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Abstract We show the existence of global minimizers for a geometrically nonlinear
isotropic elastic Cosserat 6-parameter shell model. The proof of the main theorem is based
on the direct methods of the calculus of variations using essentially the convexity of the
energy in the nonlinear strain and curvature measures. We first show the existence of the
solution for the theory including O(h5) terms. The form of the energy allows us to show
the coercivity for terms up to order O(h5) and the convexity of the energy. Secondly, we
consider only that part of the energy including O(h3) terms. In this case the obtained mini-
mization problem is not the same as those previously considered in the literature, since the
influence of the curved initial shell configuration appears explicitly in the expression of the
coefficients of the energies for the reduced two-dimensional variational problem and addi-
tional mixed bending-curvature and curvature terms are present. While in the theory includ-
ing O(h5) the conditions on the thickness h are those considered in the modelling process
and they are independent of the constitutive parameter, in the O(h3)-case the coercivity is
proven under some more restrictive conditions on the thickness h.

Keywords Geometrically nonlinear Cosserat shell · 6-parameter resultant shell · In-plane
drill rotations · Thin structures · Dimensional reduction · Wryness tensor ·

B I.-D. Ghiba
dumitrel.ghiba@uaic.ro

M. Bîrsan
mircea.birsan@uni-due.de

P. Lewintan
peter.lewintan@uni-due.de

P. Neff
patrizio.neff@uni-due.de

1 Department of Mathematics, Alexandru Ioan Cuza University of Iaşi, Blvd. Carol I, no. 11, 700506
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1 Introduction

Shell and plate theories are intended for the study of thin bodies, i.e., bodies in which the
thickness in one direction is much smaller than the dimensions in the other two orthogo-
nal directions. In this follow up paper we investigate the existence of minimizers to a re-
cently developped isotropic Cosserat shell model [6, 21], including higher order terms. The
Cosserat shell model naturally includes an independent triad of rigid directors, which are
coupled to the shell-deformation. From an engineering point of view, such models are pre-
ferred, since the independent rotation field allows for transparent coupling between shell and
beam parts. It is interesting that the kinematical structure of 6-parameter shells [5, 19, 41]
(involving the translation vector and rotation tensor) is identical to the kinematical structure
of Cosserat shells (defined as material surfaces endowed with a triad of rigid directors de-
scribing the orientation of points). Using the derivation approach, Neff [28, 30, 31, 33, 51]
has modelled and analysed the so-called nonlinear planar-Cosserat shell models, in which
a full triad of orthogonal directors, independent of the normal of the shell, is taken into ac-
count. The results have been obtained by an 8-parameter ansatz of the deformation through
the thickness and consistent analytic integration over the thickness in the case of a flat un-
deformed shell reference configuration. In previous papers, we have extended the modelling
from flat shells to the most general case of initially curved shells [6, 21]. Our ansatz al-
lows for a consistent shell model up to order O(h5) in the shell thickness. Interestingly,
all O(h5)-terms in the shell energy depend on the initial curvature of the shell and vanish
for a flat shell. However, all occurring material coefficients of the shell model are uniquely
determined in terms of the underlying isotropic three-dimensional Cosserat bulk-model and
the given initial geometry of the shell. Thus, we fill a certain gap in the general 6-parameter
shell theory, since all hitherto known models leave the precise structure of the constitutive
equations wide open. In the present paper, we will show that our model is mathematically
well-posed in the sense that global minimizers exist.

The topic of existence of solutions for the 2D equations of linear and nonlinear elastic
shells has been treated in many works. The results that can be found in the literature refer
to various types of shell models and they employ different techniques, see, e.g., [2, 4, 20,
23–25, 44–48]. The existence theory for linear or nonlinear shells is presented in details in
the books of Ciarlet [12–14], together with many historical remarks and bibliographic refer-
ences. A fruitful approach to the existence theory of 2D plate and shell models (obtained as
limit cases of 3D models) is the �-convergence analysis of thin structures, see, e.g., [32, 35,
36, 40]. By ignoring the Cosserat effects, in order to start with a well-posed three dimen-
sional model, it is preferable to consider a polyconvex energy [3] in the three-dimensional
formulation of the initial problem. In this direction, an example is the article [17], see also
[9, 16], where the Ciarlet-Geymonat energy [15] is used. In these articles, no through the
thickness integration is performed analytically and no reduced completely two-dimensional
minimization problem is presented. The obtained problems are “two-dimensional” only in
the sense that the final problem is to find three vector fields on a bounded open subset of R2,
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but all three-dimensional coordinates remain present in the minimization problem. By con-
trast, when a nonlinear three-dimensional problem in the Cosserat theory is considered, the
three-dimensional problem is well-posed [34, 49, 50] and permits a complete dimensional
reduction.

The classical geometrically nonlinear Kirchhoff-Love model (the Koiter model for short),
is given by the minimization problem with respect to the midsurface deformation m : ω ⊂
R

2 → R
3 of the type1

∫
ω

{
h

(
μ‖(Im − Iy0

)‖2 + λμ

λ + 2μ
tr
[(

Im − Iy0

)]2
)

+h3

12

(
μ‖(IIm − IIy0

)‖2 + λμ

λ + 2μ
tr
[(

IIm − IIy0

)]2
)}

da,

(1.1)

where Im := [∇m]T ∇m ∈ R
2×2 and IIm := −[∇m]T ∇m ∈ R

2×2 are the matrix represen-
tations of the first fundamental form (metric) and the second fundamental form on m(ω),
respectively. However, this problem is notoriously ill-posed, since the first membrane term
is non-convex in ∇ m and is indeed a non-rank-one elliptic energy. Even the inclusion of
the bending terms is not sufficient to regularize the problem [28, 33]. The very same prob-
lem arises in geometrically nonlinear Reissner-Mindlin (Naghdi) type shell models, which
already include an independent director-vector-field that does not coincide with the normal
to the surface, as in the Kirchhoff-Love model.

Let us explain the typical situation by looking at representative energy terms for the
different models. Assume that m : ω ⊂ R

2 → R
3 is the deformation of the midsurface of a

flat shell, nm is the unit normal to the shell midsurface, the unit vector d : ω ⊂R
2 → R

3 is an
independent director vector-field, and R : ω ⊂ R

2 → SO(3) is an independent rotation field.
Then the essence of a Kirchhoff-Love planar shell model is represented by the minimization
problem with respect to m : ω ⊂ R

2 →R
3 of the type

“Kirchhoff-Love type”
∫

ω

{
h ‖(∇m |nm)T (∇m |nm) − 13‖2︸ ︷︷ ︸

“membrane”

+h3

12
‖∇nm‖2︸ ︷︷ ︸
“bending”

}
da (1.2)

=
∫

ω

{
h‖(∇m)T (∇m) − 12‖2 + h3

12
‖∇nm‖2

}
da.

The essence of the corresponding Reissner-Mindlin problem is represented by the minimiza-
tion problem with respect to (m,d) of the type

“Reissner-Mindlin type”
∫

ω

{
h‖(∇m |d)T (∇m |d) − 13‖2 + h3

12
‖∇d‖2

}
da. (1.3)

And finally, the Cosserat flat shell model has the structure given by the minimization prob-
lem with respect to (m,R) of the type

“Cosserat-shell”
∫

ω

{
h‖RT

(∇m |R e3) − 13‖2 + h3

12
‖∇R‖2

}
da. (1.4)

1For the sake of simplicity, in this overview in the introduction, we have ignored the dependence of the
minimization problems on ∇�, where � is the diffeomorphism which maps the midsurface ω of the fictitious
Cartesian parameter space onto the midsurface of the curved reference configuration, the focus being to
present only the essential energy terms appearing in the variational problems.
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Problems (1.2) and (1.3) are non-elliptic with respect to m at given d , while problem (1.4)
is even linear with respect to m at given rotation field R, which is itself controlled by the
curvature term ‖∇R‖2. Therefore, in principle, (1.4) admits minimizers, while (1.2) and
(1.3) in general do not.

In view of these mathematical deficiencies, in the literature we find many types of exis-
tence theorems, which treat certain approximations of (1.1). The above mentioned approach
by Ciarlet and his co-authors [9, 16, 17] falls into this category. It has already been noted by
Neff [28], that an independent control of the continuum rotations in quadratic, non-rank-one
convex energies like the membrane-term in (1.1) is sufficient to resolve the non-rank-one
convexity issue. This is precisely, what the Cosserat shell model is incorporating from the
outset by considering not a single director as additional independent field, but a triad of rigid
directors - the rotation field R ∈ SO(3).

Concerning the geometrically nonlinear theory of elastic Cosserat shells with drilling
rotations including O(h3)-terms, there is no existence theorem published in the literature,
except [7], as far as we are aware of. Existence results for the related Cosserat model of
initially planar shells have been obtained earlier by Neff [28, 33]. For our new model, we
search for the minimizing solution pair of class H1(ω,R3) for the translation vector and
H1(ω,SO(3)) for the rotation tensor. For the proof of existence, we employ the direct meth-
ods of the calculus of variations, extensions of the techniques presented in [7, 8, 28, 33],
coercivity and uniform convexity of the energy in the appropriate geometrically nonlinear
strain and curvature measure. A first task is to show the existence of the solution for the
theory including O(h5)-terms. In this case the expression of the energy allows us to have a
decent control on each term of the energy density, in order to show the coercivity and the
convexity of the energy. A second task is to consider that part of the energy which contains
only O(h3)-terms. In this case the obtained minimization problem is not the same as that
considered in [7, 8, 10, 11, 18, 19], since additional mixed bending-curvature and curva-
ture energy-terms are included and the influence of the curved initial shell configuration
appears explicitly in the expression of the coefficients of the energies for the reduced two-
dimensional variational problem. For the O(h3)-model, the problem of coercivity turns out
to be more delicate, since some steps used to prove the coercivity for the O(h5)-model can-
not be done in the same manner. As a preparation for the existence proofs we will rewrite
the energy in an equivalent form that allows us to prove the coercivity and convexity of the
energy. Moreover, for the O(h3)-model, we need to impose either a stronger assumption on
the constitutive parameters or a relation between the thickness and the characteristic length.
This behaviour highlights the importance and interest for including O(h5)-terms.

2 The New Geometrically Nonlinear Cosserat Shell Model

2.1 Notation

In this paper, for a, b ∈ R
n we let

〈
a, b

〉
Rn denote the scalar product on R

n with asso-
ciated (squared) vector norm ‖a‖2

Rn = 〈
a, a

〉
Rn The standard Euclidean scalar product on

the set of real n × m second order tensors R
n×m is given by

〈
X,Y

〉
Rn×m = tr(X Y T ), and

thus the (squared) Frobenius tensor norm is ‖X‖2
Rn×m = 〈

X,X
〉
Rn×m . In the following we

omit the subscripts R
n,Rn×m. The identity tensor on R

n×n will be denoted by 1n, so that
tr(X) = 〈

X,1n

〉
. We let Sym(n) and Sym+(n) denote the symmetric and positive definite

symmetric tensors, respectively. We adopt the usual abbreviations of Lie-group theory, e.g.,
GL(n) = {X ∈ R

n×n |det(X) �= 0} the general linear group, SO(n) = {X ∈ GL(n)|XT X =
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Fig. 1 The shell in its initial configuration �ξ , the shell in the deformed configuration �c , and the fictitious
planar Cartesian reference configuration �h . Here, Rξ is the elastic rotation field, Q0 is the initial rotation
from the fictitious planar Cartesian reference configuration to the initial configuration �ξ , and R is the total
rotation field from the fictitious planar Cartesian reference configuration to the deformed configuration �c

1n,det(X) = 1} with corresponding Lie-algebras so(n) = {X ∈ R
n×n |XT = −X} of skew

symmetric tensors and sl(n) = {X ∈ R
n×n | tr(X) = 0} of traceless tensors. For all X ∈R

n×n

we set symX = 1
2 (X + XT ) ∈ Sym(n), skewX = 1

2 (X − XT ) ∈ so(n) and the deviatoric
part devX = X − 1

n
tr(X)1n ∈ sl(n) and we have the orthogonal Cartan-decomposition

of the Lie-algebra gl(n) on the vector space R
n×n, gl(n) = {sl(n) ∩ Sym(n)} ⊕ so(n) ⊕

R·1n, X = dev symX + skewX + 1
n

tr(X)1n. A matrix having the three columns vectors
A1,A2,A3 will be written as (A1 |A2 |A3). We make use of the operator axl : so(3) → R

3

associating with a matrix A ∈ so(3) the vector axlA := (−A23,A13,−A12)
T . The inverse of

the operator axl : so(3) →R
3 is denoted by anti :R3 → so(3).

Let � be an open domain of R3. The usual Lebesgue spaces of square integrable func-
tions, vector or tensor fields on � with values in R, R3, R3×3 or SO(3), respectively will be
denoted by L2(�;R), L2(�;R3), L2(�;R3×3) and L2(�;SO(3)), respectively. Moreover,
we use the standard Sobolev spaces H1(�;R) [1, 22, 26] of functions u. For vector fields
u = (u1, u2, u3)

T with ui ∈ H1(�), i = 1,2,3, we define ∇ u := (∇ u1 |∇ u2 |∇ u3)
T . The

corresponding Sobolev-space will be denoted by H1(�;R3). If a tensor Q : � → SO(3) has
the components in H1(�;R), then we mark this by writing Q ∈ H1(�;SO(3)). When writ-
ting the norm in the corresponding Sobolev-space we will specify the space in subscript.
The space will be omitted only when the Frobenius norm or scalar product is considered.

2.2 The Deformation of Cosserat Shells

Let �ξ ⊂ R
3 be a three-dimensional shell-like thin domain. In a fixed standard base e1, e2, e3

of R3, a generic point of �ξ will be denoted by (ξ1, ξ2, ξ3). The elastic material constituting
the shell is assumed to be homogeneous and isotropic and the reference configuration �ξ

is assumed to be a natural state. The deformation of the body occupying the domain �ξ is
described by a vector map ϕξ : �ξ ⊂ R

3 → R
3 (called deformation) and by a microrotation

tensor Rξ : �ξ ⊂ R
3 → SO(3). We denote the current configuration (deformed configura-

tion) by �c := ϕξ (�ξ ) ⊂R
3, see Fig. 1.

In what follows, we consider the fictitious Cartesian (planar) configuration �h of the
body. This parameter domain �h ⊂R

3 is a right cylinder of the form

�h =
{
(x1, x2, x3)

∣∣∣ (x1, x2) ∈ ω, −h

2
< x3 <

h

2

}
= ω ×

(
−h

2
,

h

2

)
,
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where ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂ω and the constant length

h>0 is the thickness of the shell. For shell–like bodies we consider the domain �h to be thin,
i.e., the thickness h is small. We assume furthermore that there exists a C1-diffeomorphism
� :R3 →R

3 in the specific form

�(x1, x2, x3) = y0(x1, x2) + x3 n0(x1, x2), n0 = ∂x1y0 × ∂x2y0

‖∂x1y0 × ∂x2y0‖ , (2.1)

where y0 : ω → R
3 is a function of class C2(ω), so that � maps the fictitious planar

Cartesian parameter space �h onto the initially curved reference configuration of the shell
�(�h) = �ξ , �(x1, x2, x3) = (ξ1, ξ2, ξ3). The diffeomorphism � maps the midsurface ω of
the fictitious Cartesian parameter space �h onto the midsurface ωξ = y0(ω) of �ξ and n0 is
the unit normal vector to ωξ . For simplicity and where no confusions may arise, we will omit
subsequently to write explicitly the arguments (x1, x2, x3) of the diffeomorphism � or we
will specify only its dependence on x3. We use the polar decomposition [37] of ∇x�(x3) and
write ∇x�(x3) = Q0(x3)U0(x3), Q0(x3) = polar(∇x�)(x3) ∈ SO(3), U0(x3) ∈ Sym+(3).

Let us remark that

∇x�(x3) = (∇y0|n0) + x3(∇n0|0) ∀x3 ∈
(

−h

2
,
h

2

)
, ∇x�(0) = (∇y0|n0),

[∇x�(0)]−T e3 = n0, (2.2)

and that det(∇y0|n0) =√
det[(∇y0)T ∇y0] represents the surface element.

In the following, we consider the Weingarten map2 (or shape operator) on y0(ω) defined
by its associated matrix Ly0 = I−1

y0
IIy0 ∈ R

2×2, where Iy0 := [∇y0]T ∇y0 ∈ R
2×2 and IIy0 :=

−[∇y0]T ∇n0 ∈ R
2×2 are the matrix representations of the first fundamental form (metric)

and the second fundamental form, respectively. Then, the Gauß curvature K of the surface
y0(ω) is determined by K := det(Ly0) and the mean curvature H through 2 H := tr(Ly0).
We also need the tensors defined by:

Ay0 := (∇y0|0) [∇x�(0)]−1 ∈R
3×3, By0 := −(∇n0|0) [∇x�(0)]−1 ∈R

3×3, (2.3)

and the so-called alternator tensor Cy0 of the surface [52]

Cy0 := det(∇x�(0)) [∇x�(0)]−T

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ [∇x�(0)]−1. (2.4)

Now, let us define the map ϕ : �h → �c, ϕ(x1, x2, x3) = ϕξ (�(x1, x2, x3)). We view
ϕ as a function which maps the fictitious planar reference configuration �h into the
deformed configuration �c . We also consider the elastic microrotation Qe,s : �h →
SO(3), Qe,s(x1, x2, x3) := Rξ(�(x1, x2, x3)).

In [21], by assuming that Qe,s(x1, x2, x3) = Qe,s(x1, x2) and considering an 8-parameter
quadratic ansatz in the thickness direction for the reconstructed total deformation ϕs : �h ⊂
R

3 → R
3 of the shell-like body, we have obtained a two-dimensional minimization prob-

lem in which the energy density is expressed in terms of the following tensor fields on the

2We identify the Weingarten map, the first fundamental form and the second fundamental form with their
associated matrices in the fixed base vector e1, e2, e3.
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surface ω

Em,s := Q
T

e,s(∇m|Qe,s∇x�(0) e3)[∇x�(0)]−1 − 13 (2.5)

(elastic shell strain tensor),

Ke,s := (axl(Q
T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0)[∇x�(0)]−1

(elastic shell bending–curvature tensor),

where m : ω ⊂ R
2 → R

3 represents the deformation of the midsurface. When these mea-
sures vanish, the shell undergoes a rigid body motion. Indeed, Ke,s= 0 implies ∂x1Qe,s = 0,
∂x2Qe,s = 0, while Em,s = 0 leads to ∇m = Qe,s∇y0. Since Qe,s is constant and m =
Qe,s y0 + c, where c is a constant vector field, this means that the shell is in a rigid body
motion with constants translation c and constant rotation Qe,s .

2.3 Formulation of the Minimization Problem

In [21], we have obtained the following two-dimensional minimization problem for the de-
formation of the midsurface m : ω→R

3 and the microrotation of the shell Qe,s : ω→SO(3)

solving on ω ⊂R
2: minimize with respect to (m,Qe,s) the functional

I (m,Qe,s) =
∫

ω

[
Wmemb

(
Em,s

)+ Wmemb,bend
(
Em,s, Ke,s

)+ Wbend,curv
(
Ke,s

)]
det(∇y0|n0)da

− 
(m,Qe,s) , (2.6)

where the membrane part Wmemb
(
Em,s

)
, the membrane–bending part Wmemb,bend

(
Em,s, Ke,s

)
and the bending–curvature part Wbend,curv

(
Ke,s

)
of the shell energy density are given by

Wmemb

(
Em,s

)=
(
h + K

h3

12

)
Wshell

(
Em,s

)
,

Wmemb,bend

(
Em,s, Ke,s

)=
(h3

12
− K

h5

80

)
Wshell

(
Em,s By0 + Cy0Ke,s

)
(2.7)

− h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)

+ h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)

+ h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)
,

Wbend,curv

(
Ke,s

)=
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+
(h3

12
− K

h5

80

)
Wcurv

(
Ke,sBy0

)

+ h5

80
Wcurv

(
Ke,sB

2
y0

)
,

with

Wshell(S) = μ‖symS‖2 + μc‖skewS‖2 + λμ

λ + 2μ

[
tr(S)

]2
, (2.8)
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Wshell(S,T ) = μ
〈
symS, sym T

〉+ μc

〈
skewS, skew T

〉+ λμ

λ + 2μ
tr(S) tr(T ),

Wmp(S) = μ‖symS‖2 + μc‖skewS‖2 + λ

2

[
tr(S)

]2 = Wshell(S) + λ2

2(λ + 2μ)
[tr(S)]2,

Wcurv(S) = μL2
c

(
b1 ‖dev symS‖2 + b2 ‖skewS‖2 + b3 [tr(S)]2

)
.

The parameters μ and λ are the Lamé constants of classical isotropic elasticity, κ =
2μ+3λ

3 is the infinitesimal bulk modulus, b1, b2, b3 are non-dimensional constitutive curva-
ture coefficients (weights), μc ≥ 0 is called the Cosserat couple modulus and Lc > 0 intro-
duces an internal length which is characteristic for the material, e.g., related to the grain
size in a polycrystal. The internal length Lc > 0 is responsible for size effects in the sense
that smaller samples are relatively stiffer than larger samples. If not stated otherwise, we
assume that μ > 0, κ > 0, μc > 0, b1 > 0, b2 > 0, b3 > 0. Here, μL2

c plays the role of a
dimensional agreement factor. Without loss of generality, we may assume that 0 < b1 < 1,
0 < b2 < 1, 0 < b3 < 1. All constitutive coefficients are deduced from the three-dimensional
formulation, without using any a posteriori fitting of some two-dimensional constitutive co-
efficients.

The potential of applied external loads 
(m,Qe,s) appearing in (2.6) is expressed by


(m,Qe,s) = 
ω(m,Qe,s) + 
γt (m,Qe,s) , with (2.9)


ω(m,Qe,s) =
∫

ω

〈
f,u

〉
da + ω(Qe,s) and 
γt (m,Qe,s) =

∫
γt

〈
t, u

〉
ds + γt (Qe,s) ,

where u(x1, x2) = m(x1, x2) − y0(x1, x2) is the displacement vector of the midsurface,

ω(m,Qe,s) is the total potential of the external surface loads f and of the external applied
body couples ω(Qe,s), while 
γt (m,Qe,s) is the total potential of the external boundary
loads t and of the external boundary couples γt (Qe,s). Here, γt and γd are nonempty sub-
sets of the boundary of ω such that γt ∪ γd = ∂ω and γt ∩ γd = ∅. On γt we have considered
traction boundary conditions, while on γd we have the Dirichlet-type boundary conditions:3

m
∣∣
γd

= m∗, simply supported (fixed, welded),

Qe,s

∣∣
γd

= Q
∗
e,s , clamped, (2.10)

where the boundary conditions are to be understood in the sense of traces.
The functions ω ,γt : L2(ω,SO(3)) → R are expressed in terms of the loads from

the three-dimensional parental variational problem, see [21], and they are assumed to be
continuous and bounded operators.

Remark 2.1 Our model [21] is constructed under the following assumptions upon the thick-
ness

h |κ1| < 1

2
and h |κ2| < 1

2
,

where κ1 and κ2 denote the principal curvatures of the initial underformed surface.

3The existence theory works also for free microrotations at the boundary since SO(3) is a compact manifold.
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We will consider materials for which the Poisson ratio ν = λ
2(λ+μ)

and Young’s modulus

E = μ(3λ+2μ)

λ+μ
are such that − 1

2 <ν< 1
2 and E > 0. This assumption implies that 2λ+μ>0.

Under these assumptions on the constitutive coefficients, together with the positivity of μ,
μc, b1, b2 and b3, and the orthogonal Cartan-decomposition of the Lie-algebra gl(3), with

Wshell(S) = μ‖dev symS‖2 + μc‖skewS‖2 + 2μ(2λ + μ)

3 (λ + 2μ)
[tr(S)]2, (2.11)

it follows that there exists the positive constants c+
1 , c+

2 ,C+
1 and C+

2 such that

C+
1 ‖S‖2 ≥ Wshell(S) ≥ c+

1 ‖S‖2,

C+
2 ‖S‖2 ≥ Wcurv(S) ≥ c+

2 ‖S‖2 ∀S ∈R
3×3. (2.12)

Hence, we note

Wmp(S) = Wshell(S) + λ2

2(λ + 2μ)
(tr(S))2 ≥ Wshell(S) ≥ c+

1 ‖S‖2. (2.13)

3 Existence of Minimizers for the Cosserat Shell Model of Order O(h5)

In order to establish an existence result by the direct methods of the calculus of variations,
we need to show the coercivity of the elastically stored shell energy density.

3.1 Coercivity and Uniform Convexity in the Theory of Order O(h5)

Proposition 3.1 [Coercivity in the theory including terms up to order O(h5)] For suffi-
ciently small values of the thickness h such that h|κ1| < 1

2 and h|κ2| < 1
2 and for constitutive

coefficients satisfying μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0, the energy
density

W(Em,s,Ke,s) = Wmemb
(
Em,s

)+ Wmemb,bend
(
Em,s, Ke,s

)+ Wbend,curv
(
Ke,s

)
(3.1)

is coercive in the sense that there exists a constant a+
1 > 0 such that

W(Em,s,Ke,s) ≥ a+
1

(‖Em,s‖2 + ‖Ke,s‖2
)
, (3.2)

where a+
1 depends on the constitutive coefficients.

Proof In order to prove the coercivity note that the principal curvatures κ1, κ2 are the solu-
tions of the characteristic equation of Ly0 , i.e., κ2 − tr(Ly0) κ +det(Ly0) = κ2 −2Hκ +K = 0.
Therefore, from the assumptions h |κ1| < 1

2 , h |κ2| < 1
2 , it follows that

h2|K| = h2 |κ1| |κ2| < 1

4
and 2h |H | = h |κ1 + κ2| < 1. (3.3)

Therefore, h − K h3

12 > 0 and h3

12 − K h5

80 > 0 and

W(Em,s,Ke,s) ≥
(
h + K

h3

12

)
Wshell

(
Em,s

)+
(h3

12
− K

h5

80

)
Wshell

(
Em,s By0 + Cy0Ke,s

)
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− h3

3
|H| |Wshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)|

− h3

12
2 |Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)|

+ h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)
. (3.4)

Using the Cauchy–Schwarz inequality we deduce

W(Em,s,Ke,s) ≥
(
h + K

h3

12

)
Wshell

(
Em,s

)

− 1

3
|H| [h2 Wshell

(
Em,s

)] 1
2
[
h4 Wshell

(
Em,sBy0 + Cy0 Ke,s

)] 1
2

+
(h3

12
− K

h5

80

)
Wshell

(
Em,s By0 + Cy0Ke,s

)

− 1

6

[
hWshell

(
Em,s

)] 1
2

[
h5Wshell

(
(Em,sBy0 + Cy0 Ke,s)By0

)] 1
2 (3.5)

+ h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)
.

The arithmetic-geometric mean inequality leads to the estimate

W(Em,s,Ke,s) ≥
(
h + K

h3

12
− h2

6
ε |H|

)
Wshell

(
Em,s

)

+
(h3

12
− K

h5

80
− h4

6 ε
|H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

− h

12
δ Wshell

(
Em,s

)− h5

12 δ
Wshell

(
(Em,sBy0 + Cy0 Ke,s)By0

)
(3.6)

+ h5

80
Wmp

(
(Em,s By0 + Cy0Ke,s)By0

)+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)

∀ ε > 0 and δ > 0.

Using (2.13), we obtain

W(Em,s,Ke,s) ≥
(
h − h

12
δ + K

h3

12
− h2

6
ε |H|

)
Wshell

(
Em,s

)

+
(h3

12
− K

h5

80
− h4

6 ε
|H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

+
( h5

80
− h5

12 δ

)
Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)
(3.7)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

) ∀ ε > 0 and δ > 0.
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Taking δ = 8 and and ε = 2 we get4 that

W(Em,s,Ke,s) ≥h
[1

3
− K

h2

12
− h

3
|H|

]
Wshell

(
Em,s

)

+ h3

12

(
1 − |K| 12h2

80
− h |H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

+
(
h − |K| h3

12

)
Wcurv

(
Ke,s

)
. (3.8)

In view of (3.3) and (2.12), we deduce

W(Em,s,Ke,s) ≥h
7

48
Wshell

(
Em,s

)+ h3

12

37

80
Wshell

(
Em,sBy0 + Cy0 Ke,s

)+ h
47

48
Wcurv

(
Ke,s

)

≥h
7

48
c+

1 ‖Em,s‖2 + h3

12

37

80
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2 + h
47

48
c+

2 ‖Ke,s‖2.

(3.9)

The desired constant a+
1 from the conclusion can be chosen as a+

1 = min
{
h

7

48
c+

1 , h
47

48
c+

2

}
.

�

Corollary 3.2 [Uniform convexity in the theory including terms up to order O(h5)] For
sufficiently small values of the thickness h such that h|κ1| < 1

2 and h|κ2| < 1
2 and for con-

stitutive coefficients such that μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0, the
energy density

W(Em,s,Ke,s) = Wmemb
(
Em,s

)+ Wmemb,bend
(
Em,s, Ke,s

)+ Wbend,curv
(
Ke,s

)
(3.10)

is uniformly convex in (Em,s,Ke,s), i.e., there exists a constant a+
1 > 0 such that

D2 W(Em,s,Ke,s). [(H1,H2), (H1,H2)] ≥ a+
1 (‖H1‖2 + ‖H2‖2) ∀H1,H2 ∈R

3×3. (3.11)

Proof For a bilinear expression W(Em,s,Ke,s) in terms of Em,s and Ke,s , the second deriva-
tive with respect to these argument variables coincides with the function itself, modulo a
scalar multiplication. We will prove this known fact only for two terms of the energy and
we show that

D2(‖symEm,s‖2). [(H1,H2), (H1,H2)] = 2‖symH1‖2 and (3.12)

D2(
〈
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

〉
). [(H1,H2), (H1,H2)]

= 2
〈
symH1, sym(H1 By0 + Cy0 H2)

〉
.

Indeed, on the one hand, we have DF (‖F‖2).H = 2 〈F,H 〉, 〈D2
F (‖F‖2).H,H

〉= 2‖H‖2.
Useful in our calculation is that

4This step cannot be repeated in the proof of the coercivity up to order O(h3), since Wshell
(
(Em,s By0 +

Cy0Ke,s )By0

)
cannot be skipped. This is the reason why we have to choose another strategy to obtain the

desired estimates.
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D2 W(Em,s,Ke,s). [(H1,H2), (H1,H2)] =D2
Em,s ,Em,s

W(Em,s,Ke,s). (H1,H1)

+ 2DKe,s [DEm,s W(Em,s,Ke,s).(H1,H1)].(H2,H2)

+ D2
Ke,s ,Ke,s

W(Em,s,Ke,s). (H2,H2).

Since sym :R3×3 → Sym(3) is a linear operator, we obtain

D2(‖symEm,s‖2). [(H1,H2), (H1,H2)] = D2
Em,s ,Em,s

(‖symEm,s‖2). (H1,H1)

= 2‖symH1‖2, (3.13)

which proves (3.12)1. On the other hand, it holds

D2
Em,s ,Em,s

(
〈
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

〉
). (H1,H1) = 2

〈
symH1,H1By0

〉
,

D2
Ke,s ,Ke,s

(
〈
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

〉
). (H2,H2) = 0, (3.14)

DKe,s [DEm,s (
〈
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

〉
).(H1,H1)].(H2,H2) = 〈

symH1,Cy0 H2

〉
.

Therefore

D2(
〈
symEm,s, sym(Em,sBy0 + Cy0 Ke,s)

〉
). [(H1,H2), (H1,H2)]

= 2
〈
symH1, sym(H1By0 + Cy0 H2)

〉
, (3.15)

which proves (3.12)2. In conclusion, after making similar calculations as above for the other
terms appearing in the expression of W(Em,s,Ke,s), we obtain

D2 W(Em,s,Ke,s). [(H1,H2), (H1,H2)] = 2W(H1,H2). (3.16)

Bounding the function W(Em,s,Ke,s) for all Em,s,Ke,s ∈ R
3×3 away from zero amounts

therefore to showing that D2W(Em,s,Ke,s) is positive definite. Hence, the coercivity of
W(Em,s,Ke,s) expressed by Proposition 3.1 implies uniform convexity in the chosen vari-
ables. �

3.2 The Existence Result in the Theory of Order O(h5)

In this section, we prove the first main result of our paper. The admissible set A of solutions
is defined by

A = {
(m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣ m
∣∣
γd

= m∗, Qe,s

∣∣
γd

= Q
∗
e,s

}
, (3.17)

where the boundary conditions are to be understood in the sense of traces.

Theorem 3.3 [Existence result for the theory including terms up to order O(h5)] Assume
that the external loads satisfy the conditions

f ∈ L2(ω,R3), t ∈ L2(γt ,R
3), (3.18)

and the boundary data satisfy the conditions

m∗ ∈ H1(ω,R3), Q
∗
e,s ∈ H1(ω,SO(3)). (3.19)
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Assume that the following conditions concerning the initial configuration are satisfied: y0 :
ω ⊂R

2 → R
3 is a continuous injective mapping and

y0 ∈ H1(ω,R3), Q0(0) ∈ H1(ω,SO(3)), ∇x�(0) ∈ L∞(ω,R3×3),

det[∇x�(0)] ≥ a0 > 0 , (3.20)

where a0 is a constant. Then, for sufficiently small values of the thickness h such that h|κ1| <
1
2 and h|κ2| < 1

2 and for constitutive coefficients such that μ > 0, μc > 0, 2λ + μ > 0, b1 >

0, b2 > 0 and b3 > 0, the minimization problem (2.6)–(2.10) admits at least one minimizing
solution pair (m,Qe,s) ∈ A.

Proof We employ the direct methods of the calculus of variations, similar to [7, 29, 34].
However, in comparison to [7], due to the fact that we use only matrix notation, some steps
are shortened. In Proposition 3.1 and Corollary 3.2, we have shown that the strain energy
density W(Em,s,Ke,s) is a quadratic convex and coercive function of (Em,s,Ke,s).

The hypothesis (3.18) and the boundedness of 
S0 and 
∂S0
f

imply that there exists a

constant C > 0 such that5

|
(m,Qe,s)| ≤ C
(
‖m − y0‖L2(ω) + ‖m − y0‖L2(γt )

+ ‖Qe,s‖L2(ω)

)

∀ (m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3)).

We have ‖Qe,s‖2 = tr(Qe,sQ
T

e,s) = tr(13) = 3, ∀Qe,s ∈ SO(3). Hence, there exists a
constant C > 0 such that

|
(m,Qe,s) | ≤ C
(‖m‖H1(ω) + 1

)
, ∀ (m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3)). (3.21)

Considering

Rs(x1, x2) = Qe,s(x1, x2)Q0(x1, x2,0) ∈ SO(3), (3.22)

we observe that

Em,s =Q0[RT

s (∇m|Qe,s∇x�(0) e3) − QT
0 (∇y0|n0)][∇x�(0)]−1

=Q0(R
T

s ∇m − QT
0 ∇y0|0)[∇x�(0)]−1. (3.23)

The lifted quantity Îy0 = (∇y0|n0)
T (∇y0|n0) ∈ Sym(3) is positive definite and also it’s

inverse is positive definite. Using the above relation we obtain

‖Em,s‖2 = 〈
QT

0 Q0(R
T

s ∇m − QT
0 ∇y0|0), (R

T

s ∇m − QT
0 ∇y0|0)̂I−1

y0

〉

= 〈̂
I−1
y0

(R
T

s ∇m − QT
0 ∇y0|0)T , (R

T

s ∇m − QT
0 ∇y0|0)T

〉

≥ λ2
0 ‖(RT

s ∇m − QT
0 ∇y0|0)‖2, (3.24)

5By C and Ci , i ∈ N, we will denote (positive) constants that may vary from estimate to estimate but will
remain independent of m, ∇m and Qe,s .
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where λ0 is the smallest eigenvalue of the positive definite matrix Î−1
y0

. Similarly, we deduce
that

‖Ke,s‖2 = 〈
(axl(Q

T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0),

(axl(Q
T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0)̂ I−1
y0

〉

= 〈̂
I−1
y0

(axl(Q
T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0)T ,

(axl(Q
T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s) |0)T
〉

(3.25)

≥ λ2
0 ‖(axl(Q

T

e,s ∂x1Qe,s) | axl(Q
T

e,s ∂x2Qe,s))‖2.

From (3.24) we have

‖Em,s‖2 ≥ λ2
0

[
‖RT

s ∇m‖2 − 2
〈
R

T

s ∇m, QT
0 ∇y0

〉+ ‖QT
0 ∇y0‖2

]
. (3.26)

Since ‖RT

s ∇m‖2 = ‖∇m‖2 and ‖QT
0 ∇y0‖2 = ‖∇y0‖2, after integrating over ω, using (3.2),

the Cauchy–Schwarz inequality and the hypothesis upon y0, gives us the estimate

‖Em,s‖2
L2(ω)

≥ λ2
0

[
‖∇m‖2

L2(ω)
− 2‖∇m‖L2(ω)‖∇y0‖L2(ω) + ‖∇y0‖2

L2(ω)

]

≥ λ2
0‖∇m‖2

L2(ω)
− C1 ‖∇m‖L2(ω) + C2, (3.27)

for some positive constants C1 > 0, C2 > 0.
By virtue of the coercivity of the internal energy and (3.20), (3.21) and (3.24), the func-

tional I (m,Qe,s) is bounded from below

I (m,Qe,s) ≥ C1

∫
ω

‖Em,s‖2 det[∇x�(0)]da − 
(m,Qe,s)

≥ C2 a0‖Em,s‖2
L2(ω)

− C3

(‖m‖H1(ω) + 1
)

≥ C4 ‖∇m‖2
L2(ω)

− C5 ‖m‖H1(ω) − C6

∀ (m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3)), (3.28)

with Ci > 0, i = 1,2, . . . ,6. We also obtain, applying the Poincaré–inequality, that there
exists a constant C > 0 such that

‖∇m‖2
L2(ω)

≥ (‖∇(m − m∗)‖L2(ω) − ‖∇m∗‖L2(ω))
2

≥ C ‖m − m∗‖2
H1(ω)

− 2‖m − m∗‖H1(ω)‖∇m∗‖L2(ω) + ‖∇m∗‖2
L2(ω)

≥ C ‖m − m∗‖2
H1(ω)

− 1

ε
‖m − m∗‖2

H1(ω)
− ε‖∇m∗‖2

L2(ω)
+ ‖∇m∗‖2

L2(ω)

∀ ε > 0. (3.29)

Therefore, by choosing ε > 0 small enough, (3.28) ensures the existence of constants C1 > 0
and C2 ∈R such that

I (m,Qe,s) ≥ C1‖m − m∗‖2
H1(ω)

+ C2 ∀ (m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3)), (3.30)
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i.e., the functional I (m,Qe,s) is bounded from below on A.
Hence, there exists an infimizing sequence

{
(mk,Qk)

}∞
k=1

in A, such that

lim
k→∞

I (mk,Qk) = inf
{
I (m,Qe,s)

∣∣ (m,Qe,s) ∈ A
}
. (3.31)

Since we have I (m∗,Q
∗
e,s) < ∞, in view of the conditions (3.19), the infimizing sequence{

(mk,Qk)
}∞

k=1
can be chosen such that

I (mk,Qk) ≤ I (m∗,Q
∗
e,s) < ∞ , ∀k ≥ 1. (3.32)

Taking into account (3.30) and (3.32) we see that the sequence
{
mk

}∞
k=1

is bounded in

H1(ω,R3). Then, we can extract a subsequence of
{
mk

}∞
k=1

(not relabeled) which converges
weakly in H1(ω,R3) and moreover, according to Rellich’s selection principle, it converges
strongly in L2(ω,R3), i.e., there exists an element m̂ ∈ H1(ω,R3) such that

mk ⇀ m̂ in H1(ω,R3), and mk → m̂ in L2(ω,R3). (3.33)

Corresponding to the fields (mk,Qk) we consider the strain measures E (k)
m,s , K(k)

e,s ∈
L2(ω,R3×3). From the coercivity of the internal energy, (3.21) and (3.32) we get

C1 ‖K(k)
e,s‖2

L2(ω)
≤
∫

ω

W(E (k)
m,s ,K

(k)
e,s ) det[∇x�(0)]da ≤ I (m∗,Q

∗
e,s) + C2

(‖mk‖H1(ω) + 1
)
,

where C1,C2 are positive constants.
Since

{
mk

}∞
k=1

is bounded in H1(ω,R3), it follows from the last inequalities that{
K(k)

e,s

}∞
k=1

is bounded in L2(ω,R3×3).

For tensor fields P with rows in H(curl ;�), i.e., P = (
P T e1 |P T e2 |P T e3

)T
with

(P T ei)
T ∈ H(curl ;�), i = 1,2,3, we define

CurlP := (
curl (P T e1)

T | curl (P T e2)
T | curl (P T e3)

T
)T

.

Since
{
K(k)

e,s}∞
k=1 is bounded, so is

{
axl(Q

T

k ∂xαQk)
}∞

k=1
, α = 1,2, in L2(ω,R3) and it fol-

lows that Q
T

k CurlQk is bounded. Indeed, using the so-called wryness tensor (second order
tensor) [18, 38]

�k :=
(

axl(Q
T

k ∂x1Qk) | axl(Q
T

k ∂x2Qk) |0
)

∈ R
3×3, (3.34)

we have (see [38]) the following close relationship (Nye’s formula) between the wryness
tensor and the dislocation density tensor

αk := Q
T

k CurlQk = −�T
k + tr(�k)13 , or equivalently,

�k = −αT
k + 1

2
tr(αk)13 , (3.35)

because Qk = Qk(x1, x2). Hence,
{
axl(Q

T

k ∂xαQk)
}∞

k=1
is bounded if and only if Q

T

k CurlQk

is bounded. Writing CurlQk = Qk Q
T

k CurlQk and using ‖Qk‖2 = 3, we deduce that

the boundedness of Q
T

k CurlQk implies that CurlQk is bounded. Since the Curl-operator
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bounds the gradient operator in SO(3), see [38], it follows that
{
∂xαQk

}∞
k=1

is bounded in

L2(ω,R3×3), for α = 1,2. Since Qk ∈ SO(3) we have ‖Qk‖2 = 3 and thus we can infer
that the sequence

{
Qk

}∞
k=1

is bounded in H1(ω,R3×3). Hence, there exists a subsequence of{
Qk

}∞
k=1

(not relabeled) and an element Q̂e,s ∈ H1(ω,R3×3) with

Qk ⇀ Q̂e,s in H1(ω,R3×3), and Qk → Q̂e,s in L2(ω,R3×3). (3.36)

Since Qk ∈ SO(3) we have

‖QkQ̂
T

e,s − 13‖L2(ω) = ‖Qk(Q̂
T

e,s − Q
T

k )‖L2(ω) = ‖Q̂e,s − Qk‖L2(ω) → 0,

i.e., QkQ̂
T

e,s → 13 in L2(ω,R3×3). On the other hand, we can write

‖QkQ̂
T

e,s − Q̂e,sQ̂
T

e,s‖L1(ω) = ‖(Qk − Q̂e,s)Q̂
T

e,s‖L1(ω) ≤ 3‖Qk − Q̂e,s‖L2(ω) ‖Q̂e,s‖L2(ω) → 0,

which means that QkQ̂
T

e,s → Q̂e,sQ̂
T

e,s in L1(ω,R3×3). Consequently, we find Q̂e,sQ̂
T

e,s = 13

so that Q̂e,s belongs to H1(ω,SO(3)).
By virtue of the relations (mk,Qk) ∈ A and (3.33), (3.36), we derive that m̂ = m∗ on γd

and Q̂e,s = Q
∗
e,s on γd in the sense of traces. Hence, we obtain that the limit pair satisfies

(m̂, Q̂e,s) ∈ A.
Let us next construct the limit strain and curvature measures

Êm,s : = Q̂
T

e,s(∇m̂|Q̂e,s∇x�(0)e3)[∇x�(0)]−1 − 13 = Q0(R̂
T

s ∇m̂ − QT
0 ∇y0|0)[∇x�(0)]−1,

K̂e,s : = (axl(Q̂
T

e,s ∂x1Q̂e,s) | axl(Q̂
T

e,s ∂x2Q̂e,s) |0)[∇x�(0)]−1 (3.37)

= Q0

(
axl(R̂

T

s ∂x1 R̂s)−axl(QT
0 ∂x1Q0)

∣∣ axl(R̂
T

s ∂x2 R̂s)−axl(QT
0 ∂x2Q0)

∣∣0
)[∇x�(0)]−1,

where

R̂s(x1, x2) := Q̂e,s(x1, x2)Q0(x1, x2,0) ∈ SO(3). (3.38)

As shown above, the sequence
{
mk

}∞
k=1

is bounded in H1(ω,R3). It follows that{
(∇mk|0)

}∞
k=1

is bounded in L2(ω,R3×3). We define

Rk := Qk Q0 ∈ SO(3). (3.39)

Then, the sequence
{
R

T

k (∇mk|0)
}∞

k=1
is bounded in L2(ω,R3×3), since Rk ∈ SO(3). Con-

sequently, there exists a subsequence (not relabeled) and an element ξ ∈ L2(ω,R3×3) such
that

R
T

k (∇mk|0) ⇀ ξ in L2(ω,R3×3). (3.40)

On the other hand, let � ∈ C∞
0 (ω,R3×3) be an arbitrary test function. Then, using the prop-

erties of the scalar product we deduce
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∫
ω

〈
R

T

k (∇mk|0) − R̂
T

s (∇m̂|0), �
〉
da

=
∫

ω

〈
R̂

T

s

(
(∇mk|0) − (∇m̂|0)

)
,�

〉
da +

∫
ω

〈(
R

T

k − R̂
T

s

)
(∇mk|0),�

〉
da

=
∫

ω

〈
(∇mk|0) − (∇m̂|0), R̂s�

〉
da +

∫
ω

〈
Rk−R̂s , (∇mk|0)�T

〉
da (3.41)

≤ ‖Rk−R̂s‖L2(ω)‖(∇mk|0)�T ‖L2(ω)+
∫

ω

〈
(∇mk|0) − (∇m̂|0), R̂s�

〉
da .

Since the relations (3.33), (3.36) and R̂s� ∈ L2(ω,R3×3) hold, and ‖(∇mk|0)�T ‖ is
bounded, we get

∫
ω

〈
R

T

k (∇mk|0),�
〉
da →

∫
ω

〈
R̂

T

s (∇m̂|0),�
〉
da, ∀� ∈ C∞

0 (ω,R3×3). (3.42)

By comparison of (3.40) and (3.42) we find ξ = R̂
T

s (∇m̂|0), which means that R
T

k (∇mk|0)⇀

R̂
T

s (∇m̂|0) in L2(ω,R3×3), or equivalently

R
T

k (∇mk|0) − QT
0 (∇y0|0) ⇀ R

T

k (∇m̂|0) − QT
0 (∇y0|0) in L2(ω,R3×3). (3.43)

Taking into account the hypotheses, we obtain from (3.43) that

E (k)
m,s : = Q0(R

T

k ∇mk − QT
0 ∇y0|0)[∇x�(0)]−1 ⇀ Êm,s (3.44)

in L2(ω,R3).
We use now the fact that the sequence

{
axl(R

T

k ∂xαRk)
}∞

k=1
, α = 1,2, is bounded in

L2(ω,R3), since we proved previously that R
T

k ∂xαRk is bounded in L2(ω,R3×3). Then, there
exists a subsequence (not relabeled) and an element ζα ∈ L2(ω,R3), α = 1,2, such that

axl(R
T

k ∂xαRk) ⇀ ζα in L2(ω,R3). (3.45)

On the other hand, for any test function φ ∈ C∞
0 (ω,R3) we can write

∫
ω

〈
axl(R

T

k ∂xαRk − R̂
T

s ∂xα R̂s) , φ
〉
R3 da = 1

2

∫
ω

〈
R

T

k ∂xαRk − R̂
T

s ∂xα R̂s , anti(φ)
〉
R3×3 da

= 1

2

∫
ω

〈
R̂

T

s

(
∂xαRk − ∂xα R̂s

)
, anti(φ)

〉
R3×3 da + 1

2

∫
ω

〈(
R

T

k − R̂
T

s

)
∂xαRk , anti(φ)

〉
R3×3 da

(3.46)

≤ 1

2

∫
ω

〈
∂xαRk − ∂xα R̂s , R̂s anti(φ)

〉
R3×3 da + 1

2
‖Rk − R̂s‖L2(ω) ‖∂xαRk [anti(φ)]T ‖L2(ω)

→ 0,

since R̂s anti(φ) ∈ L2(ω,R3×3), ‖∂xαRk [anti(φ)]T ‖ is bounded, and relations (3.36) hold.
Consequently, we have

∫
ω

〈
axl(R

T

k ∂xαRk) , φ
〉
R3 da →

∫
ω

〈
axl(R̂

T

s ∂xα R̂s) , φ
〉
R3 da, ∀φ ∈ C∞

0 (ω,R3), (3.47)
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and by comparison with (3.45) we deduce that ζα = axl(R̂s
T ∂xα R̂s), i.e.,

axl(R
T

k ∂xαRk) − axl(Q0∂xαQ0) ⇀ axl(R̂s
T ∂xα R̂s) − axl(Q0∂xαQ0) inL2(ω,R3), (3.48)

Hence, from (3.20) we derive the convergence

K(k)
e,s := Q0

(
axl(R

T

k ∂x1Rk) (3.49)

− axl(QT
0 ∂x1Q0)

∣∣ axl(R
T

k ∂x2Rk)−axl(QT
0 ∂x2Q0)

∣∣ 0
)[∇x�(0)]−1 ⇀ K̂e,s .

In the last step of the proof we use the convexity of the strain energy density W . In view
of (3.44) and (3.49), we have

∫
ω

W(Êm,s, K̂e,s) det[∇x�(0)]da ≤ lim inf
n→∞

∫
ω

W(E (k)
m,s ,K

(k)
e,s ) det[∇x�(0)]da. (3.50)

since W is convex in (Em,s,Ke,s). Taking into account the hypotheses (3.18), the continuity
of the load potential functions, and the convergence relations (3.33)2 and (3.36)2, we deduce


(m̂, Q̂e,s) = lim
n→∞
(mk,Qk). (3.51)

From (3.50) and (3.51) we get

I (m̂, Q̂e,s) ≤ lim inf
n→∞ I (mk,Qk) . (3.52)

Finally, the relations (3.31) and (3.52) show that

I (m̂, Q̂e,s) = inf
{
I (m,Qe,s)

∣∣ (m,Qe,s) ∈ A
}
.

Since (m̂, Q̂e,s) ∈ A, we conclude that (m̂, Q̂e,s) is a minimizing solution pair of our mini-
mization problem. �

The boundary condition on Qe,s is not essential in the proof of the above theorem, and
that one can prove the existence of minimizers for the minimization problem over a larger
admissible set:

Corollary 3.4 [Existence result for the theory including terms up to order O(h5) without
boundary condition on the microrotation field] Under the hypotheses of Theorem 3.3, the
minimization problem (2.6)–(2.10) admits at least one minimizing solution pair

(m,Qe,s) ∈ A = {
(m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣ m
∣∣
γd

= m∗} . (3.53)

4 Existence of Minimizers for the Cosserat Shell Model of Order O(h3)

In this section we consider only terms up to order O(h3) in the expression of the energy den-
sity. Therefore, we obtain the following two-dimensional minimization problem for the de-
formation of the midsurface m : ω→R

3 and the microrotation of the shell Qe,s : ω→SO(3)

solving on ω ⊂R
2: minimize with respect to (m,Qe,s) the following functional

I (m,Qe,s)=
∫

ω

W(h3)
(
Em,s, Ke,s

)
det(∇y0|n0)da − 
(m,Qe,s) , (4.1)



The Isotropic Cosserat Shell Model Including Terms up to O(h5). . . 281

where the shell energy density W(h3)(Em,s,Ke,s) is given by

W(h3)(Em,s,Ke,s) =
(
h + K

h3

12

)
Wshell

(
Em,s

)+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

− h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)

+ h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)
(4.2)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)
,

with all the other quantities having the same expressions and interpretations as in the theory
up to order O(h5).

In [21] we have presented a comparison with the the general 6-parameter shell model
[19]. While in the previous approaches [7, 10, 11, 19] the dependence of the coefficients
upon the curved initial shell configuration is not specified, in our shell model, the con-
stitutive coefficients are deduced from the three-dimensional formulation, while the influ-
ence of the curved initial shell configuration appears explicitly in the expression of the co-
efficients of the energies for the reduced two-dimensional variational problem. Another
major difference between our model and the previously considered general 6-parameter
shell model is that, even in the case of a simplified theory of order O(h3), additional

mixed terms like the membrane–bending part −h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)
and

h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)
, as well as Wcurv

(
Ke,sBy0

)
, are included, which are

otherwise difficult to guess. Therefore, an existence proof for the new O(h3)-model is of
independent interest. First, we will show

Proposition 4.1 [Coercivity in the theory including terms up to order O(h3)] Assume that
the constitutive coefficients are such that μ > 0, μc > 0, 2λ + μ > 0, b1 > 0, b2 > 0 and
b3 > 0 and let c+

2 denotes the smallest eigenvalue of Wcurv(S), and c+
1 and C+

1 > 0 denote
the smallest and the largest eigenvalues of the quadratic form Wshell(S). If the thickness h

satisfies one of the following conditions:

i) h|κ1| < 1
2 , h|κ2| < 1

2 and h2 <

(
47

4

)2

(5 − 2
√

6)
c+

2
C+

1
;

ii) h|κ1| < 1
a

, h|κ2| < 1
a

with a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
,

then W(h3)(Em,s,Ke,s) is coercive, in the sense that there exists a constant a+
1 > 0 such that

W(h3)(Em,s,Ke,s) ≥ a+
1

(‖Em,s‖2 + ‖Ke,s‖2
)
, (4.3)

where a+
1 depends on the constitutive coefficients.

Proof Using the properties presented in the Appendix, since B2
y0

− 2 H By0 + K Ay0 = 03

and Em,sAy0 = Em,s , it follows

(Em,sBy0 + Cy0 Ke,s)By0 = 2 HEm,sBy0 − KEm,s + Cy0 Ke,sBy0 . (4.4)
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Hence, we have

(
h + K

h3

12

)
Wshell

(
Em,s

)− h3

3
HWshell

(
Em,s,Em,sBy0 + Cy0 Ke,s

)

+ h3

6
Wshell

(
Em,s, (Em,sBy0 + Cy0 Ke,s)By0

)

=
(
h + K

h3

12

)
Wshell

(
Em,s

)− h3

3
HWshell

(
Em,s,Em,sBy0

)− h3

3
HWshell

(
Em,s,Cy0 Ke,s

)
(4.5)

+ H
h3

3
Wshell

(
Em,s,Em,sBy0

)− K
h3

6
Wshell

(
Em,s,Em,s

)+ h3

6
Wshell

(
Em,s,Cy0 Ke,sBy0

)

=
(
h − K

h3

12

)
Wshell

(
Em,s

)− h3

3
HWshell

(
Em,s,Cy0 Ke,s

)+ h3

6
Wshell

(
Em,s,Cy0 Ke,sBy0

)
.

Using (4.5) and the positive definiteness of the quadratic forms (2.8) and the Cauchy–
Schwarz inequality we obtain

W(h3)(Em,s,Ke,s) ≥
(
h − K

h3

12

)
Wshell

(
Em,s

)+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

− h3

6
|Wshell

(
Em,s, Cy0Ke,sBy0

)| − h3

3
|H| |Wshell

(
Em,s, Cy0Ke,s

)|

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)

≥
(
h − K

h3

12

)
Wshell

(
Em,s

)

− 1

6

[
hWshell

(
Em,s

)] 1
2
[
h5 Wshell

(
Cy0 Ke,sBy0

)] 1
2 (4.6)

− 1

3
|H| [h2 Wshell

(
Em,s

)] 1
2
[
h4 Wshell

(
Cy0 Ke,s

)] 1
2

+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

)
.

In view of the arithmetic-geometric mean inequality it follows

W(h3)(Em,s,Ke,s) ≥
(
h − K

h3

12

)
Wshell

(
Em,s

)− 1

12
ε hWshell

(
Em,s

)

− 1

12 ε
h5 Wshell

(
Cy0 Ke,sBy0

)− 1

6
δ |H|h2 Wshell

(
Em,s

)
(4.7)

− 1

6 δ
|H|h4 Wshell

(
Cy0 Ke,s

)+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

) ∀ ε > 0 and δ > 0.
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Using the inequalities −h2|K| > − 1
4 and −h |H | > − 1

2 , we obtain

W(h3)(Em,s,Ke,s) ≥ h

12

(47

4
− δ − ε

)
Wshell

(
Em,s

)+ h3

12
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

− 1

12 δ
h3 Wshell

(
Cy0 Ke,s

)− 1

12 ε
h5 Wshell

(
Cy0 Ke,sBy0

)
(4.8)

+ 47h

48
Wcurv

(
Ke,s

)+ h3

12
Wcurv

(
Ke,sBy0

) ∀ ε > 0 and δ > 0.

In view of (3.3) and (2.12) and since the Frobenius norm is sub-multiplicative, we deduce

W(h3)(Em,s,Ke,s) ≥ h

12

(47

4
− δ − ε

)
c+

1 ‖Em,s‖2 + h3

12
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2

− 1

12 δ
h3 C+

1 ‖Cy0‖2 ‖Ke,s‖2 − 1

12 ε
h5 C+

1 ‖Cy0‖2 ‖Ke,s By0‖2 (4.9)

+ 47h

48
c+

2 ‖Ke,s‖2 + h3

12
c+

2 ‖Ke,sBy0‖2

∀ ε > 0 and δ > 0 such that
47

4
> δ + ε.

Since ‖Cy0‖2 = 2, the estimate (4.9) becomes

W(h3)(Em,s,Ke,s) ≥ h

12

(47

4
− δ − ε

)
c+

1 ‖Em,s‖2 + h3

12
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2 (4.10)

+ C+
1

h3

6

(47

8

1

h2

c+
2

C+
1

− 1

δ

)
‖Ke,s‖2 + C+

1

h5

6

(1

2

1

h2

c+
2

C+
1

− 1

ε

)
‖Ke,sBy0‖2,

for all ε > 0 and δ > 0 such that
47

4
> δ + ε. According to the properties presented in the

Appendix, we have

‖By0‖2 = 〈
B2

y0
,1
〉= 2 H

〈
By0 ,1

〉− K
〈
Ay0 ,1

〉= 4 H2 − 2 K. (4.11)

Therefore, from (4.10) it follows

W(h3)(Em,s,Ke,s) ≥ h

12

(47

4
− δ − ε

)
c+

1 ‖Em,s‖2 + h3

12
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2 (4.12)

+ h
[47

48
c+

2 − 1

6 δ
h2 C+

1 − 1

6 ε
h4 C+

1 (4 H2 − 2 K)
]
‖Ke,s‖2

+ h3 1

12
c+

2 ‖Ke,sBy0‖2.

Using again that h is small, we obtain −h2 (4 H2 − 2 K) > − 3
2 and
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W(h3)(Em,s,Ke,s) ≥ h

12

(47

4
− δ − ε

)
c+

1 ‖Em,s‖2 + h3

12
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2 (4.13)

+ h3

12
C+

1

[47

4

c+
2

h2 C+
1

− 2

δ
− 3

ε

]
‖Ke,s‖2 + h3 1

12
c+

2 ‖Ke,sBy0‖2

≥ h

12

(47

4
− δ − ε

)
c+

1 ‖Em,s‖2 + h3

12
C+

1

[47

4

c+
2

h2 C+
1

− 2

δ
− 3

ε

]
‖Ke,s‖2.

We consider δ = γ ε and we choose δ > 0 and γ > 0 such that 47
4 (1+γ )

> ε >
2+3γ

γ
4

47
h2 C+

1
c+

2
.

This choice of the variable ε is possible if and only if
(

47
4

)2 γ

(2+3γ ) (1+γ )
>

h2 C+
1

c+
2

. At this point

we use that maxγ>0
γ

(2+3γ ) (1+γ )
= 5 − 2

√
6, and we take γ =

√
2
3 . Note that the considered

values for γ and ε assure that the condition
47

4
> δ + ε is automatically satisfied. Hence,

we arrive at the following condition on the thickness h:

h2 <

(
47

4

)2

(5 − 2
√

6)
c+

2

C+
1

≈ 13.94
c+

2

C+
1

, (4.14)

which proves the coercivity if the condition i) is satisfied.
Next, we consider coercivity for condition ii). Under the hypotheses of the theorem,

using also the positive definiteness of the quadratic forms (2.8) and the Cauchy–Schwarz
inequality, we have

W(h3)(Em,s,Ke,s) ≥
(
h + K

h3

12

)
Wshell

(
Em,s

)

− 1

3
|H| [h2 Wshell

(
Em,s

)] 1
2
[
h4 Wshell

(
Em,sBy0 + Cy0 Ke,s

)] 1
2

+ h3

12
Wshell

(
Em,s By0 + Cy0Ke,s

)

− 1

6

[
hWshell

(
Em,s

)] 1
2

[
h5Wshell

(
(Em,sBy0 + Cy0 Ke,s)By0

)] 1
2

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)
. (4.15)

Using the arithmetic-geometric mean inequality in the previous estimate, it follows

W(h3)(Em,s,Ke,s) ≥
(
h + K

h3

12
− h2

6
ε |H|

)
Wshell

(
Em,s

)

+
(h3

12
− h4

6 ε
|H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

− h

12
δ Wshell

(
Em,s

)− h5

12 δ
Wshell

(
Em,sBy0 + Cy0 Ke,s)By0

)
(4.16)

+
(
h − K

h3

12

)
Wcurv

(
Ke,s

)
.
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We choose δ = 8 and ε = 2 to obtain that

W(h3)(Em,s,Ke,s) ≥h
[1

3
− K

h2

12
− h

3
|H|

]
Wshell

(
Em,s

)
(4.17)

+ h3

12

(
1 − h |H|

)
Wshell

(
Em,sBy0 + Cy0 Ke,s

)

− h5

96
Wshell

(
(Em,s By0 + Cy0Ke,s)By0

)+
(
h − |K| h3

12

)
Wcurv

(
Ke,s

)
.

Let us consider a > 0 and impose h |H | < 1
a

, h2 |K| < 1
a2 . Therefore, using (2.12) and

since the Frobenius norm is sub-multiplicative we deduce

W(h3)(Em,s,Ke,s) ≥h
4a2 − 4a − 1

12a2
c+

1 ‖Em,s‖2 + h
12a2 − 1

12a2
c+

2 ‖Ke,s‖2 (4.18)

+ h3

12

a − 1

a
c+

1 ‖Em,sBy0 + Cy0 Ke,s‖2

− h5

96
C+

1 ‖Em,s By0 + Cy0Ke,s‖2 ‖By0‖2.

Moreover, using (4.11) we deduce −h2‖By0‖2 > − 6
a2 and the inequality

W(h3)(Em,s,Ke,s) ≥h
4a2 − 4a − 1

12a2
c+

1 ‖Em,s‖2 + h
12a2 − 1

12a2
c+

2 ‖Ke,s‖2 (4.19)

+ h3

12
C+

1

a − 1

a

[
c+

1

C+
1

− 3

4a(a − 1)

]
‖Em,s By0 + Cy0Ke,s‖2 .

Hence, choosing a > 1 +
√

2
2 we assure that 4a2−4a−1

12a2 > 0, a−1
a

> 0 and 12a2−1
12a2 > 0. A

suitable a > 1 +
√

2
2 should satisfy

c+
1

C+
1

− 3
4a(a−1)

> 0, which is true if a is such that a >

1+
√

1+3
C

+
1

c
+
1

2 > 1. Therefore, if a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
, then inequality (4.19) yields

W(h3)(Em,s,Ke,s) ≥h
4a2 − 4a − 1

12a2
c+

1 ‖Em,s‖2 + h
12a2 − 1

12a2
c+

2 ‖Ke,s‖2. �

Corollary 4.2 [Uniform convexity for the theory including terms up to order O(h3)] Under
the hypotheses of Proposition 4.1, the energy density W(h3)(Em,s,Ke,s) is uniformly convex
in (Em,s,Ke,s), i.e., there exists a constant a+

1 > 0 such that

D2W(h3)(Em,s,Ke,s).[(H1,H2), (H1,H2)] ≥ a+
1 (‖H1‖2 + ‖H2‖2) ∀H1,H2 ∈ R

3×3. (4.20)

Proof See Corollary 3.2. �

Therefore, an existence result similar to Theorem 3.3 holds true for the theory including
terms up to order O(h3):
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Theorem 4.3 [Existence result for the theory including terms up to order O(h3)] Assume
that the external loads satisfy the conditions

f ∈ L2(ω,R3), t ∈ L2(γt ,R
3), (4.21)

the boundary data satisfy the conditions

m∗ ∈ H1(ω,R3), Q
∗
e,s ∈ H1(ω,SO(3)), (4.22)

and that the following conditions concerning the initial configuration are fulfilled: y0 : ω ⊂
R

2 → R
3 is a continuous injective mapping and

y0 ∈ H1(ω,R3), Q0(0) ∈ H1(ω,SO(3)), ∇x�(0) ∈ L∞(ω,R3×3),

det[∇x�(0)] ≥ a0 > 0 , (4.23)

where a0 is a constant. Assume that the constitutive coefficients are such that μ > 0, μc > 0,
2λ + μ > 0, b1 > 0, b2 > 0 and b3 > 0. Then, if the thickness h satisfies at least one of the
following conditions:

i) h|κ1| < 1
2 , h|κ2| < 1

2 and h2 <

(
47

4

)2

(5 − 2
√

6)
c+

2
C+

1
;

ii) h|κ1| < 1
a

, h|κ2| < 1
a

with a > max
{

1 +
√

2
2 ,

1+
√

1+3
C

+
1

c
+
1

2

}
,

where c+
2 denotes the smallest eigenvalue of Wcurv(S), and c+

1 and C+
1 > 0 denote the small-

est and the biggest eigenvalues of the quadratic form Wshell(S), the minimization problem
corresponding to the energy density defined by (4.1) and (4.2) admits at least one minimizing
solution pair (m,Qe,s) ∈ A.

Corollary 4.4 [Existence result for the theory including terms up to order O(h3) without
boundary condition on the microrotation field] Under the hypotheses of Theorem 4.3, the
minimization problem corresponding to the energy density defined by (4.1) and (4.2) admits
at least one minimizing solution pair

(m,Qe,s) ∈ A = {
(m,Qe,s) ∈ H1(ω,R3) × H1(ω,SO(3))

∣∣ m
∣∣
γd

= m∗} . (4.24)

5 Final Comments

Having the deformation of the midsurface m : ω ⊂ R
2 → R

3 and the microrotation of the
shell Qe,s : ω ⊂ R

2 → SO(3) solving on ω the minimization (two-dimensional) problem,
we get the approximation of the deformation of the initial three-dimensional body using the
following 6-parameter quadratic ansatz in the thickness direction for the reconstructed total
deformation ϕs : �h ⊂R

3 →R
3 of the shell-like structure [21]

ϕs(x1, x2, x3) =m(x1, x2) +
(

x3�m(x1, x2) + x2
3

2
�b(x1, x2)

)
Qe,s(x1, x2)∇x�(x1, x2,0) e3 ,

(5.1)
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where �m, �b : ω ⊂ R
2 → R allow in principal for symmetric thickness stretch (�m �= 1) and

asymmetric thickness stretch (�b �= 0) about the midsurface and they are given by

�m =1 − λ

λ + 2μ
[〈QT

e,s(∇m|0)[∇x�(0)]−1,13

〉− 2] = 1 − λ

λ + 2μ
tr(Em,s) ,

�b = − λ

λ + 2μ

〈
Q

T

e,s(∇(Qe,s∇x�(0) e3)|0)[∇x�(0)]−1,13

〉
(5.2)

+ λ

λ + 2μ

〈
Q

T

e,s(∇m|0)[∇x�(0)]−1(∇n0|0)[∇x�(0)]−1,13

〉

= − λ

λ + 2μ
tr[Cy0Ke,s + Em,sBy0 ].

Obviously, if we know the total microrotation Rs(x1, x2) = Qe,s(x1, x2)Q0(x1, x2,0) ∈
SO(3), then we know the microrotation Rξ of the parental three-dimensional problem, since
we assume it is independent of x3.

It is noteworthy that the existence result in the O(h3)-model is not simply the truncated
version of the existence result for the O(h5)-model. Both existence results require uniformly
positive constitutive parameters, in particular μc > 0. However, the existence result for the
O(h5)-model needs less stringent assumptions on the plate thickness versus the initial cur-
vature. This may indicate that the O(h5)-model is intrinsically more stable than the O(h3)-
model. We will illuminate this possible feature in future computational researches. Since
classical shell models do not have any drill contribution, it is interesting to consider the
no drill case generated by μc = 0 (free drill, but no energy contribution associated to this
deformation mode). In this interesting limit case, we would need new generalized Korn’s
inequalities [27, 39, 42, 43], which couple the smoothness of the rotation field Rs with the
coercivity with respect to the deformation m, in the sense that

‖RT

s (∇m|0) + (∇m|0)T Rs‖2
L2(ω)

≥ c+‖m‖2
H1(ω)

. (5.3)

However, such an estimate is currently only known for Rs ∈ C(ω,SO(3)), but the elastic
shell energy only assures Rs ∈ H1(ω,SO(3)). More research is needed in this direction.
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Appendix: Properties of the Considered Tensors

In this paper we use some properties of the tensors involved in the variational formulation
of the shell model [21].

Proposition A.1 The following identities are satisfied:

i) tr[Ay0 ] = 2, det[Ay0 ] = 0; tr[By0 ] = 2 H, det[By0 ] = 0,
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ii) By0 satisfies the equation of Cayley-Hamilton type B2
y0

− 2 H By0 + K Ay0 = 03;
iii) Ay0 By0 = By0 Ay0 = By0 , A2

y0
= Ay0 ;

iv) Cy0 ∈ so(3), C2
y0

= −Ay0 and it has the simplified form

Cy0 := Q0(0)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠QT

0 (0) ∈ so(3).

v) Q
T

e,s (∇[Qe,s∇x�(0) e3] |0) [∇x�(0)]−1 = Cy0Ke,s − By0 ;
vi) Cy0Ke,sAy0 = Cy0Ke,s ;
vii) Em,sAy0 = Em,s .

Proof For the proof of this proposition we refer to [21]. Here, we prove only the third
identity of iv).

We have [∇x�(x3)] e3 = n0. Let us recall that X ∈ GL+(3) satisfies the Generalized
Kirchhoff Constraint (GKC) [29] if X ∈ GKC := {X ∈ GL+(3) | XT X e3 = �2e3, � ∈ R

+}.
For all X ∈ GKC with the polar decomposition X = R U0, if follows that U0 ∈ GKC. In

view of this property and ∇�(x3) = Q0(x3)U0(x3), it follows6 U0(x3) =
⎛
⎝∗ ∗ 0

∗ ∗ 0
0 0 1

⎞
⎠ ∈

Sym+(3). Since detQ0 = 1, we deduce

Cy0 = Cof(∇x�(0))

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ [∇x�(0)]−1

= Q0(0) (detU0(0))U−1
0 (0)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ U−1

0 (0)QT
0 (0). (A.1)

Direct computations give us

⎛
⎝a x 0

x b 0
0 0 1

⎞
⎠
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠
⎛
⎝a x 0

x b 0
0 0 1

⎞
⎠=

⎛
⎝ 0 ab − x2 0

x2 − ab 0 0
0 0 0

⎞
⎠ and

det

⎛
⎝a x 0

x b 0
0 0 1

⎞
⎠

−1

= 1

ab − x2
.

Using these calculation in (A.1), we obtain

(detU0(0))U−1
0 (0)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ U−1

0 (0) =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ . (A.2)

Hence, the alternator tensor has the representation given in iv). �

6Here, ∗ denotes quantities having expressions which are not relevant for our calculations.
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