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Abstract Since the pioneering work of Eshelby on a single ellipsoidal inclusion embedded
in an infinite space, much attention has been devoted in the literature to the question of the
uniformity of the stress field inside inclusions surrounded by an elastic matrix. Over the last
decade or so, researchers have established the existence of multiple (interacting) inclusions
enclosing uniform internal stress distributions when embedded in an infinite elastic matrix
subjected to a uniform far-field loading and identified a variety of shapes of such inclusions.
In the design of multiple inclusions with uniform internal stresses, it is customary to assume
that the uniform stress field inside each inclusion (each with different shear modulus distinct
from that of the matrix) is hydrostatic. In this paper, we examine whether this assumption is
actually necessary to ensure the required existence of multiple inclusions enclosing uniform
stresses. By establishing several theorems in the theory of functions of a complex variable,
we prove rigorously that for any collection of multiple inclusions enclosing uniform stresses
in an infinite isotropic plane subjected to uniform remote in-plane loading, the internal uni-
form stress field must indeed be hydrostatic if the corresponding inclusion’s shear modulus
is distinct from that of the matrix.
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Fig. 1 Multiple rationally symmetric inclusions with uniform hydrostatic stresses in an infinite elastic plane
under plane strain deformation for a uniform remote equal-biaxial tension/compression (G and ν are the shear
modulus and Poisson’s ratio of the matrix, while Gj and νj denote those of the corresponding inclusion)

1 Introduction

In his seminal work on elastic inclusions, Eshelby [1] studied the deformation of a sin-
gle ellipsoidal inclusion embedded in an elastic matrix and showed that the stress field in-
side the inclusion is always uniform for any uniform remote loading applied to the matrix.
Over the last decade or so, researchers have turned their attention to the question of uni-
formity of the stress distribution inside multiple interacting inclusions in an elastic matrix
subjected to uniform remote loading. The conventional approach is to examine the case
when the shapes of the inclusions are given a priori. In our present analysis, we consider the
inverse problem which seeks to identify shapes of interacting inclusions which admit inter-
nal uniform stresses despite the interaction between them. This is entirely different from the
aforementioned conventional approach (in which the shapes of the interacting inclusions are
given beforehand) since, when considering inclusions of general shape (including ellipsoidal
shapes), the interaction between them means that there is no guarantee of uniformity of the
internal stress field. Consequently, most of the effective techniques (for example, those in
[2–5]) used in solving the conventional problem of multiple interacting inclusions of given
shape may not be suitable in the case of the inverse problem. In fact, only a few relevant
papers can be found in the literature, most likely as a result of certain formidable mathe-
matical challenges. For example, Liu [6] demonstrated the existence of multiple inclusions
with uniform stresses in two- and three-dimensions based on a variational inequality; Kang
et al. [7] used the Weierstrass zeta function and Schwarz–Christoffel formula to identify, for
two-dimensional deformations, a pair of inclusions enclosing uniform stresses; Wang [8] in-
troduced a specific fractional conformal mapping and derived explicit formulae describing
the shapes of some two-dimensional inclusion pairs enclosing uniform stresses; Dai et al.
[9, 10] found a series of multiple inclusions with uniform stresses and geometric symmetry
in anti-plane and plane elasticity by making use of the Faber series. Some specific shapes
of multiple inclusions enveloping uniform stresses for plane deformation are illustrated in
Fig. 1.

In the case of a single ellipsoidal (three-dimensional) or elliptical (two-dimensional) in-
clusion, the corresponding uniform stress field need not necessarily be hydrostatic. For ex-
ample, when the remote loading imposed on the matrix takes the form of a uniform pure
shear loading, the ellipsoidal or elliptical inclusion must undergo a certain shear deforma-
tion leading to an internal non-hydrostatic (uniform) stress field. When it comes to multiple
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interacting inclusions in either three-dimensional or plane deformations, however, it would
seem that the stress field inside each inclusion must be hydrostatic to ensure uniformity
whenever the shear modulus of the inclusion differs from that of the matrix. For example,
in the design of multiple inclusions with uniform stresses in plane deformation, the authors
consistently treat the uniform stresses inside each inclusion (of shear modulus distinct from
that of the matrix) as being hydrostatic [7–9]. We are not aware of a contribution to the liter-
ature which identifies shapes of multiple (interacting) inclusions (of shear moduli different
from that of the matrix) which admit uniform but non-hydrostatic internal stress distribu-
tions in the case of either three-dimensional or plane deformations. In this paper, we aim
to address this question and whether it is possible to construct multiple interacting inclu-
sions (of shear moduli distinct from that of the surrounding matrix) enclosing uniform yet
non-hydrostatic stresses in plane deformation.

The paper is subsequently organized as follows. In Sect. 2, we present (and prove) sev-
eral important theorems from the theory of functions of a complex variable. In Sect. 3, we
consider the plane deformation of a system consisting of multiple elastic inclusions embed-
ded in an infinite elastic plane subjected to a uniform far-field loading and use the theorems
introduced in Sect. 2 to prove the necessity of the ‘hydrostatic property’ in establishing the
uniformity of the internal stress field inside the inclusions. Finally, in Sect. 4, we summarize
our main conclusions and make some additional remarks.

2 Preliminaries

In this section, we present and prove several theorems for use in subsequent sections. In
particular, throughout the paper, the analytic functions involved are functions of a complex
variable whose real and imaginary parts correspond to the coordinates of a Cartesian sys-
tem, and which are always assumed to be analytic in a connected domain and continuously
extendable to the boundary of the domain.

Theorem 1 If two functions are analytic in a connected domain and coincide on a certain
continuous arc of the boundary of the domain, then they are equal in the entire domain.

The proof of this theorem follows directly from the Identity Theorem in complex analy-
sis.

Theorem 2 Consider a function f (z) analytic in an infinite multiply-connected domain
S with n non-overlapping holes each bounded by a simple smooth closed curve Li (i =
1, . . . , n). If the boundary value of f on Li (i = 1, . . . , n) takes the form

f (t) = αit + βi t̄ + γi, t ∈ Li (i = 1, . . . , n), (1)

where αi , βi and γi are certain constants, then βi (i = 1, . . . , n) are either all zero or all
non-zero.

Proof 2 To prove Theorem 2, it is sufficient to show that if βi = 0 for a certain value of i,
then βj = 0 for all j . In fact, without loss of generality, assuming β1 = 0, from Eq. (1) we
have that

f (t) = α1t + γ1, t ∈ L1. (2)
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Using Theorem 1, we determine f (z) in the entire domain S as

f (z) = α1z + γ1, ∀z ∈ S. (3)

Combining Eqs. (1) and (3) leads to

(αj − α1)t + βj t̄ + (γj − γ1) = 0, ∀t ∈ Lj (j = 2, . . . , n). (4)

Here, since Lj (j = 2, . . . , n) are simple closed curves, it follows from Eq. (4) that

αj = α1, βj = 0, γj = γ1 (j = 2, . . . , n), (5)

which completes the proof. �

Theorem 3 In the complex plane, if for a simple smooth closed curve L we have

At + Bt̄ + C + (
Dt + Et̄ + F

) dt̄

dt
= 0, ∀t ∈ L, (6)

where A, B , C, D, E and F are certain constants, then the curve is an ellipse, otherwise A,
B , C, D, E and F must all vanish.

Proof 3 The contour integral of Eq. (6) with respect to t over L gives

B

∮

L

t̄dt + D

∮

L

tdt̄ = 0. (7)

Noting that
∮

L

t̄dt = 2χ · I,
∮

L

tdt̄ = −2χ · I, (8)

where I is the imaginary unit and χ is the area of the region enclosed by L, it readily follows
from Eq. (7) that

B = D. (9)

Using Eq. (9), the indefinite integration of Eq. (6) with respect to t results in

At2 + 2Bt · t̄ + Et̄2 + 2Ct + 2F t̄ = H, ∀t ∈ L, (10)

where H is a certain constant.
When A, B and E do not all vanish, Eq. (10) is the equation of a conic section and then L

must be an ellipse since it is closed. In the case when A, B and E all vanish, Eq. (10) cannot
correspond to a simple closed curve L unless C and F both become zero. This completes
the proof. �

Theorem 4 Consider in the complex z-plane an infinite multiply-connected domain S with
n non-overlapping holes (n ≥ 2) each bounded by a simple smooth closed curve Li (i =
1, . . . , n). It has been verified that the (infinite) exterior of each curve Li in the z-plane can
be transformed into that of the unit circle in an imaginary plane via a polynomial conformal
mapping [11]. If the conformal mapping for a certain curve Lj contains only finite terms,
then there is no function h(z) analytic in S that

lim|z|→∞
h(z) = 0, (11)
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h(t) = ait + bi t̄ + ci, bi �= 0, t ∈ Li (i = 1, . . . , n), (12)

where ai , bi and ci are certain constants.

Proof 4 We denote the (infinite) exterior of the curve Li in the z-plane by Ti . Let Ti be
transformed into the (infinite) exterior of the unit circle in the imaginary ξi -plane by the
conformal mapping [11]

z = ωi(ξi), z ∈ Ti, |ξi | > 1. (13)

In particular, when ξi tends towards the unit circle, Eq. (13) becomes

t ∈ Li : t = ωi(σi), σi = eIθi (0 ≤ θi < 2π). (14)

In the context of the mapping (13), since S ⊂ Ti , S must correspond to a multiply-connected
domain ϒi in the ξi -plane which contains also n non-overlapping holes, and the n internal
boundaries (denoted by Lik (k = 1, . . . , n)) of ϒi in the ξi -plane correspond to the curves
Lk (k = 1, . . . , n) in the z-plane, respectively. We note in particular that Lii is the unit circle
in the ξi -plane. Consequently, it is sufficient to rewrite Eq. (13) for our purposes as

z = ωi(ξi), z ∈ S, ξi ∈ ϒi. (15)

We prove Theorem 4 by contradiction. We assume that there exists in S an analytic
function h(z) satisfying Eqs. (11) and (12) and that the conformal mapping for i = 1 is of
finite-series form. Specifically, Eqs. (15) and (14) corresponding to i = 1 are given as [11]

z = ω1(ξ1) = z01 + R1

⎛

⎝ξ1 +
N∑

j=1

m1j ξ
−j

1

⎞

⎠ , z ∈ S, ξ1 ∈ ϒ1, (16)

t ∈ L1 : t = ω1(σ1) = z01 + R1

⎛

⎝σ1 +
N∑

j=1

m1j σ
−j

1

⎞

⎠ , (17)

where z01 is a certain point inside the region enclosed by L1 in the z-plane, while R1 (R1 �=
0) and m1j are constants characterizing the size and shape of L1 in the z-plane.

In the context of the conformal mapping (15), h[ωi(ξi)] is analytic in ϒi . For h[ω1(ξ1)],
we obtain from Eqs. (12) and (17) its boundary value h[ω1(σ1)] on L11 in the ξ1-plane as

h [ω1(σ1)] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1

⎡

⎣z01 + R1

⎛

⎝σ1 +
N∑

j=1

m1j σ
−j

1

⎞

⎠

⎤

⎦

+ b1

⎡

⎣z̄01 + R̄1

⎛

⎝σ−1
1 +

N∑

j=1

m̄1j σ
j

1

⎞

⎠

⎤

⎦+ c1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, on L11. (18)

Using Eq. (18) and Theorem 1, we may immediately derive h[ω1(ξ1)] in the entire ϒ1 as

h[ω1(ξ1)] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1

⎡

⎣z01 + R1

⎛

⎝ξ1 +
N∑

j=1

m1j ξ
−j

1

⎞

⎠

⎤

⎦

+ b1

⎡

⎣z̄01 + R̄1

⎛

⎝ξ−1
1 +

N∑

j=1

m̄1j ξ
j

1

⎞

⎠

⎤

⎦+ c1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, ξ1 ∈ ϒ1. (19)
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Noting Eq. (11) and

|ξ1| → ∞ when |z| → ∞, (20)

we require in Eq. (19) that

a1z01 + b1z̄01 + c1 = 0, a1R1 + b1R̄1m̄11 = 0, m1j = 0 (2 ≤ j ≤ N). (21)

Substituting Eq. (21) into Eqs. (16) and (19) leads to

z = z01 + R1
(
ξ1 + m11ξ

−1
1

)
, z ∈ S, ξ1 ∈ ϒ1, (22)

h(z) ≡ h[ω1(ξ1)] = b1R̄1

(
1 − |m11|2

)
ξ−1

1 , z ∈ S, ξ1 ∈ ϒ1. (23)

It is worth noting that |m11| �= 1 otherwise L1 described by Eq. (22) becomes a straight line
in the z-plane violating the stipulation of ‘simple closed curve’.

Consider the boundary value h(t) on Lk (k �= 1) in the z-plane by using Eqs. (12) and
(23). We then see that

akt + bkt̄ + ck = b1R̄1

(
1 − |m11|2

)
ξ−1

1 , t ∈ Lk, ξ1 ∈ L1k. (24)

It follows from Eq. (22) that

t = z01 + R1
(
ξ1 + m11ξ

−1
1

)
, t ∈ Lk, ξ1 ∈ L1k. (25)

From Eqs. (24) and (25) we extract an algebraic equation describing the configuration of Lk

as

βakt
2 − m11

b2
k

α
t̄2 +

(
βbk − m11

akbk

α

)
t t̄

+ (βck − γ ak) t −
(

γ bk + m11
bkck

α

)
t̄ − γ ck − α = 0, t ∈ Lk, (26)

where

α = b1R̄1

(
1 − |m11|2

)
, β = 1

R1
− m11

ak

α
, γ = z01

R1
+ m11

ck

α
. (27)

Since R1 �= 0 and bk �= 0, the coefficients of t2, t̄2 and t t̄ in Eq. (26) cannot be zero simulta-
neously so that Eq. (26) is always an equation describing a conic section. Consequently, the
closed curve Lk in the z-plane must be an ellipse, resulting in the conformal mapping of Lk

as

z = ωk(ξk) = z0k + Rk

(
ξk + mk1ξ

−1
k

)
, z ∈ S, ξk ∈ ϒk, (28)

t ∈ Lk : t = ωk(σk) = z0k + Rk

(
σk + mk1σ

−1
k

)
, (29)

where z0k represents the center of the elliptical region bounded by Lk , while Rk and mk1

characterize the size, aspect ratio and orientation of Lk in the z-plane. In particular, |mk1| �= 1
otherwise Lk becomes a straight line in the z-plane.

We note that the procedure used in the derivation between Eqs. (18) and (23) is also
applicable to h[ωk(ξk)] with Eqs. (28) and (29). Consequently, we can readily see that

h(z) ≡ h[ωk(ξk)] = bkR̄k

(
1 − |mk1|2

)
ξ−1
k , z ∈ S, ξk ∈ ϒk. (30)
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Equating Eqs. (23) and (30) leads to

ξk = λξ1 (ξ1 ∈ ϒ1, ξk ∈ ϒk), (31)

where

λ = bkR̄k

(
1 − |mk1|2

)

b1R̄1

(
1 − |m11|2

) . (32)

From another perspective that ξ1 and ξk always correspond to the same point z in the z-plane,
we obtain by combining Eqs. (22) and (28) that

z01 + R1
(
ξ1 + m11ξ

−1
1

)= z0k + Rk

(
ξk + mk1ξ

−1
k

)
, ξ1 ∈ ϒ1, ξk ∈ ϒk. (33)

Substituting Eq. (31) into Eq. (33) yields

z01 + R1

(
ξ1 + m11ξ

−1
1

)= z0k + Rk

(
λξ1 + mk1λ

−1ξ−1
1

)
, ∀ξ1 ∈ ϒ1. (34)

If Eq. (34) holds everywhere in ϒ1, then we have to require z01 = z0k which is however
contradictory to the original stipulation that the region enclosed by L1 does not overlap with
that enclosed by Lk . The proof is completed. �

Theorem 5 Consider an infinite multiply-connected domain S with n non-overlapping
holes (n ≥ 2) each bounded by a simple smooth closed curve Li (i = 1,2, . . . , n) and a
function p(t) defined on the curves Li (i = 1,2, . . . , n) as

p(t) = at + bt̄ + c, b �= 0, t ∈ Li (i = 1, . . . , n), (35)

for some constants a, b and c. Then there exists no analytic function in S that vanishes at
infinity and converges to p(t) on Li (i = 1, . . . , n).

Proof 5 We present the proof of Theorem 5 by contradiction. We assume that there exists
a certain function analytic in S which vanishes at infinity and whose boundary value on Li

(i = 1, . . . , n) is identical to p(t). Consequently, based on the Sokhotski–Plemelj theorem,
p(t) should satisfy

n∑

j=1

∮

Lj

p(t)

t − z
dt = 0, ∀z ∈ Si (i = 1, . . . , n), (36)

where Si is the finite simply-connected domain bounded by Li . In particular, according
to Theorem 4, Li (i = 1, . . . , n) must not be ellipses since any ellipse corresponds to a
conformal mapping with finite terms [11].

As shown in Fig. 2, we construct a new simply-connected domain S0 containing all the
Si (i = 1, . . . , n) by bridging Si and Si+1 (i = 1, . . . , n-1) using a group of narrow channels.
The entire boundary of S0 is denoted by L0, that of each channel is denoted by Ci(i+1)

(i = 1, . . . , n-1), and the intersection of L0 and each of Li (i = 1, . . . , n) is denoted by L′
i

(i = 1, . . . , n). In particular, ε is used to represent the width of the narrow channels. We
define a function q(t) on L0 as

q(t) = at + bt̄ + c, t ∈ L0, (37)
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Fig. 2 Bridged
simply-connected domain

where a, b and c are the same constants as those introduced in p(t), and introduce an
analytic function F(z) in S0 as

F(z) =
∮

L0

q(t)

t − z
dt, z ∈ S0. (38)

Since L0 is a simple closed curve, one may always introduce a conformal mapping (in the
form of infinite series) to describe the configuration of its (infinite) exterior T . The mapping
is defined by [11]

z ∈ T : z = ω(ξ) = z0 + R

⎛

⎝ξ +
∞∑

j=1

mjξ
−j

⎞

⎠ , |ξ | > 1, (39)

where z0 is a certain point within S0, while the constants R and mj determine the size and
shape of S0 (or L0). Here, Eq. (39) connects T in the z-plane to the exterior of the unit circle
in the imaginary ξ -plane, and it converges to

t ∈ L0 : t = ω(σ) = z0 + R

⎛

⎝σ +
∞∑

j=1

mjσ
−j

⎞

⎠ , σ = eIθ (0 ≤ θ < 2π), (40)

when ξ tends towards the unit circle in the imaginary plane. Noting that F(z) is analytic in
S0, it may be expanded in Faber series as

F(z) =
∞∑

j=0

djPj (z), z ∈ S0, (41)

where dj are constant coefficients and Pj (z) are the Faber polynomials of S0. Specific ex-
pressions for the Faber polynomials depend on the configuration of S0 and can be established
via the following recurrence relation as [12]

Pj+1(z) = P1(z)Pj (z) −
j−1∑

k=1

mkPj−k(z) − (j + 1)mj , j = 1,2,3, . . . (42)



Need the Uniform Stress Field Inside Multiple Interacting Inclusions. . . 203

with

P0(z) = 1, P1(z) = z − z0

R
. (43)

Here, it is seen from Eqs. (42) and (43) that the Faber polynomial Pj (z) is no more than a
j -th order polynomial in z with the leading term (z − z0)

j /Rj . In particular, the coefficients
of the Faber series for a given analytic function in S0 are always unique. For F(z) defined in
Eq. (38), the corresponding coefficients dj (j = 0,1,2, . . . ) may be determined from [12]
as

dj =
∮

unitcircle
q(ω(σ))σ−j−1dσ, j = 0,1,2, . . . (44)

Substituting Eqs. (37) and (40) into Eq. (44) we obtain the explicit expressions of dj (j =
0,1,2, . . . ) as

dj =
⎧
⎨

⎩

2π I(Az0 + Bz̄0 + C), j = 0,

2π I(AR + BR̄m̄1), j = 1,

2π I · BR̄m̄j , j ≥ 2.

(45)

Let us now consider F(z) from another perspective. Noting that

L0 =
n⋃

i=1

L′
i ∪

n−1⋃

i=1

Ci(i+1), (46)

q(t) = p(t), t ∈ L′
i (i = 1, . . . , n), (47)

one may rewrite F(z) as

F(z) =
n∑

j=1

∫

L′
j

p(t)

t − z
dt +

n−1∑

j=1

∫

Cj(j+1)

q(t)

t − z
dt, z ∈ S0. (48)

When the width ε of the channels tends towards zero, L′
i converges towards Li (i = 1, . . . , n)

while the left and right boundaries of the channel Ci(i+1) tend to coincide, resulting in

lim
ε→0

n∑

j=1

∫

L′
j

p(t)

t − z
dt =

n∑

j=1

∫

Lj

p(t)

t − z
dt, ∀z ∈ Si (i = 1, . . . , n), (49)

lim
ε→0

n−1∑

j=1

∫

Cj(j+1)

q(t)

t − z
dt = 0, ∀z ∈ Si (i = 1, . . . , n). (50)

Imposing Eqs. (36), (49) and (50) on Eq. (48) leads to

lim
ε→0

F(z) = 0, ∀z ∈ Si (i = 1, . . . , n). (51)

Substituting Eqs. (41) and (45) into Eq. (51) and noting that each of Si (i = 1, . . . , n) is a
connected subdomain of S0, we immediately see that

lim
ε→0

mj =
{−(ĀR̄)/(B̄R), j = 1,

0, j ≥ 2.
(52)
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Here, it is indicated from Eq. (52) that L0 converges to an ellipse as the width ε of the
channels tends towards zero. This is, however, contradictory to the original inference (see
the first paragraph of the proof) that none of the Li (i = 1, . . . , n) could be elliptical in shape.
The proof is thus complete. �

3 Multiple Interacting Inclusions with Uniform Stresses

Consider the plane deformation of n non-overlapping inclusions (n ≥ 2) surrounded by an
infinite isotropic elastic matrix undergoing a uniform far-field in-plane loading. Each of the
inclusions is bounded by a simple smooth closed curve Li (i = 1, . . . , n), and the infinite
multiply-connected domain occupied by the matrix is denoted by S.

As shown in [9], the sufficient and necessary condition for the each of the inclusions
to achieve a uniform internal stress field is that there exist two analytic functions ϕ(z) and
ψ(z) in S such that

lim|z|→∞
ϕ(z) = lim|z|→∞

ψ(z) = 0, (53)

ϕ(t) = Ait + Bi t̄ + Ci, t ∈ Li (i = 1, . . . , n), (54)

ψ(t) = Dit + Ei t̄ − Bi t̄
dt̄

dt
+ Fi, t ∈ Li (i = 1, . . . , n), (55)

where Ai , Bi , Di and Ei are constants determined by the uniform far-field loading, the
elastic constants of the matrix and each inclusion and specific uniform stress field inside
each inclusion, while Ci and Fi are some constants. In particular, Bi = 0 only when the
corresponding inclusion has either the same shear modulus as that of the matrix or a uniform
(in-plane) hydrostatic stress field (see Eq. (2.8) in [9]).

Since Eq. (54) puts the limitation on both the real and imaginary parts of the boundary
value of ϕ(z) on Li (i = 1, . . . , n), the desired function ϕ(z) may exist only when the con-
figuration of Li (i = 1, . . . , n) is very specific. Similarly, as indicated from Eq. (55), the ex-
istence of the desired ψ(z) requires a group of Li (i = 1, . . . , n) with specific configuration.
In the design of multiple interacting inclusions achieving uniform internal stresses, however,
one obstacle concerns how to specify the uniform stress field inside each inclusion (yield-
ing appropriate constants Ai , Bi , Di and Ei ) to ensure that the shapes of Li (i = 1, . . . , n)
related to the existence of ϕ(z) are consistent with those related to the existence of ψ(z). A
simple way to deal with this problem is to assume that the uniform stress field inside each
inclusion (each with a shear modulus different from that of the matrix) is hydrostatic leading
to Bi = 0 (i = 1, . . . , n), which was adopted in all of the related research [7–9]. Here, our
purpose is to examine whether it is possible to solve the above-mentioned problem when
Bi �= 0 (i = 1, . . . , n).

We assume that there exist in S two certain analytic functions ϕ(z) and ψ(z) satisfying
Eqs. (53)–(55) with Bi �= 0 (i = 1, . . . , n). According to Theorem 2 (see Eq. (54)), if Bi �= 0
for a certain i, then Bi �= 0 for all i. Consequently, we only need to consider the case in
which none of Bi (i = 1, . . . , n) is zero.

It follows from Eq. (54) that

t ∈ L1 : t̄ = ϕ(t) − A1t − C1

B1
, (56)

whose derivative with respect to t is

t ∈ L1 : dt̄

dt
= ϕ′(t) − A1

B1
, (57)
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where ϕ′(t) denotes the boundary value of ϕ′(z). Substituting Eqs. (56) and (57) into
Eq. (55) we obtain

ψ(t) = D1t + E1 (ϕ(t) − A1t − C1)

B1
− (ϕ(t) − A1t − C1)

(
ϕ′(t) − A1

)

B1
+ F1, t ∈ L1.

(58)
Based on Theorem 1, one may determine ψ(z) in the entire S, from its boundary value (58)
on L1, as

ψ(z) = D1z + E1 (ϕ(z) − A1z − C1)

B1
− (ϕ(z) − A1z − C1)

(
ϕ′(z) − A1

)

B1
+ F1, z ∈ S.

(59)
Letting z in Eq. (59) tend towards a certain boundary Lj (j �= 1), one obtains the boundary
value ψ(t) on Lj as

ψ(t) = D1t + E1 (ϕ(t) − A1t − C1)

B1
− (ϕ(t) − A1t − C1)

(
ϕ′(t) − A1

)

B1
+ F1, t ∈ Lj .

(60)
Using Eq. (54) one has

ϕ(t) = Aj t + Bj t̄ + Cj ,

ϕ′(t) = Aj + Bj
dt̄
dt

,

}
t ∈ Lj . (61)

Substituting Eq. (61) into Eq. (60) yields

ψ(t) =
[

D1 + (Aj − A1)
[
E1 − (Aj − A1)

]

B1

]

t + Bj

[
E1 − (Aj − A1)

]

B1
t̄

− Bj(Cj − C1)

B1

dt̄

dt
− Bj(Aj − A1)

B1
t
dt̄

dt
− B2

j

B1
t̄
d t̄

dt
(62)

+ (Cj − C1)
[
E1 − (Aj − A1)

]

B1
+ F1, t ∈ Lj .

Comparing Eq. (62) with Eq. (55) we obtain an algebraic equation with respect to t on Lj

as
{

D1 − Dj + (Aj − A1)
[
E1 − (Aj − A1)

]

B1

}

t +
{

Bj

[
E1 − (Aj − A1)

]

B1
− Ej

}

t̄

+ (Cj − C1)
[
E1 − (Aj − A1)

]

B1
+ F1 − Fj (63)

−
[

Bj(Aj − A1)

B1
t +

(
B2

j

B1
− Bj

)

t̄ + Bj(Cj − C1)

B1

]
dt̄

dt
= 0, t ∈ Lj .

Since Lj is a simple closed curve, we apply Theorem 3 to Eq. (63) and arrive at two cases.
In the first case, Lj is an ellipse, while in the second case, there is no specific limitation on
the geometry of Lj but Aj = A1, Bj = B1, Cj = C1, Dj = D1, Ej = E1 and Fj = F1.

For the first case, since the elliptical Lj corresponds to a conformal mapping with finite
terms, then, according to Theorem 4, there exists in S no analytic function that meets the
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remote condition (53) and the boundary condition (54). This is however contradictory to the
original assumption that ϕ(z) exists.

For the second case, since Lj is not fixed to a specific boundary curve, one has

Aj = A1,Bj = B1,Cj = C1

Dj = D1,Ej = E1,Fj = F1

}
, j = 2, . . . , n. (64)

Consequently, Eq. (54) may be rewritten as

ϕ(t) = A1t + B1 t̄ + C1, t ∈ Li (i = 1, . . . , n). (65)

Here, as stated in Theorem 5, there does not exist any analytic function in S that complies
with Eqs. (53) and (65). This is contradictory to the original assumption that ϕ(z) exists.

Up to this point, we have shown by contradiction that if Bi �= 0 (i = 1, . . . , n), there do
not exist analytic functions ϕ(z) and ψ(z) in S that meet Eqs. (53)–(55). Consequently, in
the design of multiple interacting inclusions achieving uniform stresses in an elastic plane
under plane deformation, one must require Bi = 0 (i = 1, . . . , n) indicating that the uniform
stress field inside each inclusion (of different shear modulus from that of the matrix) is
necessarily hydrostatic.

4 Concluding Remarks

In the design of multiple (interacting) inclusions with uniform stresses in an elastic matrix,
a general procedure is to first specify the uniform stress field inside each inclusion and then
determine the shapes of the inclusions. In this paper we consider the problem of multiple
inclusions enclosing uniform stresses in an infinite elastic plane under plane deformation for
a uniform in-plane loading applied remotely. We establish a necessary criterion in specifying
the uniform stress field inside each of the multiple inclusions that the uniform stress field
should be hydrostatic if the inclusion has a shear modulus different from that of the matrix.
We prove strictly that any system of multiple inclusions with uniform stresses does not exist
if not complying with this criterion. The proof is based mainly on two theorems involving
certain characteristics of the boundary values of a complex analytic function defined in an
infinite multiply-connected domain. It is anticipated that the theorems and ideas presented
in this paper may contribute to the further study of more challenging problems of multiple
inclusions with uniform stresses (for example, those associated with an isotropic half-plane
or an anisotropic whole plane).
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