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Abstract We rigorously determine the scale-independent short range elastic parameters in
the relaxed micromorphic generalized continuum model for a given periodic microstructure.
This is done using both classical periodic homogenization and a new procedure involving
the concept of apparent material stiffness of a unit-cell under affine Dirichlet boundary con-
ditions and Neumann’s principle on the overall representation of anisotropy. We explain our
idea of “maximal” stiffness of the unit-cell and use state of the art first order numerical
homogenization methods to obtain the needed parameters for a given tetragonal unit-cell.
These results are used in the accompanying paper (d’Agostino et al. in J. Elast. 2019. Ac-
cepted in this volume) to describe the wave propagation including band-gaps in the same
tetragonal metamaterial.

Keywords Anisotropy · Relaxed micromorphic model · Enriched continua ·
Micro-elasticity · Metamaterial · Size effects · Parameter identification · Periodic
homogenization · Effective properties · Unit-cell · Micro-macro transition · Löwner matrix
supremum · Effective medium · Tensor harmonic mean · Apparent stiffness tensors ·
Neumann’s principle

B P. Neff
patrizio.neff@uni-due.de

B. Eidel
bernhard.eidel@uni-siegen.de

M.V. d’Agostino
marco-valerio.dagostino@insa-lyon.fr

A. Madeo
angela.madeo@insa-lyon.fr

1 Head of Chair for Nonlinear Analysis and Modelling, Fakultät für Mathematik, Universität
Duisburg-Essen, Mathematik-Carrée, Thea-Leymann-Straße 9, 45127 Essen, Germany

2 Universität Siegen, Institut für Mechanik, Heisenberg-group, Paul-Bonatz-Straße 9-11, 57076
Siegen, Germany

3 GEOMAS, INSA-Lyon, 20 avenue Albert Einstein, 69621, Villeurbanne, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-019-09752-w&domain=pdf
http://orcid.org/0000-0002-1615-8879
http://orcid.org/0000-0003-2966-1980
mailto:patrizio.neff@uni-due.de
mailto:bernhard.eidel@uni-siegen.de
mailto:marco-valerio.dagostino@insa-lyon.fr
mailto:angela.madeo@insa-lyon.fr


270 P. Neff et al.

Mathematics Subject Classification (2000) 74A30 · 74A35 · 74A60 · 74B05 · 74M25 ·
74Q15

1 Introduction

In this work we aim to partially homogenize a periodic linear elastic Cauchy material to-
wards a relaxed micromorphic continuum. Classical homogenization is a mature subject and
delivers rigorously the effective linear elastic stiffness tensor Cmacro, which then describes
the (very) large scale response of the periodic structure in arbitrary boundary value problems
(see Fig. 1). The classical homogenization approaches are valid when the characteristic size
of the studied microstructure is orders of magnitudes smaller than the characteristic size of
the structure (scale-separation hypothesis). The effective stiffness tensor Cmacro can be con-
veniently characterized by looking at any possible unit-cell of the periodic Cauchy material
and applying periodic boundary conditions (PBC).1 The ensuing FEM-problem is nowadays
routinely solved [74].

However, giving up the scale-separation hypothesis, if one is interested in calculating a
finite sized sample of the periodic structure under general non-affine loadings, it becomes
apparent that its response is hardly governed by a homogeneous linear elastic surrogate
model [69, 76] (see Fig. 2). Here, higher order models [75] or extended continuum models
come into play. A key feature of these models is that they are able to naturally describe the
appearing size-effects (typically “smaller is stiffer”).

This ability is either due to the incorporation of higher gradients of displacement or by
amending the kinematics on the homogenized scale with suitable independent additional
fields for which new balance equations have to be devised. This leads us to consider the
micromorphic framework, introduced by Eringen and Mindlin [21–23, 54] following ear-
lier work of the Cosserat brothers [15]. At present, a rigorous asymptotic expansion or a
Γ -convergence result [13, Theorem 5.6] towards a homogenized model for this transition
scale seems to be out of reach for periodic materials showing a high stiffness contrast of
their phases as in the present case and other technical difficulties. However, heuristically
and computationally [43, 44, 69, 71, 76], the micromorphic framework seems to be well
suited in these circumstances. In the absence of any comprehensive rigorous result (but see
[75]), we therefore postulate for this work that the suitably homogenized model will be of
the micromorphic type.

A serious drawback of these models is the increasing number of unknown material pa-
rameters, that have to be identified as well as the problematic interpretation of the new
kinematical fields.

It is therefore mandatory to devise homogenization rules (analytical or computational)
in order to determine relevant material parameters. While the question of homogenization
towards an extended continuum model has seen a lot of effort in the last two decades (cham-
pioned by Samuel Forest and his group [25, 27, 29], recently also Hütter [39, 40]) it is fair
to say that no universally valid answer has been found.

The performed heuristic homogenization procedures typically involve the following
steps:

1As is well-known, under affine loading, the response of a large periodic structure is periodic up to a vanishing
boundary layer.
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Fig. 1 Infinite periodic structure.
The effective properties are given
by the effective stiffness tensor
Cmacro which can be obtained
rigorously by Γ -convergence and
asymptotic homogenization

Fig. 2 Finite sized sample of a
periodic structure. The
scale-separation hypothesis does
not anymore apply

a) a postulate on the form of the extended balance equations for generalized macroscopic
stresses,

b) a postulate on the relation between microscopic Cauchy stresses and generalized macro-
scopic stresses, without specifying the precise macroscopic constitutive relations (e.g.,
a priori restrictions on material symmetry on the micro or macro-scale are not taken into
account),

c) a generalized Hill-Mandel postulate expressing energy equivalence between the micro
and the macro-scale,

d) a postulate on the connection between microscopic displacements and the additional
macroscopic fields,2

e) use of higher order boundary conditions on the unit-cell level for triggering inhomoge-
neous response and activating the higher order effects.

The combination of these 5 steps can involve analytical and computational procedures and
leads to some form of “homogenized” material properties. Step a) seems to be uncritical,
since most authors working in the field of extended continuum mechanics agree on the same
or similar format of balance relations [19, 21, 22, 39, 40, 54]. Step b) already implies some
averaging rules [39] and is therefore open to discussion. Step c) is a generalization of the
procedure in homogenization towards linear elasticity but involves some arbitrariness, since
the proper form of boundary conditions has not yet been found. Step d) seems to be es-
sential but no general agreement has been reached. For example [26, 27, 29] identifies the

2For the micromorphic model, postulate d) implies a direct interpretation of what the new degrees of freedom

(the non symmetric micro-distortion P ∈ R
3×3) is. While we do not discard such a direct micro-macro

relation, we rather believe that any simple relation will fall short of the truth for the relaxed micromorphic
model.
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micro-distortion P ∈R
3×3 (the additional kinematical field) with the first moment of the mi-

croscopic displacement field on the unit-cell level. Typically the micro-distortion cannot be
prescribed by a boundary condition at the micro-scale in contrast to the classical approach.
Hütter [39, 40] follows Forest [25, 27, 29, 79] but introduces in addition a weighting func-
tion. In classical first order homogenization, d) is a consequence of c). Finally, step e) seems
to be a natural consequence of the procedure to close the argument and has been adopted by
Gologanu et al. [32], Kouznetsova et al. [43, 44], Forest and Sab [28], Forest and Trinh [29],
Jänicke [41] and Diebels et al. [17].

Let us point out the problematic features of the sketched procedure. There are a number
of natural requirements the homogenization process should ideally satisfy:

1.) if the material on the micro-scale is homogeneous and linear elastic, the homogenization
should leave invariant the response, i.e., homogeneous Cauchy elasticity on the micro-
scale turns into the same Cauchy response on the macro-scale,

2.) there should be a clear separation between (short-range) scale-independent parameters
(e.g., a classical shear modulus) and (long-range) scale-dependent parameters (e.g., a
characteristic length scale) in the homogenized model,

3.) for very large sample sizes the response should still be governed by linear elasticity
with effective stiffness tensor Cmacro, and this should induce useful relations between
the scale-independent material parameters of the micromorphic model. Here, we call
scale-independent material parameters those coefficients in the extended continuum
model that uniquely determine the large scale response,

4.) the stiffness of the homogenized model should be bounded irrespective of the sample
size (as the input micro-scale stiffness is certainly bounded). In other words, the possible
storage of elastic energy in arbitrarily small windows on the homogenized scale should
be bounded for all non-affine boundary conditions. This avoids unstable parameter iden-
tification in a series of size-experiments [61],

5.) the homogenized parameters need to be true material parameters, independent of the
applied loading and not influenced by boundary layer effects [48].

At present, it is not known whether requirement 1.) can be satisfied by available ho-
mogenization rules, see [40] (for example the approach of Forest seems not to be suitable).
Requirement 2.) is usually not addressed but a closer look reveals that it may be violated in
the Cosserat framework. Requirement 3.) seems to be mostly ignored and we will indicate
that it cannot be met in the general micromorphic setting. Requirement 4.) has led to restric-
tions in the Cosserat model for bending and torsion [61]. In general, it cannot be satisfied
for second gradient continua. Finally, requirement 5.) is difficult to establish. In [30, 48] it
is shown that parameters in second gradient formulations may be boundary value dependent
due to the presence of nontrivial null-Lagrangians. Thus, 4.) and 5.) seem to rule out second
gradient formulations for our purpose.

In this work we want to deliberately dispense with the postulates b), c) and d) and instead
place ourselves in a variational context and postulate the extended micromorphic kinemat-
ics together with a postulate on the suitable form of the free energy in an effort to reduce
the complexity and intrinsic problems of the general Eringen-Mindlin micromorphic model
[72]. We have called our model “relaxed” micromorphic model. Our goal is to perform an
identification of the (short-range) scale-independent material parameters, consistent with
the requirements 1) . . . 5) towards homogenization. The rational of the relaxed micromor-
phic model will guide us and provide some surprising novel routes. Notably, the scale-
independent material parameters will be determined solely with standard methods of first
order homogenization which is sensible for the described short-range interaction.
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1.1 The Static Relaxed Micromorphic Model

The relaxed micromorphic model is a generalized continuum model which includes a char-
acteristic size. For the static case, it can be written in a variational framework. The goal
is to find the macroscopic mean displacement u : Ω ⊆ R

3 → R
3 and the non-symmetric

micro-distortion field P : Ω ⊆ R
3 →R

3×3 minimizing
∫

Ω

W(∇u,P,CurlP ) − 〈f,u〉dx −→ min . (u,P ) ∈ H 1(Ω) × H(Curl) (1)

where the energy is represented as (see [6, 47, 50, 51, 60])

W(∇u,P,CurlP ) = 1

2

〈
Ce sym(∇u − P ), sym(∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic - energy

+ 1

2
〈Cmicro symP, symP 〉R3×3︸ ︷︷ ︸

micro - self - energy

+ 1

2

〈
Cc skew(∇u − P ), skew(∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local fourth-order anisotropic
rotational elastic coupling

+ μL2
c

2
‖CurlP ‖2

︸ ︷︷ ︸
relaxed curvature

. (2)

Here, Ce, Cmicro are standard positive definite elasticity tensors with minor and major
symmetries mapping symmetric matrices to symmetric matrices, Cc is a positive semi-
definite rotational coupling tensor mapping skew-symmetric matrices to skew-symmetric
matrices, Lc ≥ 0 is a characteristic length scale and μ is a typical effective shear modulus.3

The Curl-operator CurlP acts row-wise on P . In all discussed models, linearized frame-
indifference dictates that the scale-independent contribution of P can only occur through a
dependence on symP . This framework is based on the additive split

∇u = + , 0 = Curl + Curl (3)

of the total displacement gradient into meso-scale and micro-scale contributions, e and P

respectively. While ∇u is compatible by definition, e and P are in general incompatible, i.e.,
not a gradient of a vector-field. Note that ∇u and P are still macroscopic variables.4 The
role of P is twofold. On the one hand it describes the collective interaction in a cluster of
unit-cells, e.g., 2×2 or 3×3 unit-cells, i.e., the interaction between unit-cells up to a certain
range. On the other hand, P also influences the short-range stiffness. Thus P mainly repre-
sents a long-range fluctuation field giving rise to higher order moment stresses in contrast
to e = ∇u − P , which describes the remaining short-range elastic interaction in and be-
tween neighboring unit-cells (the unit-cells represent the macroscopic points of the homog-
enized continuum only under the scale-separation hypothesis) leading to the force-stresses.
Missing is the micro-fluctuation (inside a unit-cell). This micro-fluctuation is conception-
ally averaged out in the micromorphic model. In this view, (depending on the characteristic

3For the presentation we have chosen throughout the simplest representation of the curvature energy – a one
constant isotropic format.
4Despite the name micromorphic model.



274 P. Neff et al.

Fig. 3 Long-range fluctuation field P , short-range elastic interaction scale e and averaged out micro-fluctu-
ation

length Lc) we claim that the micro-distortion P is not necessarily related to some average of
micro-displacements in the unit-cell (as done by Forest [25, 27, 29], Hütter [39, 40], Biswas
and Poh [10] among others) but P is a fully nonlocal object and truly an independent field
not slave to the displacement5 (see Fig. 3).

The static equilibrium equations are the Euler-Lagrange equations to (1) and (2), which
read in strong form6

Div
[
Ce sym(∇u − P ) +Cc skew(∇u − P )

] = f,

Ce sym(∇u − P ) +Cc skew(∇u − P ) −Cmicro symP − μL2
c Curl CurlP = 0. (4)

While the relaxed micromorphic model allows for balance equations in the classical format
of the Eringen-Mindlin approach (with second-order force stresses and third order moment
stresses), the generalized moment balance (4)2 is conveniently written in a reduced format
with a second-order moment tensor m = CurlP , as in the better known Cosserat model. In
fact, one can say that the relaxed micromorphic model has the full micromorphic kinematics
but uses the curvature measure of the Cosserat model. The generalized moment balance (4)2

can be seen as a tensorial Maxwell-problem due to the Curl Curl operation.
Since only symP and CurlP are controlled in the energy (2) the surprising well-

posedness of formulation (4) has been rigorously shown in appropriate Sobolev spaces cru-
cially based on new coercive Korn-type inequalities for incompatible tensor fields P of the
form

∃ c+ > 0 : ∀P ∈ H(Curl), P × �n|Γ = 0

‖symP ‖2
L2(Ω)

+ ‖CurlP ‖2
L2(Ω)

≥ c+(‖P ‖2
L2(Ω)

+ ‖CurlP ‖2
L2(Ω)

)
. (5)

Here �n is a unit vector orthogonal to Γ ⊂ ∂Ω , see [8, 57, 63, 65, 66]. Note that P ∈ H(Curl)
is not necessarily a continuous field (see Fig. 4). For P = ∇u ∈ H(Curl), inequality (5) turns
into a version of Korn’s first inequality.

5The situation is different when one considers homogenization towards a second gradient continuum (or
micromorphic approximations thereof) where there is no independent kinematical field. More precisely, the
case Ĉe � 1, Lc � 1 would be consistent with determining P as some average of the micro-displacements
over a unit-cell.
6Equation (4)1 and (4)2 together imply Div(Cmicro symP) = f . Constraining symP = sym∇u gives
Div(Cmicro sym∇u) = f .
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Fig. 4 Shear test on a block. Vertical sides free. Admissible configuration (u,P ) ∈ H 1(Ω) × H(Curl) and
boundary conditions for the relaxed micromorphic model. Consider P = ∇ϑ ∈ H(Curl), where ϑ : R3 →R

3

is merely a Lipschitz function whose weak derivatives ∇ϑ may have jumps. Along a given interface Γ1,
Γ2, the micro-distortion P may have normal jumps but is tangentially continuous. The tangential boundary
condition for the micro-distortion P applies only at the upper and lower face Γ where the displacement u is
prescribed

Using (5), the well-posedness of (4) then only needs that Ce, Cmicro are positive definite,
while Cc may be positive semi-definite (e.g., Cc may be even absent) and μL2

c ≥ 0, see [31,
59, 60].

1.2 Comparison to Eringen-Mindlin Micromorphic Models

The status of the relaxed micromorphic model within the framework of Eringen-Mindlin
micromorphic approaches or in relation to higher gradient continua is discussed at length
in [31, 49, 50, 59, 60]. Here, the following remarks can be made: putting all non-essential
differences aside, the energy of a typical Eringen-Mindlin micromorphic approach can be
written as

WEM(∇u,P,∇P ) = 1

2

〈
Ĉe(∇u − P ),∇u − P

〉
R3×3︸ ︷︷ ︸

relative elastic energy

+1

2
〈Cmicro symP, symP 〉R3×3︸ ︷︷ ︸

micro - self - energy

+ μL2
c

2
‖∇P ‖2

︸ ︷︷ ︸
full curvature

, (6)

where Ĉe is a non-standard positive definite fourth-order elasticity tensor, with 45-
independent entries, mapping non-symmetric second-order tensors to non-symmetric
second-order tensors.7 Observe that ∇P = ∇e − ∇∇u couples derivatives of e and ∇u

contrary to the decoupling in (3). The solution (u,P ) will be typically in H 1(Ω) × H 1(Ω).
The standard micromorphic equilibrium equations in strong form read8

Div Ĉe (∇u − P ) = f,

Ĉe (∇u − P ) −Cmicro symP + μL2
c�P = 0. (7)

7The curvature expression in the Eringen-Mindlin-model or gradient elasticity model would typically include
a sixth-order tensor [5], in contrast to the relaxed micromorphic model, which only needs a fourth-order
tensor.
8 Equation (7)1 and (7)2 together imply that Div[Cmicro symP − μL2

c�P ] = f . Here Cmicro is invariably

coupled to the characteristic length Lc . Constraining P = ∇u gives Div[Cmicro sym∇u − μL2
c�∇u] = f .

This is the fourth-order equilibrium equation of the second gradient formulation (8).
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Fig. 5 Qualitative relation between the Cosserat model and Toupin’s version of gradient elasticity. Cosserat
elasticity can be seen as the formal limit Cmicro → +∞ of the relaxed micromorphic model. Moreover,
Cosserat elasticity is a penalty formulation (Cc → +∞) of Toupin’s couple-stress model

The Eringen-Mindlin setting contains gradient elasticity WGE by constraining ∇u = P (i.e.,
Ĉe → +∞), such that the variational problem is based on

WGE(∇u) = 1

2
〈Cmicro sym∇u, sym∇u〉 + μL2

c

2

∥∥∇(∇u)
∥∥2

. (8)

Here, no split in micro- and meso-scale is possible. The solution u will be in H 2(Ω). On
the other hand, WEM can be viewed as a penalty formulation of gradient elasticity (penalty
Ce → +∞).9

Next, the Cosserat model does not live on two scales either; it can be seen as the formal
singular limit of the relaxed micromorphic model for Cmicro → +∞ in which P = A must
be skew-symmetric. The corresponding energy is

WCoss(∇u,A,CurlA) = 1

2
〈Ce sym∇u, sym∇u〉 + 1

2

〈
Cc skew(∇u − A), skew(∇u − A)

〉

+ μL2
c

2
‖CurlA‖2, (9)

with equilibrium equations

Div
[
Ce sym∇u +Cc skew(∇u − A)

] = f,

skew
(
Cc skew(∇u − A) − μL2

c Curl CurlA
) = 0. (10)

Letting finally Cc → +∞, we obtain Toupin’s indeterminate couple stress model [30, 48,
55, 62] with energy

WToupin(∇u,Curl skew∇u) = 1

2
〈Ce sym∇u, sym∇u〉 + μL2

c

2
‖Curl skew∇u‖2. (11)

9The relaxed micromorphic model cannot be obtained as penalty formulation of gradient elasticity and in a
1-D setting it reduces to linear elasticity with stiffness Cmacro.
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Fig. 6 “Smaller is stiffer”: N ×N array of unit cells. The apparent stiffness CKUBC (stiffness under applied
kinematically uniform boundary conditions) decreases with increasing size to reach in the limit of infinite size
Cmacro. This stiffness-delta between the smallest discernable size and the infinite body will be essential for
the determination of the scale-independent parameters in the relaxed micromorphic model and is, on the other
hand, responsible for the size-effect. The classical RVE needs to be so large such that its apparent stiffness
approximates already that of the macroscopic specimen. Using periodic boundary conditions (PBC) on a unit
cell mimics the large scale response and discards the length-scale effect, but allows to determine the effective
stiffness on a unit-cell

Since Curl is isomorphic to ∇ on skew-symmetric matrices [64], the curvature expression
in (9) and (11) is fully general, despite appearance (see Fig. 5).

1.3 Scaling Relations and the Relaxed Micromorphic Model

The relation of the characteristic length Lc to the dimensions of the material sample follow
from a simple scaling argument. Considering a transformation of an arbitrary domain to
a unit domain, the length scale Lc w.r.t. the unit domain is inversely proportional to the
domain size such that Lc → 0 for very large samples and Lc → ∞ for small samples. Thus,
Lc encodes the relative interaction strength of the microstructure. It is useful to apply a
scaling transformation to the sequence in Fig. 6 and to refer every block of cells to the same
unit domain [0,1] × [0,1]

The scaling to the unit-domain in the relaxed micromorphic model (Fig. 7) modifies only
the characteristic length. On the unit-domain we have accordingly

∫
[0,1]2

1

2

〈
Ce sym(∇u − P ), sym(∇u − P )

〉

+ 1

2

〈
Cc skew(∇u − P ), skew(∇u − P )

〉

+ 1

2
〈Cmicro symP, symP 〉 + μ

2

(
L̂c

N

)2

‖CurlP ‖2 dx −→ min . (12)

A very large sample with many crosses N → ∞ corresponds to Lc = L̂c

N
→ 0 and should

deliver linear elasticity with Cmacro as response of the relaxed micromorphic model. This
will generate a first necessary condition between Ce, Cc, Cmicro and Cmacro for a given mi-
crostructure, considered in the next subsection.

1.4 Linear Elastic Effective Macroscopic Response and Tensor Harmonic Mean

For characteristic length Lc → 0, the relaxed micromorphic equilibrium equations (4) turn
into

Div
[
Ce sym(∇u − P ) +Cc skew(∇u − P )

] = f,

Ce sym(∇u − P ) +Cc skew(∇u − P ) −Cmicro symP = 0. (13)
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Fig. 7 (Stiffness in affine loading w.r.t. displacement u, no boundary condition on P ) First line: N × N

arrays with crosses after transformation to the unit domain. Here, volume fractions of air (white) and alu-
minium (red) are constant. Note that the formerly smallest block (on the left) still has bounded stiffness under
affine Dirichlet boundary conditions. There is no given morphology corresponding to Lc = +∞. For arbitrary
many crosses (right) the affine stiffness approximates the effective stiffness Cmacro. Second line: the relaxed
micromorphic model is intended to model the response of an N × N array of crosses, down to perhaps an
3×3 or 4×4 array and to improve upon a modelling solely with Cmacro under arbitrary boundary conditions.
The characteristic length Lc w.r.t. the unit-domain scales inversely with the size. Lc → ∞ corresponds to
using P = ∇u and yields linear elasticity with stiffness Cmicro, while letting Lc → 0 yields linear elasticity
with stiffness Cmicro(Cmicro +Ce)

−1
Ce, which must be identified with Cmacro. Third line: for comparison,

we depicted a simplified Eringen-Mindlin micromorphic model with scale-independent constitutive law co-
inciding with the relaxed micromorphic model. For Lc → ∞ the micro-distortion P is necessarily constant
and the generated stiffness of the simplified Eringen-Mindlin model in affine loading approximates Ce. The
constant micro-distortion P gets coupled to a volume average of ∇u (Color figure online)

Observing that (13)2 implies Cc skew(∇u − P ) = 0 we may solve for symP in (13)2 and
reinserting the result in (13)1 we obtain [6] the scale-independent large scale linear elastic
response10

DivCmacro sym∇u = f. (14)

In [6] it is shown that the effective macroscopic elasticity tensor Cmacro is exactly given by
the Reuß lower bound [45, 70] of the meso-scale stiffness Ce and the micro-scale stiffness
Cmicro

Cmacro =Cmicro(Cmicro +Ce)
−1
Ce = (

C
−1
e +C

−1
micro

)−1
,

Ce =Cmicro(Cmicro −Cmacro)
−1
Cmacro. (15)

Remark that Cc does not intervene in (15) and therefore the scale-independent material
parameters in the relaxed micromorphic model are only Ce and Cmicro. If we specialize for-
mula (15) to the isotropic relaxed micromorphic model, the macroscopic coefficients of the

10Letting Lc → 0 in (7) leads to the algebraic side condition Ĉe (∇u − P) = Cmicro symP . Due to the more
general format of Ĉe as compared to Ce and Cc in (13), it is not possible to analytically solve for symP and
no transparent formula connecting Ĉe and Cmicro to Cmacro like (15) results. The formally scale-independent
material parameters of the classical Eringen-Mindlin-model are Ĉe and Cmicro and the scale-independent
parameters of WGE are Cmicro = Cmacro. For the Cosserat model, the respective scale-independent stiffness
is Ce = Cmacro. However, considering (footnote 8) Div[Cmicro symP − μL2

c�P ] = f , it is not strictly
possible to say that Cmicro is scale-independent in the Eringen-Mindlin model. The identification of Cmicro
(and therefore also Ĉe) in the Eringen-Mindlin model may be length-scale dependent after all.
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Fig. 8 Scale-independent
response governed by two
springs in series. If
μmicro = μmacro then μe = +∞

equivalent macroscopic continuum are related to the parameters of the relaxed micromor-
phic model through the homogenization formulas (see [6, 56, 58])

μmacro = μe μmicro

μe + μmicro
, 2μmacro + 3λmacro = (2μe + 3λe)(2μmicro + 3λmicro)

(2μe + 3λe) + (2μmicro + 3λmicro)
. (16)

These formulas are each identical to calculating the equivalent stiffness of two linear
springs in series: for (16)1 it is the equivalent stiffness μmacro from the springs with stiffness
μe and μmicro, for (16)2 the equivalent stiffness 2μmacro + 3λmacro is analogously obtained
from the springs in series of stiffness 2μe +3λe and of stiffness 2μmicro +3λmicro (see Fig. 8).
Such formulas, as we will show in this paper for the anisotropic case, are essential to char-
acterize the mechanical behavior of heterogeneous metamaterials on different scales.

As it will turn out, the modeling perspective of the relaxed micromorphic model endows
the macro-scale as well as the micro-scale with sufficient physical characteristics to define
the setting how to compute the parameters of each of these scales by first order homogeniza-
tion. Put different and with reference to the stiffness laws for springs in series, the equivalent
stiffness and the stiffness of one spring in series can be identified. The unknown stiffness of
the second spring representing the transition scale however, is obtained from (16)1 and (16)2

by solving for μe and λe.

1.5 Microscopic Response – Zoom into the Microstructure

Next, we consider the limit Lc → ∞ for the characteristic length (see Fig. 7 and Fig. 9).
Looking at the variational formulation (1), (2), we see that in simply connected domains
Ω this generates the constraint P = ∇ϑ for some function ϑ : Ω ⊆ R3 → R3 due to the
presence of the Curl-curvature measure. Together with the appropriate tangential boundary
condition [31, 60] P |∂Ω · τ = ∇u|∂Ω · τ we obtain the new minimization problem

∫
Ω

W(∇u,∇ϑ,0)dx −→ min . (u,ϑ) ∈ H 1(Ω) × H 1(Ω), (17)

the solution of which necessitates u = ϑ and the remaining macroscopic displacement field
u is obtained from the minimization problem

∫
Ω

1

2
〈Cmicro sym∇u, sym∇u〉dx −→ min . u ∈ H 1(Ω). (18)

This reduction feature depends critically on using CurlP as curvature measure and clearly
distinguishes the relaxed micromorphic model from the standard Eringen-Mindlin ap-
proaches which use ∇P as curvature measure.
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Fig. 9 (Stiffness in non-affine loading, like torsion) Qualitative difference of the relaxed micromorphic
model W , the standard Eringen-Mindlin model WEM and gradient elasticity WGE. In all three cases “smaller
is stiffer”. Typically, the Eringen-Mindlin model and gradient elasticity model dramatically overestimate the
stiffness and both show unbounded stiffness for small sample sizes. Only the relaxed micromorphic model
has bounded stiffness for all sample sizes (including below a unit-cell level) as well as a clear separation of
microscopic and macroscopic scales, Cmicro and Cmacro, respectively. For a microscopically homogeneous
material, Cmicro = Cmacro induces Ce = +∞ which enforces symP = sym∇u and yields linear elastic re-
sponse with Cmacro for the relaxed micromorphic model, while the constraint Ĉe = +∞ enforces P = ∇u

in WEM and generates the second gradient model WGE with unbounded stiffness. The stiffness of the relaxed
micromorphic model W is “relaxed” as compared to WEM. Note that the characteristic length scale Lc > 0
always interferes with the actual stiffness at the unit-cell level

The main task which has to be accomplished to successfully apply constitutive laws to
the real material world is the identification of their parameters. For the present anisotropic
relaxed micromorphic model there are essentially three sets of material parameters Cmicro,
Ce and Cmacro describing the scale-independent static response. By virtue of the recently
established harmonic mean-type micro-macro homogenization rule (15), the elasticities of
the three scales are connected such that the determination of two sets is enough to infer on
the third one. Only the micro-scale Cmicro as well as mesoscale-elastic parameters Ce appear
directly in the relaxed micromorphic energy (2), while Cmacro refers to a macroscopic, en-
ergetically equivalent, linear elastic surrogate model. In view of these characteristics,11 the
coefficients of Cmacro can be identified by standard homogenization on the periodic unit-cell
level. However, the identification of the micro-scale parameters Cmicro through homoge-
nization is completely non-standard, since novel criteria have to be established to identify
from all possible unit-cell variants (notice that for periodicity the unit-cell is unique but its

11It is indeed well known in the field of homogenization techniques (see, e.g., [20, 68]) that the homogeniza-
tion of a unit-cell on which one imposes periodic boundary conditions mimics the behavior of a very large
specimen of the associated equivalent Cauchy continuum. Usually, homogenization techniques only provide
a direct transition from the micro to the macro-scale without considering the intermediate (transition) scale
in which all relevant microstructure-related phenomena are manifest. Some attempts to introduce a transition
scale via the homogenization towards a micromorphic continuum are made in [39, 79], even if it is clear
that a definitive answer is far from being provided (see [39, 79] and references cited there). Our relaxed mi-
cromorphic model naturally provides the bridge between the micro and macro behavior of the considered
homogenized material with the simple and transparent tensor homogenization formulas (15).
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representation is not) those which are consistent with the present modeling. Similarly, the
boundary conditions have to be consistently chosen.

1.6 Outline

In this paper, then, we will propose a method to quantify Cmicro (and a fortiori Ce) for a given
microstructure. The conceptual idea is simple. Instead of subjecting the relaxed micromor-
phic model to large specimen size (Lc → 0), we consider arbitrarily small specimen sizes
(Lc → +∞). For this formal limit, the relaxed micromorphic model turns as well into a
linear elastic boundary value problem with constant stiffness tensor Cmicro. It is important to
note at this point that it is meaningless to follow this idea in the context of standard Eringen-
Mindlin or higher gradient and Cosserat continua since they have unbounded stiffness for
Lc → +∞ (see Fig. 9).

Having a precise formal limit for Lc → +∞ at hand we realize, that the smallest res-
olution we may actually consider is the size of a unit-cell of the material which is to be
described. Moreover, using affine Dirichlet boundary conditions, the resulting stiffness de-
pends on the size and shape of the unit-cell where, in general, a smaller unit-cell is “stiffer”
than a larger unit-cell. In order to reasonably match the actual response of the given mi-
crostructure for small specimen size to Cmicro, we need to observe that i) there are several
valid variants of the unit-cell (different sizes and geometries generate the same macroscopic
specimens), and ii) among these unit-cells there is in general not a single stiffest one. There-
fore, we will be satisfied with a quantitative estimate relating Cmicro and calculated stiff-
nesses for several unit-cells under affine Dirichlet boundary conditions.

For consistency in the scale transition process it is a necessity to claim that the micro-
scale reflects and preserves the existing material symmetries of the macro-scale. For that
reason we have to invoke Neumann’s principle on the representation of anisotropy. As a
consequence of this requirement the number of candidate unit-cells is drastically reduced.

We will be left with an estimate of the sort that Cmicro of the relaxed micromorphic model
should bound all obtained stiffnesses of competing unit-cells in the energy norm. Insisting
on an optimal choice for Cmicro we try to determine one stiffness tensor, which is the least
stiff, satisfying the foregoing estimates. This leads us formally to the so called Löwner
matrix supremum problem, the solution of which is in general not unique. In the application
to tetragonal planar metamaterials we are considering, however, it will be shown that this
tensor is uniquely determined.

The only short-range elastic parameter which is not yet determined by the presented
arguments is the generalized Cosserat couple modulus Cc, but it can be evaluated when
considering the dynamical analysis of the proposed metamaterial [16].

2 Rigorous Determination of Cmicro

2.1 Maximal Stiffness on the Micro-Scale

In this section we describe the mathematical underpinning towards determining the stiff-
ness Cmicro in the relaxed micromorphic model. We do this in the static case, in which the
equilibrium problem (4) can be obtained as the energy minimization problem

I (u,P ) :=
∫

Ω

W(∇u,P,CurlP )dx −→ min . (u,P ) ∈ H 1(Ω) × H(Curl), (19)
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under suitable boundary conditions, with W given in (2). For the displacement field u we
apply overall affine Dirichlet boundary conditions

u|∂Ω (x) = B · x, B ∈R
3×3 (20)

and the micro-distortion tensor P has to satisfy the compatible boundary condition12

∇u|∂Ω (x) · τ1,2 = P |∂Ω (x) · τ1,2 , (21)

where τ1,2 are linear independent tangent vectors to ∂Ω . One then observes that the minimal
energy content of a solution (u,P ) to the minimization problem (19), (2), (20), (21) is easily
bounded above by choosing the macroscopic fields (u,P ) such that

∇u(x) = P (x), x ∈ Ω. (22)

This gives the estimate

inf
(u,P )

∫
x∈Ω

W(∇u,P,CurlP )dx ≤ inf
u

∫
x∈Ω

W(∇u,∇u,0)dx

= inf
u

∫
x∈Ω

1

2

〈
Cmicro sym∇u(x), sym∇u(x)

〉
dx. (23)

Therefore, the maximal possible stored elastic energy of the relaxed micromorphic model
over an arbitrary window Ω̃ ⊂ Ω is

inf
u

∫
x∈Ω̃

1

2

〈
Cmicro sym∇u(x), sym∇u(x)

〉
dx, u|∂Ω̃ (x) = B · x, (24)

and this value is attained for ∇u(x) = P (x) for all x ∈ Ω . Below, we will evaluate the
latter condition over a given unit-cell V(x) = Ω̃ attached at the macroscopic point x ∈ Ω .
Following classical analysis, the average displacement gradient over the unit-cell satisfies
[82, 3.1, u ∈ C∞]

1

|V(x)|
∫

ξ∈V(x)

∇ξ u(ξ) dξ = 1

|V(x)|
∫

ξ∈∂V(x)

u(ξ) ⊗ n(ξ)dS

= 1

|V(x)|
∫

ξ∈∂V(x)

(B · ξ) ⊗ n(ξ)dS

= 1

|V(x)|
∫

ξ∈V(x)

∇ξ [B · ξ ]dξ = 1

|V(x)|
∫

ξ∈V(x)

B dξ = B. (25)

Symmetrization yields as well for the averaged strain tensor

ε := 1

|V (x)|
∫

ξ∈V (x)

sym∇ξ u(ξ) dξ = symB = E. (26)

12In this way, artificial boundary layer effects are avoided.
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Fig. 10 The process of homogenization. Following the classical Hill-Mandel lemma, we demand energy
equivalence of the fine-scale linear elastic energy (left) with the coarse-scale relaxed micromorphic energy
(right) over the same domain V(x), under the same affine Dirichlet-boundary conditions and for the same
material that is to be described

Since the integrand in (24) is convex (quasiconvex) and Cmicro is constant by assumption,
the maximal storage of elastic energy in V(x), according to the relaxed micromorphic model
is realized already by the homogeneous displacement B · ξ which yields

inf

{∫
ξ∈V (x)

1

2

〈
Cmicro sym∇ξ ṽ(ξ), sym∇ξ ṽ(ξ)

〉
dξ | ṽ : V(x) →R

3, ṽ|∂V (x) (ξ) = B · ξ
}

= 1

2
〈Cmicro symB, symB〉∣∣V(x)

∣∣ = 1

2
〈Cmicro E,E〉∣∣V(x)

∣∣, E = symB, (27)

for the relaxed micromorphic model.
Now we switch to considering the unit-cell as described by classical linear elasticity

with inhomogeneous material properties. Macroscopic variables are conceptionally some
“averages” over the micro-scale. Hence the attached unit-cell V(x) must be considered to
be loaded such that it produces the given superposed macroscopic average ∇u(x). There
are several choices satisfying this requirement; prominently affine Dirichlet boundary con-
ditions (or KUBC – kinematically uniform boundary conditions) or periodic boundary con-
ditions (PBC) (see Fig. 13). It is well known that affine Dirichlet conditions generate stiffer
response than PBC [36, 42, 68]. Let C(ξ) be the geometry dependent inhomogeneous
elasticity tensor of the given metamaterial. Under affine Dirichlet conditions (KUBC) (see
Fig. 11) the classical linear elastic stored energy of the unit-cell is given by

inf

{ ∫

ξ∈V (x)

1

2

〈
C(ξ)sym∇ξ ṽ(ξ), sym∇ξ ṽ(ξ)

〉
dξ | ṽ : V(x) → R

3, ṽ|∂V(x) (ξ) = B · ξ
}

= inf

{ ∫

ξ∈V (x)

1

2

〈
C(ξ)sym

(∇ξ

[
v(ξ) + B · ξ])

, sym
(∇ξ

[
v(ξ) + B · ξ])〉

dξ | v ∈ C∞
0

(
V(x),R3

)}

= inf

{ ∫

ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0

(
V(x),R3

)}

=
∫

ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v̂E(ξ) + E

)
, sym∇ξ v̂E(ξ) + E

〉
dξ, (28)
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Fig. 11 Affine Dirichlet loading (KUBC) of the unit-cell V(x). The macroscopic deformation state
∇ξ u(x) = B defines a microscopic Dirichlet boundary value problem on the boundary of the microvolume
V(x) attached to each macroscopic material point x ∈ Ω . Here, we show the superposition of simple shear
and elongation

where (the corrector) v̂E ∈ C∞
0 (V(x),R3) is the realizing minimizer (which is not known a

priori).
In the context of homogenization, we now demand that the (fully resolved linear elastic)

fine-scale energy (28) should equal the (relaxed micromorphic) coarse-scale energy (23)left

over the same domain V(x), under the same affine Dirichlet-boundary conditions B · ξ

and for the same material (see Fig. 10). This means we require that for all affine loadings
B ∈ R

3×3 we have:

inf
(u,P )

{ ∫

ξ∈V (x)

W
(∇ξ u(ξ),P (ξ),CurlP (ξ)

)
dξ | u|ξ∈∂V (ξ) = B · ξ, B · τ1,2 = P |ξ∈∂V (ξ) · τ1,2

}

!= inf
v

{ ∫

ξ∈V (x)

1

2

〈
C(ξ)(sym∇ξ v + E), sym∇ξ v + E

〉
dξ |v ∈ C∞

0

(
V(x),R3

)
,E = symB

}
. (29)

With estimates (23) and (27), taking (29) into account, we obtain the inequality

1

2
〈Cmicro E,E〉∣∣V(x)

∣∣
︸ ︷︷ ︸

coarse scale micromorphic
upper energy bound

(30)

≥ inf

{∫
ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0

(
V(x),R3

)}

︸ ︷︷ ︸
fine-scale linear elastic energy

,

which must be satisfied for all E ∈ Sym (3). On the other hand, according to the classi-
cal13 Hill-Mandel lemma [33–35, 52, 82] we can define a unique apparent [36] constant
stiffness tensor CV

KUBC, independent of E, but depending on the chosen unit-cell V , by set-

13And not any of the ambiguous extended versions for generalized continua [26, 27, 29, 40].
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ting14

1

2

〈
C

V
KUBC E,E

〉∣∣V (x)
∣∣ (32)

= inf

{∫
ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0

(
V(x),R3

)}
.

The details for this construction will be explained in the next subsection. Combining this
with inequality (31) we must have for all applied loadings E ∈ Sym (3):

〈Cmicro E,E〉 ≥ 〈
C

V
KUBC E,E

〉
. (33)

2.2 The Hill-Mandel Energy Equivalence for Affine Dirichlet Conditions

The Hill-Mandel energy equivalence for KUBC can be obtained easily. We provide it for the
convenience of the reader. On the one hand we have in mechanical equilibrium for linear
elasticity

∫
ξ∈∂V

〈̃
v(ξ), σ (ξ) · �n〉

R3 dS =
∫

ξ∈∂V

〈
σT (ξ) · ṽ(ξ), �n〉

R3 dS =
∫

ξ∈V

div
(
σT · ṽ)

dξ

=
∫

ξ∈V

div(σ · ṽ) dξ =
∫

ξ∈V

〈∇ṽ, σ 〉R3×3 + 〈̃v,Divσ︸ ︷︷ ︸
=0

〉dξ

=
∫

ξ∈V

〈
σ(ξ), ε(ξ)

〉
dξ. (34)

On the other hand, for KUBC, we have ṽ|∂V = B · ξ and
∫

ξ∈∂V

〈̃
v(ξ), σ (ξ) · �n〉

R3 dS =
∫

ξ∈∂V

〈
B · ξ, σ (ξ) · �n〉

R3 dS =
∫

ξ∈V

div
(
σT · (B · ξ)

)
dξ

=
∫

ξ∈V

div
(
σ · (B · ξ)

)
dξ =

∫
ξ∈V

〈∇[B · ξ ], σ 〉 + 〈B · ξ,Divσ︸ ︷︷ ︸
=0

〉dξ (35)

=
∫

ξ∈V

〈B,σ 〉dξ =
〈
B,

∫
ξ∈V

σ dξ

〉
= |V |

〈
B,

1

|V |
∫

ξ∈V

σ dξ

〉
= |V |〈symB,σ 〉.

14Since

1

2

〈
C

V
KUBC E,E

〉∣∣V (x)
∣∣ (31)

= inf

{∫
ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0
(
V(x),R3)}

v ≡ 0 (constant strain assumption: Taylor/Voigt)

≤
∫
V

1

2

〈
C(ξ)E,E

〉
dξ = 1

2

〈
E,

∫
V
C(ξ) dξ E

〉
= 1

2
|V |

〈
E,

1

|V |
∫
V
C(ξ) dξ E

〉
= 1

2
|V |〈E,CVoigt E〉

it is clear that 〈CV
KUBC E, E〉 ≤ 〈CVoigt E,E〉 for all applied loadings E ∈ Sym (3). On the other hand, it is

natural to require as well 〈Cmicro E, E〉 ≤ 〈CVoigt E,E〉, where equality will be obtained if and only if the
material on the micro-scale is homogeneous, i.e., C(ξ) = const.
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Since symB = E = ε, see (25), taking (34) and (35) together we obtain

〈σ , ε〉 = 1

|V |
∫

ξ∈V

〈
σ(ξ), ε(ξ)

〉
dξ. (36)

Summarizing, the Hill-Mandel lemma (36) implies that for KUBC (among other boundary
conditions) it holds that,

〈σ , ε〉 = 1

|V |
∫

ξ∈V

〈
σ(ξ), ε(ξ)

〉
dξ, Divσ(ξ) = 0, σ T(ξ) = σ(ξ), ṽ|∂V = B · ξ, (37)

where ε, σ are the mean strain and mean stress, respectively.
Next, let us assume that on the fine scale we have the linear elastic constitutive law

σ(ξ) = C(ξ) ε(ξ), where C(ξ) is uniformly positive definite. Then the equilibrium equa-
tion Div(C(ξ) ε(ξ)) = 0, ṽ|∂V (ξ) = B · ξ has a unique (inhomogeneous) solution v̂(ξ),
such that ε(ξ) = sym∇v̂(ξ) depends linearly on E = symB . Thus, the micro-scale Cauchy
stress σ̂ (ξ) = C(ξ) ε(ξ) depends also linearly on E. On the other hand, it follows by partial
integration that the mean strain tensor satisfies ε = 1

|V |
∫

ξ∈V
ε(ξ) dξ = E, see (26), and more-

over, that the mean Cauchy stress tensor σ = 1
|V |

∫
ξ∈V

σ (ξ) dξ depend also linearly on E.

This implies that there exists a unique linear mapping with constant coefficients CV
KUBC such

that σ =C
V
KUBC E. Therefore, using (37), we must have15

1

2

〈
C

V
KUBC E,E

〉
(39)

= inf

(
1

|V |
∫

ξ∈V

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0

(
V(x),R3

))
.

The reader is warned that for classical periodic homogenization, the Hill-Mandel lemma
is used with periodic boundary conditions PBC. In this case a unique constant linear map-
ping C

V
PBC can be obtained accordingly. However, CV

PBC turns out to be independent of the
size and shape of the chosen unit-cell V such that

C
V
PBC

:=

Cmacro (40)

defines the unique macroscopic homogenized stiffness. It is well known that for large unit-
cells V , the homogenized apparent stiffness tensor CV

KUBC approximates Cmacro [35, 66], see

15An equivalent, more algorithmic procedure to determine C
V
KUBC is obtained as follows. Consider again

(37)

〈σ, ε〉 = 1

|V |
∫
V

〈
σ(ξ), ε(ξ)

〉
dξ = 1

|V |
∫
V

〈
C(ξ) ε(ξ), ε(ξ)

〉
dξ, Divσ(ξ) = 0, σ T(ξ) = σ(ξ), (38)

and ṽ = ε · ξ at the boundary. Let us define the corresponding linear solution operator of the linear elastic
problem at the micro-scale L (ξ) · ε = ε(ξ), (“localization tensor”) and insert this back into (37). This gives

〈σ, ε〉 = 1

|V |
∫
V

〈
C(ξ)L (ξ) · ε,L (ξ) · ε〉dξ = 1

|V |
∫
V

〈
L (ξ)T C(ξ)L (ξ) · ε︸︷︷︸

const. in ξ

, ε
〉
dξ

=
〈
ε,

(
1

|V |
∫
V

L (ξ)T C(ξ)L (ξ) dξ

)

︸ ︷︷ ︸:=

C
V
KUBC

· ε
〉
= 〈

ε,CV
KUBC ε

〉
.
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Fig. 12 Qualitative result for the
apparent stiffness CV

KUBC,
depending on the number of
arrays

Fig. 13 Difference between
affine Dirichlet boundary
conditions (KUBC) and periodic
Dirichlet boundary conditions
(PBC). The fluctuation v is either
zero at the boundary (KUBC) or
periodic (PBC). The apparent
stiffness CV

KUBC determines
Cmicro via the Löwner matrix
supremum and C

V
PBC determines

directly the effective stiffness
Cmacro

also [81]. In general, CV
KUBC is stiffer than Cmacro measured in the energy norm [42]. More

precisely,

∀E ∈ Sym(3) : 〈
C

Vδ

KUBC E,E
〉
�

〈
C

V2δ

KUBC E,E
〉
� −→δ→+∞

. . . � 〈Cmacro E,E〉, (41)

where δ > 0 is a typical size of the cell Vδ . These hierarchies were first established by [36],
see also [37, 38, 73] (see Fig. 12).

Summarizing, both stiffness tensors CV
KUBC and Cmacro involve a homogenization step but

they are clearly distinguished and reflect the two-scale nature of the relaxed micromorphic
model.

2.3 Neumann’s Principle and the Löwner Bound

In our given periodic arrangement there are many different possibilities to choose unit-cells
V , see Fig. 15 in the next section. In the following we use an extended Neumann’s princi-
ple [67, 80] and [46, p.155], suitably adapted to our setting:

extended Neumann’s principle
The invariance group of every stiffness tensor of the relaxed

micromorphic model (Ce,Cmicro,Cc,L) must contain the maximal invariance
group of the periodic metamaterial.16

Here, the maximal invariance group generated by the periodic metamaterial is the tetrag-
onal group. Therefore the effective stiffness tensor Cmacro already has tetragonal symmetry.

16Here, μL2
c〈LCurlP,CurlP 〉 would represent the most general quadratic anisotropic curvature energy in

the relaxed micromorphic model, where L is a fourth-order tensor mapping non-symmetric second-order
tensors to non-symmetric second-order tensors.
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Neumann’s principle now requires that Cmicro must have tetragonal symmetry, too.17 For-
mula (15) then shows that Ce will also be tetragonal. Moreover, we only consider those
apparent stiffness tensors CV

KUBC which are themselves tetragonal. This reduces the number
of candidate unit-cells V in (33) considerably. Finally, we determine a tensor C0

micro in (33)
by requiring

∀E ∈ Sym (3) : 〈
C

0
micro E,E

〉 ≥ 〈
C

V
KUBC E,E

〉
(42)

for all remaining candidate unit-cell variants V and in addition, any other possible tensor
C̃micro, verifying estimate (42) should satisfy

∀E ∈ Sym (3) : 〈C̃micro E,E〉 ≥ 〈
C

0
micro E,E

〉
.

In this sense C
0
micro is optimal. It turns out that C0

micro is a matrix supremum in the so called
Löwner-half-order [14].

Löwner matrix supremum problem
Given a family of positive definite symmetric stiffness tensors Ck, k = 1, . . . , n, find a
positive definite stiffness tensor C such that,

1. ∀E ∈ Sym(3) : 〈CE,E〉 ≥ 〈Ck E,E〉, k = 1, . . . , n, “C is upper bound in the
Löwner order”,

2. If 〈C̃E,E〉 ≥ 〈Ck E,E〉, k = 1, . . . , n then 〈C̃E,E〉 ≥ 〈CE,E〉 “C is least upper
bound”.

This is the obtained requirement on Cmicro.18

Gathering our findings, we have obtained the following characterization

Theorem 1 Let Cmacro be the classical effective elasticity tensor obtained by periodic ho-
mogenization for a given periodic microstructure. Assume that the relaxed micromorphic
model (2) is chosen as an effective medium to describe the given periodic microstructure.
Then, the meso-scale elasticity tensor Ce and the micro-scale elasticity tensor Cmicro in the
relaxed micromorphic model are related by the formula

Cmacro =Cmicro(Cmicro +Ce)
−1
Ce. (43)

Moreover, the microscopic stiffness tensor Cmicro satisfies the bound

∀E ∈ Sym (3) : 〈Cmicro E,E〉 ≥ 〈
C

0
micro E,E

〉
, (44)

where C
0
micro is the Löwner matrix supremum of the family of apparent stiffness tensors

C
V
KUBC under affine Dirichlet boundary conditions which are obtained from admissible unit-

cells V satisfying the Neumann’s principle.

Remark 1 In the applications [16], a first choice is to set Cmicro = C
0
micro. However, a fit

for the dynamic range may eventually be improved by taking any other positive definite

17
Cmicro could be isotropic nevertheless, since isotropy is a subclass of the tetragonal symmetry.

18Considering the Voigt upper bound CVoigt := 1
|V |

∫
V C(ξ) dξ as representing the maximal microscopic

stiffness is not useful for two reasons: First, CVoigt will be isotropic and lose the information of the geometry
of the microstructure. Second, the actual deformation in any unit-cell will never exhibit constant strain.
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elasticity tensor Cmicro satisfying estimate (44). Identifying Cmicro as the Löwner supremum
is an entirely new approach unique to the relaxed micromorphic model.

Remark 2 In the classical Eringen-Mindlin WEM-model (6), a transparent relation like (43)
is impossible due to the missing proper split of the scale-independent constitutive tensors.
On the other hand, the bound (44) is impossible due to the presence of ‖∇P ‖2 instead of
‖CurlP ‖2, see inequality (23), which fails for WEM. This observation highlights the appro-
priate constitutive assumptions made in the relaxed micromorphic model which allows a
rational a priori separation of large and small scale response.

2.4 The Löwner Matrix Supremum in Plane Strain for Tetragonal Symmetry

In the next section, the apparent stiffness tensors CV
KUBC will be determined for the extended

Neumann’s principle unit-cells Vi , i = 1, . . . , n. In order to distill the missing information
on Cmicro in (42), we proceed as follows. Our goal is to find a positive definite tensor Cmicro

which is the least upper bound of the apparent stiffness of the underlying microstructure
measured in the energy norm. Since the fitting will be done in the 2D-case, we turn to the
planar Voigt representation and the inequality condition (42) can be restated as

∀(x, y, z)T ∈ R
3 :

〈⎛
⎝2μ̂ + λ̂ λ̂ 0

λ̂ 2μ̂ + λ̂ 0
0 0 μ̂∗

⎞
⎠

︸ ︷︷ ︸
Cmicro

⎛
⎝x

y

z

⎞
⎠ ,

⎛
⎝x

y

z

⎞
⎠

〉

≥
〈⎛
⎝2μ + λ λ 0

λ 2μ + λ 0
0 0 μ∗

⎞
⎠

︸ ︷︷ ︸
C

Vi
KUBC

⎛
⎝x

y

z

⎞
⎠ ,

⎛
⎝x

y

z

⎞
⎠

〉
, i = 1 . . . n (45)

where (x, y, z) represents the planar strain tensor entries (E11,E22,E12). We denote the ex-
tended Neumann’s principle admissible KUBC-entries as μi,λi,μ

∗
i , i = 1, . . . , n, respec-

tively.
It remains to obtain numerical values μ̂, λ̂, μ̂∗ such that (45) is always verified. Since μ∗

sits on the diagonal, we must necessarily have that μ∗ ≥ μ∗
i for all i = 1,2,3,4. Therefore,

the problem is reduced to the 2 × 2 block

∀(x, y)T ∈R
2 :

〈(
2μ̂ + λ̂ λ̂

λ̂ 2μ̂ + λ̂

)(
x

y

)
,

(
x

y

)〉

≥
〈(

2μi + λi λi

λi 2μi + λi

)(
x

y

)
,

(
x

y

)〉
, i = 1,2,3,4. (46)

According to the Sylvester-criterion for the difference of positive definite tensors, we must
have μ̂ ≥ μi and μ̂ + λ̂ ≥ μi + λi for i = 1,2,3,4. We choose

μ̂ := max
i

{μi}, μ̂∗ := max
i

{
μ∗

i

}
,

μ̂ + λ̂ := max
i

{μi + λi}, λ̂ := max
i

{μi + λi} − μ̂. (47)

This determines μ, μ∗, λ uniquely. In the next section, we have picked the highlighted values
in Table 2 for Cmicro in (50).
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a b c d

[mm] [mm] [mm] [m]
1 0.9 0.3 1

E ν μ λ

[GPa] − [GPa] [GPa]
70 0.33 26.32 51.08

Fig. 14 Geometry of the unit-cell and elastic parameters for Aluminum

3 Elastic Parameter Identification by Numerical Homogenization

For analyses of the considered tetragonal metamaterial in the plane, the number of indepen-
dent material constants in linear elasticity is three for each of the scales. Both the macro as
well as the microscopic elasticity parameters are computed by numerical homogenization
on the unit-cell level, see [53, 77, 78]. To that aim we employ the Finite-Element Hetero-
geneous Multiscale Method FE-HMM [20, 24], a two-level finite element method, which
is based on asymptotic homogenization and on the most general Heterogeneous Multiscale
Method HMM [18]. A mathematical analysis of FE-HMM for linear elasticity is provided
in [1].

3.1 Determination of Cmacro − Classical Periodic Homogenization

In mathematical terms, the macroscopic effective stiffness Cmacro is obtained by using the
classical result of periodic homogenization (see, e.g., [9, 11, 12]):

1

2
〈Cmacro E,E〉∣∣V(x)

∣∣ (48)

:= inf

{∫
ξ∈V(x)

1

2

〈
C(ξ) sym

(∇ξ v(ξ) + E
)
, sym

(∇ξ v(ξ) + E
)〉

dξ | v ∈ C∞
per

(
V(x),R3

)}
,

where C(ξ) is the elasticity tensor of the aluminum phase or air depending on the position of
ξ in the unit-cell19 and E = sym∇u(x) is the applied straining at the macroscopic point x,
where the unit-cell V(x) is centered at x. For the computation of these macroscopic elasticity
coefficients we use the two-scale finite element method FE-HMM [20] (see also [53, 77, 78])
and we assume that the microproblem is driven under macroscopic plane strain conditions.

The Lamé constants for the converged solution are obtained for mesh-size h =
1/2560 mm (for the geometry of the unit-cell see Fig. 14); they are displayed in Table 1.

19Here, x is the macro space variable of the continuum, while ξ is the micro-variable spanning inside the
unit-cell.
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Table 1 Homogenized macroscopic Lamé constants identified under plane strain and PBC

Cmacro geometry boundary conditions elasticity parameters

Fig. 16 plane strain λmacro [GPa] μmacro [GPa] μ∗
macro [GPa]

(a)–(d) periodic 1.738 5.895 0.620

3.2 Determination of Cmicro − Apparent Stiffness for Affine Dirichlet Boundary
Conditions

Similar to the macroscopic parameters, the micro set Cmicro shall be identified by numeri-
cal homogenization. In contrast to the macroscopic scale, the relaxed micromorphic model
imposes conditions at the micro-scale, which are non-standard, and in particular, in their
combination, very selective as far as the choice of the unit-cells is concerned. The condi-
tions which are imposed by the relaxed micromorphic model on choice of the unit-cells and
on the boundary conditions read:

(i) they correspond to the case Lc → ∞, a maximal zoom into the material,
(ii) they represent the maximal stiffness response of the (meta)material at the micro-scale,

(iii) they reflect the material’s overall (tetragonal) symmetry.

The first condition Lc → ∞ is rather vague and not very selective. The zoom into the
single solid phase of the material however can be ruled out, since the resultant isotropy of
aluminum violates condition (iii).

Condition (ii) alone suggests to consider constant strain conditions, since they yield the
upper bound of stiffness, the Voigt-bound. Under constant strain assumption however, sym-
metry information of the microstructure is lost; numerical homogenization results in an
isotropic material response, μ = μ∗, see Table 2, which again violates condition (iii). The
conclusion is, that conditions (ii) and (iii) cannot be fulfilled by the constant strain assump-
tion except for the trivial case of isotropy.

Among the boundary and loading conditions fulfilling the Hill-Mandel postulate (see
Sect. 2.2), affine Dirichlet boundary conditions are the candidate to estimate the maximal
stiffness while preserving material symmetries. It is well known, that periodic boundary
conditions (PBC) yield less stiff results, and the constant stress assumption defines the lower
bound of stiffness, the Reuss-bound.

There is an infinite number of valid, hence “equivalent” unit-cell variants for the homog-
enization of periodic media, if PBC are applied.20 Figure 15 shows some of them for the case
of periodic tessellation based on squares of side length a and based on rotated squares of
sidelength a

√
2. Additionally, other quadrilaterals like rectangles and parallelograms can be

used for valid periodic tessellation as well. They all result in the same material macroscopic
stiffness and they all preserve the tetragonal symmetry, if PBC are applied to the unit-cell.

The application of affine Dirichlet BCs (KUBC) drastically reduces the above set of pe-
riodically “equivalent” unit-cells of sidelenghts a and a

√
2, since only four of them capture

the tetragonal symmetry under these boundary conditions. These cells are highlighted in
yellow color in Fig. 15, those with two symmetry axes of orthorhombic materials appear
in blue shading. The rest of the displayed unit-cells exhibit only one symmetry axis. The
KUBC render the symmetry criterion (iii) very selective for unit-cells.

20For a discussion of the non-uniqueness of the unit-cell, see [74].
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Fig. 15 Identification of candidate unit-cell variants that fulfill the extended Neumann’s principle for (a)
standard square cells of sidelength a and (b) for rotated square cells of sidelength a

√
2. Yellow/blue shading

indicates tetragonal/orthorhombic symmetries. No shading for cells with only one symmetry axis. Note that
the metamaterial obtained by the infinite repetition of all these different unit-cells is the same tetragonal
metamaterial (Color figure online)

Fig. 16 The four regular square unit-cells respecting tetragonal symmetry

The requirement for maximal stiffness on top of that condition, however, does not deter-
mine without ambiguity any variant in Fig. 16 as the single stiffest unit-cell.

Nevertheless, from Table 2 we will distill an upper estimate for the stiffness of the mi-
crostructural response. This is done as follows. For each unit-cell (a), (b), (c), (d) in Fig. 16,
we have calculated the corresponding apparent stiffness tensor CV

KUBC. We will then deter-
mine that positive definite tensor Cmicro which has tetragonal symmetry and which satisfies

∀E ∈ Sym (3) : 〈Cmicro E,E〉 ≥ 〈
C

V
KUBC E,E

〉
(49)

for all 4 unit-cells according to Theorem 1.
In Table 2, we also report the computed values of the unit-cell stiffnesses using constant-

strain conditions, as well as the stiffness of a unit-cell completely filled by aluminum com-
puted both with KUBC and PBC.

Finally, we remark that in the case of an isotropic unit-cell (full aluminum) the homoge-
nization results for KUBC and PBC coincide.

The entries of the Löwner matrix supremum Cmicro are obtained from Table 2 as follows21

λmicro = 5.270, μmicro = 8.927, μ∗
micro = 8.332. (50)

21N.B. the value of λmicro is correctly 5.270 and not 5.981 because of the definition of λ̂ in (47).
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Table 2 Elastic parameter values in Voigt notation and restricted to the planar case. Homogenized material
parameters [GPa] for tetragonal unit-cell variants (a)–(d) in Fig. 16 for KUBC and PBC, for constant strain
assumption (Voigt-bound), and the case of single phase aluminum. Note that the PBC-values are the homog-
enized effective macroscopic stiffnesses, while the KUBC-values are the homogenized apparent stiffnesses
of chosen unit-cells

geometry boundary conditions elasticity parameters

Fig. 16 in x-y-dir./loading λhom μhom μ∗
hom

(a)–(d) PBC 1.738 5.895 0.620 Cmacro

(a) KUBC 4.37 6.242 8.332 Cmicro

(b) 2.125 5.899 2.264

(c) 5.270 8.927 4.042

(d) 5.981 6.254 4.96

(a)–(d) constant strain – Voigt 28.10 14.47 14.47 CVoigt

aluminum full KUBC and PBC 51.08 26.32 26.32

In conclusion, the homogenization requirements (i)–(iii) for the set of microparameters
along with the Hill-Mandel condition lead without ambiguity to KUBC and uniquely iden-
tify the stiffest microscopic response in terms of a function of the Lamé-parameters. With
Cmicro and Cmacro in hand, we are able to compute Ce with formula (15).

We have used these values in a diversity of scenarios [2–4, 7, 16] to good avail.

4 Conclusion

The relaxed micromorphic model is a “macroscopic continuum” homogenized model which
is able to reproduce the response of the selected metamaterial including band-gaps with
only few material parameters which do not depend on frequency [16]. Using the Curl-
curvature measure CurlP instead of the full gradient ∇P conveys Cmicro (and a for-
tiori Ce) a scale-independent meaning. We have mathematically justified that the tensor
Cmicro can be identified with the Löwner-half-order matrix-supremum of suitable appar-
ent stiffness tensors on the micro-scale. To our understanding this identification is entirely
new. In contrast, Cmacro follows from standard periodic homogenization and determines
the meso-scale elasticity tensor Ce via the exact micro-macro homogenization formula
Ce = Cmicro(Cmicro − Cmacro)

−1
Cmacro. Summarizing, the salient features of our novel ap-

proach of parameter identification are:

• Cmicro represents the stiffest possible estimate of the linear elastic response of any admis-
sible unit-cell under affine Dirichlet boundary conditions.

• Both Cmicro and Cmacro can be determined independently of the characteristic length-scale
Lc of the relaxed micromorphic model.

• Both Cmicro and Cmacro are readily available by first order numerical homogenization on
the unit-cell level.

• If the unit-cell is homogeneous, then Cmicro = Cmacro implies Ce = +∞ and the re-
laxed micromorphic model automatically turns into classical linear elasticity with stiff-
ness Cmacro, while the classical Eringen-Mindlin model would turn into a second gradient
formulation with unbounded stiffness.
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• For large rigid inclusions in the unit-cell, we have in the limit of infinite rigidity that
Cmicro → +∞ (Cmacro = Ce), reducing the relaxed micromorphic model effectively to a
Cosserat model (a model with “rigid microstructure”), which is sensible.

5 Open Problems

We have mathematically justified that the tensor Cmicro can be identified with the Löwner-
half-order matrix-supremum of suitable apparent stiffness tensors on the micro-scale. On
the other hand, Cmacro follows from standard periodic homogenization and determines the
mesoscale elasticity tensor Ce via the micro-macro homogenization formula (15)

Ce =Cmicro(Cmicro −Cmacro)
−1
Cmacro.

For this micro-macro homogenization formula to make sense we need to have that Cmicro −
Cmacro is positive definite (and therefore invertible). For this positive definiteness, consider
the difference

∣∣V (x)
∣∣1

2

〈
(Cmicro −Cmacro)E,E

〉 ≥ ∣∣V (x)
∣∣1

2

〈(
C

V
KUBC −Cmacro

)
E,E

〉

= inf

{∫
ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

0

(
V(x),R3

)}

− inf

{∫
ξ∈V (x)

1

2

〈
C(ξ)

(
sym∇ξ v(ξ) + E

)
, sym∇ξ v(ξ) + E

〉
dξ | v ∈ C∞

per

(
V(x),R3

)}

=: Q(E,E). (51)

By compactness it would be sufficient for strict positive definiteness of Cmicro −Cmacro that
Q(E,E) > 0 ∀E ∈ Sym (3). Although it is easy to see that Q(E,E) ≥ 0 in general, it re-
mains to investigate under which assumptions on the geometry and material of the unit-cell
the strict positivity of Q(E,E) can be established for other metamaterials. We believe that
this is true for microstructures with sufficient contrast in material properties in all directions.
This will be subject of further research.

We did not yet approach the determination of the static curvature parameters, i.e.,
the characteristic length scale Lc (or the curvature parameters induced by the more gen-

eral anisotropic quadratic expression µL2
c

2 〈LCurlP,CurlP 〉), where L is a positive definite
fourth-order tensor mapping non-symmetric second-order tensors to non-symmetric second-
order tensors). Knowledge of Lc (or L) determines the possible long-range interaction of the
microstructure. This task, however, will be greatly facilitated in future works since we al-
ready know the scale-independent short-range material parameters Cmicro and Cmacro and Ce.
It suffices then, in principle, to perform a range of inhomogeneous boundary value problems
on different sized clusters of unit-cells (mimicking size-experiments) which activate the cur-
vature terms of the relaxed micromorphic model in order to fit Lc (or L), now via a suitably
generalized Hill-Mandel energy equivalence condition. This will be the subject of further
work.
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