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Abstract The Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed
to be valid for the deformations of a three-dimensional body when one of its dimensions is
much smaller than the other two, as is the case for plates. This hypothesis has a long history
checkered with the vicissitudes of life: even its paternity has been questioned, and recent
rigorous dimension-reduction tools (based on standard Γ -convergence) have proven to be
incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hy-
pothesis is a valuable means to derive a two-dimensional variational model for elastic plates
from a three-dimensional nonlinear free-energy functional. The bending energies thus ob-
tained for a number of materials also show to contain measures of stretching of the plate’s
mid surface (alongside the expected measures of bending). The incompatibility with stan-
dard Γ -convergence also appears to be removed in the cases where contact with that method
and ours can be made.

Keywords Kirchhoff-Love hypothesis · Dimension-reduction · Plates’ stretching energy ·
Plates’ bending energy
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1 Introduction

Perhaps, some believe that the theory of elasticity is a dead subject. It may rather be that it is
just deceptively simple: it makes one believe that everything is understood and only routine
computations need to be done, for which it suffices to devise the most appropriate algorithm
(the distinguished job of computational mechanics). Nothing is farthest from truth.
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Perhaps a tangible sign of this is the revival of interest that new problems, mostly arising
from soft matter physics, have engendered. Among these problems is that of predicting
the shape that a nematic polymeric network can take upon the action of external stimuli
that affect its internal material organization. Nematic polymeric networks are elastomeric
materials that bear elongated molecules attached to their structural backbone, molecules
capable of becoming ordered in orientation, as is typical of nematic liquid crystals. Light
and heat can interfere with the orientational order of the nematic component, and this in
turn can affect the polymeric backbone, inducing stresses that alter the shape of the body.
Neat and rich reviews of the many interesting phenomena displayed by nematic elastomers
can be found in [78] and [81], which we highly recommend reading.

Shape is the main object then; especially, when the body is a thin sheet, and so it is more
prone to exhibit extraordinary changes of shape as a result of tenuous stimuli. Perhaps, the
first stunning manifestation of the potential for applications hidden here was the swimmer
“that swims into the dark” [8], a sheet flapping on a fluid surface whenever reached by light.
Other soft matter mechanics papers that draw on shape have a biological inspiration, such
as [26] and [71].

The statics of nematic elastomers in three space dimensions is described by an elastic
free-energy density, commonly delivered by the “trace formula” of Warner and Terentjev’s
theory [80]. In essence, this theory extends the ideas underlying the isotropic Gaussian dis-
tribution of polymeric chains to chains made anisotropic by the mutual interactions of the
nematogenic molecules appended to them. It is no surprise then if the free energy of ne-
matic elastomers (of a purely entropic nature) turns out to be an anisotropic extension of the
classical neo-Hookean formula of isotropic rubber elasticity.

This formula is valid in the bulk, but we are interested in thin sheets. If a heuristic stretch-
ing energy is rather easy to obtain from the trace formula, and lately it has widely been used
[41, 49–54, 62, 79], an attempt at deriving an appropriate bending energy is only very recent
[58]. A revised Kirchhoff-Love hypothesis, central to the theory of elastic plates and shells,
proved particularly instrumental to our derivation. Here, we wish to revisit this classical hy-
pothesis in its natural environment, as it were, and show how its revision could possibly be
used to derive reduced theories for nonlinear elastic plates in which stretching and bending
energies are naturally combined together.

The early theories of plates derived from three-dimensional elasticity for linearly elastic
materials were already proposed by Poisson [67] and Cauchy [9], building on formal ex-
pansions of strains and stresses in powers of the transverse coordinate x3, ranging through
the interval [−h,h] representing the plate’s thickness. Similar expansions, perhaps closer in
spirit to the approach that we shall take, were considered by Lévy [46] in a paper forgotten
by most, but revived in [70]. Undoubtedly, the theory of plates was first established on firm
grounds by Kirchhoff [35], who later in his book [36], improving on Gehring’s dissertation
(published in Berlin in 1860), established the elastic energy of a plate as an expression that

“consists of two parts: one a quadratic function of the quantities defining the extension
of the middle-surface with a coefficient proportional to the thickness of the plate, and
the other a quadratic function of the quantities defining the flexure of the middle-
surface with a coefficient proportional to the cube of the thickness.” [47, p. 27]

Kirchhoff’s plate theory is based on a number of hypotheses, which we found lucidly
described in the account given in [63], based on a critical comparison of the statements
appearing in revered books, such as [73] and [57]. In essence, Kirchhoff’s assumptions can
be reduced to two kinematic statements [63]:
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1. Points of the plate lying initially on a normal to the middle plane of the plate remain on
the normal to the middle surface of the plate after bending.

2. The distance of every point of the plate from the middle surface remains unchanged by
the deformation.

For mysterious reasons, these statements have become to be known as the Kirchhoff-Love
hypothesis; we shall stick to this not fully justified tradition.

This hypothesis has been variously criticized in the literature, mainly for the inconsisten-
cies that it may cause with the distribution of stresses that (depending on the specific consti-
tutive law) should sustain the assumed deformation. Podio-Guidugli [63, 64] overcame this
criticism by taking the view that the Kirchhoff-Love hypothesis is a constraint on the admis-
sible deformations, which is sustained by an appropriate reactive stress, specified in a class
admitted by symmetry and determined by the equilibrium equations of three-dimensional
elasticity.

More recently, the rigorous analytical tool of Γ -convergence has been employed to derive
plate (and shell) theories from three-dimensional elasticity. Admittedly, the problem with
this method is that in general, apart from noticeable exceptions [2, 7], it only affords to
derive single powers of the energy expansion in the thickness 2h. Said differently, we can
obtain from a three-dimensional constitutive model either a “membrane-dominated model”
or a “flexural-dominated model” (in the words of [14]), meaning that we can isolate two-
dimensional energies either linear or cubic in h, respectively. For example, models in the
former category have been derived in [6] for linear plates and in [44] for nonlinear ones
(as well as in [45] for nonlinear shells). Models in the latter category have been derived in
[22, 24] for nonlinear plates (as well as in [23] for nonlinear shells). These higher-order Γ -
limits, however, need to be evaluated on the class of deformations that minimize the lower
order. In other words, we may only recover the h-cubic bending energy on the minimizers of
the h-linear stretching energy.1 Sadly, the analytic notion of Γ -limit has not yet fully evolved
into that of Γ -expansion, and thus it does not yet serve the purpose of deriving blended
stretching and bending energies, free to conspire together in a thin sheet of a (possibly
activable) elastic material, which is our objective here.

In the engineering literature, the role of Γ -convergence as a method to validate re-
duced elastic theories for structure mechanics has further flourished in recent years. As
lucidly reviewed in [65] and [66, § 2], Γ -convergence has been employed to justify both
the Kirchhoff-Love and Reissner-Mindlin theories for linearly elastic plates, in a variety
of ways, which have been classified under two general categories, standard [60, 61] and
improved [59].2

For nonlinear elastic plates, standard Γ -convergence clashed with the Kirchhoff-Love
hypothesis. It was proven in [22] that the rigorous bending energy (in the flexural-dominated
model) is incompatible with the deformation field assumed by the Kirchhoff-Love hypothe-
sis. Here, we try and remedy this clash by revising (and salvaging) the classical hypothesis.
In particular, we shall see that the incompatibility pointed out in [22] is resolved by our
revised hypothesis.

The paper is organized as follows. In Sect. 2, we recall the basic kinematics of plates
and present our revision of the classical Kirchhoff-Love hypothesis. In Sect. 3, we introduce

1More specifically, in [22] the bending energy is obtained by computing the Γ -limit of the energy of nonlinear
elasticity over the isometric embeddings of the plate’s mid plane.
2The literature on variational validation of elastic structure theories is too vast to do justice to it here, espe-
cially in view of the marginal role that these methods play in this paper. Thus, the references given here are
to be regarded as purely indicative, and not exhaustive.
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a description for the deformation of a smooth surface that relies on a notion of Cartesian
connectors, which avoid the use of coordinates and Christoffel symbols. Sections 4 and 5
are devoted to the dimension-reduction afforded by our revised kinematic hypothesis in two
distinct constitutive classes, one for incompressible plates and the other for compressible
ones. We consider a number of special nonlinear elastic models for the application of our
method; for all we derive stretching and bending energies. The features that these results
have in common is the presence in the bending energy of stretching measures of the mid
surface of the plate (alongside the expected measures of bending). In Sect. 6, we summarize
our conclusions and comment on some possible avenues along which this work could be
extended. This paper is closed by the Appendix, where we give explicit formulae for the
mean and Gaussian curvatures of the deformed mid surface in terms of the mapping that
describes it.

2 Kinematics of Plates

Here we wish to describe the deformation of an elastic plate with a uniform width (and
a planar reference configuration). The deformation will be split into two components, a
planar one, which maps the reference plane mid surface onto a deformed mid surface, and
an axial one, which maps vectors normal to the mid reference surface on vectors normal
to the deformed mid surface. The classical Kirchhoff-Love hypothesis consists in assuming
that the second mapping is an isometry (see, for example, [76, p. 551] and [12, p. 156]).
Because of this isometry, assuming regularity for the planar mapping is enough to ensure an
admissible deformation for sufficiently thin plates. In the following, the latter assumption
will be made precise and the isometric constraint along normals will be relaxed. In this
framework, an approximate right Cauchy-Green tensor will be constructed and its invariants
computed.

2.1 Kinematic Preliminaries

Let S be a bounded, two-dimensional flat domain immersed in three-dimensional Euclidean
space E and h > 0 a real constant. We call y : S → E an injective C3-immersion of S

and we denote its image as S := y(S). Pursuing our aim of extending the Kirchhoff-Love
hypothesis, we interpret the closed set S := S × [−h,h] ⊂ E as the reference configuration
of an elastic plate whose mid surface is S. As we focus on the case 2h � diamS, we set
diamS = 1, for simplicity, meaning that we shall rescale all lengths to diamS.

We define the mapping f : S → E as

f (x, x3) = y(x) + φ(x, x3)ν(x), (1)

where ν is the unit normal vector to S and φ : S →R is a C2-function which describes how
normals to S deform into normals to S . It follows from (1) that the deformation gradient
reads as

F(x, x3) := Df = ∇y + φ∇ν + φ′ν ⊗ e3 + ν ⊗ ∇φ, (2)

where ∇ denotes the gradient in x, a prime ′ denotes differentiation with respect to x3, and
e3 is the unit normal to S.3 Furthermore, φ is assumed to obey{

φ(x,0) = 0,

φ′(x,0) > 0,
∀x ∈ S, (3)

3Here we identify the set S with its trivial embedding in E .
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which is justified by the requirement that f be orientation-preserving at least for x3 = 0, as
there, by (2),

det F(x,0) = φ′(x,0)det(∇y) > 0. (4)

The classical Kirchhoff-Love hypothesis just requires that φ ≡ x3, and so it trivially com-
plies with (3). In our approach, φ will rather remain free and either determined to enforce
the constraint of bulk incompressibility or used to minimize the elastic energy stored across
the thickness of the deformed plate. We see now how (3) can ensure that f is an orientation-
preserving C2-diffeomorphism onto its image, for appropriately small values of h.

Proposition 1 There is h > 0 such that the mapping f defined in (1) is a C2-diffeomorphism
from S onto f (S) and det F(x, x3) > 0 ∀ (x, x3) ∈ S.

Proof In the following two steps, we adapt Theorem 4.1-1 of [12, p. 157] to our setting.

1. By the continuity of F, inequality (4) implies that

∃h1 > 0 such that det F(x, x3) > 0 ∀ (x, x3) ∈ S × [−h1, h1].
2. As φ′(x,0) > 0 ∀x ∈ S, the implicit function theorem can be applied on the closure

S×[−h1, h1]. Then, there are η(x) ∈ (0, h1) and a neighborhood U(x) of x in S such that
f is a C2-diffeomorphism from U(x) × [−η(x), η(x)] onto f (U(x) × [−η(x), η(x)]).
Since S is compact, η attains it minimum in S. Moreover, the minimum of η over S must
be strictly positive, otherwise y would fail to be an injective immersion. Thus, h can be
chosen so that

0 < h < min
x∈S

(η(x)), (5)

which is where we shall hereafter take it to be. �

In Sects. 4 and 5, we shall use a polynomial approximation for φ in computing the in-
variants of the right Cauchy-Green tensor Cf associated with f . Now, we justify this ap-
proximation and lay down a number of preliminary formulae for the invariants of Cf .

2.2 Invariants of Cf

We learned in Proposition 1 how to choose h > 0 sufficiently small so that the mapping f is
a C2-diffeomorphism. Hypothesis (3) also implies that ∇φ(x,0) = 0 ∀x ∈ S; thus, it is also
possible to choose h so small that

|∇φ(x, x3)| � φ′(x, x3) ∀ (x, x3) ∈ S. (6)

This inequality will be assumed to be valid in the following, and h will be taken to comply
with both (5) and (6). Within the approximation stated in (6), F in (2) will be written as

F = ∇y + φ∇ν + φ′ν ⊗ e3. (7)

Definition 1 The corresponding right Cauchy-Green tensor Cf associated with f is given
by

Cf := FTF = Cφ + φ′2e3 ⊗ e3, (8a)
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where

Cφ := C + φC1 + φ2C2 (8b)

and

C := (∇y)T(∇y), C1 := (∇y)T(∇ν) + (∇ν)T(∇y), C2 := (∇ν)T(∇ν). (8c)

Here C is the right Cauchy-Green tensor associated with the deformation y, while

B := (∇y)(∇y)T (9)

is the left Cauchy-Green tensor associated with the same deformation. The reader should
heed that all tensors C, C1, and C2 act on the two-dimensional space V3 := {v ∈ V : v · e3 =
0}, where V is the translation space associated with three-dimensional Euclidean space E .
B(x), however, at the place y(x) ∈ S , acts on the two-dimensional space Vν := {v ∈ V :
v · ν = 0}.

Remark 1 The curvature tensor ∇sν of S , where ∇s denotes the surface gradient on S , is a
symmetric tensor on Vν (see, for example, [27]). We easily see that both tensors C1 and C2

can be expressed in terms of ∇sν. As ∇sν = (∇ν)(∇y)−1, it readily follows from (8c) and
the symmetry of ∇sν that

C1 = 2(∇y)T(∇sν)(∇y), C2 = (∇y)T(∇sν)2(∇y). (10)

We now compute the principal invariants of Cf .

Proposition 2 The first invariant, I1 := tr Cf , can be given the form

I1 = (1 − φ2K) tr C + 2φ(1 + φH) tr(B∇sν) + φ′2, (11)

where

H := 1

2
tr(∇sν) and K := det(∇sν) (12)

are the mean and Gaussian curvatures of S , respectively.

Proof We see from equations (8a)–(8c) and Remark 1 that

I1 = tr C + 2φ tr(B(∇sν)) + φ2 tr(B(∇sν)2) + φ′2. (13)

The desired conclusion follows from the identity,

tr(B(∇sν)2) = 2H tr(B∇sν) − K tr C, (14)

which we now proceed to prove. First, we represent locally the curvature tensor ∇sν of S
as

∇sν = κ1n1 ⊗ n1 + κ2n2 ⊗ n2, (15)

where κ1, κ2 are the principal curvatures of S and n1, n2, orthogonal unit vectors of Vν ,
are the corresponding principal directions of curvature, so that, at each place on S , ∇sν is
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a symmetric tensor acting on Vν . Since B is also a symmetric tensor acting on Vν , it can be
represented in the frame (n1,n2) as

B = B11n1 ⊗ n1 + B22n2 ⊗ n2 + B12(n1 ⊗ n2 + n2 ⊗ n1). (16)

Then,

tr(B(∇sν)2)− 2H tr(B∇sν) = B11κ
2
1 +B22κ

2
2 − (κ1 + κ2)(B11κ1 +B22κ2) = −K tr B, (17)

which is precisely (14), as by (9) tr B = tr C. Use of (14) in (13) finally proves (11). �

Equation (11) shows that I1 involves at most quadratic terms in φ and φ′. As a conse-
quence of the orthogonal decomposition in (8a), the second and third invariants of Cf , I2

and I3, will also involve higher powers of φ, but not of φ′. To justify the power expansion
of the stored elastic energy considered in the following, we need only retain in I2 and I3 the
terms at most quadratic in φ; all higher powers of φ will be neglected.

Proposition 3 The third invariant, I3 := det Cf , is expressed by

I3 = φ′2 det C
(
1 + 4Hφ + (4H 2 + 2K)φ2

) + O
(
φ3

)
. (18)

Proof First, we note that, by (8a),

I3 = φ′2 det Cφ. (19)

Then we consider two elementary identities valid for any second-order tensor A on V3: for
any orthonormal basis (e1, e2) of V3,

det A = Ae1 × Ae2 · e3 and tr A = (Ae1 × e2 + e1 × Ae2) · e3. (20)

Making use of these identities, we readily obtain from (8b) that

det Cφ = det C
(
1 + φ tr

(
C−1C1

) + φ2 tr
(
C−1C2

)) + φ2 det C1 + O
(
φ3

)
. (21)

Basic properties of trace and determinant ensure that

tr
(
C−1C1

) = 2 tr(∇sν) = 4H, (22a)

tr
(
C−1C2

) = tr(∇sν)2, (22b)

det C1 = 4K det B = 4K det C. (22c)

Moreover, by the Cayley-Hamilton theorem,

tr(∇sν)2 = tr2(∇sν) − 2 det(∇sν) = 4H 2 − 2K,

which together with (19), (21), and (22a)–(22c) lead us to (18). �

Proposition 4 The second invariant I2 of Cf is given by

I2 : = 1

2

(
tr2 Cf − tr C2

f

)
= det C

(
1 + 4Hφ + (4H 2 + 2K)φ2

)
+ φ′2

(
(1 − φ2K) tr C + 2φ(1 + φH) tr(B∇sν)

) + O
(
φ3

)
. (23)
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Proof It follows from (8a) that

I2 = 1

2

(
tr2 Cφ − tr C2

φ

) + φ′2 tr Cφ. (24)

Since Cφ is tensor on V3, again by the Cayley-Hamilton theorem, it satisfies

C2
φ − (tr Cφ)Cφ + (det Cφ)I2 = 0, (25)

where I2 is the identity on V3. Taking the trace of both sides of (25), we obtain from (24)
that

I2 = det Cφ + φ′2 tr Cφ. (26)

The desired conclusion then follows from (21), (22a)–(22c), and (11), since tr Cφ = I1 −
φ′2. �

In Sect. 4, we shall consider materials that obey the incompressibility constraint, I3 = 1.
There, (18) will turn into a differential equation that determines φ.

In preparation for this, in the following section we refresh the preliminaries of differential
geometry of surfaces in a way that avoids local charts of coordinates, but resorts instead to a
number of vector fields, which describe the correspondence between local movable frames
in the reference and current configurations of a material surface.

3 Cartesian Connectors

Here, we introduce the notion of Cartesian connectors, which in our view constitute a viable
alternative to Christoffel symbols. In terms of these connectors, we reformulate the classical
theorema egregium of Gauss and the Codazzi-Mainardi compatibility conditions.

We reformulate the essentials of the differential geometry of smooth surfaces embed-
ded in three-dimensional space. For definiteness, we shall assume that the mapping y that
deforms S into S is of class C3.

Letting (r1, r2) be the right principal directions, that is, the (normalized) eigenvectors of
C, and (l1, l2) the left principal directions, that is, the (normalized) eigenvectors of B, with
corresponding principal stretches (common to both tensors) λ1 > 0 and λ2 > 0, we may
represent ∇y, C, and B as follows (see, for example, [28, p. 74]),

∇y = λ1l1 ⊗ r1 + λ2l2 ⊗ r2, (27a)

C = λ2
1r1 ⊗ r1 + λ2

2r2 ⊗ r2, (27b)

B = λ2
1l1 ⊗ l1 + λ2

2l2 ⊗ l2. (27c)

We shall assume that the Cartesian frames (r1, r2, e3) and (l1, l2,ν) are oriented so that
e3 = r1 × r2 and ν = l1 × l2. It should be kept in mind that both r1 and r2 lie in the (x1, x2)

plane; ∇ denotes the two-dimensional gradient in this plane, whereas ∇s denotes the surface
gradient on S .

The connector c is a vector field in the plane such that

∇r1 = r2 ⊗ c, (28a)

∇r2 = −r1 ⊗ c. (28b)
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The existence of c and the specific form of (28a), (28b) follow from the requirement that the
right principal directions (r1, r2) be orthonormal everywhere on S.4 Clearly, if r1 is known
then c is defined as c := (∇r1)

Tr2; on the other hand, if c is assigned, at least locally, in
the class C1, then r1 (and r2) can be determined up to a rigid rotation by solving equations
(28a), (28b). To this end, however, c must be compatible; it follows from the symmetry of
both ∇2r1 and ∇2r2 that the compatibility condition reads as

∇c − (∇c)T = 0, (29)

which for a simply connected S implies that c = ∇Φ , where Φ is an appropriate scalar
potential. Since we assume that both r1 and r2 are determined by y, we shall here consider
c as known and satisfying (29).

In complete analogy to the frame (r1, r2, e3) on S, we describe the corresponding frame
(l1, l2,ν) as a field of orthonormal directors on S . Equations (28a), (28b) are generalized
to

∇l1 = l2 ⊗ c∗ + ν ⊗ d∗
1, (30a)

∇l2 = −l1 ⊗ c∗ + ν ⊗ d∗
2, (30b)

∇ν = −l1 ⊗ d∗
1 − l2 ⊗ d∗

2, (30c)

where the connectors c∗, d∗
1, and d∗

2 are planar fields defined on S. A number of conse-
quences for these fields follow from the integrability condition that requires the second
gradients of y, l1, l2, and ν to be symmetric: they are listed below.

1. For the symmetry of ∇2y (in its last two legs), the following second-order tensors must
be symmetric,

l1 · (∇2y) = r1 ⊗ ∇λ1 + λ1r2 ⊗ c − λ2r2 ⊗ c∗, (31a)

l2 · (∇2y) = λ1r1 ⊗ c∗ + r2 ⊗ ∇λ2 − λ2r1 ⊗ c, (31b)

ν · (∇2y) = λ1r1 ⊗ d∗
1 + λ2r2 ⊗ d∗

2. (31c)

Thus, for the symmetry of ∇2y, it must be

λ1c · r1 − ∇λ1 · r2 − λ2c
∗ · r1 = 0, (32a)

λ1c
∗ · r2 − λ2c · r2 − ∇λ2 · r1 = 0, (32b)

λ1d
∗
1 · r2 − λ2d

∗
2 · r1 = 0. (32c)

In particular, (32a) and (32b) can be combined together to yield

c∗ = 1√
det C

Cc − 1

λ2
(∇λ1 · r2)r1 + 1

λ1
(∇λ2 · r1)r2. (33)

By recalling (27b), it becomes apparent from (33) that c∗ is completely determined by c

and C.

4The name connector is inspired by the notion of spin connection for surfaces (and manifolds) (see [34], for
an effective introduction to the differential geometry useful in modelling soft matter). Here, we have applied
(28a), (28b) to the right principal directions; clearly, the same equations apply to any other pair of orthogonal
directions.
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2. Similarly, for the symmetry of ∇2l1, it must be

∇c∗ − (∇c∗)T = d∗
1 ⊗ d∗

2 − d∗
2 ⊗ d∗

1, (34a)

∇d∗
1 − (∇d∗

1)
T = d∗

2 ⊗ c∗ − c∗ ⊗ d∗
2, (34b)

which can also be written in the equivalent forms

curl c∗ = d∗
2 × d∗

1, (35a)

curld∗
1 = c∗ × d∗

2. (35b)

3. For the symmetry of ∇2l2, (34a) is supplemented by

∇d∗
2 − (∇d∗

2)
T = c∗ ⊗ d∗

1 − d∗
1 ⊗ c∗, (36)

or its equivalent form

curld∗
2 = d∗

1 × c∗. (37)

4. Finally, the symmetry of ∇2ν is guaranteed by (34b) and (36).

The connectors d∗
1 and d∗

2 can be given a geometric interpretation by computing the curva-
ture tensor ∇sν of S . It readily follows from (27a) that

(∇y)−1 = 1

λ1
r1 ⊗ l1 + 1

λ2
r2 ⊗ l2. (38)

Letting

d∗
1 = d11r1 + d12r2, d∗

2 = d21r1 + d22r2, (39)

from (38) we arrive at

∇sν = (∇ν)(∇y)−1 = −
(

d11

λ1
l1 ⊗ l1 + d12

λ2
l1 ⊗ l2 + d21

λ1
l2 ⊗ l1 + d22

λ2
l2 ⊗ l2

)
, (40)

which is duly symmetric, as by (39) equation (32c) reduces to

λ2d21 = λ1d12. (41)

Both the mean curvature H and the Gaussian curvature K of S can easily be derived from
(40); they are given by

H = −1

2

(
d11

λ1
+ d22

λ2

)
, (42)

K = 1

λ1λ2
(d11d22 − d12d21) . (43)

An important conclusion follows by combining (34a) and (43) with the aid of (39),
namely

∇c∗ − (∇c∗)T = λ1λ2K(r1 ⊗ r2 − r2 ⊗ r1). (44)

Since, as shown by (33), the left-hand side of (44) is determined by C (alongside its first
and second spatial derivatives), so is K . In other words, the metric on S determines the
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Gaussian curvature of S . This is the manifestation in our setting of the celebrated theorema
egregium of Gauss. Similarly, equations (34b) and (36) are related to the Codazzi-Mainardi
equations (see, for example, [72, p. 144]).

In the special case where both principal stretches (but not necessarily the principal direc-
tions of stretching) are uniform in space, equation (33) reduces to

c∗ = λ1

λ2
c1r1 + λ2

λ1
c2r2, (45)

where c1 := c · r1 and c2 := c · r2. It follows from (29), (45), and the identities

∇c1 = (∇c)r1 + c2c, ∇c2 = (∇c)r2 − c1c, (46)

that

∇c∗ − (∇c∗)T =
(

λ1

λ2
− λ2

λ1

)
(c2

2 − c2
1 + c12)(r1 ⊗ r2 − r2 ⊗ r1), (47)

where we have set c12 := r1 · (∇c)r2. A comparison with (44) readily helps us to conclude
that

K =
(

1

λ2
2

− 1

λ2
1

)
(c2

2 − c2
1 + c12). (48)

It is not difficult to check that (48) agrees completely with equation (22) of [52], which was
deduced with the more traditional use of coordinates and Christoffel symbols.

As appealing as formulae (42) and (43) may be, they are not especially expedient to com-
pute H and K , for a given deformation y, as the link between the latter and the connectors
is rather intricate. In the Appendix, we shall give other formulae for H and K valid for area-
preserving deformations y; they are more accessible to direct computation and also show
the role played by the second gradient ∇2y in determining the principal curvatures of S .

4 Incompressible Elastomer Plates

In this section, we consider an incompressible elastomer plate, for which we assume that the
mid surface S is inextensible and the whole body S is incompressible. That is, we assume
that

det C = 1 and det Cf = 1. (49)

Here we consider the former constraint as a remnant of the latter, the one that survives
when, in the limit as h → 0, only stretching energy is associated with the membrane S by an
appropriate dimension reduction of the elastic energy stored in the three-dimensional body
S.5

4.1 Polynomial Approximation

It is our desire to compute averages of the elastic energy stored across the (small) thickness
of the plate. To this end, it will suffice to represent φ as a polynomial in x3. Using the
expressions for the invariants of Cf presented in Sect. 2, in the following proposition we
shall identify this polynomial.

5In Remark 7, we shall see the consequences of relaxing the inextensibility constraint det C = 1.
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Proposition 5 If we let

φ(x, x3) = α(x)x3 + β(x)x2
3 + γ (x)x3

3 + O
(
x4

3

) ∀ (x, x3) ∈ S, (50)

which complies with (3) for α > 0, then (49) requires that⎧⎨
⎩

α(x) = 1,

β(x) = −H(x),

γ (x) = 1
3

(
6H(x)2 − K(x)

)
,

∀x ∈ S. (51)

Proof By Proposition 3, the constraints in (49) reduce to the equation

φ′2
(
1 + 4Hφ + (4H 2 + 2K)φ2

) = 1, (52)

where φ is as in (50). The desired result then follows by identifying in (52) the coefficients
of equal powers of x3 up to x3

3 , and recalling that α > 0. �

Remark 2 The asymptotic expansion for φ presented in Proposition 5 is consistent with a
C3-regularity for φ in x3. As this hypothesis requires more regularity than that envisaged in
Sect. 2, this is clearly a particular case of the framework described there.

Remark 3 The classical Kirchhoff-Love hypothesis, which requires φ ≡ x3, can thus be
envisaged as the lowest approximation to φ in (50). The higher order approximation repre-
sented by (51) entails a local dependence of the thickness 2h∗ of the deformed plate on the
invariant measures of curvature for S . Explicitly, this coupling is given by

2h∗ =
∫ h

−h

|Fe3|dx3 =
∫ h

−h

φ′dx3 = 2h + 2h3(6H 2 − K) + O(h5). (53)

4.2 Gent’s Material

The elastic energy stored in a plate made of Gent’s material is given by

WG := −μ

2
Jm ln

(
1 − I1 − 3

Jm

)
, (54)

where I1 = tr Cf is the first invariant of Cf , and μ and Jm are positive material constants,
which can be identified with a shear modulus and a stiffening parameter, respectively. The
role of the latter is illuminated by the request that

I1 < Jm + 3, (55)

to which I1 must be subjected for WG to be meaningful.
Gent’s constitutive law (54) was first proposed in [25]; it represents the simplest math-

ematical model for rubber elasticity that accounts for the limited extensibility of the poly-
meric chains constituting these materials. There is a vast literature on microscopic and phe-
nomenological theories for rubber-like materials based on limited molecular extensibility,
for which Beatty [5] coined the name of limited or restricted elastic models; we refer the
reader to the emphatic review [31], which focuses on Gent’s material.
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Taking the limit as Jm → ∞ in (54), we give WG the form

WnH := 1

2
μ(I1 − 3), (56)

which is the celebrated neo-Hookean stored energy density, a special case of the Mooney-
Rivlin formula,

WMR := 1

2
μ[χ(I1 − 3) + (1 − χ)(I2 − 3)], (57)

where 0 < χ � 1 is a dimensionless parameter.6 Both WnH and WMR are incapable of de-
scribing the severe stiffening that occurs even at moderates stretches for soft biological mem-
branes [30], whereas (54) is capable.

The theory proposed in [20] extended the long-standing tradition of statistical theories for
ideal molecules constituted by freely joined rigid links subject to a non-Gaussian distribu-
tion for the end-to-end distance.7 Building on this work, Beatty [4] motivated a constitutive
law for rubber elasticity depending only on I1 and incorporating the stiffening phenomena
associated with a limited extensibility of the constituting chains. It was shown in [32] that
(54), which has a genuine phenomenological origin, is a very accurate approximation to
Beatty’s molecular-based constitutive law; it retraces all qualitative features of the latter and
it reproduces its quantitative predictions, with the advantage of being mathematically sim-
pler, even amenable to explicit, closed-form solutions. Moreover, μ and Jm are related to
the molecular model by

μ = nkT and Jm = 3(N − 1), (58)

where n is the number density (per unit volume) of molecular chains, N is the number of
links in each chain, k is the Boltzmann constant, and T the absolute temperature.

Here, we wish to show how stretching and bending energies are blended together in
a thin sheet of Gent’s rubber-like material complying with (49) and (55). This result will
be achieved in Proposition 6 by integrating WG across the thickness of the plate using the
polynomial expression for φ found in Proposition 5.

Proposition 6 Let φ be of class C3 in x3, so that it can be expressed as in Proposition 5 and
let the constraints (49) be enforced. Then, the following expression is valid for all x ∈ S,

wG(x) :=
∫ h

−h

WG(x, x3)dx3 = hws(x) + h3wb(x) + O
(
h5

)
, (59a)

where

ws(x) := −μJm ln

(
1 − tr C(x) − 2

Jm

)
, (59b)

wb(x) := μ

3
Jm

[
2

(
tr (B(x)∇sν(x)) − 2H(x)

Jm − (tr C(x) − 2)

)2

+ 16H(x)2 − K(x) (tr C(x) + 2)

Jm − (tr C(x) − 2)

]
.

(59c)

6Clearly, (57) reduces to (56) for χ = 1.
7This tradition begun with the works of Kuhn [42] and Kuhn and Grün [43] (a wider selection of early studies
can be found in Treloar’s book [74]); in particular, the paper by Wang and Guth [77] was the starting point of
[4].
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Proof By inserting (11) into (54) and making use of (50) and (51), we expand WG in powers
of x3 up to x2

3 ; standard computations lead us to

WG = μ

2
Jm

[
− ln

(
1 − tr C − 2

Jm

)
+ 2

tr (B∇sν) − 2H

Jm − (tr C − 2)
x3

+
(

2

(
tr (B∇sν) − 2H

Jm − (tr C − 2)

)2

+ 16H 2 − K (tr C + 2)

Jm − (tr C − 2)

)
x2

3

]
+ O

(
x3

3

)
,

(60)

where the dependence on x has been omitted to avoid clutter. Integrating this expression for
WG across the thickness of the plate, we reach our desired conclusion. �

Proposition 6 is the main result of this section. The quantities hws and h3w3 introduced
in (59a) are interpreted as the stretching and bending elastic energy-densities (per unit area)
of Gent’s plates. Following [18], we shall call ws and wb the stretching and bending contents
of Gent’s elastic energy, respectively.

Remark 4 There are similarities between the expression for the plate’s surface energy den-
sity arrived at in Proposition 6 and the elastic energy densities posited in geometric elasticity
(see, for example, [3, 17–19]). Geometric elasticity of plates (and shells) does blend together
stretching and bending energies, which scale with different powers of h; the former, like ws

in (59b), is of a pure metric nature, while in the latter, as in (59c), metric and curvature mea-
sures are combined together in an invariant way. Interesting remarks on this contamination
of stretching and bending measures in wb are offered in [82].

In the vanishing thickness limit, that is, as h → 0, if both ws and wb stay bounded, the
stretching energy prevails over the bending energy and provides the leading deformation
mechanism; for h sufficiently small, we may consider the bending energy as a perturbation
to the stretching energy.

Remark 5 Among all tensors C on V3 such that det C = 1, the stretching content ws in
(59b) attains its minimum at C = I2, which is its unique minimizer. Indeed, letting λ2 = 1

λ1
in (27b), we can write ws as

ŵs = −μJm ln

(
1 − 1

Jm

(
λ1 − 1

λ1

)2
)

, (61)

which attains its unique minimum for λ1 = 1, where ws vanishes. Thus, in the absence
of obstructive boundary conditions and external forces, the surfaces S that minimize ws

are isometric immersions of S in three-dimensional space. By (48), all such surfaces have
K = 0. Further minimizing wb on these immersions amounts at minimizing

ŵb = 16

3
μH 2, (62)

which is the form (for K = 0) of the energy density featuring in Helfrich’s functional for
flexible vesicles [29].

The two-step minimization outlined in Remark 5 is clearly highly hypothetical, for at
least two reasons. First, boundary conditions and external forces are always present and are
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responsible for shaping the equilibrium configurations of plates (especially, elastomer plates,
which are more responsive to mechanical stimuli). Second, the representations of stretching
and bending contents in (61) and (62) miss the main points of the full-blown representations
in (59b) and (59c), that is, that the measures of stretch influence the bending content as well
and that both contents are blended together in (59a) in a way that depends on h and may
give rise to interesting instability scenarios driven by the plate’s thickness. Limiting forms
of the stretching and bending contents such as ŵs and ŵb remain however indicative and
will also be used in the following section to establish contact with a branch of literature in
this field, where those limits have been established differently for a number of models.

Remark 6 When stretching and bending energies compete one against the other for an equi-
librium, the way the surface is stretched affects its response to bending. The coupling be-
tween the two energies is not only conveyed through tr C, the sum of the principal stretches,
it also involves the relative orientation of the eigenframes of the curvature tensor ∇sν and
left Cauchy-Green tensor B.

Letting the former be represented as in (15) and the latter as in (27c), with λ2 = 1
λ1

, we
can write

wϕ := [tr(B∇sν) − 2H ]2 = tr2[(B − I2)∇sν]

=
[(

κ1λ
2
1 + κ2

λ2
1

− κ1 − κ2

)
cos2 ϕ +

(
κ2λ

2
1 + κ1

λ2
1

− κ1 − κ2

)
sin2 ϕ

]2

,
(63)

where ϕ is the angle that l1 makes with n1. This is the only contribution to wb that depends
on ϕ. Even for given λ1, κ1, and κ2, minimizing wϕ is not trivial. While wϕ is independent
of ϕ in the special case that λ1 = 1 or κ1 = κ2, in general, it has always two stationary
points at ϕ = 0 and ϕ = π

2 , which are somehow expected, as there B and ∇sν share the same
eigenframe. However, another pair of stationary points may arise, for which

tan2 ϕ = −κ1λ
4
1 − (κ1 + κ2)λ

2
1 + κ2

κ2λ
4
1 − (κ1 + κ2)λ

2
1 + κ1

, (64)

provided that λ1, κ1, and κ2 make the right-hand side of (64) positive. These extra stationary
points, when they exist, make wϕ vanish, so that it attains its infimum. This shows that at
equilibrium the relative orientation of B and ∇sν may give rise to interesting patterns on S .

Remark 7 We have assumed at the start of this section that S is inextensible and thus C is
subject to det C = 1. This constraint can be easily relaxed, while still enforcing det Cf = 1.
A few changes occur in our analysis, which otherwise proceeds unaltered. We record here
these changes for the interested reader. The polynomial representation formula for φ in
Proposition 5 becomes

φ = 1√
det C

(
x3 − H√

det C
x2

3 + 1

3

6H 2 − K

det C
x3

3

)
, (65)

while the expressions for ws and wb in (59b) and (59c) are to be replaced by

ws = −μJm ln

(
1 − det C(tr C − 3) + 1

Jm det C

)
(66)
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and

wb = 1

3
μJm

1

det C

[
2

(
det C tr(B∇sν) − 2H

det C(Jm − tr C + 3) − 1

)2

+ 16H 2 − K(det C tr C + 2)

det C(Jm − tr C + 3) − 1

]
, (67)

respectively. It is a simple matter to check that for det C = 1 equations (65), (66), and (67)
reproduce the corresponding formulae derived above.

The great advantage offered by the incompressibility constraint det Cf = 1 (and am-
ply exploited in this section) is to determine φ directly on kinematic grounds, as shown in
Proposition 5. For compressible materials, this advantage is lost. We need a different cri-
terion to determine φ. In the following section, we shall show that such a criterion can be
found in minimizing the elastic energy stored in the plate, for a given deformation y of the
mid surface S.

5 Compressible Plates

In this section, we apply the method presented in Sect. 2 to compressible materials. We
shall show how the modified Kirchhoff-Love hypothesis purported in this paper actually
entails non-trivial normal strains for a compressible plate. Our analysis, which again is not
confined to small strains, will conduce to a blending of stretching and bending energies.
To ease the comparison between these latter energies and those already proposed in the
literature (mostly for small strains), we shall also consider the small-strain limit for both
examples we treat in detail below. In one case, we shall derive a Koiter-like potential [37–
40] for the Ciarlet-Geymonat material [13]; this potential is also shown to agree with that
recently derived in [14] for the same material. In the other case, we recover the bending
energy derived in [22] as a rigorous Γ -limit on isometries for a variant of the Saint-Venant-
Kirchhoff material.

5.1 The Ciarlet-Geymonat Material

Ciarlet and Geymonat [13] introduced a general class of hyperelastic potentials intended to
provide an extension to compressible materials of the Mooney-Rivlin stored energy (see, for
example, p. 189 of [10]). Here we shall consider a special example of this general class of
materials, for which the stored elastic energy is

WCG := aI1 + bI3 − 1

2
c ln I3 + d, (68)

where a > 0, b > 0, c > 0, and d are material constants. Letting

Ef := 1

2
(Cf − I) (69)

denote the Green-Saint-Venant strain tensor (see, for example, [28, p. 70]), we show now
that, for strains of sufficiently small norm |Ef |, WCG can be given the classical form of the
stored elastic energy for isotropic materials, with Lamé coefficients, λ and μ, appropriately
related to the material constants in (68).
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Proposition 7 In the limit of small strains the energy WCG in (68) can be given the form

WCG = λ

2
tr2 Ef + μ tr E2

f + O
(|Ef |3) , (70)

provided we set

λ = 4b, μ = 2a, c = 2(a + b), d = −(3a + b). (71)

Proof It suffices to make use in (68) of the following equations

I1 = 3 + 2 tr Ef , (72a)

I3 = 1 + 2 tr Ef + 2
(
tr2 Ef − tr E2

f

) + O
(|Ef |3) . (72b)

�

Here, we continue to represent the function φ as in (50). However, no kinematic con-
straint will determine the functions α(x) and β(x); we need an alternative criterion, which
we identify in minimizing separately the two lowest orders in h of the elastic energy inte-
grated across the plate’s thickness, for a given deformation y of the mid surface S. Hereafter,
to improve clarity, the dependence on the in-plane variable x will be omitted.

Proposition 8 Let φ be given as φ(x3) = αx3 + βx2
3 + γ x3

3 + O(x3
3 ), with α > 0 to ensure

local orientability to f in (1). For WCG as in (68), the minimum energy density (per unit
area) that can be ascribed to S is represented as

wCG :=
∫ h

−h

WCGdx3 = hw1 + h3w3 + O(h5), (73)

where

w1 = 2

[
a tr C + (a + b)

(
1 − ln

(a + b)det C
a + b det C

)
− (3a + b)

]
, (74a)

w3 = 1

3

a(a + b)2(32b det C + 7a)

(a + det C)3
H 2 + 5

3

a2(a + b)

(a + det C)2
b1H

− 2

3

a(a + b)[(a + det C) tr C + 2(a + b)]
(a + b det C)2

K − 1

12

a2

a + det C
b2

1, (74b)

and b1 = tr (B∇sν). Correspondingly, α and β are determined as

α =
√

a + b

a + b det C
, (74c)

β = − a

8(a + b det C)
b1 + (a + b)(a − 4b det C)

4(a + b det C)2
H. (74d)

Proof By (11) and (18), we can write

I1 = tr C + α2 + 2α(b1 + 2β)x3 + [4β2 + 6αγ + 2b1(Hα2 + β) − α2K tr C]x2
3 + O

(
x3

3

)
(75)
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I3 = det C{α2 + 4(αβ + Hα2)x3

+ 2
[
2β2 + 3αγ + 10Hα2β + (2H 2 + K)α4

]
x2

3 } + O
(
x3

3

)
. (76)

Making use of both these equations in (68), we readily arrive at

w1 = 2[a tr C + (a + b det C)α2 − (a + b) ln(α2 det C)], (77)

which does not depend on either β or γ and, for given tr C and det C, is minimized for
positive α at the value in (74c). Choosing α as in (74c), we similarly compute

w3 = 2

3

{
8(a + b det C)β2 + 2

[
2(a + b)(4b det C − a)H

a + b det C
+ ab1

]
β

+ a(a + b)(2b1H − K det C)

a + b det C
+ 2

(a + b)2[2(a + 2b det C)H 2 − aK]
(a + b det C)2

}
,

(78)

which is independent of γ and is minimized for β as in (74d). Inserting (74c) and (74d) in
(77) and (78), respectively, we conclude the proof. �

Remark 8 Although γ features in both I1 and I3 as expressed in (75) and (76), it does not
affect w1 in (77) and neither it does w3 as long as α is chosen so as to minimize w1. Our
minimization criterion leaves γ undetermined. To determine it, we should expand further
the energy density wCG, so as to include terms of order h5, which we renounce doing here.
Both w1 and w3 would however remain unaffected by the value of γ .

Remark 9 Equation (74c) shows clearly how in the compressible case our method differs
even more markedly from the classical Kirchhoff-Love hypothesis, as α = 1 only for det C =
1. Moreover, as for incompressible materials, the bending content w3 also depends on the
relative orientation of the eigenframes of B and ∇sν via b1.

Remark 10 It is perhaps interesting to express both w1 and w3 in (74a) and (74b) in terms
of the Lamé coefficients, λ and μ, associated with WCG in the linearized limit (70). By use
of (71), we obtain that

w1 = μ tr C + 1

2
(2μ + λ)

(
1 − ln

(2μ + λ)det C
2μ + λdet C

)
−

(
3μ + λ

2

)
, (79a)

w3 = 1

3

μ(2μ + λ)2(16λdet C + 7μ)

(2μ + λdet C)3
H 2 + 5

3

μ2(2μ + λ)

(2μ + λdet C)2
b1H

− 1

3

μ(2μ + λ)[(2μ + λdet C) tr C + 2(2μ + λ)]
(2μ + λdet C)2

K − 1

12

μ2

2μ + λdet C
b2

1. (79b)

Remark 11 In the vanishing thickness limit introduced in Sect. 4, we easily find that w1 is
minimized by C = I2, so that correspondingly, again by Gauss’ theorema egregium (which
requires K = 0), w3 takes the form

ŵ3 = 16

3

μ(λ + μ)

2μ + λ
H 2. (80)

It is thus useful to consider the form acquired by wCG in (73) when C is close to I2 and,
correspondingly, ∇sν is close to 0.
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Proposition 9 Let E := 1
2 (C − I2). The following asymptotic representations are valid for

w1 and w3 in (79a) and (79b),

w1 = 2λμ

λ + 2μ
tr2 E + 2μ tr E2 + O

(|E|3) , (81a)

w3 = 16

3

μ(λ + μ)

2μ + λ
H 2 − 4

3
μK + O (|E||∇sν| (|∇sν| + |E|)) . (81b)

Correspondingly, α and β in (74c) and (74d) become

α = 1 − λ

2μ + λ
tr E + O

(|E|2) , (81c)

β = − λH

2μ + λ
+ O

(|∇sν||E|2) . (81d)

Proof To prove (81a) and (81b) it suffices to make use of the following (simple) estimates

tr C = 2(1 + tr E), (82a)

det C = 1 + 2 tr E + 4(tr2 E − tr E2) + O
(|E|3) , (82b)

H = O (|∇sν|) , (82c)

K = O
(|∇sν|2) , (82d)

b1 = 2H + O (|E||∇sν|) . (82e)

Similarly, (81c) and (81d) follow from inserting (71) in (74c) and (74d) and then using again
(82a)–(82e). �

Remark 12 Both expressions for φ and wCG provided by Proposition 9 are precisely the
same as those obtained in Theorem 5.2 of [14].8 This ensures well-posedness to the mini-
mum energy problem in the limit of small strains. In particular, wCG with w1 and w2 as in
(81a) and (81b) is the form appropriate to a plate of the elastic energy density envisaged
in Koiter’s theory for shells [39, 40], in which stretching and bending energies are blended
together, but are kept in a quadratic form. Equations (79a), (79b) above provide instead the
stretching and bending contents for a fully nonlinear theory of plates made of the Ciarlet-
Geymonat material.

5.2 A Variant of the Saint-Venant-Kirchhoff Material

Here, to provide a further application of the method proposed in this paper, we consider a
variant of the classical Saint-Venant-Kirchhoff material studied in [22].9 The stored energy

8It is perhaps worth recalling that (81b) is just the same as the classical formula for the strain energy stored
in a moderately bent plate comprised of a linearly isotropic elastic material, see [47, p. 133], where the Lamé
coefficients, λ and μ, are replaced by Young’s modulus E and Poisson’s ratio σ (see, for example, [47,
p. 126]). Similarly, apart from a numerical prefactor due to a difference in scaling the plate’s thickness, (81b)
is also the same as equation (6.4) of [22], which expresses the Γ -limit on isometries of the elastic free energy
of an isotropic nonlinear material, see also footnote 10 below.
9As shown, for example, in [10, p. 155], the classical Saint-Venant-Kirchhoff material is characterized by the
following stored energy function

W̃SVK := λ

2
tr2 Ef + μ tr E2

f ,
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density (per unit volume) of this material is

WSVK := λ

2
tr2

(√
Cf − I

)
+ μ tr

(√
Cf − I

)2
, (83)

where λ and μ are material constants, which can be identified with the Lamé coefficients of
this material, as shown by the following small-strain approximation to WVSK.

Proposition 10 Letting Ef be defined as in (69), we can give WSVK the same approximate
form in (68), valid for all isotropic materials,

WSVK = λ

2
tr2 Ef + μ tr E2

f + O
(|Ef |3) . (84)

Proof The desired conclusion follows easily from remarking that

√
Cf = I + Ef − 1

2
E2

f + O
(|Ef |3) . (85)

�

A rigorous method was devised in [22] to determine the bending content w3 of a plate
on all isometric embeddings y of S in E . There, w3 is obtained as a Γ -limit on the class
of deformations that minimize the stretching energy. It was also proved in [22] that for all
isotropic materials w3 reads as the leading term in (81b) and the normal deformation φ has
a quadratic representation with coefficients10

α = 1, β = − λH

2μ + λ
, (86)

in accord with the leading terms in (81c) and (81d).
For isometric embeddings y, we can easily relax the polynomial approximation for φ.

Although this refinement makes our kinematic description more accurate, the bending con-
tent w3 is not affected, as shown below for the material with stored energy density WSVK.

Proposition 11 Let y be such that C = I2. Let φ in (1) be a function of class C2 in x3 that
obeys (3). The minimum surface energy is

wSVK :=
∫ h

−h

WSVKdx3 = h3

(
16

3

μ(λ + μ)

2μ + λ
H 2 − 4

3
μK

)
+ O(h5) (87)

(where K = 0, since y is an isometry), which is attained for

φ = 1

2H

1

2μ + λ

(
λ[1 − cosh(2Hx3)] + λ2 cosh(2Hh) + 4μ(λ + μ)

(2λ + μ) cosh(2Hh)
sinh(2Hx3)

)
. (88)

Proof WSVK can readily be rewritten as

WSVK = μ tr Cf − (2μ + 3λ) tr
√

Cf + λ

2
tr2

√
Cf + 9

2
λ + 3μ. (89)

which has the same small-strain limit as (83) (see Proposition 10).
10See, in particular, the unnumbered formula on p. 1494 of [22], keeping in mind the different thickness
scaling, as there h amounts to our 2h.
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Since C = I2, it easily follows from (8a) and (8b) that

√
Cf = I2 + 1

2
φC1 + 1

2

(
C2 − 1

4
C2

1

)
+ φ′e3 ⊗ e3 + O

(
φ3

)
. (90)

Moreover, since K = 0, by use of (10), we also see that

tr Cf = 2 + φ′2 + 4φH + 4φ2H 2 + O
(
φ3

)
, (91a)

tr
√

Cf = 2 + φ′ + 2φH + O
(
φ3

)
. (91b)

Inserting (91a) and (91b) into (89), we arrive at

WSVK =
(

μ + λ

2

)
(φ′ − 1)2 + 2λ(φ′ − 1)φH + 2(2μ + λ)φ2H 2 + O

(
φ3

)
. (92)

Integrating the latter expression over [−h,h] we obtain a functional F [φ], whose Euler-
Lagrange equation reads as

φ′′ = 4H 2φ − 2λH

2μ + λ
. (93)

Solving this equation subject to φ(0) = 0, we obtain the following family of functions

φξ (x3) = 1

2H

λ

2μ + λ
[1 − cosh(2Hx3)] + ξ sinh(2Hx3) (94)

in the parameter ξ . There is a single ξ = ξ that minimizes F [φξ ]. Setting ξ = ξ in (94), we
find (88). Expanding F [φξ ] in powers of h, we find (87). �

Remark 13 The quadratic approximation to φξ has the form φξ = αx3 +βx2
3 , where β is the

same as β in (86), but

α = λ2 cosh(2Hh) + 4μ(λ + μ)

(2μ + λ)2 cosh(2Hh)
= 1 − 8μ(λ + μ)H 2

(2μ + λ)2
h2 + O(h4). (95)

6 Conclusion

We have revised the classical Kirchhoff-Love hypothesis, making it more apt to derive the
blending of stretching and bending energies of a plate from the free-energy functional of
three-dimensional nonlinear elasticity. In summary, we have achieved two main results:
(i) we have shown that measures of stretching enter the bending energy (in addition to the
expected measures of bending); (ii) we have reconciled the Kirchhoff-Love hypothesis to
standard Γ -convergence results for nonlinear plates on the ground where these can be com-
pared with ours.

We have been concerned with developing a general method to obtain two-dimensional
energies from three-dimensional ones and we tested it in a number of cases, thus reviving a
good practice which Truesdell [75] lamented to be forgotten:

“In mathematical practice today it is, unfortunately, often forgotten that to derive basic
equations is even so much a mathematician’s duty as to study their properties.”
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Of course, there is much room for improvement and further extension of the proposed
method.

First, the function φ introduced in (1) was almost invariably taken to be polynomial in x3.
One wonders whether φ could be chosen in a more general class of functions without jeopar-
dizing our conclusions. The only exploration we did along these lines was in Proposition 11,
but for isometric embeddings of S; this did not affect the bending content w3, but had an
effect on α, which changed at the order O(h2), see (95). The question is then whether we
can expect that, as a rule, the bending content is not affected by letting φ vary in a wider
class of functions.

Second, and more importantly, the representation of the deformation f in (1) is not the
most general possible. It would be interesting to replace (1) by

f (x, x3) = y(x) + φ(x, x3)d(x), (96)

where the unit vector d is a director field on S, which contributes to the deformation of the
whole plate S on the same footing as y, representing strains across the plate’s thickness.
Were we able to retrace our entire method starting from (96) instead of (1), the surface
energy density w resulting from a parent volume density W would be a function of d and
∇d , as well as of y and ∇y.

Letting d · ν > 0 throughout the deformed surface S , we find ourselves in the mist of
the Cosserat director-theory for plates (and shells). This theory, which goes back to the pi-
oneering works of the Cosserat brothers [15, 16], is admirably rephrased in modern terms
in the book [1] (see, in particular, Chap. XIV). A full analysis of strain and equilibrium
equations were first neatly developed in [21]. In connection with this theory, the classical
Kirchhoff-Love hypothesis was also used in [56], always assuming d ≡ ν. A more general
thermodynamic treatment of one-director surfaces was presented in [55]. As we also learn
in Sect. 1.9 of [11], this theory is intimately related to the Reissner-Mindlin theory of plates
[48, 68, 69], which indeed allows for the normals to the mid surface in the undeformed con-
figuration not to remain normal to the deformed mid surface (as also illustrated in Sect. 5.2
of [33]).

All this body of knowledge suggests to take (96) as a general representation of the de-
formation field within a plate and use it to perform a dimension-reduction of the three-
dimensional stored energy to derive a genuine two-dimensional energy functional; a similar
pursuit was undertaken in [14] (see, in particular Sect. 6.2).11 It remains to face the difficul-
ties offered by assuming (96) in our entire development, a task which, if not easy, might be
desirable to undertake.
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Appendix: Cartesian formulae for H and K

Consider a deformation y of the planar surface S such that det C = 1, which ensures that y

preserves the area of any portion of S. Letting (e1, e2) be an orthonormal frame in the plane
that contains S, we represent the deformation gradient ∇y as

∇y = a1 ⊗ e1 + a2 ⊗ e2, (97)

where

a1 := (∇y)e1 and a2 := (∇y)e2. (98)

The vectors a1(x) and a2(x) are tangent to S at the point y(x); they need not be orthogonal
to one another, but it follows from (97) that

det C = a2
1a

2
2 − (a1 · a2)

2 = |a1 × a2|2 = 1, (99)

and so, the normal ν to S can be represented as

ν = a1 × a2. (100)

From (97), we obtain that

(∇y)−1 = a2
2e1 ⊗ a1 + a2

1e2 ⊗ a2 − (a1 · a2) (e2 ⊗ a1 + e1 ⊗ a2) , (101)

so that

∇sν = (∇ν)(∇y)−1 = a2
2(∇ν)e1 ⊗ a1 + a2

1(∇ν)e2 ⊗ a2

− (a1 · a2)[(∇ν)e2 ⊗ a1 + (∇ν)e1 ⊗ a2].
(102)

It readily follows from (100) that

(∇ν)e = (∇a1)e × a2 + a1 × (∇a2)e, (103)

for any vector e in the space spanned by (e1, e2). Combining (100) and (103), we arrive at
the identities

(∇ν)e · a1 = −ν · (∇a1)e, (∇ν)e · a2 = −ν · (∇a2)e. (104)
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Use of these in (102) leads us to

2H = tr(∇sν)

= (a1 · a2)[ν · (∇a1)e2 + ν · (∇a2)e1] − a2
1ν · (∇a2)e2 − a2

2ν · (∇a1)e1,
(105)

K = (∇sν)a1 × (∇sν)a2 · ν
= (ν · (∇a1)e1)(ν · (∇a2)e2) − (ν · (∇a2)e1)(ν · (∇a1)e2),

(106)

where a1 and a2 are given by (98), ν by (100), and

∇ai = (∇2y)ei , i = 1,2. (107)
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