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Abstract In the framework of nonlinear theory of Cosserat elasticity, also called micropo-
lar elasticity, we provide the complete characterization of null Lagrangians for three dimen-
sional bodies as well as for shells. Using the Gibb’s rotation vector for description of the
microrotation, this task is possible by an application of a theorem stated by Olver and Sival-
oganathan in ‘the structure of null Lagrangians’ (Nonlinearity 1:389–398, 1988). A set of
necessary and sufficient conditions is also provided for the elasticity tensors to correspond
to a null Lagrangian in linearized micropolar theory.

Keywords Micropolar elasticity · Micropolar shells · Cosserat continuum · Linearization ·
Polyconvexity · Calculus of variations
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1 Introduction

According to Theorem 7 of Olver and Sivaloganathan in [41], for a star shaped � ⊂ R
m,

with

x ∈ �, u : � →R
n, F : � →M

n×m,

a function L(x,u,F) (with F = ∇u = [∂ui/∂xj ] ∈ M
n×m) is a null Lagrangian if and only

if there exist an m-tuple of C1 functions

P : � ×R
n ×M

n×m → R
m
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such that

L (x,u,∇u) = ∇·P (x,u,∇u) ∀u ∈ C1(�),

where the arbitrary scalar potential functions on � × R
n participating in the divergence

above via the presence of P can be also specified while their total number is given by the
binomial coefficient

(
n+m

m−1

)
.

In the familiar case of three dimensional theory of elasticity, the number of arbitrary
scalar potentials is known to be

(3+3
3−1

)
(with m = 3, n = 3), i.e., 15. For our purpose in this

note, as another example, in the case of three dimensional Cosserat (micropolar) theory
[14], the number of arbitrary scalar potentials in the sum appearing in Theorem 8 of Olver
and Sivaloganathan [41] is anticipated to be

(3+3+3
3−1

)
(with m = 3, n = 3 + 3 = 6), i.e.,

36, whereas for two dimensional shell theory (embedded in three dimensional space), this
number is

(2+3+3
2−1

)
, i.e., 8 (with m = 2, n = 3 + 3 = 6).

For the benefit of some readers, we recall that a null Lagrangian (see [5, 7, 39, 41]; [15,
17, 19, 21, 33, 46]) is defined by the condition that its Euler–Lagrange equation is trivially
satisfied; in other words, the so called functional L given by the expression

L[u] =
∫

�

L (x,u(x),∇u(x))dx

satisfies

L[u + ϕ] = L[u] ∀ϕ ∈ C∞
0 (�).

In the nonlinear theory of elasticity, the null Lagrangians have been found to have special
importance in the questions of existence of solutions [6, 7, 16, 29, 44] as well as in the
surface potentials and handling certain boundary data [11, 18, 19]. The connection with the
construction of polyconvex functions has a practical value as it is helpful in developing the
rigorous framework for a rich class of elastic models [38, 50] and also in the presence of
various additional physical effects [28, 49]. From the viewpoint of shell theories and plate-
like bodies, we refer [43] and the references cited therein for some ‘paradoxes’ related to
the null-lagrangian contribution to stored energy. Besides these applications, the role of null
Lagrangians in Noether symmetries is also well known [9, 35, 36]. Last but not the least, in
the classical framework of calculus of variations [24], the null Lagrangians occupy a distin-
guished role in the field theory as any researcher can easily find out during an expedition on
the ‘royal road of Caratheodory’.

In this short note, we apply the above mentioned Theorem of [41] to a Cosserat [14], or
so called, micropolar elastic body [2, 3, 23, 26, 37] in three dimensional framework as well
as for shells.

2 Nonlinear Cosserat Media

We consider a body of Cosserat type with the reference configuration assumed to be a
bounded domain denoted by � ⊂ R

3 (with a Lipschitz boundary ∂�). However, it suffices
to consider any smooth portion of the body as we are interested only in the characterization
of the null Lagrangians on the lines of that in the nonlinear theory of elasticity [48]. Follow-
ing the standard notation for vectors and tensors in continuum mechanics [27], we denote
the microdeformation (vector field), or placement, of a micropolar body by

χ : � →R
3 (2.1)
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Fig. 1 Kinematics for a Cosserat
(micropolar) body

and the microrotation (describing the rotation of each particle in the micropolar body) with

R : � → SO(3). (2.2)

A schematic is provided in Fig. 1 which illustrates the manner in which the microrotation
field captures the rotation of an orthonormal triad of directors from reference configuration
� to the current configuration χ(�).

Here, we denote the standard basis vectors for R3 by the triplet e1, e2, e3. The physical
space R3 is assumed to be equipped with the cross product × corresponding to an orientation
such that e1 ×e2 ·e3 = +1. In (2.2), we use the symbol SO(3) to denote the set of all rotation
tensors in three dimensions, i.e., for Q ∈ SO(3), Q�Q = I,det Q = +1, where I stands for
the identity tensor and � denotes the transpose. For a skew tensor W (i.e., W� = −W)
the axial vector w = axlW, is defined by Wa = w×a,∀a ∈ R

3. The relation W = −εw

provides the skew tensor corresponding to a given vector, where ε is the three dimensional
alternating tensor which plays the role of a linear map from vectors R3 to tensors M3×3 here;
in components, the skew tensor W corresponding to a vector w is given by Wij = −εijkwk

with εijk = ei · ej × ek . In other words, skew(w) := −εw. We also employ a very convenient
notation [48] for a related entity, sometimes called vector invariant (or Gibbsian Cross), A×

with the components

(A×)i := εijkAjk (2.3)

for any second order tensor A. Thus, axlW = − 1
2 W× for skew tensor W. The differentiation

of a function f (which depends on position vector x) with respect to the xj coordinate is
written as f,j . Note that Q�Q,j is a skew tensor field for a given rotation tensor field Q on
�.

With above notation in place, the deformation gradient corresponding to (2.1) is ex-
pressed as

F := ∇χ = χ ,i ⊗ ei , ∀x ∈ �, (2.4)

while the nonsymmetric right stretch tensor is defined as

U := R�F. (2.5)
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We use the notation ⊗ to denote the tensor product operator between two vectors [27]. We
define the relative Lagrangian stretch tensor as strain measure by [42]

E := U − I. (2.6)

In micropolar media, an additional dependent field is the axial vector of R�R,j (for each j ).
The second order tensor

Y := axl
(
R�R,j

) ⊗ ej , (2.7)

is a Lagrangian measure for curvature [42], called the wryness tensor. In the nonlinear theory
of Cosserat, i.e., the micropolar elasticity, the strain energy density function (in terms of the
tensors of stretch E and wryness Y) is

W(E,Y). (2.8)

Remark 1 Denoting χ ,i by ui , we can re-write (2.4) as F = ui ⊗ ei . In terms of the role
of F as gradient, ui can be interpreted as the tangential derivative of χ (akin to trans-
lation velocity, treating xi as time) along ith coordinate, see Fig. 2(a) for i = 3. For
small a, χ(x + a) = χ(x) + ui (x)(ei · a) + o(a) = χ(x) + F(x)a + o(a). Similarly, with
vj = axl

(
R�R,j

)
in (2.7), we can express Y as Y = vj ⊗ ej . For a given vector d, placing a

vector Rd, at every point, on the deformed curve as image of a straight line in the reference
configuration along xj direction (with R(x) at given material point x). Then, in this manner
vj can be interpreted as the referential angular velocity of Rd, treating xj as time. This is
also illustrated graphically in Fig. 2(b) for j = 3. In terms of the role of gradient, for small
a, R(x + a)d = R(x)d + R,i (x)d(ei · a)+o(a) so that R�(x)R(x + a)d = d + Y(x)a +o(a).
This is one way to see Y as Lagrangian measure for ‘curvature’ (associated with the micro-
rotation R (2.2)).

In order to proceed further for the characterization of the null Lagrangians, it is useful to
employ the local coordinates, in SO(3), for the microrotation R (2.2). We utilize the Gibb’s
rotation vector (or coordinates) to express the rotation R,

R = R(θ) := 1

4 + θ2
((4 − θ2)I + 2θ ⊗ θ − 4 skew(θ)), θ2 = θ · θ . (2.9)

It is easy to show that

axial(R�R,i ) = − 1

4 + θ2
(4θ ,i + 2θ × θ ,i ),

so that

Y = − 1

4 + θ2
(4∇θ + 2θ × θ ,i ⊗ ei ). (2.10)

Thus, Y can be defined in terms of the Gibb’s rotation vector and its gradient. Recall that
the symbol × stands for the cross product operator between two vectors.

In the context of the energy functionals (based on (2.8), for example) for a micropolar
elastic body, we consider the null Lagrangian for the corresponding class of functionals

L[χ , θ ] =
∫

�

L (x,χ , θ ,∇χ,∇θ)dx. (2.11)
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Fig. 2 A schematic illustration of the measures of geometric changes for χ and for R, deformation gradient
and wryness tensor as explained in Remark 1. Recall also Fig. 1.

Remark 2 It is possible to combine χ , θ together as a single vector field taking values in R
6

however we refrain from doing this in the first and second section. We insist on retaining the
original fields so that the analysis yields a decomposition of the terms which can be utilized
directly by the reader in various applications of interest.

3 Null Lagrangian in Three Dimensional Cosserat Theory

Due to the presence of three different vector entities namely, x, χ , and θ , it is convenient to
employ a more delicate indicial notation. Henceforth, let the local coordinates be denoted by
xA for x and yi for χ . The local coordinates for θ , essentially for R as explained above, are
θα . In the assumed framework for three dimensional Cosserat body, we have the following
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identification of the local coordinates with components

x = xAeA, y = χ(x) = yiei , θ = θαeα,

where except for the indices the orthonormal triad of vectors {e1, e2, e3} can be chosen to be
the same.

Remark 3 In indicial notation, according to (2.9),

Rαβ = 1

4 + θηθη

((4 − θηθη)δαβ + 2θα ⊗ θβ + 4εαβγ θγ ),

while the inverse relation can be easily found to be

θα = 2

1 + Rηη

εαβγ Rβγ ,

provided Rηη 
= −1. With ε in the role of a linear map from second order tensors to vectors,
this can be also expressed as θ = (2/(1 + tr R))εR.

The following is based on the result of [25, 41] for null Lagrangians (occasionally termed
as variationally trivial Lagrangians). Let

ω = A dx1∧dx2∧dx3 + Ddy1∧dy2∧dy3

+ 1

2
εABCBAidyi∧dxB∧dxC + 1

2
εijkCiAdyj∧dyk∧dxA

+ 1

2
εABCB̃Aαdθα∧dxB∧dxC + 1

2
εiβγ C̃iAdθβ∧dθγ ∧dxA + D̃dθ1∧dθ2∧dθ3

+ 1

2
εαβγ B̂αidyi∧dθβ∧dθγ + 1

2
εijkĈiαdyj∧dyk∧dθα + JαjCdθα∧dyj∧dxC,

(3.1)

which involves a total 84 arbitrary functions (as expected this number equals
(3+3+3

3

)
) of x,

χ , and θ . Let

F = FiAei ⊗ eA, G = GαAeα ⊗ eA,where FiA = yi,A, GαA = θα,A. (3.2)

With details provided in Appendix A, the null Lagrangians are described by the general
expression:

A + B� · F + C · cof F + D det F + B̃� · G + C̃ · cof G + D̃ det G

+ B̂ · (cof G)F� + Ĉ · (cof F)G� + J · eα ⊗ ej ⊗ (G�eα ∧ F�ej ),
(3.3)

where

B = BiAei ⊗ eA, B̃ = B̃αAeα ⊗ eA, B̂ = B̂iαei ⊗ eα,

C = CiAei ⊗ eA, C̃ = C̃αAeα ⊗ eA, Ĉ = Ĉiαei ⊗ eα,

J= JαjCeα ⊗ ej ⊗ eC.

(3.4)

We seek to obtain necessary and sufficient conditions on the coefficients in (3.3) so that it
prescribes any arbitrary null Lagrangian (given the hypothesis on � for the applicability
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of Poincaré Lemma [25, 41]). Indeed, the general form of the null Lagrangian of the form
(2.11) is obtained by the exterior derivative of the 2-form

ζ = 1

2
εABCLAdxB∧dxC + KiAdyi∧dxA + 1

2
εijkMidyj∧dyk

+ K̃αAdθα∧dxA + 1

2
εαβγ M̃αdθβ∧dθγ + Hαj dθα∧dyj ,

(3.5)

where the coefficients are functions of xA, yi, θα , which form a total number of 36 functions
of xA, yi, θα . With details provided in Appendix B, we find that the characterizing condition
ω = dζ (and the Poincaré Lemma [41]) implies

A = LA,A, D = Mi,i , D̃ = M̃α,α, JαjC = (KjC,α − K̃αC,j + Hαj,C),

1

2
εABCBAi = (

1

2
εABCLA,i − KiC,B),

1

2
εijkCiA = (KkA,j + 1

2
εijkMi,A),

1

2
εABCB̃Aα = (

1

2
εABCLA,α − K̃αC,B),

1

2
εiβγ C̃iA = (K̃γA,β + 1

2
εαβγ M̃α,A),

1

2
εαβγ B̂αi = (

1

2
εαβγ M̃α,i + Hγ i,β),

1

2
εijkĈiα = (

1

2
εijkMi,α + Hαj,k).

Using the properties of the alternative tensor, moreover, starting from the second line above,
the relations can be simplified as

BAi = εABC(
1

2
εPBCLP,i − KiC,B) = LA,i − εABCKiC,B, (3.6a)

CiA = εijk(KkA,j + 1

2
εpjkMp,A) = εijkKkA,j + Mi,A, (3.6b)

B̃Aα = εABC(
1

2
εPBCLP,α − K̃αC,B) = LA,α − εABCK̃αC,B, (3.6c)

C̃iA = εiβγ (K̃γA,β + 1

2
εαβγ M̃α,A) = εiβγ K̃γA,β + M̃i,A, (3.6d)

B̂αi = εαβγ (
1

2
εδβγ M̃δ,i + Hγ i,β) = M̃A,i + εAβγ Hγ i,β , (3.6e)

Ĉiα = Mi,α + εijkHαj,k. (3.6f)

Remark 4 (Notation) Let ∇x,Divx,Curlx denote the gradient, divergence, and rotation with
respect to x keeping y, θ fixed. Similarly, we suppose that ∇y,Divy,Curly are the gradient,
divergence, and rotation with respect to y keeping x, θ fixed and ∇θ ,Divθ ,Curlθ are the
gradient, divergence, and rotation with respect to θ keeping x, y fixed. In the case of indicial
notation the same, we adopt the notation such that the comma followed by a subscript A

(resp. i and α) denotes the derivative with respect to xA (resp. yi and θα). Thus the useful
definitions of curl are given by

(CurlxC)iA = εABCCiB,C, (CurlyD)Ai = εijkDAj,k,

(Curlθ E)Aα = εαβγ EAβ,γ .
(3.7)
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Based on the arguments provide so far, which fulfil the main ingredients of its proof
following Olver and Sivaloganathan [41], we state the characterization theorem for null
Lagrangians.

Theorem 1 The Lagrangian L for the functional of the form (2.11) is a null Lagrangian
if and only if there exist A ,D, D̃ as scalar functions of (x,χ , θ), B, B̃, B̂,C, C̃, Ĉ as 3 × 3
matrix functions of (x,χ , θ), and J as a 3 × 3 × 3 matrix function of (x,χ , θ) such that

L = A + B� · F + C · cof F + D det F

+ B̃� · G + C̃ · cof G + D̃ det G

+ B̂ · (cof G)F� + Ĉ · (cof F)G� + J · eα ⊗ ej ⊗ (G�eα ∧ F�ej ),

(3.8)

where the 84 scalar functions appearing as coefficients (or its components) depend only
on 36 scalar functions (as components of L,M,M̃,K, K̃,H), in terms of the notation de-
scribed in Remark 4, in the following way:

A = DivxL, D = DivyM, D̃ = DivθM̃, (3.9a)

J= eα ⊗ K,α − eα ⊗ (∇y K̃�eα)
� + ∇x H (3.9b)

B� = CurlxK + (∇yL)�, C = ∇xM − (CurlyK�)�, (3.9c)

B̃� = CurlxK̃ + (∇θL)�, C̃ = ∇xM̃ − (Curlθ K̃�)�, (3.9d)

B̂ = ∇yM̃ − (Curlθ H�)�, Ĉ = ∇θM + (CurlyH)�. (3.9e)

Here F = ∇χ , G = ∇θ , i.e., FiA = χi,A, GαA = θα,A.

Remark 5 In (3.9a), (3.9b), (3.9c), (3.9d) and (3.9e), L,M,M̃ are 3 component vector val-
ued functions of x,χ , θ ; K, K̃,H are 3 × 3 matrix functions of x,χ , θ . In indicial notation,
(3.8) is alternately expressed as

L =A + BAiFiA + CiA(cof F)iA + D(det F)

+ B̃AαGαA + C̃iA(cof G)iA + D̃(det G)

+ B̂αi(cof G)αAFiA + Ĉiα(cof F)iAGαA + JαjCGαAFjBεCAB,

(3.10)

while, (3.9a), (3.9b), (3.9c), (3.9d) and (3.9e), is equivalent to the conditions

A = LA,A, D = Mi,i , D̃ = M̃α,α, (3.11a)

JαjC = (KjC,α − K̃αC,j + Hαj,C), (3.11b)

BAi = LA,i − εABCKiC,B, CiA = εijkKkA,j + Mi,A, (3.11c)

B̃Aα = LA,α − εABCK̃αC,B, C̃iA = εiβγ K̃γA,β + M̃i,A, (3.11d)

B̂αi = M̃A,i + εAβγ Hγ i,β, Ĉiα = Mi,α + εijkHαj,k. (3.11e)

Remark 6 Using the characterization of the null Lagrangians via the 2-form (3.3), it is nat-
ural to define the class of polyconvex functions relevant for a Cosserat elastic media as
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follows: A polyconvex Lagrangian function for a Cosserat elastic media is given by




(
F, cof F,det F,G, cof G,det G,

(cof G)F�, (cof F)G�, eα ⊗ ej ⊗ (G�eα ∧ F�ej )

)
,

(3.12)

where 
 : R83 → R is a convex function in each of its argument [6, 16]. Thus, a strain
energy density function (2.8) for a Cosserat elastic media is polyconvex if and only if there
exists 
 of above form. At this point, it is also useful to list a special sub-class of above via
additive decomposition, i.e.,

�1(F) + �2(cof F) + �3(det F) + �4(G) + �5(cof G) + �6(det G)

+ �7((cof G)F�) + �8((cof F)G�) + �9(eα ⊗ ej ⊗ (G�eα ∧ F�ej )),
(3.13)

where the nine functions {�i}9
i=1 are convex functions of their arguments.

3.1 Divergence Representation

The characterization theorem, stated above as Theorem 1, can be further applied to obtain
a divergence representation of the null Lagrangians akin to Theorem 7 of Olver and Sivalo-
ganathan in [41] (see also [40]). In fact, we find that

P = L + (F�K)× + (cof F)�M + (G�K̃)×

+ (cof G)�M̃ − 1

2
(F�H�G − G�HF)×,

(3.14)

where we used the symbolic notation × (2.3). In indicial notation, (3.14) can be expressed
as

PA = LA + εABCFiBKiC + (cof F)iAMi + εABCGαBK̃αC

+ (cof G)αAM̃α + εABCGαBFiCHαi .
(3.15)

By a direct calculation, it is easy to verify that

L = ∇·P
in (3.8) of Theorem above with P = P (x,χ(x), θ(x)). The detailed steps justifying this
identity are provided in Appendix C.

Remark 7 It is easy to recognize that in the special case of nonlinear elasticity, i.e., absence
of effect of microrotation, the expression of P stated in (3.14) reduces to the well known
one (Eq. (13.6.3) of [48]), i.e., L + (F�K)× + (cof F)�M .

4 Null Lagrangian in Micropolar Shell Theory

In this section, due to the requirement of curvilinear coordinates (local coordinate chart
for two dimensional manifold embedded in three dimensional space [1, 4, 12]), we employ
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Fig. 3 Kinematics for a micropolar shell

upper and lower indices in this section for contravariant and covariant components [31,
47]. It is natural to utilize the parameter space for the shell in place of � in this section;
this also enables us to avoid the covariant derivative (but it can be easily incorporated by
multiplying the Lagrangian by a factor [31]). It is emphasized that in this section the capital
Latin indices A,B, . . . , range over 1,2. Here (x1, x2) (in place of the symbols (s1, s2) as
shown in Fig. 3) are local coordinates on the reference configuration of the shell. In the
assumed framework for micropolar shells, we have the following identification of the local
coordinates with components

x = xAeA = sAeA, y = yiei , θ = θαeα. (4.1)

Remark 8 Here, eB · eA = δB
A , where eA are identified with the tangent vectors ∂

∂sA , and
eB are the dual basis vectors (essentially corresponding to the 1-forms dsB ). The normal
n to the shell in the reference configuration can be easily constructed using the standard
procedure in terms of {eA}A=1,2 (caution: not same as e1, e2 as shown in Fig. 3, which are
also expressed as {ei}i=1,2). At this point, on the lines of §2, we recall the shell model [4,
34, 45] within the micropolar theory. Similar to the previous section, we continue to use the
notation

F = yi
,Aei ⊗ eA = yi

Aei ⊗ eA,

G = θα
,Aeα ⊗ eA = θα

Aeα ⊗ eA,
(4.2)

while, as analogue of (2.7), we have

Y := axl
(
R�R,A

) ⊗ eA, (4.3)

which can be related to G via a relation (omitted) of type (2.10) using (2.9). The stored (elas-
tic) energy density for the shell (in local chart coordinates sA) can be written as W(E,Y),
where E = R�F − Is , with Is = I − n ⊗ n and Y is given by (4.3). In accordance with (4.1),
we use xA in place of sA in the following. Also, whenever we write any of e1, e2, we imply
the corresponding vectors from the set {eA}A=1,2.
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With A ,B,C, B̃, C̃, and B̂ as local functions of xB, yh, θβ , (so that the total number of
the scalar functions is

(2+3+3
2

)
, i.e., 28), the general expression of a 2-form on the shell (as

the counterpart of (3.1)) is found to be

ω = A dx1∧dx2 + BAidyi∧dxA + B̃Aαdθα∧dxA

+ 1

2
εijkCidyj∧dyk + 1

2
εαβγ C̃αdθβ∧dθγ + B̂αidyi∧dθα,

(4.4)

which leads to a ‘horizontal’ form

(A + BAiy
i
BεAB + 1

2
εijkCiy

j

Ayk
BεAB + 1

2
εαβγ C̃αθ

β

Aθ
γ

B εAB

+ B̃Aαθ
α
BεAB + B̂iαy

i
Aθα

BεAB)dx1∧dx2,

(4.5)

where the two dimensional Levi-Civita symbol is denoted by εAB , i.e.,

εAB =

⎧
⎪⎨

⎪⎩

+1 if (A,B) = (1,2),

−1 if (A,B) = (2,1),

0 if A = B.

(4.6)

Note that

yi
Aei = FiAei = FeA = FiB(ei ⊗ eB)eA, (4.7)

while a similar relation holds for θα
A . The description of needed entities presented so far

enables us to write the general expression capturing the form of null Lagrangians, as the
counterpart of (3.3) for the micropolar shell,

L = A + ε[BF] + ε[B̃G] + 1

2
εABC · FeA ∧ FeB + 1

2
εABC̃ · GeA ∧ GeB

+ εABB̂ · (FeA ⊗ GeB),

(4.8)

which can be further simplified to

L = A + ε[BF] + ε[B̃G]
+ C · Fe1 ∧ Fe2 + C̃ · Ge1 ∧ Ge2

+ B̂ · (Fe1 ⊗ Ge2 − Fe2 ⊗ Ge1),

(4.9a)

where

B = BAie
A ⊗ ei , B̃ = B̃Aαe

A ⊗ eα, B̂ = B̃iαe
i ⊗ eα,

C = Ciei , C̃ = C̃αeα,
(4.9b)

and

ε[A] = Ae2 · e1 − Ae1 · e2. (4.9c)

Here recall the last sentence of Remark 8.
The coordinate expression of the relevant 1-form ζ (as counterpart of (3.5)) is written as

ζ = PAdxA + P̂kdyk + P̃αdθα, (4.10)
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where PA, P̂k , and P̃α are local functions of xB, yh, θβ . The total number of the scalar func-
tions is 8, as expected

(2+3+3
2−1

)
. Using this expression, the exterior derivative of ζ (4.10) can

be written as

dζ = ∂PA

∂xB
dxB∧dxA + ∂P̃α

∂θβ
dθβ∧dθα + ∂P̂k

∂yh
dyh∧dyk + (

∂PA

∂θα
− ∂P̃α

∂xA
)dθα∧dxA

+ (
∂PA

∂yk
− ∂P̂k

∂xA
)dyk∧dxA + (

∂P̃α

∂yk
− ∂P̂k

∂θα
)dyk∧dθα.

(4.11)

Using above expression of dζ and the expression of ω (4.4), we find that the conditions
corresponding to a null Lagrangian are

A = ∂PA

∂xB
εBA,BAi = (

∂PA

∂yi
− ∂P̂i

∂xA
), B̃Aα = (

∂PA

∂θα
− ∂P̃α

∂xA
),

1

2
εijkCi = ∂P̂k

∂yj
,

1

2
εαβγ C̃α = ∂P̃γ

∂θβ
, B̂αi = (

∂P̃α

∂yi
− ∂P̂i

∂θα
).

(4.12)

In direct notation, the set of conditions (4.12) can be re-written as

A = P1,2 − P2,1 = ε[∇x P ],
B = ∇y P − (∇x P̂)�, B̃ = ∇θ P − (∇x ˜P )�,

C = Curly ̂P , C̃ = Curlθ ˜P ,

B̂ = ∂P̃α

∂yi
eα ⊗ ei − ∂P̂i

∂θα
eα ⊗ ei = ∇y ˜P − (∇θ

̂P )�.

(4.13)

Theorem 2 The Lagrangian L for the functional of the form (2.11) for a micropolar shell
is a null Lagrangian if and only if there exist A as a scalar functions of (x,χ , θ), B, B̃ as
2 × 3 matrix functions of (x,χ , θ), B̂ as 3 × 3 matrix function of (x,χ , θ), and C and C̃
as 3 component vector valued functions of (x,χ , θ) such that (4.9a), (4.9b) and (4.9c) hold
where the 28 scalar functions appearing as coefficients (or its components) depend only on
8 scalar functions (as components of P , ̂P , ˜P ) in the following way:

A = ε[∇x P ], B = ∇y P − (∇x P̂)�, (4.14a)

B̃ = ∇θ P − (∇x ˜P )�, B̂ = ∇y ˜P − (∇θ
̂P )�, (4.14b)

C = Curly ̂P , C̃ = Curlθ ˜P . (4.14c)

Remark 9 Using the characterization of the null Lagrangians (4.9a), (4.9b) and (4.9c) via
the 2-form (4.4), it is natural to define the class of polyconvex functions for micropolar
shells [10, 13] as follows. A polyconvex lagrangian for a micropolar shell is given by

L (x,χ , θ ,∇χ,∇θ) := 


(
F,G,Fe1 ∧ Fe2,Ge1 ∧ Fe2,

Fe1 ⊗ Ge2 − Fe2 ⊗ Ge1

)
,

(4.15)

where 
 : R27 → R is a convex function in each of its argument [6, 16]. Recall the last
sentence of Remark 8.
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4.1 Divergence Representation

We expect to reduce the expression of L in above Theorem 2 as P1,1 + P2,2 for a 2 compo-
nent vector field P (∼ (P1,P2)). The expression (4.11) leads to a ‘horizontal’ form

(
∂PB

∂xA
+ (

∂PB

∂θα
− ∂P̃α

∂xB
)θα

,A + (
∂PB

∂yk
− ∂P̂k

∂xB
)yk

,A

+∂P̃α

∂θβ
θ

β

,Aθα
,B + (

∂P̃α

∂yk
− ∂P̂k

∂θα
)yk

,Aθα
,B + ∂P̂k

∂yh
yh

,Ayk
,B

)
dxA ∧ dxB.

(4.16)

Using (4.16), the local expression of a null Lagrangian for micropolar shells is found to be

L =
(

∂PB

∂xA
+ (

∂PB

∂θα
− ∂P̃α

∂xB
)θα

,A + (
∂PB

∂yk
− ∂P̂k

∂xB
)yk

,A

+∂P̃α

∂θβ
θ

β

,Aθα
,B + (

∂P̃α

∂yk
− ∂P̂k

∂θα
)yk

,Aθα
,B + ∂P̂k

∂yh
yh

,Ayk
,B

)
εAB.

(4.17)

Indeed, (with | as a decoration to denote the ‘total’ derivative) by a repeated application of
the product rule and chain rule of differentiation,

L =
(

∂

∂xA
|PB − ∂P̃α

∂xB
θα
,A − ∂P̂k

∂xB
yk

,A

− ∂P̃α

∂xA
θα
,B + ∂

∂xA
|̃Pαθα

,B + (− ∂P̂k

∂θα
)yk

,Aθα
,B − ∂P̂k

∂yh
yh

,Byk
,A

)
εAB,

(4.18)

which can be further written as

L =
(

∂

∂xA
|PB + ∂

∂xA
|̃Pαθ

α
,B + ∂

∂xA
|̂Pky

k
,B

)
εAB

= ∂

∂xA
|
(

PB + P̃αθ
α
,B + P̂ky

k
,B

)
εAB.

(4.19)

Above expression (4.19) motivates the definition

PA := εAB(PB + P̃αθ
α
,B + P̂ky

k
,B). (4.20)

Thus, in direct notation,

L = ∇·P , P = ε[P + F�
̂P + G�

˜P ], (4.21)

where P = P (x,y(x), θ(x)), and P , ̂P , ˜P are functions of x,y, θ .

5 Nilpotent Energies in Linearized Micropolar Theory

In the special case of homogenous, linearized micropolar theory [20, 22, 23, 30] (see also
[32, 51] for a treatment based on classical linear elasticity, and [8] for certain generalized
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models), using the standard notation for fourth order tensors [27], we are looking for La-
grangians of the form

1

2
(∇ u + εφ) ·A(∇ u + εφ) + 1

2
∇ φ ·B∇ φ

+ (∇ u + εφ) ·D∇ φ,

(5.1)

with A,B,D constant tensors such that

Aijkl = Aklij , Bijkl = Bklij ; (5.2)

in indicial notation,

1

2
Aijkl(ui,j + εijsφs)(uk,l + εkltφt ) + 1

2
Bijklφijφkl + Dijkl(ui,j + εijsφs)φkl .

Here u represents the (infinitesimal) displacement vector field while φ represents the (in-
finitesimal) rotation vector field. In the context of the Lagrangian L in (2.11), with χ (resp.
θ ) replaced by u (resp. φ), according to the characterization theorem for first order null La-
grangians in the micropolar theory, by comparison of (5.1) and (3.8), thus, we find that only
those terms are needed which are bilinear in F (= ∇u) and φ, quadratic in F,G = ∇φ and φ,
as well as the terms of mixed type which are bilinear in F,G, and G,φ. Indeed, we conclude
that A (x,u,φ) is bilinear in φ and independent of u and x, D(x,u,φ) = D̃(x,u,φ) = 0,
B(x,u,φ), B̃(x,u,φ) is linear in φ and independent of u and x, C(x,u,φ), C̃(u,φ) is a
constant tensor, B̂(x,u,φ) = Ĉ(x,u,φ) = 0, J(x,u,φ) is a constant tensor.

Resorting to the indicial notation prescribed in Remark 4, here FiA = ui,A,GαA = φα,A,
and eA, ej , eα are used to denote the same basis vectors e1, e2, e3. However, in the following
sometimes we follow ordinary indicial notation while other times we stick to Remark 4.

Theorem 3 A function of the form (5.1) (with the conditions (5.2)) is a null Lagrangian if
and only if A, B and D satisfy (no sum over repeated indices for last two conditions)

A = 0

Bijkl = −Bilkj ,

Dijkl = −Dilkj ,

Dijji = −Dikki for i 
= j 
= k 
= i,

Dijjk = Dkikk + Djijk for i 
= j 
= k 
= i.

(5.3)

For the proof of above theorem, the sufficiency can be checked by direct substitution in
the Euler–Lagrange equations; the details of the same are provided in [8]. Therefore, the
only non-trivial part is the necessity which we establish in the following.

Using (A.6), CiA(cof F)iA = Cij
1
2 εimnεjpqFmpFnq = Cij

1
2 εimnεjpqum,pun,q , i.e.,

AiAjB = Cmn

1

2
εmij εnAB. (5.4)

=⇒ AiAjB + AiBjA = 0,∀i, j,A,B,

in particular (no sum over repeated indices), AiAjA = 0,AiAiB = 0.
(5.5)
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A similar argument leads to the result for B, i.e.,

=⇒ BiAjB + BiBjA = 0,

in particular (no sum over repeated indices), BiAjA = 0,∀i, j,A,BiAiB = 0,∀i,A,B.

(5.6)
Comparing (5.1) with (3.8) and using (3.11a), (3.11b), (3.11c), (3.11d) and (3.11e) we get

DijαAeijsφsφα,A =(LA,α − eABCK̃αC,B)φα,A,

DijαAeijsφs =LA,α − eABCK̃αC,B

∴ LA,αA =eABCK̃αC,BA = eABCK̃αC,AB

= − eBACK̃αC,AB = −eABCK̃αC,BA = 0.

As LA,A = 1
2Aijkleijsekltφsφt ,

∴ Aijkleijseklαφs = LA,Aα = LA,αA = 0 ∀α. (5.7)

We fix β ∈ {1,2,3}, then we put

φs =
{

0 if s 
= β

1 if s = β
. (5.8)

Therefore we get (Aijkl − Ajikl)eklα = 0 ∀α(i 
= j 
= β 
= i). Putting α = i, the only possi-
bility for k, l is β, j , (no sum over repeated indices)

Aijβj − Ajiβj − Aijjβ + Ajijβ = 0 (5.9)

(5.5)2, (5.5)3 =⇒ Aijjβ + Ajiβj = 0

∴ Ajβij = −Ajiβj . (5.10)

Again comparing (5.1) with (3.8) we get

AiAkleklsφsui,A = (LA,i − eABCKiC,B)ui,A

=⇒ AiAkleklsφs = LA,i − eABCKiC,B (5.11)

DijαAeijsφs = LA,α − eABCK̃αC,B (5.12)

JαjCGαAFjBeCAB = DjBαAuj,Bφα,A,

DjEαF = eCFE(KjC,α − K̃αC,j + Hαj,C). (5.13)

From (5.13), we have

Dijkl = −Dilkj . (5.14)

From (5.13) we get (no sum over repeated indices)

DjAαA = 0 ∀α, j,A. (5.15)

If E 
= F then C has exactly one value for which RHS of (5.13) is nonzero, so that there
is no sum on C. Differentiating (5.13) with respect to xB we get
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KjC,αB − K̃αC,jB + Hαj,CB = 0 (5.16)

But

eABCHαj,CB = eABCHαj,BC = −eACBHαj,BC = −eABCHαj,CB = 0.

Therefore,

eABCKiC,αB = eABCK̃αC,iB . (5.17)

Differentiating (5.11) with respect to φα and (5.12) with respect to ui we get

LA,iα − AiAkleklα = eABCKiC,αB = eABCK̃αC,iB = LA,αi

=⇒ AiAkleklα = 0 as LA,αi = LA,iα

=⇒ AiAkl = AiAlk ∀i,A, k, l

(5.4) =⇒ AilkA = AiklA ∀i,A, k, l

∴ Ailki = Aikli = −Ailki = 0 by (5.10)

=⇒ Alij l = 0 = Ajlli ∀i, j, l

=⇒ Allji = 0 = Ajill ∀i, j, l.

Therefore we get Aijkl = 0 if any two of its subscript are equal as (no sum over repeated
indices)

Allij = 0,Alilj = 0,Alij l = 0,Aillj = 0,Ailj l = 0,Aijll = 0, (5.18)

where in view of the symmetry Allij = Aijll and Aillj = Aljil . Hence A= 0.
We expand and rewrite (5.1) as

L = 1

2
Aijklui,j uk,l + Aijkleijsφsuk,l + 1

2
Aijkleijsekltφsφt + 1

2
Bijklφi,jφk,l

+ Dijklui,jφk,l + Dijkleijsφsφk,l

=: L1 + L2 + L3 + L4 + L5 + L6,

(5.19)

where the terms are assigned sequentially. Applying the Euler operator (the sum on index t

ranges over 1,2,3)

Er := ∂

∂zr

− d

dxt

(
∂

∂prt

)
(with r = 1,2,3 for u; r = 4,5,6 for φ)

on (5.19), where z refers to components of u and φ while p refers to the components of their
gradients. Then for r = 1, . . . ,6, Er (L1) = Er (L2) = Er (L3) = 0 identically, as A = 0; and
Er (L4) ≡ 0. So if (5.19) is a null Lagrangian then for r = 1, . . . ,6, Er (L5 + L6) ≡ 0. For
r = 1,2,3,

Er (L5 + L6) = Er (L5) ≡ 0

=⇒ Drtklφk,lt ≡ 0. (5.20)

Fix i, j, h ∈ {1,2,3}. Put φh,ij = 1 (so that φh,ji = 1), while let other components of φk,lt =
0. Then from (5.20) we get, Drikj + Drjki = 0 which implies

Drikj = −Drjki (5.21)
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=⇒ Driki = 0. (5.22)

For r = 4,5,6, (h = r-3),

Er (L5 + L6) ≡ 0, =⇒ Dijhtui,j t + Dijht eijsφs, t − Dijkleijhφk,l ≡ 0. (5.23)

With proper choice of u we again get (5.21). Therefore, as a result of (5.23), we get
(
Dijht eijs − Dijst eijh

)
φs,t ≡ 0, (5.24)

i.e., Dijht eijs = Dijst eijh ∀h, s, t. (5.25)

With (h, s, t) = π(1,2,3), with the notation that π stands for the circular permutation map,
then (5.25) gives (no sum over repeated indices)

Dthht − Dhtht = Dstst − Dtsst (5.26)

=⇒ Dthht = −Dtsst by (5.22). (5.27)

If (h, s, t) = −π(1,2,3) then by same calculation (5.27) holds. With s = t 
= h, we assume
that (s, h, k) = π(1,2,3). Then (5.25) gives (no sum over repeated indices)

Dhkhs − Dkhhs = Dksss − Dskss (5.28)

=⇒ Dkhhs = Dhkhs + Dskss by (5.22) (5.29)

If (s, h, k) = −π(1,2,3) then by same calculation (5.29) holds. For h = t 
= s, by similar
argument (5.29) holds.

Remark 10 Some other aspects pertaining to the sufficiency part of the Theorem 3 are dis-
cussed in [8] along with a few other generalizations of linearized theory of elasticity.
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Appendix A: Expansion of ω

For the purpose of convenience of derivation, we assume that det G 
= 0, let ∇θχ = T =
FG−1. With (3.2), then

ω = A �v + 1

2
εABCBAiFiMdxM∧dxB∧dxC

+ 1

2
εijkCiAdyj∧dyk∧(F−1)Aldyl + Ddy1∧dy2∧dy3

+ 1

2
εABCB̃AαGαMdxM∧dxB∧dxC + 1

2
εiβγ C̃iAdθβ∧dθγ ∧(G−1)Aαdθα + D̃dθ1∧dθ2∧dθ3

+ 1

2
εαβγ B̂αiTiαdθα∧dθβ∧dθγ + 1

2
εijkĈiαdyj∧dyk∧(T−1)αldyl

+ JαjCGαAFjBdxA∧dxB∧dxC,

(A.1)
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where

�v := dx1∧dx2∧dx3. (A.2)

Expanding further,

ω = A �v + 1

2
εABCεMBCBAiFiM�v + 1

2
εijkCiA(F−1)Alεjkl(det F)�v + D(det F)�v

+ 1

2
εABCεMBCB̃AαGαM�v + 1

2
εiβγ C̃iA(G−1)Aαεαβγ (det G)�v + D̃(det G)�v

+ 1

2
εδβγ εαβγ B̂δiTiα(det G)�v + 1

2
εijkĈiα(T−1)αlεjkl(det F)�v

+ εABCJαjCGαAFjB�v.

(A.3)
Simplifying above expression, we find that

ω = (A + BAiFiA + CiA(F−1)Ai(det F) + D(det F)

+ B̃AαGαA + C̃αA(G−1)Aα(det G) + D̃(det G)

+ B̂αiTiα det G + Ĉiα(T−1)αi(det F) + JαjCGαAFjBεCAB)�v,

(A.4)

which can be written as

ω = (A + B� · F + C · cof F + D det F + B̃� · G + C̃ · cof G + D̃ det G

+ B̂� · FG−1(det G) + Ĉ · cof (FG−1)(det G) + JαjC(.)αjC)�v,
(A.5)

where (.)αjC = GαAFjBεCAB = G�eα ∧ F�ej · eC , (.) = eα ⊗ ej ⊗ (G�eα ∧ F�ej ). Replac-
ing the inverse of G by the cofactor, we get the form (3.3) which does not depend on the
invertibility of G. The components of the cofactor of A are given by

(cof A)ij = 1

2
εimnεjpqAmpAnq, (A.6)

Appendix B: Expansion of dζ

The expression (3.5) leads to its exterior derivative

dζ = 1

2
εABCdLA∧dxB∧dxC + dKiA∧dyi∧dxA + 1

2
εijkdMi∧dyj∧dyk

+ dK̃αA ∧ dθα∧dxA + 1

2
εαβγ dM̃α ∧ dθβ∧dθγ + dHαj ∧ dθα∧dyj ,

(B.1)

which can be expanded further given that L,M,M̃,K, K̃,H are functions of (x,χ , θ) so
that
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dζ = 1

2
εABCLA,DdxD∧dxB∧dxC + 1

2
εABCLA,idyi∧dxB∧dxC

+ 1

2
εABCLA,αdθα∧dxB∧dxC + KiA,BdxB∧dyi∧dxA

+ KiA,j dyj∧dyi∧dxA + KiA,βdθβ∧dyi∧dxA

+ 1

2
εijkMi,AdxA∧dyj∧dyk + 1

2
εijkMi,ldyl∧dyj∧dyk + 1

2
εijkMi,αdθα∧dyj∧dyk

+ K̃αA,BdxB∧dθα∧dxA + K̃αA,j dyj∧dθα∧dxA + K̃αA,βdθβ∧dθα∧dxA

+ 1

2
εαβγ M̃α,AdxA∧dθβ∧dθγ + 1

2
εαβγ M̃α,ldyl∧dθβ∧dθγ + 1

2
εαβγ M̃α,δdθδ∧dθβ∧dθγ

+ Hαj,AdxA ∧ dθα∧dyj + Hαj,kdyk ∧ dθα∧dyj + Hαj,βdθβ ∧ dθα∧dyj .

(B.2)
Collecting the terms accompanying the same exterior product of differentials, we get

dζ = LA,A�v + (
1

2
εABCLA,i − KiC,B)dyi∧dxB∧dxC

+ (KkA,j + 1

2
εijkMi,A)dyj∧dyk ∧ dxA + Mi,i�y + M̃α,α�θ

+ (
1

2
εijkMi,α + Hαj,k)dyj ∧ dyk ∧ dθα + (

1

2
εABCLA,α − K̃αC,B)dθα∧dxB∧dxC

+ (K̃γA,β + 1

2
εαβγ M̃α,A)dθβ∧dθγ ∧ dxA + (KjC,α − K̃αC,j + Hαj,C)dθα∧dyj ∧ dxC

+ (
1

2
εαβγ M̃α,i + Hγ i,β)dyi∧dθβ ∧ dθγ ,

(B.3)
where (A.2) is used.

Appendix C: Expansion of ∇·P
The expression (3.14) is equivalent to

P = L + (F�K)× + (cof F)�M + (G�K̃)×

+ (cof G)�M̃ + εABCGαBFiCHαieA,
(C.1)

as

εABCGαBFiCHαieA = eA(eA · (eB ∧ eC))GαBFiCHαi

= eA ⊗ eA(eB ∧ eC)GαBFiCHαi

= (GαBeB ∧ FiCeC)Hαi

= (G�eα ∧ F�ej )Hαj = (G�eα ∧ F�ej )H · eα ⊗ ej (C.2)

= (G�eα ∧ F�Hαjej ) = G�eα ∧ F�H�eα

= axl(F�H�eα ⊗ G�eα − G�eα ⊗ F�H�eα)
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= axl(F�H�G − G�HF)

= −1

2
(F�H�G − G�HF)×

(recall axl(b ⊗ c − c ⊗ b) = c ∧ b). Thus, using the conditions stated in §3,

∇·P = A + (∇yL)� · F + (∇θL)� · G

+ (Curlx K · F − cof F · (CurlyK�)�) + εABCFiBKiC,αGαA

+ cof F · (∇x M + (∇y M)F + (∇θ M)G)

+ (Curlx K̃ · G − cof G · (Curlθ K̃�)�) + εABCGαBK̃αC,iFiA

+ (cof G) · (∇x M̃ + (∇y M̃)F + (∇θ M̃)G)

+ εABCGαBFiCHαi,A + εABCGαBFiCHαi,βGβA

+ εABCGαBFiCHαi,jFjA,

(C.3)

i.e.,

∇·P = A + B · F + C · cof F + D det F + B̃ · G + C̃ · cof G + D̃ det G

+ (cof F)G� · (∇θ M) + (∇y M̃)� · F(cof G)�

+ εABCFiBKiC,αGαA + εABCGαBK̃αC,iFiA + εABCGαBFiCHαi,A

+ εABCGβAGαBFiCHαi,β − εABCFjAFiBGαCHαi,j ,

(C.4)

i.e.,

∇·P = A + B · F + C · cof F + D det F + B̃ · G + C̃ · cof G + D̃ det G

+ B̂ · (cof G)F� + Ĉ · (cof F)G�

− (cof F)G� · (Curly H)� + (Curlθ H�) · F(cof G)�

+ J · eα ⊗ ej ⊗ (G�eα ∧ F�ej )

+ εABCFiBKiC,αGαA + εABCGαBK̃αC,iFiA

− εABC(KiC,α − K̃αC,i + Hαi,C)GαAFiB + εCABGαAFiBHαi,C

+ εABCGαAGβBFiCHβi,α − εABCFiAFjBGαCHαj,i ,

(C.5)

so that finally,

∇·P = L − (cof F)G� · (Curly H)� + (Curlθ H�) · F(cof G)�

+ εαβγ (cof G)γCFiCH�
iβ,α − εijk(cof F)kCGαCHαj,i

= L .

(C.6)

Note that

εABCAiAAjBBijC = εABCAiAAjBδCDBijD

= εABCAiAAjBA�
Ck(A

−�)kDBijD (C.7)

= εijk(cof A)kDBijD.
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