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Abstract
Biomechanical modeling has a wide range of applications in the medical field, including in
diagnosis, treatment planning and tissue engineering. The key to these predictive models are
appropriate constitutive equations that can capture the stress-strain response of materials.
While most applications rely on hyperelastic formulations, experimental evidence of vis-
coelastic responses in tissues and new numerical techniques has spurred the development of
new viscoelastic models. Classical as well as fractional viscoelastic formulations have been
proposed, but it is often difficult from the practitioner perspective to identify appropriate
model forms. In this study, a systematic examination of classical and fractional nonlinear
isotropic viscoelastic models is presented (consider six primary forms). Consideration is
given for common testing paradigms, including varying strain or stress loading and dy-
namic conditions. Models are evaluated across model parameter spaces to assess the range
of behaviors exhibited in these different forms across all tests. Similarity metrics are intro-
duced to compare thousands of models, with exemplars for each type of model presented
to illustrate the response and behavior of different model variants. The parameter analysis
does not only identify how the models can be tailored, but also informs on the model com-
plexity and fidelity. These results illustrate where these common models yield physical and
non-physical behavior across a wide range of tests, and provide key insights for deciding on
the appropriate viscoelastic modeling formulations.
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Fig. 1 Illustration of the storage and loss modulus for common biomaterials. A) Storage modulus for common
biomaterials adapted from Budday et al. [21]. B) Loss modulus for brain [13, 22, 39], lung [118], breast [133],
liver [88, 122], skeletal muscle [141], myocardium [106, 121], skin [62, 79], artery [81, 129], cartilage [42]
and bone [18]. C) Examples of tissues in rheological testing - brain [21] in shear testing device, liver [9] in
torsion device, myocardium in triaxial shear device [136], artery [24], skin in multiaxial device [52] and bone
[70]

1 Introduction

Accurate biomechanical model of tissues has a wide range of applications in medicine,
such as patient-specific modeling, treatment planning, tissue engineering and in vivo tissue
assessment. In particular, patient-specific models have been employed to understand a range
of conditions, including mechanical properties and functions of the heart [6, 7, 25, 59, 83,
112], mechanical function of cardiac valves [2, 126], response to diseased abdominal aortic
aneurysms and dissection [50, 119, 132], and collision mechanics in the brain [53, 156].
Appropriate tissue models enable pre-operative planning through simulations and have been
deployed for bone implants [29, 55, 107], artery stent insertion [5, 40, 54], and surgical
training [93], amongst other applications. They are also critical for diagnostic methods such
as magnectic resonance elastography (MRE) [82, 94, 133, 134, 148], which rely on models
to translate wave motion into local tissue properties. In addition, characterization of tissues
using such models also plays an important role in tissue engineering and fabrication of
biocompatible materials [77, 158]. A common thread through all applications is the need
for accurate biomechanical models that encapsulate the stress-strain response over a range
of loads and dynamic time-scales.

Development of appropriate biomechanical models involves replicating experimental re-
sults in a manner that elucidates the link between the stresses and strains. Tissues exhibit a
broad range of mechanical responses (see Fig. 1), and have resulted in the development of
various experimental approaches to mechanical testing. Tensile tests are some of the earliest
and most straightforward experiments to be performed, with deformations being imposed
on tissue samples either uniaxially (most commonly) or biaxially [33, 60, 87]. Compres-
sion tests have also been employed, with compression being applied either uniformly on
a sample [103], or through local indentation [80]. Simple shear [37] and torsional shear
[9, 140] provide yet another mode of probing material response. Pure shear is the homo-
geneous non-rotational flattening of a body, in which the principal strains remain parallel
to their respective principal stress axes during deformation. For an incompressible material,
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this can be achieved by holding one side at constant length while stretching or compress-
ing one of the two remaining sides. For small deformations, simple shear and pure shear
differ by rotation [72], but this does not hold true for large deformations [104]. Beyond the
mode of deformation, experiments can utilize different dynamic loading/unloading proto-
cols, illustrating a tissue’s response to frequency [74, 115] or relaxation behavior [44, 150].
Alternatively, a sample can be subjected to deformation under a constant load, which charac-
terizes the creep behavior of a tissue [80, 116]. The observed behavior under these tests may
be post-processed to describe the tissues response, informing the selection of an appropriate
constitutive model.

Hyperelasticity has been widely investigated in biomechanical modeling for a range
of tissues including but not limited to artery [45, 51, 66, 68], ligament and tendon
[69, 131, 153], valve [85, 96, 113, 126], brain [20, 75, 98, 102], myocardium [8, 48, 64, 151],
liver [28, 47, 123], and skin [3, 14, 57]. Since inception, the field has burgeoned with many
different constitutive formulations including polynomial [95, 99], exponential [34, 43, 147],
logarithmic [68, 139] and Ogden [109] forms (or some combination [28, 145]). A review of
different hyperelastic constitutive model forms in biomechanics can be found in [67, 154].
However, despite evidence of viscoelasticity being observed since the early biomechanical
works [43, 44, 87], it has been neglected in favor of hyperelastic only approaches due to fo-
cuses on quasi-static analysis, limitations in available experimental data, and computational
considerations. While hyperelastic formulations have enabled studies of biomaterials, vis-
coelastic effects such as stress relaxation, creep, hysteresis, and variable frequency response
are often ignored (Fig. 2). Viscoelastic modeling was first investigated by bringing together
linear rheological elements that exhibit purely elastic or purely viscous behavior - springs
and dashpots [87]. The simplest and earliest forms involve these two elements arranged in
series - Maxwell model, or in parallel - Kelvin-Voigt model [27, 30, 38, 56, 100]. To match
physiological responses, these models are extended with an increased number of rheolog-
ical elements, e.g., the standard linear (Zener) model or the generalized Maxwell model
[124, 155, 159]. Extension of these linear models to nonlinear viscoelasticity has also been
presented in the literature, following varying generalizations [11, 31, 58, 63, 65]. These
viscoelastic formulations provide a foundation for accurately capturing the rate-dependent
behaviors of tissues.

An alternative to classical approaches are the class of fractional viscoelastic models (see
[91] (1D) and [41] (3D)). Here, the first order derivatives common to classical models are
replaced with fractional time derivatives, enabling the rate-dependency of the model to tran-
sition between elastic and viscous. This change in differential operator also introduces a
relaxation spectrum with rate responses reflective of the power-law behavior observed in
tissues [61, 84, 90, 137]. Although this can be replicated using multiple branches in the
generalized Maxwell model [155, 160], the fractional approach achieves this using a sin-
gle fractional derivative order α. While these models pose more complexity in their use for
numerical simulations, efficient numerical approaches have recently been introduced that
enable use of fractional models for tissue modeling [160]. The potential for these models
to effectively simulate rate response in tissues and the development effective computational
tools make fractional models another practical resource for describing tissue behavior.

With these numerous options, selecting an appropriate viscoelastic model form can be-
come challenging. Comparisons of classical and fractional viscoelastic models has been
carried for specific applications, but systematic analysis for nonlinear materials across com-
mon tests remains unclear. A study by Parker et al. [111] focused on the suitability of various
models for the use of elastography in soft tissues to investigate small strain rate response.
Another recent study by Bonfanti et al. [17] reviewed the behavior of linear elements for
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Fig. 2 Typical tissue behavior under various testing conditions, reproduced from literature sources: artery
(uniaxial stretch [49]), bone (creep [92]), brain (uniaxial stretch, compression, shear and relaxation [21],
creep [149]), ligament (uniaxial stretch [46], relaxation [120], creep [114]), liver (compression [73], shear
[140]), relaxation [152], creep [12]), heart (biaxial stretch and shear [136], creep [116]), skin (shear [135],
relaxation [76], creep [32]), tendon (uniaxial stretch [143], relaxation [71]), valve (uniaxial stretch [4], relax-
ation [36]). All data have been normalised, with maxima and minima reaching {1,0} or ±1, respectively, and
the intersection point of axes denoting the origin (0,0)

relaxation, creep and varying frequency response. Building on these studies to demonstrate
the response of nonlinear materials across common rheological tests used in biomaterial
modeling remains an important step for creating viscoelastic models.

In this work, we study a range of incompressible, isotropic and viscoelastic models across
various testing protocols. The response of classical models (Maxwell, Kelvin-Voigt, Zener,
generalized Maxwell) and their viscoelastic adaptions is investigated under oscillatory and
long-term response (relaxation and creep) in uniaxial and biaxial stretch, compression, pure
shear, as well as simple and torsional shear. We perform a methodical analysis on the impact
of parameters on model behavior, with the aim of gaining an understanding on how these
models can be employed and used to reproduce experimental data across a broad range of
test conditions. This investigation enables a close look at these various viscoelastic forms
and comparative analysis of their behaviors, providing a clear picture of how these models
can be used to improve the modeling of tissue response.

This work is structured into several sections. Firstly, a brief review of fractional deriva-
tives and kinematics is presented (Sect. 2.1, 2.2). The constitutive models are described in
Sect. 2.3, starting from a basic exponential-type hyperelastic model extended to the classical
and fractional viscoelastic approaches (Sect. 2.3-2.3.3). The kinematic characterization of
the rheological tests considered follows in Sect. 2.4. Sect. 3 presents the analysis and in-
terpretation of various combinations of viscoelastic model, testing protocol and parameters.
The conclusions and key findings are summarised in Sect. 5.
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2 Methods

In order to describe the behavior of various models across testing protocols, several tech-
nical aspects need to be clarified. Firstly, fractional derivatives and kinematics are briefly
reviewed in Sect. 2.1-2.2. The viscoelastic modeling approach followed in this paper is
described throughout Sect. 2.3, while the testing protocols are kinematically defined in
Sect. 2.4. The parameter variations considered for each model across testing protocols is
systematically presented in Sect. 2.4.3. Lastly, details on the numerical implementation of
fractional derivatives and stress computation are explained in Sect. 2.5.

2.1 Review of Fractional Derivatives

We start by reviewing the concept of fractional derivatives, which is important to establish-
ing the fractional viscoelastic models in later sections. Fractional calculus started with the
generalization of integral and differential operators from the set of integers to the set of real
numbers (for reviews, see, Ross [125] and Machado [89]). Many different definitions for
fractional differential and integral operators of arbitrary order have been introduced [117],
with the Caputo definition being a popular choice for physics-based applications. For a n-
times differentiable function f and 0 < α ≤ n, the Caputo derivative can be written as,

Dα
t f = 1

�(�α� − α)

∫ t

0

f �α�(s)
(t − s)1+α−�α� ds, (1)

where �α� denotes the ceiling of α and � is the Gamma function. For this work, we will
only consider 0 ≤ α ≤ 1. The Caputo form (which can be related to other formulations like
the Riemann-Louiville fractional derivative) has the advantage that

Dα
t c = 0, for any constant c ∈R. (2)

The fractional derivative (for α /∈ N), unlike integer derivatives, is a convolution of the past
behavior of the function, making it particularly useful for incorporating the history of the
stress of the material.

2.2 Review of Kinematics

To briefly review kinematics and kinetics in nonlinear mechanics [16, 63, 108, 130], let
Ω0 ⊂ R

3 denote the reference configuration of a three-dimensional solid and Ω(t) ⊂ R
3

denote its configuration at time t . At every time t , it is assumed that there exists a material
displacement, u : Ω0 × [0, T ] → R

3, relating the spatial position x ∈ Ω(t) to the material
position X ∈ Ω0 by

x(t) = u(t) + X, xi(t) = ui(t) + Xi, (3)

where Xi and xi denote the components of X and x. We also assume that, due to the in-
compressible nature of the tissue, there exists a hydrostatic pressure p : Ω0 × [0, T ] → R

3

resisting volumetric change. This mapping in Eq. (3) is assumed to be bijective. The local
deformation gradient F defining the mapping of Ω0 to Ω(t) is given by

F = ∂x
∂X

= ∂u
∂X

+ I, Fij = ∂ui

∂Xj

+ δij ,
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where I is the identity tensor. The determinant J = det F defines the relative change in
volume. The material stretch is characterized using C and B, denoting the right and left
Cauchy-Green tensors [63, 78], respectively, e.g.,

C = FT F, B = FFT .

For isotropic hyperelastic biomechanical materials, the strain-energy function, � =
�(IC, I IC, I IIC), is often defined using three invariants of C [15],1

IC = C : I, I IC = C : C, I IIC = det C.

From the second law of thermodynamics, the strain-energy function can be related to the
second Piola-Kirchhoff stress tensor (PK2) as

S = 2
∂�(C)

∂C
, Sij = 2

∂�(Cij )

∂Cij

, (4)

which, in turn, is related to the first Piola-Kirchhoff, P, and the Cauchy stress tensors σ by
push forward operations on S,

σ = 1

J
FSFT = 1

J
PFT . (5)

In what follows, we focus on constitutive forms of the second Piola-Kirchhoff stress, S.

2.3 Constitutive Models of Viscoelastic Materials

In constitutive modeling of soft biological tissues it is common to express the hyperelastic
stress in a material as the sum of the stress of its individual components (i.e., Se = S1 +S2...).
These may be stresses due to anisotropic structures [64, 66, 98], hydrostatic effects [51, 101,
138], or varying degrees of nonlinearity [28, 95, 99]. Similarly, it is also common to express
the viscoelastic stress, Sve , as the sum of the elastic and viscous components. Letting Se and
SQ denote some symmetric tensor form, then a simple viscoelastic model could be

S = Sve − pJC−1

where Sve = Se + ∂SQ

∂t
.

(6)

Se and SQ are to be determined from the constitutive modeling of the tissue mechanical
behavior and may or may not have the same form. While this encompasses models where
elastic and viscous components are considered additive, a more generalized form can be
written as

S = Sve − pJC−1

where a0Sve + a1
∂Sve

∂t
= b0Se + b1

∂SQ

∂t
.

(7)

Here a’s and b’s denote specific model parameters that enable consideration of a wide range
of models (discussed further below, see Fig. 4). In this case, the viscoelastic stress is defined

1Note that the second invariant IIC is defined as in Bonet and Wood [15], as opposed to the more common
definition IIC = 1

2 IC − C : C.
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by a differential equation that must be solved (or approximated) to determine the current
value of Sve , and is related to the elastic and viscous terms. Note that, the hydrostatic stress
here is additive, and not encapsulated within the differential equation for Sve . This assumes
that hydrostatic effects respond instantaneously without memory.

This form encapsulates many of the classical viscoelastic formulations. However, extend-
ing to greater generality, the differential operators can be replaced with fractional variants,
giving the general form,

S = Sve − pJC−1

where a0Sve + a1D
αa
t Sve = b0Se + b1D

αb
t SQ,

(8)

where D
αa
t denotes the Caputo derivative introduced in Eq. (1). Our main focus is to in-

vestigate different forms of Sve in both classical (αa,αb = 1) and fractional approaches
(0 < αa,αb < 1) and examine their viscoelastic behavior over a range of kinematic condi-
tions. There are many variables to be considered: the constitutive model for the elastic com-
ponent, Se; the constitutive model form for the viscous component, SQ; the non-linearity of
the hyperelastic and viscoelastic component; and the weighting of terms based on different
values of a’s and b’s.2 The variations considered, along with theoretical comparisons, are
outlined below and summarized in Table 1.

2.3.1 Constitutive Form of Se and SQ

For the comparative analysis across viscoelastic models, we select a simple isotropic, ex-
ponential Fung-type model. Fung-type models are widely used in tissue modeling and their
exponential form are versatile in capturing the behavior of various tissues in mechanical
testing [44]. Here, we consider the specific form, Sfung(c0, c1,C), characterized by two pa-
rameters c0, c1 ∈ R

+:

Sfung(c0, c1,C) = c0 exp (c1(IIC − 3))C. (9)

In this stress definition, the parameter c0 scales the stress-strain response, while c1 enables
varying degrees of nonlinearity. Sfung can be directly derived from the strain energy function
� = c0

2c1
exp (c1(IIC − 3)) and was chosen based on previous experience. Other formula-

tions could be considered, e.g., Mooney-Rivlin or Ogden-based forms as in Capilnasiu et
al. [23]. However, the form used in Eq. (9) provides a good balance between model com-
plexity and versatility. Further, we note that Sfung maintains symmetry and objectivity, which
is particularly important when considering differential forms as in Eq. (8). Using this con-
stitutive form, we set

Se = Sfung(c
e
0, c

e
1,C), SQ = dev[Sfung(c

v
0, c

v
1,C)], (10)

with dev denoting the deviatoric operator, e.g. dev[A] = A − 1
3 (A : C)C−1.3 SQ was chosen

to have the same form as Se to make it easier to interpret the extensive amount of results
presented in the following sections. Given the generalized form shown in Eq. (8), we reduce

2Note for practical purposes, parameters a0 and b0 are set to 1, leading to a1 and b1 setting the relative
contribution of D

αa
t Sve and D

αb
t SQ, respectively.

3Note that the deviatoric form of SQ was used for convenience to ensure that SQ = 0 when the body is
unloaded and when prior strain history cannot be established at the start of the simulations.
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Table 1 Table of (top) classic and (bottom) fractional viscoelastic models, highlighting the analogue between
linear and nonlinear forms. Here, the relaxation modulus for the linear and nonlinear forms is given by
K	,n(s, t) = ∑n

k=1 Ek exp{ s−t
τk

} and Kn(s, t) = ∑n
k=1 bk exp{ s−t

τk
}, respectively

CLASSIC VISCOELASTIC MODELS

Model Equation Parameter analogues

Maxwell Lin σ + η1

E1
σ̇ = η1ε̇ a1 ∼ η1/E1

b1 ∼ η1
Nonlin Sve + a1Ṡve = b1ṠQ

Kelvin-Voigt Lin σ = E0ε + η1ε̇ b0 ∼ E0
b1 ∼ η1Nonlin Sve = b0Se + b1ṠQ

Zener SLS Lin σ + η1
E1

σ̇ = E0ε + η1
E0+E1

E1
ε̇ a1 ∼ η1/E1

b0 ∼ E0

b1 ∼ η1(1 + E0
E1

)
Nonlin Sve + a1Ṡve = b0Se + b1ṠQ

Zener SLS
integral form

Lin σ(t) = E0ε(t) +
t∫

0
(E0 +K	,1(s, t))ε̇(s) ds b0 ∼ E0

τ1 ∼ η1/E1
b1 ∼ E0 + E1Nonlin Sve(t) = b0Se(t) +

t∫
0
K1(s, t)ṠQ(s) ds

Generalized
Maxwell
integral form

Lin σ(t) = E0ε(t) +
t∫

0
K	,n(s, t)ε̇(s) ds b0 ∼ E0

bk ∼ Ek/E0

Nonlin Sve(t) = b0Se(t) +
t∫

0
Kn(s, t)ṠQ(s) ds

FRACTIONAL VISCOELASTIC MODELS

Model Equation Parameter analogues

Fractional
Maxwell

Lin σ + η1

E1
Dα

t σ = η1Dα
t ε a1 ∼ η1/E1

b1 ∼ η1
Nonlin Sve + a1Dα

t Sve = b1Dα
t SQ

Fractional
Kelvin-Voigt

Lin σ = E0ε + η1D
αb
t ε b0 ∼ E0

b1 ∼ η1Nonlin Sve = b0Se + b1D
αb
t SQ

Fractional Zener Nonlin Sve + a1D
αa
t Sve = b0Se + b1D

αb
t SQ

redundancy by setting ce
0 = cv

0 = 1. Moreover, while in general ce
i and cv

i may be selected
arbitrarily, to reduce space of potential models, we chose these parameters to be equivalent
for elastic and viscous tensor components.

2.3.2 Classical Viscoelastic Model Examples

This section focuses on classical viscoelastic models that are often encountered in literature.
These models are summarised in Table 1 and are separated into their formal linear and non-
linear forms. The nonlinear analogues provide a form corresponding to the same modeling
approach as the linear models but do not necessarily equate in the linear viscoelastic limit.
To maintain object reference, the Cauchy stress σ is replaced by the PK2 tensor, Sve , in the
nonlinear analogue. In the classical form, elastic contributions are replaced by Se and vis-
cous contributions by SQ. For the classical forms, αa,αb = 1 in Eq. (8) as shown in Eq. (7).
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Fig. 3 Common viscoelastic models based on arrangements of spring, dashpot and spring-pot elements: A)
Maxwell, B) Kelvin-Voigt, C) Standard Linear (Zener), D) Generalized Maxwell, E) Fractional Kelvin-Voigt,
F) Fractional Maxwell. The linear spring, dashpot and spring-pot are defined in the lower row

The first classical form in this study is based on the Maxwell model, composed of a
spring and dashpot in series (see Fig. 3 A). The nonlinear formulation of the model, given
below, represents a simplified differential form for Sve where

Sve + a1
∂Sve

∂t
= b1

∂SQ

∂t
. (11)

Recall that SQ is defined as in Eq. (10). The model can be tuned through three parameters:
a1, b1, and cv

1 , where a1 and b1 scale linearly the time derivative of Sve and SQ, respectively,
and cv

1 scales the exponential power in Eq. (9). The Maxwell model is particularly useful in
modeling relaxation behavior, but is known to be unable to predict typical creep behavior
[100]. When held under constant stress, materials usually exhibit creep that gradually slow
to a stop. However, this model displays a linear strain increase (constant rate).

An alternate form is the arrangement in parallel of a spring and dashpot, known as the
Kelvin-Voigt model (see Fig. 3 B). Here,

Sve = Se + b1
∂SQ

∂t
. (12)

Se and SQ are defined as in Eq. (10), with the exponential parameters c
e,v
1 controlling the

nonlinearity of the model. Parameter b1 acts as linear scaling factor, leading to a total of
three parameters to tune the model. The Kelvin-Voigt model has the advantage that it can
model creep behavior, but inherently it cannot predict stress relaxation. Instantaneous drop
in velocity will result in an instantaneous drop in stress, whereas an exponential decay is
normally observed in tissues (see Fig. 2).

The standard linear solid model, also known as the Zener model, combines two springs
and a dashpot. One possible arrangement is having a spring in series with a Kelvin-Voigt
configuration or, as considered here, having a spring in parallel to a Maxwell configuration,
as shown in Fig. 3 C. In this configuration, the nonlinear Zener model becomes

Sve + a1
∂Sve

∂t
= Se + b1

∂SQ

∂t
. (13)

As before, Sve, Se and ∂SQ/∂t are the viscoelastic, elastic and viscous PK2 stresses, re-
spectively. Four parameters are used to describe the model. Firstly, c

e,v
1 scale the exponen-

tial power and thus have a nonlinear influence on the model, while a1 and b1 act as linear
scaling factors. By having a more complex arrangement of rheological elements, both in
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series and in parallel, the Zener model bypasses the issues encountered by the Maxwell and
Kelvin-Voigt models in creep and relaxation, respectively.

Another development of classical rheological models is the generalized Maxwell model
with n branches, as depicted in Fig. 3 D. Note that the Zener model is a particular form of the
Generalized Maxwell model with only one branch. The benefit of having multiple branches
is that they allow for a more diverse set of rate responses within the model, enabling a more
tailored relaxation response [1, 127, 128]. For compactness, this model is presented below
in its integral form, as

Sve(t) = Se(t) +
∫ t

0

n∑
k=1

bk exp{(s − t)/τk}∂SQ(s)

∂s
ds. (14)

A total of 2n + 2 parameters are needed in this case. Firstly, the exponential power scales
c

e,v
1 trigger a nonlinear response in the formulation of the PK2 stresses Se and SQ. Then,

each branch is defined by the relaxation time τk and relaxation weight bk . The generalized
Maxwell model is the most comprehensive classical viscoelastic model, providing flexibility
in representing decaying relaxation spectra. However, this generality comes at the added cost
of an increased number of parameters.

2.3.3 Fractional Viscoelastic Models

Fractional models provide an alternative to classical models in modeling viscoelasticity.
From a rheological standpoint, a fractional element can be imagined as a spring-pot, anal-
ogous to a more complex set of Maxwell elements arranged in parallel [160]. Thus, it is
functionally similar to Eq. (14) with pre-established weights and decay constants that are
not free parameters, but tied to the underlying fractional order. This is achieved using the
fractional derivative (Eq. (1)) with the order 0 < α < 1. As in the case of the classical mod-
els, the fractional models discussed here are summarised in Table 1. There, the linear form
of the models is provided, alongside the nonlinear analogues which are further presented in
this section.

The first fractional model considered here will be referred to as the fractional Kelvin-
Voigt, which provides a direct alternative to the generalized Maxwell model. The nonlinear
fractional Kelvin-Voigt model is described by

Sve = Se + b1D
αb
t SQ. (15)

Note the similitude between the fractional and classical Kelvin-Voigt models shown in
Eqs. (15) and (12). If the fractional order is chosen such that αb = 1, then Eq. (12) is re-
covered, but the benefits of the fractional model are lost and relaxation issues arise. This is
because, as αb increases, the relaxation spectrum of the model increasingly weights more
recent events over the past. Overall, the fractional Kelvin-Voigt model captures the same
complexity as the generalized Maxwell model (with preset assumptions about the distribu-
tion of the spectra) and uses four parameters - the scaling parameters b1, the exponential
scaling powers c

e,v
1 and the fractional order αb .

Another fractional model analogue to a classical configuration is the fractional Maxwell
model. This is derived by replacing the dash-pot with a spring-pot, leading to a series con-
figuration as seen in Fig. 3 F. Following the form shown in the classical Maxwell (Eq. (11)),
the fractional version replaces full derivatives with fractional counterparts, e.g.,

Sve + a1D
αa
t Sve = b1D

αb
t SQ. (16)
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Fig. 4 Interrelation of fractional
and classical viscoelastic
formulations for Maxwell,
Kelvin-Voigt, and Zener model
variants. The diagram shows how
selection of specific parameters
in the fractional Zener model can
result in all model forms

Five parameters define the model: the linear scaling factors a1 and b1, the fractional or-
ders αa and αb and the exponential power scaling cv

1 . For non-extreme αa,αb values (i.e.,
αa,αb < 1), the fractional Maxwell model may change in the creep description, but this
response will be investigated later in this study.

Lastly, here we devise a comprehensive fractional model that combines the fractional
Kelvin-Voigt and Maxwell formulations, with the liberty of having a different fractional
order derivative of the total viscoelastic stress Sve and the viscoelastic stress SQ. In this
case,

Sve + a1D
αa
t Sve = Se + b1D

αb
t SQ, (17)

which will be referred to as the fractional Zener model. Here, six parameters are needed for
the model: the fractional orders αa and αb , the linear scaling terms a1, b1, and the expo-
nential power parameters c

e,v
1 . This is the most general model form, from which the other

models can be obtained (see Fig. 4), e.g., the nonlinear fractional Maxwell by disregarding
the Se contribution (i.e., setting b0 to 0), or even the classical form by additionally set-
ting αa = αb = 1. The transformation to the generalized Maxwell model is not immediately
obvious. However, by recalling that the nonlinear fractional Kelvin-Voigt is an alternative
approximation to the generalized Maxwell model, then setting a1 = 0 provides the corre-
spondence.

2.4 Common Biomechanical Testing Paradigms

To examine the capacity of the different classical and fractional viscoelastic models to ex-
hibit realistic behaviors, a series of common biomechanical testing paradigms were con-
sidered. While there are numerous testing protocols in the literature, this work focused on
strain loading cases, including uniaxial extension/compression, biaxial extension (with pure
shear as a special case), simple shear, and torsion, as well as stress loading such as creep. To
capture viscoelastic responses, different modes of cyclic (with varying frequency) or static
loading were also considered.

2.4.1 Dynamics of Strain and Stress Loading

The impact of viscoelasticity on the mechanical function of biological tissues and organs
can be divided into the short and long-term responses. In vivo periods of short-term cyclic
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loading (e.g., pulsation due to flow, breathing, walking, etc) and long-term static loading
(e.g., diastolic blood pressure, standing, sitting, sleeping, etc) can be observed. As a conse-
quence, experimental rheological studies have been designed to probe a broad range of tissue
responses. Capturing both cyclic and static responses, we introduce three primary dynamic
functions, covering common dynamics used in rheological experiments,

asin(t, τP ) = sin

(
2πt

τP

)
,

asaw(t, τP ) = 2

π
sin−1(asin(t, τP )),

astep(t, τP ) = max

{
0,min

{
1,

5

2

(
0.2 + asaw(t, τP )

)}}
,

(18)

denoting sinusoidal temporal variations, sawtooth variations and periodic step functions.
Here, τP denotes the period of oscillation, which can be extended for long-term static load-
ing. Note that dynamic functions are bounded in time, e.g., |ak(t)| ∈ [0,1], ∀t ∈R. Further,
astep is introduced whereby 10% of the period is spent ramping up or down the load, 40% of
the period spent statically holding the load, and 40% of the period spent recording recovery.

In this paper, we consider both strain loading and stress loading. Focusing initially on
strain loading, we consider both stretch and shear. Using the dynamic function of Eq. (18),
the stretch, λ, and shear, γ , can be defined as,

λk(t, τP ) = 1 + (λmax − 1)ak(t, τP ), γk(t, τP ) = γ maxak(t, τP ). (19)

Here λmax denotes the maximal stretch or shear achieved.
Stress loading is also applied in the literature, whereby a preset force is prescribed and

the material stretch or shear is recorded. In this paper, we focus on creep response, in which
a certain set load, T , is applied to the material and released, i.e.,

T (t, τP ) = T maxastep(t, τP ). (20)

Here τP denotes the period of on/off loading and unloading, and T max denotes the total load
applied. In this work, only step loading is considered, reflective of the typical dynamics ap-
plied in the literature. The following sections outline the kinematics applied in strain loading.
In this case, the stretch, λ, and shear, γ are referred to without parameters or superscripts
for ease.

2.4.2 Kinematics of Simple Deformations

This work focuses on the viscoelastic response of models to the 4 pure deformation kine-
matics, uniaxial, biaxial, simple shear, and torsion. The isotropic nature of the mechani-
cal response considered removes the need for consideration of different loading directions,
reducing the number of kinematic variants considered. For uniaxial deformation, we will
examine both the tensile and compressive cases, where the deformation gradient in vector
notation is given by

F = λ1(t)e1 ⊗ e1 + 1√
λ1(t)

(e2 ⊗ e2 + e3 ⊗ e3) , (21)
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where λ1 denotes the applied stretch or compression (applied in the ê1 direction). The biaxial
deformation will be restricted to a general case, where λ2 > λ1, and pure shear. Biaxial
deformation in general is given by

F = λ1(t)e1 ⊗ e1 + λ2(t)e2 ⊗ e2 + 1

λ1(t)λ2(t)
e3 ⊗ e3, (22)

where one definition of pure shear can be expressed as

F = λ1(t)e1 ⊗ e1 + 1

λ1(t)
e2 ⊗ e2 + e3 ⊗ e3, (23)

which is more commonly found in experimental studies as it is much simpler to be applied
mechanically [104]. For testing the mechanical response under shear, we consider mainly
the simple shear case given by

F = γ1(t)e1 ⊗ e2 + I. (24)

Torsion testing is a common method for probing the viscoelastic properties of 3-dimension
tissues (where the membrane assumption is not applicable). Here a block or more commonly
a disk of tissue is placed between a stationary plate and a linear actuator. An initial small
compressive load is first applied and then the actuator will twist cyclically at a predetermined
frequency. The deformation applied consists of both compressive and extensional loading as
well as shearing, and the deformation applied is also heterogenous, as it shears more away
from the central axis of the tissue. Simulating the torsion testing is thus a good example
application to examine the mechanical response of the viscoelastic model forms.

We do note that the method of attachment is a complex issue and the deformation exhib-
ited is often non-ideal (i.e., the deformed tissue will bulge at the middle). Our goal is not
to replicate the full experimental setup and will as such assume ideal deformations, i.e., the
geometry of the tissue will remain perfectly cylindrical. The deformation gradient for such
a setup is given by

�(X3, t) = λ
3/2
z

R
γ (t)X3

F(t) = 1√
λz

cos�(X3, t)e1 ⊗ e1 − 1√
λz

sin�(X3, t)e1 ⊗ e2

+ 1√
λz

sin�(X3, t)e2 ⊗ e1 + 1√
λz

cos�(X3, t)e2 ⊗ e2

− λz

R
γ (t) (X1 sin�(X3, t) + X2 cos�(X3, t)) e1 ⊗ e3

+ λz

R
γ (t) (X1 cos�(X3, t) − X2 sin�(X3, t)) e2 ⊗ e3

+ λze3 ⊗ e3,

(25)

where γ is the shear applied by the twisting angle �, R is the initial radius of the specimen,
and λz is the initial compressive loading applied.



130 W. Zhang et al.

2.4.3 Classical and Fractional Viscoelastic Model Analysis

In order to understand the envelope of behavior for each model, simulations were performed
across all testing paradigms using varying model parameters. As previously mentioned, pa-
rameters ce

0 and cv
0 were set to 1, to avoid redundancy with the b0 and b1 parameters. The

exponential parameters, ce
1 = cv

1 = c1, were set to be equal for simplicity. Without loss of
generality, parameter a0 is set to 1 (Eq. (8)). For analysis purposes, the elastic part param-
eter b0 was also set to 1 (for the Zener and Kelvin-Voigt forms) or zero (for the Maxwell
model forms). While changing b0 alters the material response, it can be shown that the be-
havior can be replicated with a b0 = 1, re-weighting of a1 and b1, and a scaling of the total
stress response (except in the case where b0 = 0). In our analysis, we focus on comparing
normalized stresses/strains (i.e., divided by their respective maximum value, which after
normalization becomes 1), simplifying the need to consider all three parameters. Following
the same reason, b1 = 1 for all Maxwell model forms.

As a result, a1 and b1 become the principal scaling parameters responsible for the rel-
ative contribution of the viscoelastic components. Below we list the parameter variations
considered in this analysis:

– a1 ∈ {0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.8}
– b1 ∈ {0.2,0.5,1,2,5,20}
– c1 ∈ {0.5,1,2,5}
– αa ∈ {0.1,0.2,0.5,0.8}
– αb ∈ {0.1,0.2,0.5,0.8}

As shown in Fig. 4, here we consider the Classical Maxwell (varying a1 and c1, resulting
in 32 models), Classical Kelvin-Voigt (varying b1 and c1, resulting in 24 models), Classical
Zener (varying a1, b1 and c1, resulting in 192 models), Fractional Maxwell (varying a1, c1,
αa and αb , resulting in 512 models), Fractional Kelvin-Voigt (varying b1, c1, αa and αb ,
resulting in 384 models) and Fractional Zener (varying a1, b1, c1, αa and αb , resulting in
3,072 models). The generalized Maxwell model is not explicitly included in the analysis as
the generality of the model makes it more difficult to compare across all possible parameter
variations.

Examining model behaviors, we aimed to address model responses for varying testing
paradigms. Each testing paradigm includes the variation of kinematics, load level, cycling
period, and cycling wave function. The kinematics include uniaxial, biaxial, pure shear,
simple shear, torsion, uniaxial relaxation, and uniaxial creep. The loading parameter for
each testing paradigm varies as following

– Uniaxial: λmax
1 ∈ {1.05,1.1,1.2,1.4},

– Biaxial: (λmax
1 , λmax

2 ) ∈ {(1.05,1.075), (1.1,1.5), (1.2,1.3), (1.4,1.6)}
– Pure shear: λmax

1 ∈ {1.05,1.1,1.2,1.4}
– Simple shear & torsion: γ max ∈ {0.05,0.1,0.2,0.4}
– Relaxation: λmax

1 ∈ {1.05,1.1,1.2,1.4}
– Creep: T max ∈ {1,10,100,1000} kPa

Uniaxial, biaxial, pure shear, simple shear, and torsion tests were ran with sinusoidal and
sawtooth wave functions (asin and asaw in Eq. (18)) for cycling periods of τp = 0.2 s (5 Hz),
2 s (0.5 Hz), and 20 s (0.05 Hz). Relaxation and creep both used the astep wave function
with periods of τP = 0.5 s, 5 s, and 50 s. In total, 144 tests were examined: 24 for uniaxial,
biaxial, pure shear and simple shear, as well as 12 for both relaxation and creep. Performing
each of the 144 tests across the 4,216 models resulted in 607,104 model outputs.
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For the uniaxial case, a frequency sweep of the dynamic tensile modulus at small strains
(1%) was also conducted. Here, frequencies of 10−3, 10−2, 10−1, 1, 101, 102, 103, 5 × 10−3,
5 × 10−2, 5 × 10−1, 5, 5 × 101, and 5 × 102 Hz were calculated. Loading was applied using
the sinusoidal wave with λmax = 1.01 and the nonlinearity of the model was chosen to be
c1 = 0.5. Only uniaxial deformation is considered due to the limited range of strain and the
nonlinearity of the model. For determining the storage and loss moduli over 10−3 to 103 Hz,
the stress and strain responses were fit to a sine function on the 5th oscillatory cycle. The
Cauchy stress over time, σ , and strain over time, ε, were fit to

σ(t) = σ0 sin(ωt + δσ ), ε(t) = ε0 sin(ωt + δε), (26)

using the optimization library from Mathematica [157] (where ω = 2π/τP ). Following Mey-
ers and Chawla [100], the storage and loss moduli were computed as

E′ = σ0

ε0
cos(δσ − δε), E′′ = σ0

ε0
sin(δσ − δε). (27)

Due to the significant amount of data available, we present the data analysis by focusing
on outliers and the best case parameters for each model form. We devised an approach
by computing a similarity metric between the models, examining how this metric varies
with different model forms and parameters with a focus on the worst values. Given that all
existing data was simulated, the sum of the residual squared is used to measure the difference
between two curves. This value was then normalized by the mean total variance between the
two curves. Thus, the metric is given by

μ =
∑

i 2 (f1(ti) − f2(ti))
2

∑
i

(
f 2

1 (ti) + f 2
2 (ti)

) , (28)

where fi is the curve of the normalized stress or strain component (by maximum positive
value), respectively. For each kinematic, load magnitude, loading frequency, and material
nonlinearity, we first compared how similar each pair of model forms is, to get an overview
of model responses under the tested conditions. While this examination provides insight into
contrasting or similar behaviors in models, it does not capture whether models exhibit phys-
ical behavior, such as those seen in Fig. 2. To get an impression about this, a representative
response was selected from the Fractional Zener models that exhibited realistic responses
under the different testing modes. All other models were then examined to find which best
matched the exhibited response, providing a way of determining whether physically rea-
sonable responses were viable for a given model. Given what was observed, we focused on
presenting the result in terms of the overall similarity patterns and best case results for the
kinematics, loading level, and frequency response.

2.5 Numerical Approximation of Model Responses

The above examples were implemented and simulated using Python3 (Python Software
Foundation, https://www.python.org/). The strain loading tests were straightforward to im-
plement using the NumPy library for support of array operations [110, 144]. The fractional
derivative were computed using the Prony series method [160]. To summarize, this approach
is equivalent to using N Maxwell elements arranged in parallel, each with their own stiff-
ness βk and time constant τk (k = 1 . . .N ), chosen to optimally approximate the fractional
derivative for a given order. Supposing we wish to take the α-order fractional derivative

https://www.python.org/
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(α ∈ [0,1]) of the temporal tensor function A : [0, T ] → R
3×3 at any time t ∈ [0, T ], then

the Prony series approximation to the true Caputo derivative in Eq. (1) can be written as

D̂α
t A := β0A′(t) +

N∑
k=1

Qk(t), Q′
k(t) + 1

τk

Qk(t) = βkA′(t), (29)

where Qk : [0, T ] → R
3×3 is an introduced intermediate variable corresponding to the kth

Maxwell element. Discretization of D̂α
t was accomplished applying standard backward Eu-

ler. The resulting discrete approximation at tn = n�t , denoted as D̂α
n , can be written as

D̂α
n A := β0

An − An−1

�t

+
N∑

k=1

Qn
k , Qn

k = e
− �t

τk Qn−1
k + βke

− �t
2τk

(
An − An−1

)
. (30)

Here the computational cost stays constant over time and the storage of historical values is
limited to the size of An−1 and Qn−1

k (for each k = 1, . . .N ). Applied to Eq. (8), the fractional
operator must be applied to both Sve and SQ. For test cases when the temporal dynamics of
SQ were known, we note that the backward Euler derivative in Eq. (30) was computed using
a more accurate approximation (using central difference with h = max(λ,1)(ε1/3) where ε

is the machine epsilon for double precision numbers). After isolating the correct terms, the
stresses at the nth step are calculated using

Sn
ve =

Sn
e + b1D̂

αb
n SQ − a1

∑N

k=1 e
− �t

τk Qn−1
k + a1

(
β0
�t

+ ∑N

k=1 βke
− �t

2τk

)
Sn−1

ve

1 + a1

(
β0
�t

+ ∑N

k=1 βke
− �t

2τk

) . (31)

The heterogeneity in strain for the torsion example (Eq. (25)) requires the computation of
the stresses over the top surface of which the traction is applied. Taking into consideration
the observations from Mazzia et al. [97], the stresses were computed at quadrature point on a
disk determined using the Gauss-Legendre rule in r (n = 8) and mid-point rule in θ (n = 8).
For these series of tests, �t was chosen to be 0.01 times the period of one loading cycle.

For the uniaxial creep simulations, a forward simulation was not possible due to the
combination of applied tension, incorporation of strain history and solving of the differential
equation Eq. (8). Instead, at each time step, an inverse problem had to be solved whereby
the applied traction (see Eq. (20)), T e1, on the surface with normal e1, had to balance with
the stress at an unknown stretch, λ1, e.g.,

T e1 − JFS(λ1)FT · e1 = 0. (32)

Without a defined λ1(t),
∂SQ

∂t
in D

αb
t SQ (Eq. (8)) was also computed implicitly by back-

wards Euler. Solving for λ1 was numerically unstable for some of the classical forms with
larger time steps, where convergence was not consistently achievable with Newton-Raphson
iterations. Taking into account the time and data storage due to the number of simulations
being ran, dt was chosen to be 0.005 times the period of one cycle and a more rigorous 2
layered approach was taken for solving Eq. (32), with Brent’s method [19] initially and a
differential evolution step if Brent’s method fails. For Brent’s method, the λn−1

1 was taken as
one bound of the initial condition. The opposing bound was found by repeatedly subtracting



Nonlinear Viscoelastic Models in Biomechanics 133

the previous step size times the sign of the residual from λn−1
1 until a point where a residual

of opposite sign was found. Brent’s method with tol = 10−10 was ran for 100 iterations.4

3 Results

In our analysis, 4,216 viscoelastic models were compared and tested across 144 testing
conditions. Due to the amount of data, selected results are presented in the main body of
the paper highlighting key outcomes and conclusions. Additional results are presented in
the Supplementary Materials. Further, modeling results were organized hierarchically into
an ordered list so that the extensive amount of data can be examined systematically. The
classical and fractional forms are then further divided into three groups, Maxwell, Kelvin-
Voigt and Zener, with the Zener forms further divided into 8 groups corresponding to a1 =
0.01 to 0.8. The 8 Maxwell forms are listed from a1 = 0.01 to 0.8, the 6 Kelvin-Voigt
forms are listed from b1 = 0.2 to 20, and the 6 forms from each Zener group are listed from
b1 = 0.2 to 20 throughout the rest of the analysis. This order of model form is maintained
throughout the presentation of the results.

To organize the results, the similarity scores between the model forms were reordered in
this fashion and compiled into mosaic plots. To find the comparison between two specific
models, the position of each model on the legend can be found by 1) first picking out whether
the modeling approach is classical or fractional, and if fractional what parameters αa and
αb were used, then 2) the specific form of Maxwell, Kelvin-Voigt, or Zener, and finally 3)
the parameters a1 and b1 of the model (Fig. 5A). Their positions on the legend points to a
specific block within the mosaic plot which is shown by the red and blue arrows in Fig. 5B.
The color of each block represents the similarity metric (Eq. (28)) computed from the gray
lines representing the difference between the blue and red curves, which corresponds to the
color of the models selected in Fig. 5A (Fig. 5C). In the following sections, we examine
how the responses of these model forms change in different kinematics testing setups - with
the maximum strain applied, the nonlinearity of the material behavior, and the frequency of
loading.

3.1 Model Response Under Varying Kinematic Conditions

Figure 6 shows how the different model forms compare to each other under sinusoidal cyclic
uniaxial stretch of 1/1.2 to 1.2 and a nonlinearity parameter of c1 = 2. Each cell of the
array plot shows the similarity score (Eq. (28)) between two specific model forms. The
diagonal indicate the comparison between the same forms (with a score of 0), and are thus
colored black. The plot is symmetric by definition and thus the top triangle is used for the
response at 5 Hz and the bottom triangle is used to show the response at 0.05 Hz (0.5 Hz
were also tested but not shown). The results show significantly different behavior at each
frequency.

Notably, the classical forms show significantly higher scores on average. At 0.05 Hz,
the classical Maxwell forms in particular show significant differences with the other forms
(Fig. 6). The classical Kelvin-Voigt and Zener forms compare well with the fractional forms,
except when b1 is small. This is due to the fact that small b1 values reduce to a pure elastic

4If no solution was found, the differential_evolution method (from SciPy module [146]) was ran over the
bounded range of [0.6, (150/c1)1/4] (with the upperbound chosen to prevent double overflow), with tol =
1e-12, popsize = 21 and other default settings.
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Fig. 5 Illustration of the mosaic plots and their interpretation. Simulations were ran for all combinations of
models forms and model parameters listed in Sect. 2.4.3. The resulting model responses were compared in
pairs (Eq. (28)) and compiled into mosaic plots in Fig. 6 and for other kinematics shown in the Appendix.
A) Illustrates how to find the location for the comparison between two models by 1) looking up whether the
modeling approach is classical or fractional and if fractional, then what parameters αa and αb were used, then
2) the specific form of Maxwell, Kelvin-Voigt, or Zener, and finally 3) the parameters a1 and b1 of the model.
B) Once their position on the legend are found, they point to a specific block within the mosaic plot. C) The
color of each block represents the similarity metric (Eq. (28)) computed from the gray lines representing the
difference between the blue and red curves, which corresponds to the color of the models selected in A)

response on the right hand side. The fractional forms are generally very consistent, espe-
cially for its Zener forms. On the contrary, some of the trends seem to reverse at 5 Hz. The
classical Maxwell form behaves much more comparably with the other forms, while the
Kelvin-Voigt forms and Zener forms with small a1 values are outliers (note Zener forms
with low a1 values reduce to the Kelvin-Voigt form). The fractional forms also seem to bias
against high b1 values more often. These types of behaviors illustrate how the b1 terms be-
come more dominate at high frequencies and how the a1 term can heavily dampen the rate
dependent change in response.



Nonlinear Viscoelastic Models in Biomechanics 135

Fig. 6 An illustration using cyclic uniaxial extension with a sine wave form as the example to show how the
model responses compare to each other. Each cell shows the similarity score (Eq. (28)) between two model
forms. The bottom half of the array plot shows the comparison with a frequency of loading of 0.05 Hz and
the top half at 5 Hz. The plots for αa = 0.2 uses a different color scale to show more details. Note the general
consistency of the fractional forms and the low score of the classical Maxwell and Kelvin-Voigt forms at
0.05 Hz. However, this trend can reverse at higher frequencies, where classical Maxwell and Kelvin-Voigt
forms achieve low scores and fractional models vary significantly more in their responses

To examine more closely, we compared each form against a representative specimen
(Sect. 2.4.3), plotted their similarity score (Fig. 7 left) and the best case normalized stress
strain curves for the classical Maxwell, Kelvin-Voigt and Zener forms (Fig. 7 right). For
the classical and fractional Zener models, 8 values of a1 are investigated. Together with the
Maxwell and Kelvin-Voigt models, this leads to 10 color groups, each comprising 6 dots,
for the 6 values of b1 investigated. The right column shows the normalized response of the
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Fig. 7 Examination of each model form in comparison to a representative fractional Zener model exhibit-
ing similar behavior to experimental data. Results at (top) 0.05 and (bottom) 5 Hz are shown. Scatter plots
show the similarity scores (Eq. (28)) for each model form and parameter combination on the left and the
behavior of the best case (lowest similarity score) classical Maxwell, Kelvin-Voigt and Zener models on the
right. The dots of the same colors have different parameters increasing from left to right as indicated in the
legend below the plots. The parameter a1 are {0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.8} and the parameter b1
are {0.2,0.4,1,2,5,20}. Note the reverse in trend for the Maxwell and Kelvin-Voigt forms and the increase
in selectivity for the fractional forms at higher frequency

best classical Maxwell, Kelvin-Voigt and Zener models, and a representative curve which
was selected from the fractional Zener model iterations. As for Fig. 2, the red vertical axis
is for the normalized stress, the blue horizontal axis is for normalized strain and the green
alternative is for normalized time.

The most important difference in trend is the swap in behavior between varying the a1

parameter and the b1 parameter. At 0.05 Hz, each Kelvin-Voigt and Zener groups are ar-
ranged in a V-shaped pattern indicating an optimal response for a given b1 value within
each group. The Maxwell forms in this case tend to occur in a cluster with the trend of
decreasing scores with a1. On the contrary, at 5 Hz, the Maxwell forms are arranged in the
V-shape while the Kelvin-Voigt and Zener forms are clustered. Interestingly, the Kelvin-
Voigt and Zener groups form a V-shape showing the optimality for a specific a1 value. We
can observe this more clearly by examining the shape of the stress-strain curves (Fig. 7).
The classical Maxwell model at 0.05 Hz leads to the most dissimilar curves across all tests,
reflecting the high scores observed. The hysteresis is larger than for the other models. Ad-
ditionally, there is a negative slope around the 0% stretch, as opposed to the other models
which yield a positive slope. In contrast, the observed classical Kelvin-Voigt (blue) curves
switch place with the Maxwell (red) at 5 Hz, yielding an abnormal response with high hys-
teresis.

We next repeated this analysis for the remaining kinematics, and the results for 0.05 Hz
and c1 = 2 are shown in Fig. 8. Broader frequency investigation of each kinematics, as pre-
sented in the uniaxial case in Fig. 6 and 7, is presented in the Supplementary Materials. In
Fig. 8, the kinematics are arranged top to bottom as uniaxial (sinusoidal (A) and saw-like (B)
deformations), biaxial (C), pure shear (D), simple shear (E), torsional shear (F), relaxation
(G) and creep (H). Again, in the available data, the metric is only shown for the classical
models and the fractional ones with (αa,αb) ∈ {(05,0.5), (0.5,0.2), (0.2,0.5), (0.2,0.2)}.
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Fig. 8 Examination of each model form in comparison to a representative fractional Zener model exhibit-
ing similar behavior to experimental data for varying kinematics test cases (at 0.05 Hz). Results are shown
for A) uniaxial (sine), B) uniaxial (saw), C) biaxial (sine), D) pure shear (sine), E) simple shear (sine),
F) torsion (sine), G) relaxation, and H) creep. Scatter plots show the similarity scores (Eq. (28)) for each
model form and parameter combination on the left and the behavior of the best case (lowest similarity score)
classical Maxwell, Kelvin-Voigt and Zener models on the right. The dots of the same colors have different
parameters increasing from left to right as indicated in the legend below the plots. The parameter a1 are
{0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.8} and the parameter b1 are {0.2,0.4,1,2,5,20}
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The abnormal behavior of the classical Maxwell model can be observed here for all kinemat-
ics. In the relaxation test, although the decay part of the curve shows a power-law decrease,
the plateauing part of the stress quickly reaches 0, which is atypical of tissues (Fig. 2). For
the unloading path, due to the viscous stresses and absence of elastic ones, the Maxwell
model produces the largest resistance when the strain is reduced from λ = 1.2 to 1, leading
to a stress undershoot before decaying again to 0. The fractional adaption of the Maxwell
model can be tweaked to produce better results except for the creep test, where the dis-
similarity would remain high. Under several cycles of applying a constant load and then
unloading, the Maxwell models would lead to a continuous increase in strain, with no re-
covery.

The classical Kelvin-Voigt and Zener models show similar results across the tests’ range,
particularly in the oscillatory tests. Note, however, that for the uniaxial test using a saw-type
loading, a jump in the stress level is recorded for the classical Kelvin-Voigt model. This is
because the abrupt change between loading and unloading, under the derivative, leads to a
sudden positive to negative stress change, which is only partly corrected by the elastic term.
The classical Zener model provides a better continuity in this sense. For the relaxation test,
both models decay to the elastic stress level, but with the Kelvin-Voigt form decaying in-
stantaneously at the end of the loading phase. As the strain decreases, the viscous part in
both models leads to an undershoot, before the stress settles to 0. Note that this is smaller
than for the Maxwell model due to the presence of the elastic term. For the creep and re-
lease test, both classical Kelvin-Voigt and Zener models see a gradual strain increase during
the constant load phase, then a sudden, almost linear decrease during the recovery. Over
multiple creep and release tests the recovery strain drifts higher. A fractional approach of
both Kelvin-Voigt and Zener models improves the similarity with the representative curves
across all tests. Although pictured only for the fractional Zener (chosen as representative),
the relaxation curve decays gradually towards the elastic limit, as exhibited in tissues in
literature (Fig. 2). The strain decrease leads to a stress undershoot, which slowly relaxes
towards 0. The creep and release test shows a gradual strain increase, followed by a grad-
ual, non-complete recovery, which drifts higher across multiple tests. The low dissimilarity
score suggests that the same can be inferred about the fractional Kelvin-Voigt model. Note
that the creep test’s similarity scores show a clearer differentiation of parameters that are
suitable for reproducing a representative behavior. Therefore, this test can help single out
optimal parameters from a wider range of satisfactory combinations.

3.2 Optimal Model Form for Material Nonlinearity

Here, we examine the models’ behavior for two exponential parameters (c1 = 1 and c1 = 4),
for two stretch ratios (λ = 1/1.1 to 1.1 and λ = 1/1.4 to 1.4). In Fig. 9, the impact of
the exponential parameter and deformation level are shown for the uniaxial test, with the
other tests being presented in the Supplementary Materials. The organisation of Fig. 9 is
similar to before, with the left column showing the similarity metric of the classical and
fractional models (for some parameter combinations) compared to a representative case, and
the right column showing the normalised best classical models curves compared to the same
representative curve. For both stretch ratios, an increase in the exponential parameter c1

leads to noticeable differences. For a stretch of λ = 1.1, the models’ response deviates more
from an elliptical path. However, for a larger stretch (λ = 1.4), not only does the general
trend of the curves change, but the hysteresis also diminishes, relative to the peak stress level
achieved. Among the models, it is once again evident that the classical Maxwell formulation
for low frequencies leads to responses that are not representative of those observed in tissues,
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Fig. 9 Results shown the similarity scores at the maximum stretch of 1.1 and 1.4 (row 1&2 and 3&4, re-
spectively) and two different nonlinearity parameters c1 = 1 and c1 = 4 (row 1&3 and 2&4, respectively).
The dots of the same colors have different parameters increasing from left to right as indicated in the leg-
end below the plots. The parameter a1 are {0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.8} and the parameter b1 are
{0.2,0.4,1,2,5,20}. Interestingly, the comparison of model responses is not significantly affected by the
material nonlinearity (c1 parameter). However, a difference in the optimal parameter values (a1 and b1) are
observed at larger loading strain. This seems to be due, in part, to the larger strains being more capable at
changing the effective nonlinearity of the material response than simply the exponent c1

yet a fractional approach would improve this aspect. The classical Kelvin-Voigt and Zener
models appear to approach well the representative fractional Zener curve for a stretch of 1.1.
However, at large stretches, the classical forms undershoot when switching from loading to
unloading. A fractional approach would help in this sense, as indicated by the similarity
metric. Overall, here we infer that by increasing the deformation level within a test can
improve the identification of the exponent parameter.

3.3 Optimal Model Form for Frequency of Loading

To better investigate the effect of the frequency (rate) of loading, we examined the storage
and loss moduli in the range 10−3 – 103 Hz. The simulations were reduced to the uniaxial
case with a maximum strain of 1% and a nonlinearity of c1 = 0.5. Figures 10 and 11 show
the storage and loss moduli (E′ and E′′, respectively) of the classical and fractional models,
where the layout indicates the varying parameters. Note that, due to the models considered
being incompressible isotropic, the trends describe the shear storage and loss moduli (G′
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Fig. 10 The small strain storage moduli are shown for all considered model forms. Each subplot shows the
storage moduli (kPa) vs the frequency (Hz). For the Maxwell forms, the scaling is shown on the left. For
the remaining forms, the scaling is shown on the right. The Maxwell form curves correspond to different
parameters a1, rather than b1 as for the other model forms, and are thus plotted with dashed line. From top
to bottom, the models are arranged by (top row) classical and (row 2-5) fractional forms of different αa and
αb values. The order is similar to Fig. 6. From left to right, Maxwell, Kelvin-Voigt and Zener model forms
with different a1 are considered (either classical or fractional). For each individual plot, multiple parameters
are shown considering the other free model parameter. Note that Maxwell plots use dashed lines to indicate
that a different parameter is being varied as well as the axis range on the left side, while all other plots use
the axis range on the right

and G′′) as well, as E = 3G. As a general overview, the first column shows the results for
the Maxwell model, the second column for the Kelvin-Voigt, and columns 3-6 for the Zener
model, while the top row corresponds to the classical model forms and rows 2-5 correspond
to the fractional counterparts. For the Zener models, the linear parameter a1, which scales
the total stress derivative D

αa
t Sve , increases from the 3rd to the 6th column, taking the values

0.01, 0.2, 0.5 and 0.8. The fractional order parameter αa varies across the row groups 2-3
and 4-5, ranging between 0.5 and 0.2, respectively. For each fixed αa value, the αb fractional
order also ranges between 0.5 and 0.2 (hence the 2×2 groups of rows). For the classical and
fractional Maxwell models, each figure shows 8 dashed curves corresponding to a1 values of
0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5 and 0.8, while the b1 parameter is 1. For the Kelvin-Voigt
and Zener models, there are 6 solid lines which indicate that the b1 parameter varies between
0.2, 0.5, 1, 2, 5 and 20. In the case of the Maxwell group, the storage and loss moduli axes
are located on the left of each figure, while for the Kelvin-Voigt and Zener groups, the axes
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Fig. 11 The small strain loss moduli are shown for all various model forms. From top to bottom, the models
are arranged by (top row) classical and (row 2-5) fractional forms of different αa and αb values. Each subplot
shows the loss moduli (kPa) vs the frequency (Hz). For the Maxwell forms, the scaling is shown on the left.
For the remaining forms, the scaling is shown on the right. The Maxwell form curves correspond to different
parameters a1, rather than b1 as for the other model forms, and are thus plotted with dashed line. The order
is similar to Fig. 6. From left to right, Maxwell, Kelvin-Voigt and Zener model forms with different a1 are
considered (either classical or fractional). For each individual plot, multiple parameters are shown considering
the other free model parameter. Note that Maxwell plots use dashed lines to indicate that a different parameter
is being varied as well as the axis range on the left side, while all other plots use the axis range on the right

are located on the right hand size of the 6th column. With this layout in mind, it can be
observed that the fractional Kelvin-Voigt response is repetitive between row groups 2-3 and
4-5, as the varying parameter αa does not appear in the formulation of these models and thus
does not influence the response.

Typical frequency behavior varies across tissues and range of frequency employed, but
some general trends can be identified. Often, both storage and loss moduli increase with fre-
quency following a power law [35, 105], which may transition from a weaker to a stronger
power law when the upper range of the frequency is increased [17, 26, 62]. Alternatively,
both moduli may appear as increasing with frequency and then plateauing [86], and the loss
modulus may even follow a descending trend after an initial increase [13, 88, 142]. Across
the board, we can see that some models or parameter combinations do not yield any of
the expected trends. A fractional order αa larger than αb leads to a decrease of the storage
modulus towards the end tail of the frequency range, while the loss modulus vanishes after
reaching a peak value. Even for cases when αa ≤ αb , when the linear scaling parameter b1
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is smaller than a1 in the Zener models, the storage modulus follows a decreasing trend or
a decrease followed by an increase, while the loss modulus becomes negligible for most of
the frequency spectrum. On the same note, an increasing a1 parameter in the Maxwell mod-
els (where αa = αb and b1 = 1) leads to an increase and then decrease of the loss modulus
even below the initial levels reached at low frequencies. Therefore, for models that employ
derivatives on the viscoelastic stress as well as on the total stress, it is advisable that the
order of the viscoelastic stress derivative is higher than that of the total stress. Bagley and
Torvik [10] found that, for the fractional Zener model to be well-defined across any fre-
quency range, αa and αb must be equal. It is also preferable that the scaling parameter of
the viscoelastic stress be higher than the one of the total stress, especially if the fractional
orders are equal. If these conditions are satisfied, then varying the a1 parameter can help
modulate the frequency at which the storage modulus plateaus or changes from a weak to a
strong power law behavior, and the loss modulus plateaus or reverses from an increasing to a
decreasing trend. The maximum storage and loss moduli achieved could be altered through
the a1 parameter, but parameter b1 is more impactful in this sense. The Kelvin-Voigt models
capture a power law behavior of the loss and storage moduli, which may be tailored to tran-
sition from a weaker to a stronger power law through the manipulation of the fractional order
αb and the linear scaling b1 in the case of the storage modulus. However, it does not appear
to capture a plateauing storage modulus behavior, or an increase followed by a decrease for
the loss modulus.

4 Discussion

This study analyzes the behavior of the nonlinear classical Maxwell, Kelvin-Voigt and Zener
models and their viscoelastic adaptions under typical kinematic conditions imposed in rhe-
ology testing. An extensive parameter examination was carried out, with models relying
upon up to 6 parameters, each spanning several values. Section 3 presented the models’ be-
havior under specific conditions or parameters, and here we aim to overview and gather the
knowledge gained from those analyses. We will start from the fractional Zener model, as it
provides the most generality, and then consider the simplifications that lead to the classical,
Maxwell or Kelvin-Voigt forms (Fig. 4), and their impact on the tests studied.

The most comprehensive model considered in this study is fractional Zener (Eq. (17)) and
entails 6 parameters. Its versatility allows it to capture typical tissue behavior in oscillatory,
constant stress, constant load and frequency tests. The similarity metric for the fractional
Zener model indicates an extensive choice of parameters that can be employed to replicate
typical tissue behavior. However, this is also an indicator on the extensive rheological testing
that needs to be performed in order to identify a unique set of optimal parameters. Indeed,
under limited frequency regimes, the fractional Zener model can be seen to behave similarly
to simpler models (depending on the test considered).

The classical Zener model effectively reduces the fractional model complexity by setting
both derivative orders αa and αb to 1 (Eq. (13)), and thus relying upon 4 parameters. This
simplification leads to significant changes in the relaxation and creep tests. During a con-
stant applied strain, the model decays rapidly to a constant (elastic) stress level. The short
relaxation time is atypical of tissues, as seen in Fig. 2. The creep shows a characteristic
tissue response during the constant load phase but not during the release, where the strain
decreases linearly. Therefore, the classical Zener model might be ill suited to model tissue
behavior under high impact (e.g., abdominal organs in a car crash), or the heart for growth
and remodeling problems, where loading triggers the growth.
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A further model simplification would be achieved by dismissing the elastic stress and
setting b0 = 0, leading to a classical Maxwell model. In all the curves shown at a small
loading rate (0.05 Hz in Figs. 8 and 9), the model failed to capture a representative behav-
ior, mostly due to excessive hysteresis. Therefore, it is unsuitable to be employed with slow
rate behavior, e.g., the liver response under respiratory motion. Nonetheless, at faster de-
formation rates, the hysteresis diminished (Fig. 7). The fractional approach of the Maxwell
model also appears to be able to produce representative tissue behavior, as it arises from the
similarity metric, and is not restricted by the deformation rate. However, the pitfall of both
classical and fractional Maxwell models remains their inability to predict creep behavior,
as the strain keeps increasing indefinitely and there is no strain recovery during the offload
periods. Hence this class of models is to be avoided for scenarios involving persistent me-
chanical stresses.

Another avenue of simplifying the Zener model is by setting the a1 parameter to 0,
leading to the Kelvin-Voigt type of models. This is particularly attractive because the or-
dinary differential equation becomes easier to implement and solve. The classical form ex-
hibits the expected limitations in modeling relaxation behavior, which appears to decay in-
stantly. Moreover, at higher frequency rates in oscillatory tests, the hysteresis amplifies to
non-physiological levels (Fig. 7). This also reflects in the frequency behavior over a wider
range, as the storage modulus remains constant but the loss modulus has an increasing trend
(Figs. 10 and 11). Therefore, the classical Kelvin-Voigt model should not be employed with
fast rate phenomena (e.g., elastography applications). The fractional model approach is bet-
ter suited for relaxation and frequency investigation for both slow and fast rates, and appears
to be an attractive alternative to the fractional Zener model, from numerical and parameter
fitting process perspectives. Its limitation arises from the frequency spectrum investigation,
which reveals a continuous increasing path for both the storage and loss moduli. The fre-
quency range over which these moduli increase according to a power-law, before plateauing,
varies across tissues - e.g., 0.01-10 Hz for liver [88] and cardiac thin filaments [142], 0.1-
100 Hz in kidney [105]. Therefore, the use of the fractional Kelvin-Voigt model may have
limitations in some elastography applications, or for modeling cardiac tissue dynamics.

Rheological testing of tissues has grown over the decades. It is now acknowledged that
tissues generally exhibit nonlinearity and viscoelasticity, among other more specific traits.
When planning rheological testing, it is advantageous to have an insight into how differ-
ent protocols might accentuate certain features and help towards a better identification of
model parameters. In this study we saw that, for an isotropic material, uniaxial and shear
deformation lead towards a similar behavior being exhibited (Fig. 8), hence choosing a sin-
gle test out of the two could help avoiding redundancy. Biaxial stretching enables a better
differentiation between the quasi-linear behavior and the transition to nonlinearity, hence
being preferable for characterizing a model’s nonlinearity - exponent c1. An increase in the
stretching level has a similar effect in accentuating model nonlinearity (Fig. 9), but a careful
tissue handling is required in order to avoid damage. The inclusion of a purely elastic term
in the model is essential for modeling creep behavior, as seen from the inadequate shape of
the Maxwell type of models. However, the fractional Maxwell model appears to be able to
capture a representative behavior across all other tests. This indicates a possible redundancy
of the elastic term across the other kinematics, which could lead to non-unique parameter
identification. For example, a previous study involving the fractional Kelvin-Voigt model
[23] indicated that appropriate torque response could be achieved with either a combination
of large b0 and αb values or small αb and b0 = 0. Although this could be a consequence of
employing similar forms for Se and SQ in both this study and [23], the inclusion of a purely
elastic term is essential and could be well characterized through a combination of tests. In
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the above example, a relaxation test would have helped in identifying the b0 and αb balance,
as a small relaxation time (large αb) would have led to a rapid decay towards the elastic limit
b0Se , whereas a small αb would have shown a slow decay. Apart from the stress decay in
relaxation tests, fractional parameters αa and αb also modulate the hysteresis levels, hence
cyclic tests are required in determining their contribution. Generally it should be considered
that αa ≤ αb , as otherwise the loss modulus shows non-physiological trends (Fig. 11).

We note that Bagley and Torvik [10] show, for a linear fractional Zener model, that αa =
αb to satisfy the second law of thermodynamics under cyclic load. While non-dissipative
behavior was not observed in the tests presented, for the case where (αa,αb) = (0.2,0.5),
a1 = 0.8, b0, b1, c0 = 1 and frequencies below ≈0.0025 Hz, hysteresis amounted in a small
accumulation of energy as opposed to a dissipation. Although this only occurs for small
frequencies, this indeed suggest that αa = αb or αa = 0 is necessary to satisfiy the laws of
thermodynamic.

The storage and loss moduli investigation over an extensive frequency range can also
point towards the appropriate balanced contribution of a1 and b1, as a1 can modulate the
frequency at which these moduli stop increasing according to a power-law, and b1 can tailor
the maximum level achieved. From this analysis it can be inferred that for a more complex
model, like fractional Zener, an extensive testing is required in order to be able to sepa-
rate parameter contribution - an oscillatory test at large stretch levels, creep, relaxation and
frequency range investigation. If the latter is not available, then the use of the fractional
Kelvin-Voigt model might be preferable, to avoid αa − αb ambiguity.

4.1 Limitations

In this study some assumptions and simplifications had to be adopted, due to the exten-
sive amount of data produced by parameter variation. Firstly, the models were limited to
be isotropic. Anisotropic forms would have shown a more pronounced differences between
uniaxial and shear responses, whereas a redundancy of the two modes of deformation was
observed here. Nonetheless, based on the knowledge gained in this study, a model with pre-
defined set of feasible parameters (e.g., αa ≤ αb and a1 ≤ b1) can be extended to incorporate
anisotropic forms for which the material parameters can be determined from further stud-
ies. Secondly, here the same underlying form was assumed for Se and SQ, with ce

1 = cv
1 .

These forms could be altered, but the gain would not have been significant for the pur-
pose of this study, whose focus is on the viscoelastic behavior exhibited by different model
forms, rather than on the underlying hyperelastic behavior. Moreover, other types of mate-
rial models could have been employed in lieu of the Fung-type model. For example, a study
considering fractional viscoelastic models with Mooney-Rivlin, Fung and Ogden forms for
a limited number of rheological tests is done in [23]. Nevertheless, considering multiple
forms here would have further complicated the analysis of results, which currently consists
of 4,216 models compared across 144 testing conditions. Model complexity could also be
increased, e.g., by incorporating additional viscoelastic terms (b2D

αc
t SQ). However, as the

fractional Zener model showed enough versatility to capture typical tissue behavior across
several testing protocols, additional terms might have simply led to redundancy in observed
behavior. However, this idea might be pursued in combination with increasing material com-
plexity, such as anisotropy.

The visual results presented in this study had to be narrowed down to several represen-
tative cases. More parameter combinations results are available in the Supplementary Mate-
rials, but an exhaustive representation would have been impossible due to the large number
of curves produced. Nonetheless we believe that the discussion points addressed in Sects. 3
and 4 offer a good overview on models’ capabilities and parameter influence.
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5 Conclusions

Viscoelastic modeling of biological tissues is an area that has been explored to some extent
in literature, but lags behind hyperelastic modeling amongst modelers. Classical viscoelas-
tic models have been more readily employed, while fractional formulations have only been
emerging more recently. The study presented here offers a systematic overview of nonlin-
ear classical Maxwell, Kelvin-Voigt, Zener and their fractional model adaptions across a
range of typical rheological tests. Different kinematic tests have been imposed (oscillatory
uniaxial and shear deformations, constant load and constant strain), as well as variations in
deformation level and frequency response. A comprehensive model parameter analysis was
also performed across a broad spectrum, revealing the specific influence of each parameter
on model behavior. While the results could not be presented exhaustively, due to the large
number of curves produced, the relevant information was inferred by computing a similarity
metric of each model-parameter combination against all the other combinations, or against
a representative curve. Therefore, we could identify the scenarios which yield typical tissue
responses, as well as understand the limitations of the other cases. As such, the findings
of this study can be used in making an informed model selection when aiming to capture
particular rheological traits. Alternatively, the insights gained here can help devising testing
protocols such that model parameters can be well identified from varying tissue response.

Choosing an appropriate viscoelastic model depends on the behavior that needs to be
replicated. If a simple, uniaxial cyclic stress response has to be characterized, then the clas-
sical Zener model would suffice. At low frequencies, a further simplification to classical
Kelvin-Voigt model would work (i.e., a1 = 0), whereas for intermediate to high frequencies,
the simplification should be done towards the Maxwell form (i.e., b0 = 0). Similarly, if re-
laxation and creep responses are not of interest, then one can select a simpler model like
Maxwell or Kelvin-Voigt in order to replicate other types of behavior (e.g., cyclic). How-
ever, for realistic responses across a wide range of tests and frequencies, the fractional Zener
model is the most robust, if employed with a reasonable set of parameters. This model could
always be considered as a general starting point, with simplifications being carried as appro-
priate, depending on frequency range of interest and deformation type - cyclic or constant
stress/strain.
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