by γρC in the perturbed domain. Henceforth we leave
the lower indices of differential operators behind, because we only deal with y-variable
depending fields. Therefore, the topologically perturbed counterparts of problems (2.19)
and (2.29) are respectively given by

ũ
ρ

ij ∈ V :
∫

�

γρσ (ũ
ρ

ij ) · ε(η) +
∫

�

γρC(ei ⊗s ej ) · ε(η) = 0, ∀η ∈ W, (3.2)

and

˜̃uρ

ijk ∈ V :
∫

�

γρσ ( ˜̃uρ

ijk) · ε(η) +
∫

�

γρC(ũ
ρ

ij ⊗s ek) · ε(η) =
∫

�

(γρσ (u
ρ

ij ) −C
h
ρ(ei ⊗s ej ))ek · η ∀η ∈ W. (3.3)

Due to Korn’s inequality, the existence and uniqueness of solutions of problems (2.19),
(2.29), (3.2) and (3.3) are ensured on W endowed with the norm ‖ · ‖W , which is defined as
follows

‖η‖W :=
(∫

�

σ(η) · ε(η)

) 1
2

, ∀η ∈ W. (3.4)
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Actually, in view of the properties introduced in Sect. 2.1 and satisfied by the elasticity tensor
C, the bilinear form of these problems is symmetric, continuous and coercive. We finally fix
for each problem a solution belonging to H 1

per (�;R2) by choosing the representative which

satisfies 〈·〉 = 0 for problems (2.19), (2.29) and (3.2), (3.3), so that ũij and ˜̃uijk , as well as
ũ

ρ

ij and ˜̃uρ

ijk belong to V .

Remark 1 According to Lax-Milgram theorem, the existence and uniqueness of solutions
of variational problems on (W,‖·‖W) with a symmetric, continuous and coercive bilinear
form, are ensured as long as the continuous linear form belongs to the dual space of W ,
which can be identified with the subspace of the dual space (H 1

per (�;R2))′ whose the el-
ements F ∈ (H 1

per (�;R2))′ are such that F(c) = 0 for all c ∈ R. All these conditions are
satisfied for the problems (2.19), (2.29), (3.2), and (3.3).

As we did in Sect. 2, we can consequently define the topologically perturbed counterparts
of the homogenized tensors, denoted as Cρ , D�

ρ and Dρ . By setting u
ρ

ij := (ei ⊗s ej )y + ũ
ρ

ij ,
this gives

(Ch
ρ)ijkl = 1

V

∫

�

γρσ (u
ρ

ij ) · ε(uρ

kl), (3.5)

(D�
ρ)ijkpqr = 1

V

∫

�

γρC(ũ
ρ

ij ⊗s ek) · (ũρ
pq ⊗s er ), (3.6)

(Dρ)ijkpqr = 1

V

∫

�

γρC(ũ
ρ

ij ⊗s ek + ε( ˜̃uρ

ijk)) · (ũρ
pq ⊗s er )

− 1

V

∫

�

(Ch
ρ(ei ⊗s ej ) · ( ˜̃uρ

pqr ⊗s ek) + γρσ (uρ
pq) · ( ˜̃uρ

ijk ⊗s er )). (3.7)

3.1 The Topological Derivative Method

We are interested in the behaviour of the homogenized tensors with respect to the size of the
topological perturbation. For this purpose, we will use the concept of topological derivative.
It has been rigorously introduced in [57] in the context of heat conduction and elasticity
problems. Developments of the theory have been led the past two decades in among others
[8, 11, 13, 27, 29, 40, 43, 47, 49, 50, 58, 59]. Furthermore, the topological derivative was
applied in many fields, such as topology optimization [9, 10, 51], inverse problems [22, 33,
38, 39, 44], and image processing [14, 16, 37].

Let �ρ,ŷ be used to represent the topologically perturbed counterpart of �. In the par-
ticular case of a perforation, for instance, �ρ,ŷ = � \ Bρ(ŷ). For a given shape functional
�ρ,ŷ �→ ψ(�ρ,ŷ) we are looking for the topological asymptotic expansion

ψ(�ρ,ŷ) = ψ(�) + f (ρ)DT ψ(ŷ) + o(f (ρ)), (3.8)

where f (ρ) → 0 and o(f (ρ))/f (ρ) → 0 with ρ → 0. The function ŷ �→ DT ψ(ŷ) is called
the topological derivative of ψ . The sign of the topological derivative indicates whether it is
interesting or not regarding the considered criterion ψ to add a small inclusion of material
at the point ŷ. To this end, we will calculate the topological derivative of the homogenized
tensors in the next section. Before proceeding, let us introduce a truncated domain of the
form

�R := � \ BR(ŷ). (3.9)
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We fix R and consider small positive parameter ρ → 0 with R > ρ > 0, and such that
BR(ŷ) is included in �. Note that BR(ŷ) contains the inclusion Bρ(ŷ). The existence of
the topological derivatives for the components of homogenized tensors is ensured by the
following two lemmas. The proofs of these results are relegated to Appendix B.

Lemma 2 Let ũij and ũ
ρ

ij be the solutions of original (2.19) and perturbed (3.2) problems,
respectively. Then, the following estimates hold true

‖ũρ

ij − ũij‖H 1(�;R2) = O(ρ), (3.10)

‖ũρ

ij − ũij‖L2(�;R2) = o(ρ), (3.11)

‖ũρ

ij − ũij‖H 1(�R ;R2) = O(ρ2). (3.12)

Lemma 3 Let ˜̃uijk and ˜̃uρ

ijk be the solutions of the original (2.29) and perturbed (3.3) prob-
lems respectively. Then the following estimates hold true

‖ ˜̃uρ

ijk − ˜̃uijk‖H 1(�;R2) = O(ρ), (3.13)

‖ ˜̃uρ

ijk − ˜̃uijk‖L2(�;R2) = o(ρ), (3.14)

‖ ˜̃uρ

ijk − ˜̃uijk‖H 1(�R ;R2) = o(ρ). (3.15)

3.2 First-Order Truncation

First, let us consider the expansion of the homogenized tensors Ch and D
�. To this end, we

exclusively need the estimates from Lemma 2. The calculations of the topological derivative
of Ch is well-known, and from [12, 31] we have the following result.

Theorem 4 The topological asymptotic expansion of the homogenized elasticity tensor C
h

is given by

(Ch
ρ −C

h)ijkl = πρ2

V
Pσ(uij )(ŷ) · ε(ukl)(ŷ) + o(ρ2), (3.16)

which, setting f (ρ) = πρ2/V , allows for identifying the topological derivative of any com-
ponent of Ch, namely

(DT C
h)ijkl = Pσ(uij ) · ε(ukl), (3.17)

where uij is given by (2.23) and the polarization tensor is defined as

P = − 1 − γ

1 + γβ

(
(1 + β)I+ 1

2
(α − β)

1 − γ

1 + γα
I ⊗ I

)
, (3.18)

with the parameters α and β given by

α = λ + μ

μ
and β = λ + 3μ

λ + μ
. (3.19)
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We are more interested in the topological derivative of D, but the computations performed
for D� are helpful to understand the method applied afterwards. Because the original and
perturbed fields ũij and ũ

ρ

ij are living in the same functional space V , we can perform a
direct calculation. Thus the topological asymptotic expansion of the tensor D

� given by
(2.27) is obtained from its definition as follows

(D�
ρ −D

�)ijkpqr = 1

V

∫

�

γρC(ũ
ρ

ij ⊗s ek) · (ũρ
pq ⊗s er ) − 1

V

∫

�

C(ũij ⊗s ek) · (ũpq ⊗s er )

= 1

V

∫

�

C((ũ
ρ

ij − ũij ) ⊗s ek) · (ũpq ⊗s er )

+C(ũij ⊗s ek) · ((ũρ
pq − ũpq) ⊗s er )

− 1 − γ

V

∫

Bρ

C(ũ
ρ

ij ⊗s ek) · (ũρ
pq ⊗s er ) + E1(ρ), (3.20)

where the remainder E1(ρ) is given by

E1(ρ) = 1

V

∫

�

C((ũ
ρ

ij − ũij ) ⊗s ek) · ((ũρ
pq − ũpq) ⊗s er ), (3.21)

and can be bounded as follows

|E1(ρ)| ≤ C‖ũρ

ij − ũij‖L2(�;R2)‖ũρ
pq − ũpq‖L2(�;R2) = o(ρ2), (3.22)

where we have used Lemma 2. Still evoking Lemma 2, we notice that the last integral on the
right-hand side of expression (3.20) gives rise to a ρ2 order term in the asymptotic expansion
of D�

ρ . But we can not use the same arguments to analyse the first integral (second line) on
the right-hand side of (3.20). To overcome this difficult, we make use of the classical adjoint
method by introducing suitable adjoint sates vkr

ij ∈ V for i, j, k, r ∈ {1,2}, solution of the
following set of variational problems:

vkr
ij ∈ V :

∫

�

σ(vkr
ij ) · ε(η) =

∫

�

C(ũij ⊗s ek) · (η ⊗s er )

−
∫

�

〈C(ũij ⊗s ek)〉 · (η ⊗s er ), ∀η ∈ W. (3.23)

From these elements, we can state the main result of this section, where the details of the
calculations can be found in the Appendix A.1.

Theorem 5 The topological asymptotic expansion of tensor D� is given by

(D�
ρ −D

�)ijkpqr = − πρ2

V
Pσ(uij )(ŷ) · ε(vrk

pq)(ŷ) − πρ2

V
Pσ(upq)(ŷ) · ε(vkr

ij )(ŷ)

− πρ2

V
(1 − γ )C(ŷ)(ũij (ŷ) ⊗s ek) · (ũpq(ŷ) ⊗s er ) + o(ρ2), (3.24)

where P is the polarization tensor defined in (3.18). By setting f (ρ) = πρ2/V , the topolog-
ical derivative of any component of tensor D� can be identified, namely

(DT D
�)ijkpqr = −Pσ(uij ) · ε(vrk

pq) − Pσ(upq) · ε(vkr
ij ) − (1 − γ )C(ũij ⊗s ek) · (ũpq ⊗s er ).

(3.25)
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Finally, uij is given by (2.23), ũij are solutions to the set of canonical variational problems
(2.19) and the adjoint states vkr

ij are solutions to (3.23).

3.3 Second-Order Truncation

Now we want to investigate the topological sensitivity of the tensor D involved in the macro-
scopic elastic energy calculated for the second order truncation (2.31). As we did for D�,
we perform a direct calculation described in Appendix A.2. By taking into account that
〈 ˜̃upqr〉 = 0 and 〈 ˜̃uρ

pqr〉 = 0, we have

(Dρ −D)ijkpqr = 1

V

∫

�

(
C(δũ

ρ

ij ⊗s ek) + σ(δ ˜̃uρ

ijk)
)

· (ũpq ⊗s er ) −
∫

�

σ(δuρ
pq) · ( ˜̃uijk ⊗s er )

+ 1

V

∫

�

(
C(ũij ⊗s ek) + σ( ˜̃uijk)

)
· (δũρ

pq ⊗s er ) −
∫

�

σ(upq) · (δ ˜̃uρ

ijk ⊗s er )

− 1 − γ

V

∫

Bρ

(
C(ũ

ρ

ij ⊗s ek) + σ( ˜̃uρ

ijk)
)

· (ũρ
pq ⊗s er )

+ 1 − γ

V

∫

Bρ

σ (uρ
pq) · ( ˜̃uρ

ijk ⊗s er ) + E1(ρ), (3.26)

where the notation δ(·)ρ = (·)ρ − (·) has been introduced. The remainder E1(ρ) is defined as

E1(ρ) = 1

V

∫

�

(σ(δ ˜̃uρ

ijk) +C(δũ
ρ

ij ⊗s ek)) · (δũρ
pq ⊗s er ) − 1

V

∫

�

σ(δũρ
pq) · (δ ˜̃uρ

ijk ⊗s er ),

(3.27)

since u
ρ

ij := (ei ⊗s ej )y + ũ
ρ

ij , so that δu
ρ

ij = δũ
ρ

ij . From Lemmas 2 and 3, the following
estimate for the remainder E1(ρ) given by (3.27) holds true

|E1(ρ)| = o(ρ2). (3.28)

By taking into account once again Lemmas 2 and 3, we note that the last two integrals in
the expansion (3.26) are of order ρ2. However, in order to analyse the first fourth integrals
in (3.26), the introduction of convenient adjoint states pr

ijk ∈ V for i, j, k, r ∈ {1,2} are
required, which are solutions of the following set of variational problems:

pk
pqr ∈ V :

∫

�

σ(pk
pqr ) · ε(η) =

∫

�

(
σ( ˜̃upqr) +C(ũpq ⊗s er )

)
· (η ⊗s ek)

−
∫

�

C( ˜̃upqr ⊗s ek) · ε(η)

−
∫

�

〈
σ( ˜̃upqr) +C(ũpq ⊗s er )

〉
· (η ⊗s ek), ∀η ∈ W.

(3.29)

Finally, from these elements we can state the main result of the article, where the details of
the calculations can be found in the Appendix A.2.
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Theorem 6 The topological asymptotic expansion of the tensor D is given by

(Dρ −D)ijkpqr = −πρ2

V
Pσ(uij )(ŷ) · (ε(pk

pqr )(ŷ) + ( ˜̃upqr(ŷ) ⊗s ek))

− πρ2

V
Pσ(upq)(ŷ) · (ε(pr

ijk)(ŷ) + ( ˜̃uijk(ŷ) ⊗s er ))

+ πρ2

V
P

(
σ( ˜̃uijk)(ŷ) +C(ũij (ŷ) ⊗s ek)

)
·
(
ε( ˜̃upqr)(ŷ) + (ũpq(ŷ) ⊗s er )

)

+ o(ρ2), (3.30)

where P is the polarization tensor defined in (3.18). By setting f (ρ) = πρ2/V , we can
identify the topological derivative of any component of tensor D, namely

(DT D)ijkpqr = −Pσ(uij ) · (ε(pk
pqr ) + ( ˜̃upqr ⊗s ek)) − Pσ(upq) · (ε(pr

ijk) + ( ˜̃uijk ⊗s er ))

+ P

(
σ( ˜̃uijk) +C(ũij ⊗s ek)

)
·
(
ε( ˜̃upqr) + (ũpq ⊗s er )

)
, (3.31)

where uij is given by (2.23), ũij are solutions to the set of canonical variational problems

(2.19), ˜̃uijk are solutions to the set of canonical coupled variational problems (2.29) and the
adjoint states pr

ijk are solutions to (3.29).

Remark 7 In the particular case of the weak phase material which simulates a void contained
in a ball Bρ of radius ρ centered at ŷ, with the infinitely small contrast 0 < γ0 � 1, the
definitions of the macroscopic and cell boundary value problems should be changed. In
such a case the loads are applied on the stiff phase only. For this purpose the characteristic
function χ of the solid domain is introduced. The topologically perturbed counterpart of this
characteristic function is written χρ = χ − χBρ , χBρ being the characteristic function of the
ball Bρ . Let ρ0 > 0, we define for 0 ≤ ρ ≤ ρ0

ϕρ(y) := V
∫

�
χρ

χρ(y) and 〈η〉ϕρ := 1

V

∫

�

ϕρη. (3.32)

For the macroscopic problem, we assume that f = T −1ϕρ0(y)F (Y ). We select the periodic
solutions of cell problems with null averages on the solid phase. Therefore, the first auxiliary
problem remains unchanged, and the second auxiliary problem becomes

˜̃uρ

ijk ∈ Vγρ :
∫

�

γρσ ( ˜̃uρ

ijk) · ε(η) +
∫

�

γρC(ũ
ρ

ij ⊗s ek) · ε(η) =
∫

�

(γρσ (u
ρ

ij ) − ϕρ
C

h
ρ(ei ⊗s ej ))ek · η, ∀η ∈ W, (3.33)

where

Vγρ := {
η ∈ H 1

per (�;R2)
∣∣ 〈η〉ϕρ = 0

}
. (3.34)

We can calculate the topological derivative of D in the same way as before, using Lemmas
2 and 3 which are still valid. The normalized characteristic function is introduced into the
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adjoint boundary value problem. The expression of topological derivative of D contains
some new terms,

(DT D)ijkpqr = −Pσ(uij ) · (ε(pk
pqr ) + ( ˜̃upqr ⊗s ek)) − Pσ(upq) · (ε(pr

ijk) + ( ˜̃uijk ⊗s er ))

+ P

(
σ( ˜̃uijk) +C(ũij ⊗s ek)

)
·
(
ε( ˜̃upqr) + (ũpq ⊗s er )

)

+ V
∫

�
χ

[
(ũij ⊗s ek) · 〈σ( ˜̃upqr) +C(ũpq ⊗s er )〉 − ( ˜̃uijk ⊗s er ) ·Ch(ep ⊗s eq)

]

+ V
∫

�
χ

[
(ũpq ⊗s er ) · 〈σ( ˜̃uijk) +C(ũij ⊗s ek)〉 − ( ˜̃upqr ⊗s ek) ·Ch(ei ⊗s ej )

]
.

(3.35)

Note that the non-uniform contribution of Ch in equation (3.33) results in corrections to the
topological derivative.

Remark 8 We cover as well the case of three spatial dimensions which is important for appli-
cations. In particular, the method of asymptotic analysis performed in R2 can be extended
to R3. In three spatial dimensions, the topological expansion of homogenized tensors is
obtained by setting f (ρ) = (4/3)πρ3/V and replacing the polarization tensor by [7]

P = −3βI− (α − β)I ⊗ I, (3.36)

with the coefficients α and β redefined as follows

α = (1 − ν)(1 − γ )

3(1 − ν) − (1 + ν)(1 − γ )
and β = 5(1 − ν)(1 − γ )

15(1 − ν) − 2(4 − 5ν)(1 − γ )
, (3.37)

where E is the Young modulus and ν the Poisson ratio.

Finally, it is important to note that formula (3.31) can be used to evaluate the topological
derivative of any differentiable function of D through the direct application of the conven-
tional calculus rules for composed functions. That is, any such function D �→ �(D) admits
the topological derivative of the form

DT �(D) = 〈D�(D),DT D〉 , (3.38)

with the brackets 〈·, ·〉 denoting the appropriate product between the derivative of � with
respect to D and the topological derivative DT D of D. In order to fix these ideas, let us
consider a pair �1,�2 ∈R2 ×R2 ×R2 of third order tensors. Then we obtain the following
results, which can be used in numerical methods of synthesis and/or topology design of
microstructures analogously to [12]:

Example 9 We consider a function �(D) of the form

�(D) :=D�1 · �2 . (3.39)

Therefore, according to (3.38), its topological derivative is given by

DT �(D) = (DT D)�1 · �2 . (3.40)
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If we set �1 = ei ⊗ ej ⊗ ek and �2 = el ⊗ em ⊗ en, for instance, we get �(D) = (D)ijklmn

and its topological derivative is given by DT �(D) = (DT D)ijklmn. It means that DT �(D)

actually represents the topological derivative of the components (D)ijklmn of the tensor D.

Remark 10 In [24] a pantographic material is investigated, leading to the first order homog-
enized tensor Ch which is not invertible. In such a case, the addition of the strain-gradient
terms K = ∇E in the macroscopic model is needed to predict more accurately the behaviour
of the material. It turns out that an useful information arises from the projection of D onto
the kernel of Ch. This fact points strongly to the suitability of the use of (3.31) in a topol-
ogy design algorithm for the synthesis and optimization of elastic microstructures based on
minimization/maximization of cost functions defined in terms of homogenized properties.

4 Conclusion

In this paper, the topological derivative of the second order homogenized elasticity tensor
with respect to the nucleation of circular inclusions at the microscopic level has been pre-
sented in the framework of periodic Sobolev spaces. The sensitivity has been derived in its
closed form with the help of appropriate adjoint states. The limiting case associated with the
nucleation of a very weak inclusion has also been considered. As expected, the associated
topological derivative leads to a sixth order tensor field over the microstructural domain,
measuring the sensitivity of the second order homogenized elasticity tensor to topological
microstructural changes. Therefore, this information can be used in the context of synthesis
and optimal design of metamaterials, for instance, accounting for second order mechanical
effects.

Appendix A: Calculation of the Topological Derivatives

A.1 Proof of Theorem 5

First we rewrite below the topological asymptotic expansion (3.20)

(D�
ρ −D

�)ijkpqr = 1

V

∫

�

C((ũ
ρ

ij − ũij ) ⊗s ek) · (ũpq ⊗s er )

+C(ũij ⊗s ek) · ((ũρ
pq − ũpq) ⊗s er )

− 1 − γ

V

∫

Bρ

C(ũ
ρ

ij ⊗s ek) · (ũρ
pq ⊗s er ) + o(ρ2). (A.1)

In order to simplify the second term on the right-hand side of (A.1), we evoke the adjoint
method. We start by subtracting (2.19) from (3.2), to obtain

∫

�

σ(ũρ
pq − ũpq) · ε(η) = (1 − γ )

∫

Bρ

σ (uρ
pq) · ε(η), (A.2)

where uρ
pq := (ep ⊗s eq)y + ũρ

pq . By setting η = ũρ
pq − ũpq as test function in the adjoint

problem (3.23) for vkr
ij , and noting that 〈ũρ

pq − ũpq〉 = 0, we obtain

∫

�

σ(vkr
ij ) · ε(ũρ

pq − ũpq) =
∫

�

C(ũij ⊗s ek) · ((ũρ
pq − ũpq) ⊗s er ). (A.3)
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After taking η = vkr
ij as test function in (A.2), we have

∫

�

σ(ũρ
pq − ũpq) · ε(vkr

ij ) = (1 − γ )

∫

Bρ

σ (uρ
pq) · ε(vkr

ij ). (A.4)

From the symmetry of the bilinear forms we conclude that

∫

�

C(ũij ⊗s ek) · ((ũρ
pq − ũpq) ⊗s er ) = (1 − γ )

∫

Bρ

σ (uρ
pq) · ε(vkr

ij ). (A.5)

Similarly we have, after replacing the indexes pq by ij in (A.2) and (3.23), that

∫

�

C((ũ
ρ

ij − ũij ) ⊗s ek) · (ũpq ⊗s er ) = (1 − γ )

∫

Bρ

σ (u
ρ

ij ) · ε(vrk
pq). (A.6)

These results lead to

(D�
ρ −D

�)ijkpqr = 1 − γ

V

∫

Bρ

σ (u
ρ

ij ) · ε(vrk
pq) + 1 − γ

V

∫

Bρ

σ (uρ
pq) · ε(vkr

ij )

− 1 − γ

V

∫

Bρ

C(ũ
ρ

ij ⊗s ek) · (ũρ
pq ⊗s er ) + E1(ρ). (A.7)

Since we assume that the inclusion Bρ is located neither on the interface nor on the boundary,
the solutions of elliptic boundary value problems are smooth in Bρ by the elliptic regularity.
Finally, from Lemma 2, and by taking into account the Lebesgue differentiation theorem
combined with the Eshelby theorem [25, 26], we can write the topological derivative with
the use of the polarization tensor P (see, e.g., [12, 31]), and we deduce Theorem 5.

A.2 Proof of Theorem 6

The topological asymptotic expansion of the tensor D given by (2.32) or alternatively by
(2.34) is obtained as follows. We start by rewriting expansion (3.26), namely

(Dρ −D)ijkpqr = 1

V

∫

�

(
C(δũ

ρ

ij ⊗s ek) + σ(δ ˜̃uρ

ijk)
)

· (ũpq ⊗s er ) −
∫

�

σ(δuρ
pq) · ( ˜̃uijk ⊗s er )

+ 1

V

∫

�

(
C(ũij ⊗s ek) + σ( ˜̃uijk)

)
· (δũρ

pq ⊗s er ) −
∫

�

σ(upq) · (δ ˜̃uρ

ijk ⊗s er )

− 1 − γ

V

∫

Bρ

(
C(ũ

ρ

ij ⊗s ek) + σ( ˜̃uρ

ijk)
)

· (ũρ
pq ⊗s er )

+ 1 − γ

V

∫

Bρ

σ (uρ
pq) · ( ˜̃uρ

ijk ⊗s er ) + o(ρ2), (A.8)

where the notation δ(·)ρ = (·)ρ − (·) has been introduced. After subtracting (2.29) from
(3.3), we obtain ∀η ∈ W
∫

�

σ(δ ˜̃uρ

ijk) · ε(η) =
∫

�

(σ(δũ
ρ

ij ) − (Ch
ρ −C

h)(ei ⊗s ej ))ek · η −
∫

�

C(δũ
ρ

ij ⊗s ek) · ε(η)
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+ (1 − γ )

∫

Bρ

(σ ( ˜̃uρ

ijk) +C(ũ
ρ

ij ⊗s ek)) · ε(η) − (1 − γ )

∫

Bρ

σ (u
ρ

ij )ek · η.

(A.9)

We set η = ˜̃upqr in (A.9) and η = δ ˜̃uρ

ijk in (2.29), the equation for ˜̃upqr , leading to simplifi-

cation of the terms depending on δ ˜̃uρ

ijk in (A.8). Reordering the members of the equation in
order to gather the terms of the type δũ

ρ

ij and δũρ
pq , we find

V (Dρ −D)ijkpqr =
∫

�

(
C(δũ

ρ

ij ⊗s ek)
) ·

(
(ũpq ⊗s er ) + ε( ˜̃upqr)

)
−

∫

�

σ(δũ
ρ

ij ) · ( ˜̃upqr ⊗s ek)

+
∫

�

(
C(ũij ⊗s ek) + σ( ˜̃uijk)

)
· (δũρ

pq ⊗s er ) −
∫

�

σ(δuρ
pq) · ( ˜̃uijk ⊗s er )

+ (1 − γ )

∫

Bρ

σ (u
ρ

ij ) · ( ˜̃upqr ⊗s ek) + (1 − γ )

∫

Bρ

σ (uρ
pq) · ( ˜̃uρ

ijk ⊗s er )

− (1 − γ )

∫

Bρ

(
σ( ˜̃uρ

ijk) +C(ũ
ρ

ij ⊗s ek)
) ·

(
ε( ˜̃upqr) + (ũρ

pq ⊗s er )
)

+ E1(ρ).

(A.10)

Let us set η = δũ
ρ

ij and η = δũρ
pq in the adjoint equation (3.29) for pk

pqr and pr
ijk , respec-

tively. Now, we set in (A.2) η = pr
ijk , and η = pk

pqr after replacing the indexes ij by pq .
After comparing the obtained results, we can conclude that

(Dρ −D)ijkpqr = 1 − γ

V

∫

Bρ

σ (u
ρ

ij ) · (ε(pk
pqr ) + ( ˜̃upqr ⊗s ek))

+ 1 − γ

V

∫

Bρ

σ (uρ
pq) · (ε(pr

ijk) + ( ˜̃uijk ⊗s er ))

− 1 − γ

V

∫

Bρ

(
σ( ˜̃uρ

ijk) +C(ũij ⊗s ek)
)

·
(
ε( ˜̃upqr) + (ũpq ⊗s er )

)
+ o(ρ2).

(A.11)

We recall that the inclusion Bρ is located neither on the interface nor on the boundary, so that
the solutions of elliptic boundary value problems are smooth in Bρ by the elliptic regularity.
Finally, from Lemmas 2 and 3, and by taking into account the Lebesgue differentiation the-
orem combined with the Eshelby theorem [25, 26], we can write the topological derivative
with the use of the polarization tensor P (see, e.g., [12, 31]), and we deduce Theorem 6.

Appendix B: Proofs of Lemmas 2 and 3

For the convenience of the reader we provide the proofs of auxiliary Lemmas which are
used to evaluate of the topological derivatives of homogenized tensors.

B.3 Preliminary Lemmas

We write in this subsection two useful statements for the proof of Lemmas 2 and 3. We
consider � an open subset of R2, and ŷ a fixed arbitrary point of �. We denote by Bρ be the
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small disk of radius ρ, centered at ŷ, and take ρ0 > 0, such that Bρ ⊂ � for all 0 < ρ � ρ0.
We have the following results.

Lemma 11 Let η ∈ H 1(�), ŷ ∈ �. Then for all 0 < δ ≤ 1 there exists a constant c(δ) > 0
depending on δ and �, such that for all 0 < ρ ≤ ρ0

∣∣
∣∣
∣

∫

Bρ

η(x)dx

∣∣
∣∣
∣
� c(δ)ρ

2−δ‖η‖H 1(�). (B.1)

Proof This result derives directly from the Sobolev Embedding Theorem, giving that H 1(�)

embeds continuously into Lp(�) for all 2 ≤ p < +∞, and with the use of Hölder inequality
for η ∈ Lp(Bρ), 1 ∈ Lq(Bρ), with q−1 = 1 − p−1 ∈ [1/2,1), setting δ := 2(q − 1)/q . �

Lemma 12 Let η ∈ H 1(�;R2). Then we have for all δ > 0 a constant c(δ) > 0 depending on
δ and � such that for all 0 < ρ ≤ ρ0

‖η‖L2(∂Bρ ;R2) ≤ c(δ)ρ
1/2−δ‖η‖H 1(�;R2). (B.2)

Proof For simplicity we set ρ0 = 1. Let 0 < ρ ≤ 1 and η ∈ H 1(�;R2). We introduce φρ :
B1 → Bρ the diffeomorphism defined by φρ(x) = ρx for all x ∈ B1. The restriction φρ :
∂B1 → ∂Bρ is also a diffeomorphism, allowing us the following change of variable

∫

∂Bρ

| η |2 d
ρ =
∫

∂B1

| η ◦ φρ |2 ρ d
1,

= ρ‖η ◦ φρ‖2
L2(∂B1;R2)

,

≤ c2
(1)ρ‖η ◦ φρ‖2

H 1(B1;R2)
, (B.3)

where c(1) > 0 is the fixed constant given by the Trace theorem applied on H 1(B1;R2).
Once again, a change of variable yields

‖η ◦ φρ‖2
L2(B1;R2)

= 1

ρ2
‖η‖2

L2(Bρ ;R2)
, (B.4)

and

‖∇(η ◦ φρ)‖2
L2(B1;R2)

=
∫

B1

| ∇(η ◦ φρ) |2 dx =
∫

B1

ρ2 | ∇(η) ◦ φρ |2 dx = ‖∇η‖2
L2(Bρ ;R2)

.

Then we have

‖η‖2
L2(∂Bρ ;R2)

≤ c2
(1)

(
ρ−1‖η‖2

L2(Bρ ;R2)
+ ρ‖∇η‖2

L2(�;R2)

)
. (B.5)

The Sobolev Embedding Theorem gives H 1(�;R2) ↪→ Lp(�;R2) continuously, for all
2 ≤ p < +∞. Then from Hölder inequality with q−1 = 1 − (p/2)−1, q ∈ (1,+∞] we have

∫

Bρ

| η |2 dx ≤ ‖ |η|2‖Lp/2(Bρ ;R2)‖1‖Lq(Bρ ;R2),

≤ ‖η‖2
Lp(Bρ ;R2)

‖1‖Lq(Bρ ;R2),
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≤ K2‖η‖2
Lp(�;R2)

ρ2/q,

≤ K2c(p)ρ
2/q‖η‖2

H 1(�;R2)
, (B.6)

where c(p) is the constant depending on p and � given by the Sobolev Embedding Theorem.
Thus we can carry on the derivation of inequality (B.5)

‖η‖2
L2(∂Bρ ;R2)

≤ c2
(1)(K2c(p)ρ

2/q−1 + ρ)‖η‖2
H 1(�;R2)

,

≤ c(δ)ρ
1−δ‖η‖2

H 1(�;R2)
, (B.7)

for δ > 0 as small as we want when q goes to 1. We finally conclude taking the square root
of the last inequality. �

We end this preliminary section presenting convenient notation used to name the norms
and seminorms of the needed functional spaces. For an open set � ⊂ R2, bounded, con-
nected and with Lipschitz continuous boundary, H 1(�,R2) is endowed with a norm equiv-
alent to the usual one, due to Korn’s inequality [48], defined by

‖η‖2
1,� :=

∫

�

(σ(u) · ε(u) + u · u), (B.8)

and we also define in H 1(�,R2) the seminorm

|η|21,� :=
∫

�

σ(u) · ε(u). (B.9)

We finally denote the usual norms of L2(�,R2), H 1/2(∂�,R2) and H−1/2(∂�,R2), re-
spectively by ‖η‖0,�, ‖η‖1/2,∂�, and ‖η‖−1/2,∂�.

B.4 Lemma 2

Proof of Lemma 2 Let us introduce an ansatz of the form [41]

ũ
ρ

ij (y) = ũij (y) + w
ρ

ij (y) + z
ρ

ij (y), (B.10)

where w
ρ

ij is solution to the following exterior problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(γρσ (w
ρ

ij )) = 0 in R
2,

w
ρ

ij → 0 at ∞,

�w
ρ

ij � = 0 on ∂Bρ,

�γρσ (w
ρ

ij )�n = h on ∂Bρ,

(B.11)

where h = −(1 − γ )σ (uij )(ŷ)n, n being the inward normal vector on ∂Bρ , and �·� denotes
the jump across the interface of the inclusion:

�·� = (·)�\Bρ
− (·)Bρ on ∂Bρ. (B.12)

The solution w
ρ

ij of this classical problem is explicitly known [15], and gives rise to these
estimates

‖wρ

ij‖0,� = o(ρ), ‖wρ

ij‖1,� = O(ρ), and ‖wρ

ij‖1,�R
= O(ρ2), (B.13)
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with �R defined by (3.9). We want to estimate z
ρ

ij which compensates the discrepancies
introduced by w

ρ

ij . But defined as in (B.10), we don’t have z
ρ

ij ∈ H 1
per (�;R2). For having

that, let us modify slightly w
ρ

ij near the boundary ∂�. We define the ring

C := {y ∈ � | dist(y, ∂�) < ε} , (B.14)

with ∂C = ∂� ∪ ∂C int, ∂C int = {y ∈ � | dist(y, ∂�) = ε}, for a fixed ε > 0 small enough to
have BR(ŷ) ⊂ � \ C. Then we set

w
ρ,ε

ij (y) :=
{

w
ρ

ij (y) if y ∈ � \ C,

w
ρ

C,ij (y) if y ∈ C,
(B.15)

where w
ρ

C,ij is solution to the following boundary value problem

⎧
⎪⎨

⎪⎩

div(σ (w
ρ

C,ij )) = 0 in C,

w
ρ

C,ij = 0 on ∂�,

w
ρ

C,ij = w
ρ

ij on ∂C int.

(B.16)

Let us introduce the new ansatz

ũ
ρ

ij (y) = ũij (y) + w̃
ρ

ij (y) + z̃
ρ

ij (y), (B.17)

where w̃
ρ

ij := w
ρ,ε

ij − 〈wρ,ε

ij 〉, with 〈·〉 defined as in (2.14), so that w̃
ρ

ij ∈ V , and therefore
z̃
ρ

ij ∈ H 1
per (�;R2) with 〈z̃ρ

ij 〉 = 0. Thus we can calculate the variational problem satisfied by
z̃
ρ

ij . Let us apply the operator γρσ to (B.17), multiply the obtained expression by ε(η) where
η is a test function in H 1

per (�;R2), and integrate over �. Applying the Green formula over

C ∩ �, (� \ C ∪ Bρ), and Bρ to the integral term depending on w̃
ρ

ij , and in view of (2.19),
(3.2), (B.11) and (B.16), we find

z̃
ρ

ij ∈ W :
∫

�

γρσ (z̃
ρ

ij ) · ε(η) = (1 − γ )

∫

Bρ

(σ (uij ) − σ(uij )(ŷ)) · ε(η)

−
∫

∂�

σ (w
ρ

C,ij )n · η −
∫

∂Cint
(σ (w

ρ

C,ij ) − σ(w
ρ

ij ))n · η, ∀η ∈ W. (B.18)

Because of the regularity of uij , we have the following estimate
∣∣∣
∣∣

∫

Bρ

(σ (uij ) − σ(uij )(ŷ)) · e(η)

∣∣∣
∣∣
≤ c ρ2‖η‖1,�. (B.19)

In view of the elliptic regularity of the problem (B.16), the continuity of the trace operator,
the estimate (B.13), and because we can show that there exists a constant c > 0 such that for
all η ∈ H 1(C,R2) satisfying divσ(η) = 0, we have

‖σ(η)n‖−1/2,∂� ≤ c |η|1,C , (B.20)

then we have the following estimate
∣
∣∣
∣

∫

∂�

σ (w
ρ

C,ij )n · η
∣
∣∣
∣ ≤ ‖σ(w

ρ

C,ij )n‖−1/2,∂�‖η‖1/2,∂�
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≤ c|wρ

C,ij |1,C‖η‖1,�

≤ c‖wρ

ij‖1/2,∂Cint‖η‖1,�

≤ c‖wρ

ij‖1,�R\C‖η‖1,�

≤ cρ2‖η‖1,�. (B.21)

In the same way we obtain the estimate O(ρ2)‖η‖1,� for the integrals over ∂C int. Noting that
the bilinear form of the problem (B.18) is uniformly coercive on W , and because z̃

ρ

ij ∈ V ,
we can conclude, making use of Poincaré-Wirtinger inequality, that

‖z̃ρ

ij‖W = O(ρ2), and ‖z̃ρ

ij‖0,� = O(ρ2). (B.22)

We can finally write the following expansion

ũ
ρ

ij = ũij + w
ρ

ij + (
z̃
ρ

ij + w̃
ρ

ij − w
ρ

ij

)
, (B.23)

and noting after few calculations that

‖w̃ρ

ij − w
ρ

ij‖W = O(ρ2), (B.24)

‖w̃ρ

ij − w
ρ

ij‖0,� = o(ρ), (B.25)

we finally find the estimates (3.10), (3.11) and (3.12). �

B.5 Lemma 3

Before proving Lemma 3, let us make some preliminary calculations, for which the results
directly ensue from Lemma 2. We denote by aρ the bilinear form on W of problem (3.3),
that is to say

aρ(u, v) :=
∫

�

γρσ (u) · ε(v), ∀u,v ∈ W. (B.26)

We want to estimate, for all η ∈ W , the expression aρ( ˜̃uρ

ijk, η) − aρ( ˜̃uijk, η). According to
expressions (3.3) and (2.29), we find

aρ( ˜̃uρ

ijk, η) − aρ( ˜̃uijk, η) = −
∫

�

(γρC(ũ
ρ

ij ⊗s ek) −C(ũij ⊗s ek)) · ε(η)

+
∫

�

(γρσ (u
ρ

ij ) − σ(uij ) −
∫

�

(Ch
ρ −C

h)(ei ⊗s ej ))ek · η

+ (1 − γ )

∫

Bρ

σ ( ˜̃uijk) · ε(η). (B.27)

Recalling the notation δ(·)ρ = (·)ρ − (·), we start developing the first two terms of the right
hand side of this expression.

−
∫

�

(γρC(ũ
ρ

ij ⊗s ek) −C(ũij ⊗s ek)) · ε(η) = −
∫

�

γρC(δũ
ρ

ij ⊗s ek) · ε(η)
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+ (1 − γ )C(ũij (ŷ) ⊗s ek) ·
∫

Bρ

ε(η) + (1 − γ )

∫

Bρ

C((ũij − ũij (ŷ)) ⊗s ek) · ε(η), (B.28)

and

∫

�

(γρσ (u
ρ

ij ) − σ(uij ))ek · η =
∫

�

γρσ (δũ
ρ

ij )ek · η − (1 − γ )σ (uij )(ŷ)ek ·
∫

Bρ

η

− (1 − γ )

∫

Bρ

(σ (uij ) − σ(uij )(ŷ))ek · η. (B.29)

In view of estimates calculated in Lemma 2, the regularity of uij , and the behaviour of
(Cρ −C) given by (3.16), we have for all η ∈ W

−
∫

�

(γρC(ũ
ρ

ij ⊗s ek)−C(ũij ⊗s ek)) ·ε(η) = (1−γ )C(ũij (ŷ)⊗s ek) ·
∫

Bρ

ε(η)+o(ρ)‖η‖1,�,

(B.30)
and

∫

�

(γρσ (u
ρ

ij ) − σ(uij ) − (Ch
ρ −C

h)(ei ⊗s ej ))ek · η =
∫

�

γρσ (δũ
ρ

ij )ek · η

− (1 − γ )σ (uij )(ŷ)ek ·
∫

Bρ

η + o(ρ)‖η‖1,�. (B.31)

Let us show that the second term of the right hand side of equation (B.27) is actually
o(ρ)‖η‖1,�. The estimate from Lemma 11 gives, for δ > 0 small enough, a constant c(δ)

such that for all η ∈ H 1(�)

∣∣
∣∣
∣

∫

Bρ

η(x)dx

∣∣
∣∣
∣
≤ c(δ)ρ

2−δ‖η‖1,�. (B.32)

In this manner, the first term on the right-hand side of equation (B.31) behaves as follows

−(1 − γ )σ (uij )(ŷ)ek ·
∫

Bρ

η = o(ρ)‖η‖1,�. (B.33)

Let us develop the second term on the right-hand side of (B.31),
∫

�
γρσ (δũ

ρ

ij )ek · η. We

apply Green formula to this integral separated over � \ Bρ and over Bρ . Denoting by n the
inward normal to the boundary ∂Bρ , we obtain

∫

�

γρσ (δũ
ρ

ij )ek · η = −
∫

�

γρdiv(C(η ⊗s ek)) · δũρ

ij +
∫

∂�

γρC(η ⊗s ek)n · δũρ

ij

+ (1 − γ )

∫


γ

C(η ⊗s ek)n · δũρ

ij + (1 − γ )

∫

∂Bρ

C(η ⊗ ek)n · δũρ

ij . (B.34)

The first term of the right hand side of equation (B.34) is o(ρ)‖η‖1,� according to Lemma
2 estimate (3.11). The second one is null because C, η and δũ

ρ

ij are �-periodic. The third
term is controlled by ‖C(η ⊗s ek)n‖−1/2,
γ ‖δũρ

ij‖1/2,
γ . On one hand we have ‖C(η ⊗s
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ek)n‖−1/2,
γ ≤ c‖η‖1,�, on the other ‖δũρ

ij‖1/2,
γ ≤ c‖δũρ

ij‖1,�R
, so that the third term is

O(ρ2)‖η‖1,�. The fourth term of the right hand side of equation (B.34) is controlled by
‖η‖L2(∂Bρ ;R2)‖ũρ

ijk − ũijk‖L2(∂Bρ ;R2). And we know from Lemma 12 that for all δ > 0 there
exists a constant c(δ) > 0 such that

∀η ∈ H 1(�;R2), ‖η‖L2(∂Bρ ;R2) ≤ c(δ)ρ
1/2−δ‖η‖1,�. (B.35)

The fourth term of the right hand side of equation (B.34) is O(ρ1−2δ)‖δũρ

ij‖1,�‖η‖1,�, which
is, regarding the estimate from Lemma 2, O(ρ2−2δ)‖η‖1,�. Thus

∫

�

γρσ (δũ
ρ

ij )ek · η = o(ρ)‖η‖1,�. (B.36)

Finally, we end the preliminary calculations by rewriting the third term of equation (B.27)
in view of the regularity of solutions. We find for all η ∈ V

(1 − γ )

∫

Bρ

σ ( ˜̃uijk) · ε(η) = (1 − γ )σ ( ˜̃uijk)(ŷ) ·
∫

Bρ

ε(η)

+ (1 − γ )

∫

Bρ

(σ ( ˜̃uijk) − σ( ˜̃uijk)(ŷ)) · ε(η),

= (1 − γ )σ ( ˜̃uijk)(ŷ) ·
∫

Bρ

ε(η) + o(ρ)‖η‖1,�. (B.37)

Proof of Lemma 3 We want to introduce the same kind of ansatz for the expansion of ˜̃uρ

ijk

as in Lemma 2. For this purpose, let us set the field w
ρ

ijk meant to cancel the first terms of
the right hand sides of equations (B.30) and (B.37). So w

ρ

ijk is defined as the solution to the
following exterior problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div(γρσ (w
ρ

ijk)) = 0 in R2,

w
ρ

ijk → 0 at ∞,

�w
ρ

ijk� = 0 on ∂Bρ,

�γρσ (w
ρ

ijk)�n = h on ∂Bρ,

(B.38)

where h = −(1 − γ )(σ ( ˜̃uijk)(ŷ) + C(ũij (ŷ) ⊗s ek))n. The above boundary value problem
admits an explicit solution with the same estimates as in Lemma 2 (see, e.g., [15]). Once
again let us introduce

w
ρ,ε

ijk (y) :=
{

w
ρ

ijk(y) if y ∈ � \ C,

w
ρ

C,ijk(y) if y ∈ C,
(B.39)

where C is the ring defined in (B.14), and w
ρ

C,ij is solution to the following problem:

⎧
⎪⎨

⎪⎩

div(σ (w
ρ

C,ijk)) = 0 in C,

w
ρ

C,ijk = 0 on ∂�,

w
ρ

C,ijk = w
ρ

ijk on ∂C int.

(B.40)

Now we can introduce the new ansatz:

˜̃uρ

ijk = ˜̃uijk + w
ρ

ijk + (
z̃
ρ

ijk + w̃
ρ

ijk − w
ρ

ijk

)
, (B.41)
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where w̃
ρ

ijk = w
ρ,ε

ijk − 〈wρ,ε

ijk 〉, so that w̃
ρ

ijk ∈ V . In this way, we effectively have z̃
ρ

ijk ∈
H 1

per (�;R2), with 〈z̃ρ

ijk〉 = 0. As in the proof of Lemma 2, we write the variational problem
satisfied by z̃

ρ

ijk , applying the bilinear form aρ to z̃
ρ

ijk and a test function η. In view of (B.41)
and the notations introduced before, the problem is expressed by

z̃
ρ

ijk ∈ W : aρ(z̃
ρ

ijk, η) = aρ( ˜̃uρ

ijk, η) − aρ( ˜̃uijk, η) − aρ(w̃
ρ

ijk, η), ∀η ∈ W. (B.42)

Let us develop this expression thanks to preliminary calculations (B.27), (B.30), (B.31)
(B.33), (B.36), and (B.37). We obtain the variational problem

z̃
ρ

ijk ∈ W :
∫

�

γρσ (z̃
ρ

ijk) · ε(η) = (1 − γ )C(ũij (ŷ) ⊗s ek) ·
∫

Bρ

ε(η)

+ (1 − γ )σ ( ˜̃uijk)(ŷ) ·
∫

Bρ

ε(η) −
∫

�

γρσ (w̃
ρ

ijk) · ε(η) + o(ρ)‖η‖1,�, ∀η ∈ W. (B.43)

Let us apply the Green formula to − ∫
�

γρσ (w̃
ρ

ijk) · ε(η) on domains C ∩ �, (� \ C ∪ Bρ),
and Bρ . In view of the definition of w̃

ρ

ijk (B.38), and denoting by n the inward normal to the
boundary ∂Bρ , we finally obtain that z̃

ρ

ijk follows the variational problem:

z̃
ρ

ijk ∈ W :
∫

�

γρσ (z̃
ρ

ijk) · ε(η) = −
∫

∂�

σ (w
ρ

C,ijk)n · η

−
∫

∂Cint
(σ (w

ρ

C,ijk) − σ(w
ρ

ijk))n · η + o(ρ)‖η‖1,�, ∀η ∈ W. (B.44)

In the same way as in Lemma 2, we find that the two first terms on the right-hand side of
equation (B.44) are o(ρ)‖η‖1,�, and the bilinear form of the problem (B.18) being uniformly
coercive on W , and z̃

ρ

ij ∈ V , we obtain

‖z̃ρ

ijk‖1,� = o(ρ). (B.45)

Furthermore the solution w
ρ

ijk of the classical problem (B.38) is explicitly known (see, e.g.,
[15]), gives rise to the same estimates as those written equations (B.13), and few develop-
ments lead as well to

‖w̃ρ

ijk − w
ρ

ijk‖1,� = O(ρ2), (B.46)

‖w̃ρ

ijk − w
ρ

ijk‖0,� = o(ρ). (B.47)

Finally, the expansion (B.41) gives rise to the intended estimates (3.13), (3.14) and (3.15).
�
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