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Abstract The application of a newly proposed generalised neo-Hookean strain energy func-
tion to the inflation of incompressible rubber-like spherical and cylindrical shells is demon-
strated in this paper. The pressure (P ) – inflation (λ or v) relationships are derived and pre-
sented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled
cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four
considered shells are analysed and the critical values of the model parameters for exhibiting
the limit-point instability are established. The application of the model to extant experimen-
tal datasets procured from studies across 19th to 21st century will be demonstrated, showing
favourable agreement between the model and the experimental data. The capability of the
model to capture the two characteristic instability phenomena in the inflation of rubber-like
materials, namely the limit-point and inflation-jump instabilities, will be made evident from
both the theoretical analysis and curve-fitting approaches presented in this study. A compar-
ison with the predictions of the Gent model for the considered data is also demonstrated and
is shown that our presented model provides improved fits. Given the simplicity of the model,
its ability to fit a wide range of experimental data and capture both limit-point and inflation-
jump instabilities, we propose the application of our model to the inflation of rubber-like
materials.
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Fig. 1 A typical inflation
pressure (P ) versus stretch (λ) or
volume (v) curve for a
spherical/cylindrical rubber shell,
exhibiting limit-point and
inflation-jump instabilities

1 Introduction

The inflation of incompressible isotropic rubber-like spherical and cylindrical shells has
been well codified using the nonlinear theory of elasticity. Upon selecting an appropriate
form of a strain energy function W and imposing the correct boundary conditions, solu-
tions may be obtained of analytical relationships between the inflation pressure P and the
deformation stretch λ (or volume v). The physics of inflation of rubber shells, however,
evinces interesting instabilities. Adopting the same terminology as advocated by Mangan
and Destrade [27], the pressure-deformation curve in spherical and cylindrical rubber shells
quickly reaches a maximum in pressure, which is referred to as the limit-point instability.
Upon further inflation, the pressure decreases but then increases rapidly again until the burst-
ing point. In practice, if we keep inflating after the maximum pressure limit-point instability,
the stretch suddenly jumps to a larger value on the second ascending branch, which is called
inflation-jump instability. A representative illustration of these features is shown in Fig. 1.

The inflation of rubber balloons is considered an archetypal problem in the mathematical
modelling of nonlinear elasticity, and inflation experiments are relatively straightforward to
perform compared with other more intricate deformation experiments such as shear or tor-
sion. The solution of the inflation problem for an arbitrary strain energy function W may be
traced back first to the work of Green and Zerna in the limit of the thin shell approximation
[17]. Similar results were later derived by Green and Adkins from a general theory of incom-
pressible, hyperelastic membranes [16], and by Beatty from a purely energetic consideration
[5]. See also the book by Müller and Strehlow for a thermodynamics approach to the prob-
lem of inflation [29]. Beatty’s work, however, contains a detailed analysis of the inflation
problem using the Mooney-Rivlin, neo-Hookean and Fung-Demiray incompressible strain
energy functions and the compressible Blatz-Ko material. By comparing the predictions of
the mathematical models with the experimental data, Beatty arrived at the following funda-
mental conclusions in relation to the inflation problem within the framework of nonlinear
elasticity [5]:

(i) The experimental results on the inflation of rubber balloons are consistent with the
assumption of incompressibility;

(ii) While the Mullin’s effect can affect the quality of the experimental data, a careful
preconditioning of the specimens allows the study of inflation within the framework of
hyperelasticity with a good approximation;

(iii) Of the considered strain energy functions, the Mooney-Rivlin model which includes
the I2 invariant may be a more appropriate mathematical model; and
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(iv) The ultimate stiffening effect as a result of the influence of the molecular chain structure
is a prominent characteristic in the balloon inflation problem.

At first glance, these results may indicate that any incompressible, hyperelastic strain en-
ergy function with an I2 term may be an appropriate choice for modelling the true physics
of the inflation phenomenon. Interestingly, however, not many strain energy functions W

in the literature are capable of reproducing and capturing the aforementioned instabilities,
and their application to modelling the large deformation of rubber-like materials may prove
specious. As shown in [27], a long list of generalised neo-Hookean strain energy densities
and other types of functions including those embodying I2 terms either fail to reproduce the
limit-point instability or the ascending branch to capture the inflation-jump instability. These
include the neo-Hookean, Varga, Dickie-Smith (see [11] for this model), Gent-Thomas (see
[15]), one-term Ogden and Mooney (of 3rd degree) models. Even the Mooney-Rivlin model,
while capable of predicting the instabilities, fails to accurately capture the “the ultimate stiff-
ening effect”, i.e., point (iv) of Beatty’s main findings summarised earlier in the foregoing,
and therefore does not provide a good fit to the second ascending branch of the inflation
curve (see [27]). Indeed, a primary finding of Mangan and Destrade was that perhaps only
the Gent-Gent model, i.e., the modification adduced by Pucci and Saccomandi [32] to the
original Gent model [12], may be the most versatile for capturing the true physics of in-
flation of rubber-like balloon shells [27]. We note here another important contribution in
the study of inflation instabilities by Kanner and Horgan [23] using limiting chain exten-
sibility models, further underlining the ability of such models and in particular that of the
Gent in capturing the inflation behaviour of rubber-like thin shells. These results therefore
appear to indicate that the generalised neo-Hookean part (the I1 term) of the model may be
more prominent in predicting the true inflation behaviour of rubber shells, and the role of
the I2 term may be less critical. Note that a similar sentiment in relation to the role of I2 in
modelling the biomechanics of soft tissues has also been echoed by Ogden and Saccomandi
[30]. For a recent discussion and summary on the role of the I2 invariant in modelling the
deformation of rubber-like materials see the work of Destrade et al. [10].

Generalised neo-Hookean strain energy functions that have their roots in the statistical
mechanics of molecular chains in rubber elasticity enjoy the advantage of incorporating the
(meso)structural features of the material. One such structural feature is the chain extensi-
bility limit, which gives rise to the strain hardening effect observed in the defamation of
rubber-like materials. See also [30] in the context of the biomechanics of soft tissues. One
of the celebrated generalised neo-Hookean functions in this regard is the Gent model. In-
deed, using this model the study of Mangan and Destrade [27] underlines a fundamental
result in addressing point (iv) of Beatty’s main findings, i.e., modelling the “ultimate stiffen-
ing effect”. However, the focus of that study was the Gent-Gent model and how it compares
with the Mooney-Rivlin model in capturing the inflation phenomenon in rubber-like ma-
terials. The problem of inflation, however, is not limited to the scope of application of the
Gent-Gent model and further improvements in modelling results and analysis may still be
achieved, as we endeavour to demonstrate in this contribution. One way of achieving this
improvement is to devise a more refined model than that of the Gent.

The aim of this paper is to consider the foregoing problem of modelling the inflation
and the ensuing instabilities of rubber-like shells within the framework of a new generalised
neo-Hookean strain energy function from the family of limiting chain extensibility models
in the form of [3]:

W = μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
, (1)
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where μ is a measure of shear modulus, N is the classical number of Kuhn segments, and
I1 is the first principal invariant of the left Cauchy-Green tensor B. This model is a refor-
mulation of that proposed previously for application within the context of soft tissue biome-
chanics [2]. Note that μ in the above model is not the infinitesimal shear modulus μ0. On

using μ0 = 2
(

∂W
∂I1

)
I1=3

(see, e.g., [10]), the following relationship between μ in our model

and the infinitesimal shear modulus μ0 is rendered:

∂W

∂I1
= μN

[
1

6N
− l

I1 − 3N

]
⇒ μ0 = 2μN

[
1

6N
− l

3 − 3N

]
⇒ μ = μ0

[
3 − 3N

1 − 3N

]
.

(2)
The interest in the application of this model may be manifold. First, the model is directly

derived from the molecular theory of rubbers and therefore the model parameters have phys-
ical objectivity and meaning (see [2] and [3] for a detailed derivation). The Gent model,
by contrast, was intuitively derived to mimic the strain hardening effects of the statistical
molecular chain models involving the inverse Langevin function, in a purely phenomeno-
logical way [33]. Indeed, the Gent model is the simplest model of a class of models that
generalise Rivlin’s approach of deriving analytical strain-energy functions using rational
function approximants [20]. In this sense, the proposed model is structurally a refinement
of the celebrated Gent model. Second, the model has a simple mathematical form and only
embodies two parameters. Third, it is able to provide improved fits to a wide range of pure
homogenous and simple shear deformation data (see [3] for more details and applications),
and as will be shown further on also to many inflation datasets, with respect to other similar
models such as that of the Gent. Accordingly, the proposed model provides a more accu-
rate tool for investigating and modelling Beatty’s “ultimate stiffening effect as a result of
the influence of the molecular chain structure in the balloon inflation problem”. Our anal-
ysis in this work is therefore not just contrasting a model against extant experimental data,
but rather is to offer new insight into a more accurate modelling of the “ultimate stiffening
effect” and the instabilities inherent to the inflation behaviour of rubber-like materials. It
is only by this approach, i.e., devising and offering more accurate modelling tools, that a
meaningful investigation of other and more general issues such as the significance of the I2

term in modelling the inflation phenomenon may be carried out and accomplished.
In view of the shortcomings of a body of the existing models in the literature to capture

the inflation of rubber-like shells recounted in the foregoing, and the aforementioned advan-
tages of the proposed model in Eq. (1), it is our aim in this paper to show the application
of this model to the inflation problem of rubber-like shells and demonstrate its capability in
capturing the two characteristic instability phenomena of the inflation problem. This paper,
therefore, is first concerned with deriving the equations for inflation pressure as a function
of the amount of inflation, i.e., either the stretch λ or volume v, using the proposed model
for four rubber shells: thin-wall and thick-wall spherical balloons, and thin-wall and thick-
wall cylindrical tubes. We then apply the model to a range of extant experimental data for
comparing the model predictions versus the data and present the modelling results.

Of the four inflation problems that will be considered in this paper, the thin spherical
balloon shell provides a simple context for the application of the presented model in the
study of inflation within the theory of non-linear elasticity. It is well known that capturing
the characteristics of the inflation curve crucially depends on the suitability of the consid-
ered model. For example, not all models are capable of capturing a single local maximum
pressure, a monotonic stable inflation, or both the limit-point and inflation-jump instabilities
(a classic example is the neo-Hookean strain energy function; however see [23] and [27] for
more analysis). Therefore, while extensively studied, the inflation of a thin spherical balloon
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shell is an important first step for a convincing demonstration of the predictive capabilities
of our model in capturing the true physics of inflation and the ensuing instabilities. We will
then consider the problem of the inflation of a thick-walled spherical balloon. This problem
has been less well studied; nevertheless we will devise and present the pressure-inflation
relationships for thick-wall spherical balloons using our model. A particular field of appli-
cation of thick-wall spherical shells may be in the study of (small) cavities; though we will
not consider such studies in our current work. Next, we will analyse the inflation of thin-
and thick-walled cylindrical tubes. Comparatively, the inflation of cylindrical shells has re-
ceived less attention than studying spherical balloon shells. However, a fortiori, analysing
the inflation of cylindrical shells is of critical importance. First, all the intricacies of inflation
characteristics and instabilities discussed in the case of spherical balloon shells may also be
extended to cylindrical shells. Second, instabilities in the inflation of cylindrical tubes mani-
fest themselves as non-uniform deformations along the tube, where a localised portion of the
tube may experience a bulge while other parts of the tube may remain moderately inflated.
This mode of inflation instability is reminiscent of arterial aneurysms, and hence appropriate
modelling tools for the inflation of cylindrical shells may also prove insightful in studying
the biomechanics of biological tissues in healthy and diseased conditions [6, 7]. As will
be cast forth, our model predicts a stable monotonic inflation for a thick walled cylindrical
tube, while the inflation of a thin wall cylinder exhibits both monotonic inflation and limit-
point and inflation-jump instabilities, depending on the value of the model parameter N .
Therefore, based on the physics of the problem, appropriate analytical tools may be applied.

The derivation of pressure-inflation equations for all the four aforementioned cases will
be presented in §2. Theoretical analyses surrounding the characteristics of the pressure
curves and critical values of the model parameters related to instabilities will also be pre-
sented for each case in this section. The application of the model to extant experimental
datasets will be demonstrated in §3 along with the modelling results. It will be shown how
the model favourably captures the true physics of inflation for datasets which either exhibit
the inflation-jump instability or do not. In addition, we highlight a number of interesting
findings including an appreciable improvement of the fits with respect to the Gent model’s
predictions and that the inclusion of an I2 term may not often result in an improved fit com-
pared with the I1-only function for this class of (inflation) deformation. Concluding remarks
are conferred in §4.

2 Model Formulation

In this section we formulate and present the pressure-inflation relationships derived from our
proposed model in Eq. (1) for spherical and cylindrical shells. The underlying assumption in
deriving these relationships is that the Young-Laplace equation of equilibrium should apply.
While we employ this assumption here a priori, a rigorous derivation and justification for
making this assumption has been presented in [27], starting from the exact solution for
inflation of finite thickness non-linearly elastic shells.

2.1 Pressure-Inflation Relationship for Thin Spherical Balloon Shells

Starting from the Young-Laplace equation of equilibrium for bubbles, and noting that the
Cauchy stress σ is equal to the tension T divided by the deformed thickness, the well-
established relationship between the (Cauchy) stress and inflation pressure may be written
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as:

σ = Pr

2h
, (3)

where r and h are the deformed radius and thickness, respectively. On assuming that the
balloon remains spherical on inflation and due to the symmetry of the problem, a state of
equi-biaxial extension is rendered where:

⎧⎪⎪⎨
⎪⎪⎩

λ1 = λ2 = λ = r

r0
,

λ3 = λ−2 = h

h0
,

(4)

are the principal stretches under the assumption of incompressibility, and r0 and h0 are the
undeformed radius and thickness, respectively. Given that the Cauchy stress tensor σ under
incompressibility is given as:

σ = 2
∂W

∂I1
B − pI, (5)

with B = FFT and I the identity matrix, Eq. (3) may be re-written to give an explicit rela-
tionship for the inflation pressure P and inflation stretch λ as:

P = 4
h0

r0

(
λ−1 − λ−7

) ∂W

∂I1
. (6)

For the specific form of our proposed W function in Eq. (1), where:

∂W

∂I1
= μ

[
I1 − 9N

6 (I1 − 3N)

]
, (7)

and I1 = 2λ2 + λ−4, the final form of the inflation pressure – stretch relationship in our
model for thin spherical shells may be arrived at as:

P = 2h0

3r0
μ

(
λ−1 − λ−7

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)
. (8)

In some applications, it may prove more convenient to use an auxiliary variable v = λ3 as a
measure of volume expansion ratio. Using this new inflation measure, Eq. (8) may be simply
re-written as:

P = 2h0

3r0
μ

(
v− 1

3 − v− 7
3

)(
2 3
√

v2 + 3
√

v−4 − 9N

2 3
√

v2 + 3
√

v−4 − 3N

)
. (9)

Due to the existence of a singularity point at a critical λ or v in our model (where the
denominator of the argument in the second bracket of either Eqs. (8) or (9) will approach
zero), the model will always predict an ascending branch a priori with increase in λ or v.
However, for the existence of the limit-point instability, a first point of maximum in the
inflation pressure curve needs to exist which in turn requires that the model parameter N to
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Fig. 2 Normalised inflation pressure versus stretch for a thin spherical balloon shell using our proposed
model in Eq. (8) at various values of N . For N < 5.603, it is clear that the inflation is monotonic and stable;
while for N > 5.603 both limit-point and inflation-jump instabilities are evident

fall within a certain range. In order to calculate the critical value of N where the limit-point
instability ceases to exist, we require using Eqs. (8) that [23, 27]:

dP

dλ
= 0,

d2P

dλ2
= 0, (10)

or equivalently using Eq. (9) with respect to v. The ensuing expressions can be derived
straightforwardly but are rather lengthy and we therefore refrain to reproduce them in full
here in the interest of brevity. However, it can be shown that Eq. (10) holds if:

−4λ18 +48Nλ16 −27N2λ14 +24λ12 −204Nλ10 +189N2λ8 +27λ6 −60Nλ4 +7 = 0. (11)

We obtain that Eq. (11) has two real roots in λ > 1 if the value of N is above a certain
threshold, denoted by Nt , as:

N > Nt
∼= 5.603. (12)

For N < 5.603, Eqs. (8) and (9) predict a monotonic and stable inflation. For N > 5.603, the
inflation pressure curves will exhibit a maximum pressure, namely the limit-point instability,
and the second ascending branch, namely the inflation-jump instability. Normalised inflation
pressure curves produced by Eq. (8) using various values of N below and above Nt are
presented in Fig. 2, reinforcing the existence of the threshold Nt value.

2.2 Pressure-Inflation Relationship for Thick Wall Spherical Balloon Shells

We employ the approach devised by Gent in analysing the inflation of thick-walled spherical
balloons [13], with a more detailed derivation of the relationships. In this regard, the internal
pressure P required to inflate a thick-walled spherical shell may be obtained by integrating
the contribution of dP from concentric thin-walled balloon shells with wall thickness dr0.
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The relationship between the (Cauchy) stress and inflation pressure in Eq. (3) may therefore
be adjusted as:

σ = dPr0

2dr0
λ3, (13)

with further modifications to Eq. (4) as:

⎧⎨
⎩

h = λ−2dr0 = dr0

λ2
,

r = λr0 ⇒ dr = d (λr0) .

(14)

Since now dr becomes the deformed thickness h, i.e., h = dr , we find that:

dr0

λ2
= d (λr0) = r0dλ + λdr0 ⇒ dr0 = r0dλ

λ−2 − λ
. (15)

On substituting dr0 from Eq. (15) into (13) we obtain:

dP = σ
2λ−4

λ−3 − 1
dλ. (16)

By using equation (5) for σ , Eq. (16) may be re-written to give an explicit relationship for
the inflation pressure P and inflation stretch λ as:

dP = 4
λ−2 − λ−8

λ−3 − 1

∂W

∂I1
dλ. (17)

Using Eq. (7) and noting that I1 = 2λ2 +λ−4, the final form of the inflation pressure – stretch
relationship in our model for thick spherical shells may be arrived at as:

dP = −2

3
μ

(
λ−2 + λ−5

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)
dλ. (18)

Note that the inflation pressure P is obtained by (numerically) integrating Eq. (18) from
P = 0 at λ = 1 to −P in the inner surface.

From the relationship in Eq. (18) we find that Eq. (10)1 has only one real root for all N >

1 in λ > 1, and therefore our model does not predict a limit-point/inflation-jump behaviour
for the inflation of thick-walled spherical shells. Note that the solution to Eq. (10)1 at any
given N renders the maximum stretch λ at which the limiting chain extensibility will be
reached. Therefore, always a monotonic and stable inflation is predicted for thick-walled
spherical shells. Normalised inflation pressure curves produced by Eq. (18) using various
values of N are presented in Fig. 3, reinforcing the prediction of a stable and monotonic
inflation for all valid ranges of N and deformation.

2.3 Pressure-Inflation Relationship for Thin Cylindrical Tube Shells

We now consider the inflation of long closed-end thin cylindrical tubes using a similar ap-
proach used in §§2.1 and 2.2. However, unlike the problem of spherical balloons, two prin-
cipal stretches appear in the analysis of cylindrical shells, namely the circumferential stretch
λθ and the axial stretch λz. See Fig. 4 for the definition of cylindrical coordinates and direc-
tions.
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Fig. 3 Normalised inflation pressure versus stretch for a thick spherical balloon shell using our proposed
model in Eq. (18) at various values of N . Note that for all valid values of N > 1, the model always predicts a
monotonic and stable inflation

Fig. 4 Cylindrical coordinates
and directions as used in our
derivations

The counterpart to Eq. (3) for cylinders is (see [27] for a detailed analysis):

{
P = 2h

r
σz,

P = h
r
σθ ,

(19)

using the axial and hoop stresses, respectively. Subject to incompressibility we have
λzλθλr = 1 and Eq. (4) is accordingly adjusted to:
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⎧⎪⎪⎨
⎪⎪⎩

r

r0
= λθ ,

h

h0
= λ−1

θ λ−1
z ,

(20)

and I1 = λ2
θ + λ2

z + λ−2
θ λ−2

z . From Eq. (5) we also get:

⎧⎪⎪⎨
⎪⎪⎩

σθ = 2
∂W

∂I1

(
λ2

θ − λ−2
θ λ−2

z

)
,

σz = 2
∂W

∂I1

(
λ2

z − λ−2
θ λ−2

z

)
.

(21)

On substituting Eqs. (20) and (21) into (19) the final form of the inflation pressure – stretch
relationship in our model for thin cylindrical shells may be arrived at as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P = h0

3r0
μ

(
λ−1

z − λ−4
θ λ−3

z

)(
λ2

θ + λ2
z + λ−2

θ λ−2
z − 9N

λ2
θ + λ2

z + λ−2
θ λ−2

z − 3N

)
,

P = 2h0

3r0
μ

(
λzλ

−2
θ − λ−4

θ λ−3
z

)(
λ2

θ + λ2
z + λ−2

θ λ−2
z − 9N

λ2
θ + λ2

z + λ−2
θ λ−2

z − 3N

)
.

(22)

Note that the left hand-side of the Eqs. (22)1 and (22)2, i.e., the inflation pressure P , are the
same, which renders an interesting relationship between λθ and λz stretches as also noted in
[23]:

2λ2
z − λ2

θ − λ−2
θ λ−2

z = 0, (23)

with only the following valid roots over the range of deformation:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λθ =
√√

λ6
z − 1

λz

+ λ2
z,

λz = 1

2

√√√√
√

λ6
θ + 8

λθ

+ λ2
θ .

(24)

It may, however, be more convenient to use the auxiliary volume variable v as we did in
§2.1. In this case, the volume expansion ratio v will be v = λ2

θλz. Using this new inflation
measure, Eq. (22) may be simply re-written as:

P =
3
√

2

3

h0

r0
μ

v2 − 1

v 3
√

v2
(
v2 + 1

) I1 − 9N

I1 − 3N
, (25)

with I1 = 3
(

v2+1
2v

) 2
3
.

It is now possible to calculate the critical value of the model parameter N where the limit-
point instability won’t be exhibited in the inflation of thin spherical shells, using Eqs. (10)
and (25). It can be shown that the conditions in Eq. (10) are held if:

2v12 − 192Nv10 + (
864N2 + 192N − 22

)
v8 − (

3456N2 − 960N + 48
)
v6
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Fig. 5 Normalised inflation pressure versus volume for a thin cylindrical tube shell using our proposed model
in Eq. (25) at various values of N . For N < 2.775, it is clear that the inflation is monotonic and stable; while
for N > 2.775 both limit-point and inflation-jump instabilities are evident

− (
864N2 − 576N + 42

)
v4 − 16v2 − 2 = 0, (26)

and we find that Eq. (26) has two real roots in λ > 1 for N above the threshold value Nt as:

N > Nt
∼= 2.775. (27)

For N < 2.775, Eq. (25) and by extension Eq. (22) predicts a monotonic and stable inflation
of thin cylindrical shells. For N > 2.775, the inflation pressure curves clearly exhibit a
maximum pressure, i.e., the limit-point instability, and the second ascending branch, i.e., the
inflation-jump instability. Normalised inflation pressure curves produced by Eq. (25) using
various values of N below and above Nt are presented in Fig. 5, reinforcing the existence of
the threshold Nt value.

Remark 1 From the relatively low values of Nt in Eqs. (12) and (27) it may be inferred that
for rubber-like materials with sufficiently low extensibility, stable inflation is predicted for
both spherical and cylindrical thin shells. This result is consistent with that of [23] in which
the Gent model has also been shown to report a relatively low threshold value of Jm, where
Jm is the extensibility limiting factor. A similar trend may also be extended to biological soft
tissues. Our early observations regarding the values of N when modelling soft tissues are
that they are typically low (see, e.g., [4] for tendons with 2.05 < N < 3.70). The literature
also reports on low values of Jm in human arterial tissues, e.g., [21], with 0.4 < Jm < 2.3.
One may consider the relationship between Jm and N to be Jm = 3 (N − 1), and therefore
the value of N for arteries will fall in the range of 1.13 < N < 1.77. Separately, some studies
have shown no instability in the inflation of human arteries (see, e.g., [18]). Therefore, the
reported stable inflation behaviour for those arteries are consistent with the threshold value
Nt for cylindrical thin shells predicted by our model. However, if future studies reveal that
arterial tissues may report higher values of N but still exhibit a stable inflation, then perhaps
the assumption of thick-walled cylindrical tubes maybe a more appropriate assumption –
see §2.4.
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2.4 Pressure-Inflation Relationship for Thick Cylindrical Tube Shells

In a similar manner to §2.2, here we derive and present the inflation pressure – deformation
relationships for thick cylindrical shells. Accordingly, the internal pressure P required to
inflate a thick-walled cylindrical shell may be obtained by integrating the contribution of
dP from concentric thin-walled cylindrical shells with wall thickness dr0. Relationships in
Eq. (20) may be re-written as:

⎧⎨
⎩

r
r0

= λθ ⇒ r = r0λθ ⇒ dr = d (r0λθ ) ,

h = dr0
λθ λz

.

(28)

Again, since dr becomes the deformed thickness h, i.e., h = dr , we find that:

dr0

λθλz

= d (λr0) = r0dλθ + λθ dr0 ⇒ dr0 = r0dλθ

λ−1
θ λ−1

z − λθ

. (29)

Similarly, the inflation pressure – Cauchy stress relationships in Eq. (19) may be accordingly
re-written as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dP = 2λ−1

θ λ−1
z dr0

λθr0
σz,

dP = λ−1
θ λ−1

z dr0

λθr0
σθ .

(30)

By substituting for dr0 from Eq. (29) into (30) and on using Eq. (21), we arrive at the
differential form of the inflation pressure – stretch relationships in our model for thick-
walled cylindrical shells as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP = − 2μ
(
λ2

θλ
4
z − 1

)
3λ3

θλ
2
z

(
λ2

θλz − 1
)

(
λ2

θ + λ2
z + λ−2

θ λ−2
z − 9N

λ2
θ + λ2

z + λ−2
θ λ−2

z − 3N

)
dλθ ,

dP = −μ
(
λ2

θλz + 1
)

3λ3
θλ

2
z

(
λ2

θ + λ2
z + λ−2

θ λ−2
z − 9N

λ2
θ + λ2

z + λ−2
θ λ−2

z − 3N

)
dλθ .

(31)

Note that the inflation pressure P is obtained by (numerically) integrating the relationships
in Eq. (31) from P = 0 at λθ = 1 to −P in the inner surface.

Similar to the case of thin cylindrical shells, it may be more convenient to use the volume
expansion measure v instead of the principal stretches, and thus Eq. (31) may be simplified
to the following inflation pressure – volume relationship:

dP = −
3
√

2μ(v + 1)
(
v2 + 2

)
9v

(
v2 + 1

)
3
√

v2
(
v2 + 1

) I1 − 9N

I1 − 3N
dv, (32)

with I1 = 3
(

v2+1
2v

) 2
3
.

From the relationship in Eq. (32) we find that Eq. (10)1 has only one real root for all N >

1 in λ > 1, and therefore our model predicts a monotonic and stable inflation for thick-walled
cylindrical shells. Normalised inflation pressure curves produced by Eq. (32) using various
values of N are presented in Fig. 6, reinforcing the prediction of a stable and monotonic
inflation for all valid ranges of N and deformation.
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Fig. 6 Normalised inflation pressure versus volume expansion ratio for thick cylindrical tube shells using
our proposed model in Eq. (32) at various values of N . Note that for all valid values of N > 1, the model
always predicts a monotonic and stable inflation

3 Application to Experimental Data

In this section we apply the inflation equations derived in §2 to extant experimental datasets
for modelling the inflation phenomena observed in rubbers. The scope of the experimental
data entails the inflation of spherical balloons and cylindrical tubes, procured and collated
from studies across a span of three centuries, from Mallock’s early work in 1891 [26] to that
of Holzapfel [18] and Mangan and Destrade [27] in the 21st century! The tabulated collated
pressure – inflation data from each study are presented in Appendix.

To find the best model fit to each considered set of data, the designated relevant model
equations were curve fitted to the data by minimising the residual sum of squares (RSS)
function defined as: RSS = ∑

i

(
P model − P experiment

)2

i
, where i is the number of data points.

This minimisation was achieved via an in-house developed code in MATLAB®, using the
genetic algorithm (GA) toolbox. The values of R2 for each fit were calculated first by estab-
lishing the Coefficient of Correlation using a built-in MATLAB function and then squaring
that value.

3.1 Spherical Balloon Shells

Through [14] we first became aware of Mallock’s early work in studying the inflation in-
stabilities in what has been referred to as India rubber [26]. Therein he reports inflation
pressure (P ) – volume ratio (v) data for a spherical thin shell, with h0

r0
= 0.0125. Modelling

results for this dataset using Eq. (9) are shown in Fig. 7. The model parameters are μ = 390
kPa and N = 7.28 × 1014, with R2 = 0.96.

Mallock’s data only includes the onset of limit-point instability, and hence using the
model we were able to predict the critical (maximum) pressure and the behaviour beyond
this point (see the right panel in Fig. 7). The maximum pressure reported in the data is 5.70
kPa, while that of the model corresponds to 5.79 kPa, showing a favourable agreement. Note
that model parameters for all considered datasets in this section are summarised in Table 1.

The second dataset we consider here is due to Beatty (1987) [5], where the inflation pres-
sure (P ) – stretch (λ) data for a “typical balloon inflation experiment” has been reported.
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Fig. 7 Modelling results for the inflation of the India rubber spherical balloon shell using Mallock (1891)
data [26] and Eq. (9). The left panel shows the direct fitting result and the right panel shows the model
prediction of the critical pressure and beyond

Fig. 8 Modelling result for a “typical balloon inflation experiment” reported in [5] using Eq. (8)

That study does not present the value of h0
r0

ratio, however we assume a middle point be-
tween that of [26] and [27] as 0.02. Using Eq. (8), the modelling result for this dataset is
presented in Fig. 8, reporting a favourable agreement between the experimental data and
the model. The modelling parameters are μ = 340 kPa and N = 32.38, with R2 = 0.98 (see
Table 1). The reported experimental maximum pressure is 8.75 kPa, versus 8.68 kPa of the
model, showing a good agreement.

The third dataset we present here is for the inflation of vulcanized natural rubber spher-
ical balloon specimens due to Rivlin and Saunders (1951) [34]. Therein they report on the
normalised inflation pressure values in terms of Pr

4h0
(
1−λ−6

) . Since our formulation of inflation

pressure in Eq. (8) is more readily amenable to 3Pr0
2h0

normalisation, we undertook to convert

the values in [34] by a factor of 6
(
λ−1 − λ−7

)
; see Appendix for the converted values. The

modelling results are shown in Fig. 9, with μ = 0.39 MPa, N = 9.78 × 1014 and R2 = 0.97
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Fig. 9 Modelling result for vulcanized natural rubber spherical balloon specimens due to Rivlin and Saun-

ders (1951) [34] using Eq. (8). Note the adjustment required for normalisation of the pressure values to 3Pr0
2h0

Fig. 10 Modelling result for inflation of typical rubber balloons of “the dime-store variety” using Eq. (8).
Data from [27] but originally due to Merritt and Weinhaus (1978) [28]

(see Table 1). The experimental maximum (pressure) data reports a value of 0.68 MPa and
that of the model is 0.66 MPa, showing a close proximity.

Next we consider the inflation data originally due to Merritt and Weinhaus (1978) [28],
reported in [27], for rubber balloons of “the dime-store variety”. The data was kindly pro-
vided to us by Professor Destrade, where an average h0

r0
ratio of 0.026 was considered [27].

Using Eq. (8), the modelling result for this dataset is presented in Fig. 10, where an ex-
cellent agreement between the data and the model predictions are observed. The modelling
parameters are μ = 56.10 kPa and N = 16.33, with R2 = 0.99 (see Table 1). The reported
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Fig. 11 Modelling result for the inflation of the monkey bladder using Eq. (8) and the data in [27], originally
due to Osborne 1909 [31]

Table 1 Model parameter values for the inflation of spherical balloon shells data

N [–] μ [kPa] R2

Mallock (1891) data [26] 7.28 × 1014 390 0.96

Beatty (1987) data [5] 32.38 340 0.98

Rivlin and Saunders (1951) data [34] 9.78 × 1014 360 0.97

Merritt and Weinhaus (1978) data [28] 16.33 56.20 0.99

Osborne (1909) data [31] 3.62 1.30 0.94

experimental maximum pressure is 1.96 kPa, versus 1.92 kPa of the model, showing a very
good agreement.

Finally, to include a flavour of soft tissue biomechanics, we also consider in this section
the application of our opposed model to inflation of hollow viscera, and in particular the
monkey bladder as originally carried out by Osborne 1909 [31]. This dataset was consid-
ered in [27] and here we use that data. While the original h0

r0
ratio for the specimens has

not been reported in [31], Mangan and Destrade stipulated a ratio of ∼0.15 [27]. Using this
value and Eq. (8), the experimental data versus modelling results are presented in Fig. 11.
Model parameters are μ = 1.30 kPa and N = 3.62, with R2 = 0.94 (see Table 1). Since the
value of N is below that of Nt

∼= 5.603 given in Eq. (12) as the threshold value for exhibit-
ing the limit-point instability in the inflation of thin spherical shells, a stable inflation has
been predicted by the model. As noted in [27], Osborne’s data does not originally start from
zero pressure, and potential anisotropic effects are not accounted for in the current inflation
pressure formulations. Considering these two limitations, the model is able to provide a rea-
sonable characterisation of the data. Shortcomings of other models such as that of Mooney
and Gent to describe this particular dataset have been discussed and presented in [27].

Table 1 summarises all the values of the model parameters obtained for all the fits pre-
sented in this section.
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Fig. 12 Modelling results for the inflation of the India rubber cylindrical tube shell using Mallock (1891)
data [26] and Eq. (25). The left panel shows the direct fitting result and the right panel shows the model
prediction of the critical pressure and beyond

3.2 Cylindrical Tube Shells

Similar to the previous section, we start by presenting the results for Mallock’s data on the
inflation of thin India rubber cylindrical shells [26]. The reported h0

r0
for these specimens is

0.039, and the experimental data have been presented as inflation pressure (P ) – volume (v).
Modelling results for this dataset using Eq. (25) are shown in Fig. 12. The model parameters
are μ = 662 kPa and N = 7.28 × 1014, with R2 = 0.97. As with the spherical balloons,
Mallock’s data only includes the onset of limit-point instability, and hence using the model
we were able to predict the critical (maximum) pressure and the behaviour beyond this point
(see the right panel in Fig. 12). The maximum pressure reported in the data is 18.46 kPa,
while that of the model corresponds to 18.77 kPa, showing a close agreement. Note that
model parameters for all considered datasets in this section are summarised in Table 2.

The second dataset we consider here is due to Alexander (1971), where experimental data
for latex tube inflation have been reported [1]. The considered experimental data set therein
have been provided in normalised inflation pressure – circumferential stretch (λθ ) data, with
the normalised pressure being Pr0

2μh0
; see Appendix for the dataset. With this data, we first

calculated the axial stretch λz from Eq. (24)2 and subsequently used Eq. (22), adjusted to
account for the normalisation, to model the inflation data. Modelling results are presented
in Fig. 13, with model parameter N = 32.05 and R2 = 0.99 (see also Table 2).

The dataset from Alexander (1971) [1] is interesting as it only contains data points be-
fore the onset of limit-point instability, and then on the second ascending branch, i.e., the
inflation-jump instability. Therefore the model has to predict the inflation behaviour between
these two instabilities and capture the maximum (normalised) pressure, which is predicted
by the model to be at 0.386. The model appears to provide an excellent agreement with the
data.

The third dataset that we analyse here is due to Charrier (1974), where inflation of thin
rubber tubes under various axial pre-stretches have been studied [8]. According to the de-
scribed experimental protocol, an axial force was first applied to the specimen to achieve a
pre-set level of axial stretch λz. Then the stretch was kept constant while the tube was in-
flated. Here we consider the inflation data under three fixed axial stretches of λz = 1, 1.5 and
2.5. The pressure data therein has been normalised as Pr0

h0
. The three datasets were simulta-
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Fig. 13 Modelling result for the inflation of latex tubes due to [1] and using Eq. (22), adjusted to account for

the normalisation Pr0
2μh0

Table 2 Model parameter values for the inflation of cylindrical tube shell data

N [–] μ [kPa] R2

Mallock (1891) data [26] 7.28 × 1014 662 0.97

Alexander (1971) data [1] 32.05 – 0.99

Charrier (1974) data [8] 5.5 ± 0.41 690 ± 30 >0.98

Holzapfel (2005) data [18] Rubber 27.44 26 0.99

Iliac Artery 1.0008 0.351 0.99

Kyriakides and Chang data 1990 [24] 37.98 – 0.92

1991 [25] 27.31 – 0.99

neously fitted to Eq. (22), adjusted to account for the Pr0
h0

normalisation, and the modelling
results are shown in Fig. 14. The model parameters were established to be μ = 0.69 ± 0.03
MPa and N = 5.5 ± 0.41, with R2 values in excess of 0.98. The values of model parameters
have also been summarised in Table 2.

Note the interesting feature in this dataset is that due to the application of axial pre-
stretch λz, the circumferential stretch λθ enters the compressive range. This dataset therefore
provides a valuable assessment of the model’s capability in capturing the inflation process
within the compressive range too.

Next we consider data from Holzapfel (2005) on inflation of latex tube specimens with
a h0

r0
ratio of ∼0.36 [18]. The dataset therein reports on inflation pressure (P ) – circumfer-

ential stretch (λθ ). Using Eq. (24)2 we first calculated the values of λz and subsequently
the dataset was modelled using Eq. (22). The modelling result is shown in Fig. 15, with
model parameters μ = 26 kPa and N = 27.49, reporting an excellent agreement with the
data (R2 = 0.99). These values are also summarised in Table 2. Note that [18] only includes
data building up to the onset of the maximum pressure. Using the model it was possible
to predict the limit-point and inflation-jump instabilities, as shown (with dotted line) in the
right panel of Fig. 15, with the maximum pressure of 7.16 kPa.
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Fig. 14 Modelling results for the inflation of cylindrical rubber tubes under various fixed axial pre-stretch
levels: λz = 1, 1.5 and 2.5. Data was collated from [8] and Eq. (22), adjusted to account for the normalisation
Pr0
h0

, was used for modelling

Fig. 15 Modelling results for the inflation of the latex cylindrical tube shell using Holzapfel (2005) data [18]
and Eq. (22). The left panel shows the direct fitting result and the right panel shows the model prediction of
the critical pressure and beyond

We now consider two datasets from the studies of Kyriakides and Chang [24, 25] on the
inflation of commercial natural rubber tubes. In the first study, they report on the normalised

inflation pressure
(

PR0
μh0

)
– volume ratio (v) data [24]. Note that R0 in their representation is

the undeformed outside radius of the tube which they report to be 6.35 mm. Given that r0 in
our formulations is (R0 − h0), the normalisation rendered by our model in Eq. (25) needs to
be multiplied by the R0

r0
ratio, 1.3368, to account for the correct normalisation. Accordingly,

the data were fitted to Eq. (25), with the modified factor of 1.1368, and the modelling result
is shown in Fig. 16(a). As summarised in Table 2, the model parameter N for this dataset
is N = 37.98 with R2 = 0.92. The experimental maximum (normalised) pressure reports a
value of ∼0.86 versus that of the model predicted to be ∼0.87, showing a good agreement.
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Fig. 16 Modelling results for the inflation of commercial natural rubber tubes using Eq. (25): (a) data from
[24]; and (b) from [25]

Fig. 17 Modelling result for inflation of human iliac artery from Holzapfel (2005) data [18] using Eq. (22)

The second of the studies, i.e., [25], conducts inflation experiments on similar tubes and

reports the normalised pressure
(

P
μ

)
– volume ratio (v) data. Using Eq. (25), subject to

rearrangements required to produce the normalisation, the modelling result is shown in
Fig. 16(b), with model parameter N = 27.31 and R2 = 0.99 (see Table 2). While the data is
generally captured well, note that the experimental maximum (normalised) pressure value
is ∼0.22 while that of the model prediction is ∼0.19.

Finally, similar to §3.1, we close this section with a soft tissue biomechanics application.
Holzapfel (2005) reports on the inflation of human iliac arterial samples [18], where the
inflation pressure (P ) – circumferential stretch (λθ ) data have been presented for specimens
with a h0

r0
ratio of 0.25. Using Eq. (24)2 we calculated the values of λz and then via Eq. (22)

modelled the inflation data. The modelling result is shown in Fig. 17, with parameter values
of μ = 0.351 kPa and N = 1.0008, showing an excellent agreement (R2 = 0.99). Model
parameters for this fitting have also been summarised in Table 2. While arterial tissues are
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anisotropic which clearly is not truly captured by the current form of our proposed model,
note that the value of N is below the threshold value Nt

∼= 2.775 given in Eq. (27), and
therefore the model correctly predicts a stable and monotonic inflation in accordance with
experimental observations.

Table 2 summarises all the values of the model parameters obtained for all the fits pre-
sented in this section.

3.3 A Comparison with the Gent Model

As underlined in [3], the functional form of our proposed W in Eq. (1) is similar to that of
the Gent [12]:

WG = −μ0

2
Jm ln

(
1 − I1 − 3

Jm

)
, (33)

where μ0 is the infinitesimal shear modulus and Jm is a model parameter indicative of the
chain extensibility limit. Upon using Eqs. (6) and (21), the ensuing pressure – inflation
relationships for (thin) spherical and cylindrical Gent shells may be derived explicitly as:

P = −2
h0

r0
μ0

(
λ−1 − λ−7

)(
Jm

2λ2 + λ−4 − 3 − Jm

)
, (34)

for thin spherical and

P = −2h0

r0
μ0

(
λ−1

z − λ−4
θ λ−3

z

)(
Jm

2λ2 + λ−4 − 3 − Jm

)
, (35)

for thin cylindrical shells in inflation.
Since the Gent model also predicts the limit-point and inflation-jump instabilities, and is

well-established in the literature, a question may arise as to what advantages our proposed
model may offer over the Gent model. To address this point, in addition to reminding the
reader that our proposed model has a direct structural root and is not purely phenomenolog-
ical as the Gent model, we undertook to fit both models to the datasets considered in this
study. For brevity, we refrain to replicate all the modelling results and present here by way
of example the comparison of both models in capturing the spherical balloon inflation data
due to Beatty [5] and Mangan and Destrade [27], as well as that of a cylindrical tube from
Alexander [1].

Accordingly, Eqs. (8) and (34) for spherical balloon inflation, and their counterpart pairs
in Eqs. (22)1 and (35) for cylindrical tubes, were fitted to the data by the similar manner
described in §3, subject to the required adjustments to match the data normalisation. The
results are shown in Fig. 18. Continuous lines represent our model’s predictions, while the
dashed lines are those of Gent’s.

These sample comparisons make an interesting reading: while may be esoteric, our pro-
posed model provides a more accurate prediction of the experimental data compared with
that of the Gent model. This observation may be further reinforced when comparing the
goodness of fit parameters such as the R2 and RSS values between the two model fittings.
Starting with Beatty’s data [5], both models produce R2 = 0.98; however the RSS values
are 0.018 for our model versus 0.020 of the Gent. For the spherical balloon inflation data
due to [27], the R2 value of the fit provided by our model is 0.99, while that of the Gent
is 0.98, with RSS values being 0.027 and 0.029, respectively. Similarly, for the inflation of
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Fig. 18 Comparison between our proposed model and the Gent model for inflation of: (a) spherical; and (b)
cylindrical thin shells. The continuous line represents our model and the dashed line is that of the Gent. The
Gent model parameters for each dataset are: μ0 = 345.6 kPa, Jm = 107.43 for Beatty’s data [5]; μ0 = 58
kPa, Jm = 57.25 for Mangan and Destrade data [27]; and Jm = 107.25 for Alexander’s data [1]

the cylindrical tube provided by [1], the R2 values of the fits provided by our model and
the Gent model are 0.99 and 0.98, respectively, while the RSS value of our model’s fit is
0.002 and that of the Gent model is 0.003. Therefore, again, while the differences in the fit
goodness values are modest, our model provides an improved fit to the data compared with
that of the Gent.

As noted in [19] and [22], a particular advantage of the Gent model is its mathematical
simplicity, whereby with only two constitutive parameters it facilitates obtaining analytical
solutions for a variety of boundary-value problems including torsion, shear and fracture de-
formation. Our proposed model, with a similar mathematical simplicity and two structurally
relevant model parameters, appears to provide an even better description of the data and
therefore ought to provide more accurate solutions for the forgoing considered boundary-
value deformation problems.

We also note here, following Horgan and Saccomandi [20], that from a mathematical
point of view the Gent model is a rational approximant of order [0/1] of the inverse Langevin
function in terms of I1. However, the model considered in this paper is a rational approxi-
mant of [1/1] order. Therefore, following the argument in [20], our model is a higher order
constrained Padé approximation of the inverse Langevin function, preserving the original
singularity point, so that both functions have the vertical asymptote at the same point. The
singularity point may be viewed mechanistically as the point where the chain has reached
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its maximum allowable extension, beyond which failure may occur. This feature is an ad-
ditional structural characteristic incorporated in our model, and may prove useful in future
studies of investigating the failure point.

3.4 A Note on the Addition of I2 Terms

As with all generalised neo-Hookean strain energy functions, our proposed model is limited
to only I1 terms. In this regard, the addition of an I2 term may be judicious in order to provide
even better-improved fits to the inflation data (note that for some modes of deformation
such as shear, the inclusion of an I2 term is necessary for capturing the true physics of
the deformation – see, e.g., [9]). Without wishing to prompt the structural merits of one
functional form over the other, and purely centred on a phenomenological basis at this point,
we considered the addition of two types of I2 terms commonly used in the literature: (i) a
Mooney term in the form of C2 (I2 − 3); and (ii) a logarithmic term in the form of C2 ln

(
I2
3

)
[32], so that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wi = μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
+ C2 (I2 − 3) ,

Wii = μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
+ C2 ln

(
I2

3

)
.

(36)

We undertook fitting these two models to the inflation data of thin spherical balloons con-
sidered in §3.1. The pressure – inflation relationships may be derived using:

P = 4
h0

r0

(
λ−1 − λ−7

)(
∂W

∂I1
+ λ2 ∂W

∂I2

)
. (37)

Substituting the relationships in Eq. (36) into (37) we find:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pi = 4
h0

r0

(
λ−1 − λ−7

){
μ

[
2λ2 + λ−4 − 9N

6
(
2λ2 + λ−4 − 3N

)
]

+ C2λ
2

}
,

Pii = 4
h0

r0

(
λ−1 − λ−7

){
μ

[
2λ2 + λ−4 − 9N

6
(
2λ2 + λ−4 − 3N

)
]

+ C2

λ2 + 2λ−4

}
.

(38)

Note that I2 = λ4 + 2λ−2.
Interestingly, on using Wi , i.e., the model in Eq. (36)1 containing a Mooney-type I2

term, we did not find any noticeable improvement to the fittings compared with the I1-
only function W in Eq. (1). Indeed, the value of C2 was consistently close to zero. Using
the Wii function, i.e., the model in Eq. (36)2 containing the C2 ln

(
I2
3

)
term also returned

similar results, except for the dataset due to Rivlin and Saunders [34], where a significant
improvement in the fitting was observed. In this case, the value of C2 was found to be
C2 = 0.14 MPa, with μ = 0.24 MPa and N = 21.79. The fitting result is shown in Fig. 19.
The dashed line presents the model with the C2 ln

(
I2
3

)
term; Pii in Eq. (38)2, while the

continuous line is due to the I1-only function W ; P in Eq. (8). The improvement in the
fitting is evident, with R2 = 0.99 versus that of 0.97 by the I1-only function. Also note
the difference between the values of N , where N = 9.78 × 1014 was characterised for this
dataset using the I1-only function W . Therefore, in this case, not only the logarithmic I2

term has improved the fitting, it also appears to have captured the underlying physics more
reasonably.
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Fig. 19 Comparison between the I1-only form of our proposed function W (continuous line) and the addition

of a logarithmic term in the form of C2 ln
(

I2
3

)
, shown with a dashed line, for the dataset due to [34]. Note

the noticeable improvement in the fitting

Therefore, the addition of an I2 term does not seem to automatically guarantee an im-
proved fit in the case of inflation. Our proposed model, the I1-only function W in Eq. (1),
appears to provide a very good fit to the majority of the considered datasets. The addition
of a Mooney-type I2 term did not facilitate an improvement to the fittings, and indeed the
numerical value of C2 was consistently close to zero. However, the addition of the C2 ln

(
I2
3

)
term appears to be useful in better capturing the inflation data of some elastomer samples
such as that due to Rivlin and Saunders [34].

4 Concluding Remarks

The new proposed model in Eq. (1) and the ensuing pressure – inflation relationships were
shown to be crucially capable of capturing the true physics of inflation, including the limit-
point and inflation-jump instabilities. Of the four inflation cases of thick and thin shells con-
sidered and formulated here, it was shown that thick-walled spherical and cylindrical shells
always exhibit a monotonic and stable inflation. The ascription of the limit-point instability
(and by extension the ensuing inflation-jump) in the inflation of thin-walled spherical bal-
loon and cylindrical tubes was, however, made to a critical value of the model parameter N ,
denoted here by Nt . For N < Nt , the inflation of thin-walled shells is predicted to be stable;
however when N > Nt the model predicts and captures the observed instabilities.

A wide range of experimental data using various techniques and over a three-century
span of time were considered here to verify the application and capability of the proposed
model. The overarching theme that emerged from all the fittings is that the proposed model
generally provides a good description of the data, captures the observed instabilities and
predicts maximum pressure values in good agreement with the experimental data. In addi-
tion to the rubber samples, two different datasets from the inflation of biological soft tissues
were also considered. Soft tissues are known to possess low values of N , typically below
those presented in Eqs. (12) and (27). When applied to the inflation data of those soft tissues,
the model consistently characterised a low value of N , below that of Nt , and correctly pre-
dicted a stable inflation as was observed experimentally. The application of the model to all
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considered experimental datasets was made prima facie under the assumption that the shells
maintain their cross-sectional profile during the inflation. The consistent agreement between
the model and the experimental data for all the considered 12 independent datasets, however,
provides a reassuring reliability on the accuracy and capability of the proposed model.

A comparison between the predictions of our proposed model versus those of the Gent
model was also presented. It was shown that while the two models broadly behave in a
similar manner, our model is capable of providing improved fittings to the data. This im-
provement was shown to be observed via the quality of fits, as well as in better R2 and RSS
values. The addition of an I2 term to the proposed functional form of the model was also
considered, through a Mooney-type C2 (I2 − 3) as well as a Pucci-Saccomandi C2 ln

(
I2
3

)
term. While it was shown that the addition of these I2 terms did not automatically lead to an
improved fitting compared to the proposed I1-only function W for most of the considered
datasets, the C2 ln

(
I2
3

)
term was capable of producing noticeable improvements in fittings

to some of the datasets. Such an addition may therefore be recommended particularly in
applications where the I1-only function fails to provide an optimal fit.

As has been shown elsewhere, there are not many models in the literature that can capture
the true physics of inflation and the pertaining instabilities. A famous quote attributed to
George Box reminds us that “all models are wrong, but some are useful”. Our analysis in
this paper showed that the proposed generalised neo-Hookean model may be more useful
than suspected. Thanks to Millard Beatty’s driving research in the framework of nonlinear
elasticity of rubbers and soft tissues, the proposed model provides more insight into better
capturing of the “ultimate stiffening effect” and the ensuing instabilities. Given the simplicity
of our model, sound theoretical background, favourable modelling results and the successful
prediction of instabilities, we propose the application of this model to analysing and studying
the inflation problem in rubber-like materials and soft tissues.
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Appendix: Tabulated Experimental Data

Table 3 Mallock (1891) data
[26] v [–] P [kPa]

1 0
1.04 0.69
1.065 1.38
1.10 2.05
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Table 3 (Continued)
v [–] P [kPa]

1.13 2.57
1.15 2.825
1.20 3.60
1.25 4.07
1.27 4.22
1.30 4.52
1.35 4.81
1.37 4.94
1.405 5.11
1.45 5.25
1.47 5.31
1.51 5.40
1.55 5.48
1.61 5.58
1.65 5.62
1.71 5.65
1.76 5.67
1.81 5.70
1.86 5.65
1.89 5.60

Table 4 Beatty (1987) data [5]
λ [–] P [kPa]

1 0
1.015 0.21
1.02 0.42
1.025 0.945
1.04 1.505
1.055 2.03
1.065 2.485
1.07 3.22
1.09 3.815
1.14 4.935
1.165 5.95
1.24 7.07
1.29 7.77
1.315 8.33
1.39 8.75
1.775 7.63
2.225 6.58
2.525 5.81
3.075 5.04
3.45 4.76
4.025 4.375
4.425 4.375
5.025 4.80
5.325 5.11
5.525 5.32
5.825 5.88
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Table 5 (Converted) Rivlin and
Saunders (1951) data [34] λ [–] 3Pr0

2h0
[MPa]

1 0
1.09 0.37
1.15 0.61
1.23 0.645
1.33 0.68
1.45 0.65
1.74 0.55
2.09 0.48
2.645 0.37
2.98 0.34
3.21 0.32
3.46 0.31

Table 6 Inflation data in [27]
originally due to Merritt and
Weinhaus (1978) [28]

λ [–] P [kPa]

1 0
1.10 1.046
1.26 1.835
1.44 1.955
1.69 1.87
1.90 1.71
2.08 1.57
2.27 1.48
2.49 1.42
2.72 1.37
2.96 1.34
3.21 1.35
3.455 1.38
3.61 1.425

Table 7 Data on the inflation of
monkey bladder from [27],
originally due to Osborne 1909
[31]

λ [–] P [kPa]

1 0.098
1.10 0.14
1.20 0.18
1.30 0.22
1.40 0.25
1.50 0.29
1.60 0.32
1.70 0.395
1.80 0.445
1.90 0.54
2.00 0.70
2.10 0.93
2.20 1.255
2.22 1.31
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Table 8 Alexander (1971)
data [1] λθ [–] Pr0

2μh0
[–]

1 0

1.02 0.04

1.04 0.085

1.06 0.13

1.1 0.17

1.12 0.22

1.2 0.28

1.28 0.31

1.36 0.33

1.42 0.35

5.88 0.21

6.14 0.22

6.48 0.245

6.72 0.28

Table 9 Mallock (1891) data for
inflation of cylindrical tubes [26] v [–] P [kPa]

1 0

1.03 1.76

1.06 3.45

1.10 5.285

1.16 7.74

1.20 9.19

1.235 10.42

1.275 11.64

1.30 12.33

1.34 13.18

1.38 13.87

1.40 14.325

1.46 15.17

1.50 15.78

1.55 16.62

1.60 17.31

1.66 17.77

1.70 18.00

1.76 18.301

1.80 18.46

1.85 18.39

1.91 18.23

1.95 18.08

2.00 17.62
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Table 10 Charrier (1974)
data [8] λz = 1 λz = 1.5 λz = 2.5

λθ [–] Pr0
h0

[MPa] λθ [–] Pr0
h0

[MPa] λθ [–] Pr0
h0

[MPa]

1 0 0.82 0 0.63 0

1.04 0.07 0.85 0.07 0.66 0.07

1.09 0.155 0.90 0.145 0.68 0.11

1.15 0.30 0.93 0.28 0.71 0.15

1.27 0.455 0.98 0.30 0.73 0.19

1.08 0.38 0.76 0.28

0.81 0.26

Table 11 Holzapfel (2005) data
for inflation of latex tubes [18] λθ [–] P [kPa]

1 0

1.02 0.84

1.035 1.27

1.05 1.71

1.06 2.18

1.08 2.62

1.09 3.09

1.12 3.52

1.14 3.92

1.165 4.62

1.20 5.05

1.22 5.42

1.25 5.63

1.27 5.937

1.30 6.18

1.32 6.40

Table 12 Holzapfel (2005) data
for inflation of human iliac
artery [18]

λθ [–] P [kPa]

1 0

1.003 0.67

1.005 1.045

1.007 1.94

1.011 3.36

1.014 6.27

1.017 8.67

1.019 11.64

1.020 19.19

1.021 26.865

1.022 33.94
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Table 13 Tube inflation data
from the works of Kyriakides and
Chang [24, 25]

Kyriakides and Chang
(1990) [24]

Kyriakides and Chang
(1991) [25]

v [–] 1.1368Pr0
μh0

[–] v [–] P
μ [–]

1 0 1 0

1.535 0.18 1.07 0.04

2.785 0.39 1.13 0.08

3.14 0.675 1.03 0.12

3.68 0.82 1.47 0.16

4.07 0.86 3.33 0.22

8.14 0.73 8.00 0.18

14.39 0.64 10.33 0.16

24.21 0.55 16.67 0.14

50.11 0.475 20.33 0.13

65.285 0.46 30.33 0.12

100.019 0.46 40.67 0.11

150.00 0.49 50.33 0.109

200.00 0.52 70.33 0.108

250.02 0.56 90.00 0.11

300.00 0.59 110.00 0.12

130.33 0.125

149.67 0.13
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