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Abstract We revisit the classical problem of the planar Euler elastica with applied forces
and moments, and present a classification of the shapes in terms of tangentially conserved
quantities associated with spatial and material symmetries. We compare commonly used
director, variational, and dynamical systems representations, and present several illustrative
physical examples. We remark that an approach that employs only the shape equation for
the tangential angle obscures physical information about the tension in the body.
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1 Introduction

The planar Euler elastica [1] has the simplest curvature-dependent energy for a one-
dimensional continuum. As a result, it appears in idealized models of a variety of physi-
cal systems, from structural cables and thin beams to biological macromolecules [2]. This
breadth of application has given rise to numerous derivations of the governing equations
across the scientific and engineering literature, often with specific boundary conditions im-
posed a priori. Some of these derivations are quite lengthy, and may give the student of
elastic structures the impression that the system is far more complicated than it really is.
The possibility of end moments is often ignored in expository treatments, and we know of

B H. Singh
harmeet@vt.edu

J.A. Hanna
hannaj@vt.edu

1 Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, USA

2 Department of Biomedical Engineering and Mechanics, Department of Physics, Center for Soft
Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-018-9690-5&domain=pdf
http://orcid.org/0000-0002-1096-6381
mailto:harmeet@vt.edu
mailto:hannaj@vt.edu


88 H. Singh, J.A. Hanna

no place where any two of the three most common approaches to the elastica are presented
together, or the connections between them laid out. We suspect that much of this knowledge
is well known among practitioners of mechanics, but feel that it is worth collecting in one
place, alongside new results and perspectives.

In this note, we attempt to clarify some of these folkloric issues, as well as present a
reclassification of the elastica curves in terms of quantities conserved under translations in
material and physical space. The curves represent thin elastic bodies with material sym-
metry along their long axes, embedded in a symmetric Euclidean background. The asso-
ciated material momentum and conventional (spatial) linear momentum balances express
the conservation of material and conventional stresses. We will refer to the latter simply as
the stress in what follows.1 The relative magnitudes and sign of these quantities identify a
mother curve from which a particular elastica may be cut in order to satisfy end moment
conditions. The simplicity of the system is apparent when described in terms of conserved
quantities, with angles or curvatures as dependent variables. Connections between forces,
moments, and slopes are also relatively clean in this general viewpoint. Cumbersome ex-
pressions arise only when conditions on total length and boundary positions are imposed on
particular solutions. In practice, these conditions are satisfied numerically. We do not dwell
on these issues here, nor do we retread well known but sometimes impractical expressions
for the shapes involving elliptic functions.

There are three widely used approaches to the planar elastica. Classical continuum me-
chanics employs Cosserat directors and begins with balances of linear and angular momen-
tum [13], which can be combined into a single vector equation. The other two are variational
treatments leading either to a single scalar pendulum equation for the tangential angle, or
a single vector equation from which one can obtain a scalar equation for the curvature as
the position of a particle in either a single- or double-well potential. These scalar shape
equations represent the normal force balance on the body. In this note, we will relate the
natural quantities in the vector and shape equations. In variational treatments, the magni-
tude of the stress and the only component of the material stress appear as first integrals.
Though not typically expressed in these terms, in the pendulum approach it is customary
to fix the stress and sweep the material stress to obtain a phase portrait. However, the other
approach clearly indicates that changes in material stress lead to a pitchfork bifurcation be-
tween single- and double-well potentials. We show that this has physical meaning. Overall,
it can be said that the pendulum description fails to capture information about tangential
balance that can at times provide a more direct solution of physical problems involving elas-
tic curves. Curiously, angular momentum balance and its associated conserved torque do
not play any necessary role in this simple system, although the pendulum equation can be
interpreted as a moment balance rather than a normal force balance.

We begin with a variational derivation of the vector equation and boundary conditions in
Sect. 2, including a discussion of conserved quantities and classical rod theories in Sect. 2.1
and of the shape equation for the curvature in Sect. 2.2. This shape equation can be derived
from the conserved stress and material stress, or by manipulation of the Euler-Lagrange
equation. The variational scalar pendulum description is briefly reviewed in Sect. 3. In

1Material forces and closely related quantities, which in our one-dimensional system have just one compo-
nent, appear under many names in the literature, including Eshelbian force, quasimomentum, pseudomomen-
tum, (Kelvin) impulse, and configurational force [3–12]. In the present case, one can derive everything from
consideration of conventional force balance and its projection onto the tangents of the body, but the concept
of material force is useful as a descriptive term, and also corresponds to an important symmetry of the La-
grangian. We generally prefer the term “spatial” to “conventional”, but try to avoid it in this note because of
its alternative meaning as “non-planar” in the context of rods embedded in three dimensions rather than two.
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Sect. 4, we propose a classification scheme based on conserved quantities, and discuss phase
portrait representations of both scalar shape equations. In Sect. 5, we present several exam-
ples involving physical boundary conditions on forces, moments, slopes, and the length of
the elastic curves.

2 Vector Approaches

The planar Euler elastica is a one-dimensional idealized model of a thin, uniform, inextensi-
ble, unshearable rod or tape without rest curvature. This body is represented by the position
(embedding) vector of a planar curve x(s), where s ∈ [0, l] is both a material coordinate and
the arc length. An example is shown in Fig. 1, decorated with various quantities to be intro-
duced shortly. The elastic energy, given by the square of the curvature of x, is expressible
in several different ways. Perhaps the simplest form for the static Lagrangian is entirely in
terms of derivatives of position,

L =
∫ l

0
dsL(x) =

∫ l

0
ds

[
1

2
B∂2

s x · ∂2
s x + 1

2
σ(∂sx · ∂sx − 1)

]
, (1)

where the first term is the bending energy with uniform modulus B (here with units of force),
and the second is a quadratic constraint on the local length, enforced by a multiplier σ(s).
While σ contributes to the tension in the body, the full tension contains contributions from
the curvature as well.2

Under a small shift in the position vector x → x + δx, the first order variation in the
Lagrangian is

δL(1) = [
B∂2

s x · ∂sδx + (
σ∂sx − B∂3

s x
) · δx]∣∣l

0
+

∫ l

0
ds

[
B∂4

s x − ∂s(σ∂sx)
] · δx. (2)

Setting δL(1) = 0 for arbitrary δx and ∂sδx yields the bulk field equation

B∂4
s x − ∂s(σ∂sx) = 0, (3)

and boundary conditions of the form

σ∂sx − B∂3
s x = P at s = l, (4)

B∂2
s x = Q at s = l, (5)

where P and Q are per-area sources of force and torque at one boundary. Boundary condi-
tions at the other end can be written analogously. While an equal but opposite force must
balance P, the torques at the two boundaries can differ. The force P could also be included
in the Lagrangian using a term −P · x|l0 = −P · R, as is done by several authors [17–20].
The quantities in the boundary condition (5) live in the plane, but it is customary to write

2Similar multipliers can be found in Burchard and Thomas [14], Singer [15], Tornberg and Shelley [16],
who do not employ a variational derivation, and Guven and Vázquez-Montejo [17], who use multiple redun-
dant multipliers. The multipliers in [14] and [16] are misidentified as the tension. For seemingly similar but
qualitatively different multipliers, see the following footnote.
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Fig. 1 An elastic curve x(s)

with end-to-end vector R and
local frame of unit tangent ∂sx

and unit normal d̂. Also shown
are a terminal force P and
moment M, the corresponding
force and moment at the other
end, the local tangential angle θ

between ∂sx and P, and the angle
φ between a terminal tangent
and P

things in terms of the out-of-plane moment M = ∂sx × Q applied to the boundary. Applying
the cross product with the tangent to (5), we may write an equivalent boundary condition

∂sx × B∂2
s x = M at s = l. (6)

Should we wish to obtain this boundary condition directly, one option is to write the bending
energy in (1) as 1

2 BΩ · Ω , where Ω = ∂sx × ∂2
s x is the Darboux vector for a planar curve.

Varying the position vector leads to the same variation of the Lagrangian (2), except that
the first boundary term becomes (∂sx × B∂2

s x) · (∂sx × ∂sδx). We may then treat δx and
∂sx ×∂sδx as our two arbitrary variations yielding two boundary conditions. There are many
ways to express the square of the curvature in this simple system. Another is to square the
wryness, defined as d × ∇d , where d is the director, here identified with the unit normal.

We may connect our equations and boundary conditions with classical rod theory [13]
by identifying the (per-area) contact force n(s) and contact moment m(s) as

n ≡ σ∂sx − B∂3
s x, (7)

m ≡ ∂sx × B∂2
s x. (8)

The contact force3 can be identified as the term conjugate to the variation δx in the boundary
term in (2), while the contact moment is conjugate to ∂sx × ∂sδx in the Darboux variation
described above.

2.1 Symmetries

The Lagrangian (1) does not depend on position and orientation in space or on the choice
of origin for the coordinate s. These translational and rotational symmetries of space and
material symmetry of the body imply the existence of conserved quantities.

For a shift in the embedding vector x corresponding to a symmetry of the Euclidean
plane, the current can be read off from the boundary term in (2). Translations correspond to
a uniform δx, so the contact force is conserved along the body,

σ∂sx − B∂3
s x = n = P. (9)

3The tension n · ∂sx can be associated with the multiplier T appearing in Nordgren [21] and Shelley and
Ueda [22], who do not employ variational derivations, and Audoly [23], whose multiplier is different than
our σ despite appearing similarly in a Lagrangian. The difference with Audoly arises due to his splitting of
the variation in terms of an angular variation δθ on the boundary, rather than ∂sδx as done here. A similar
issue arises in plate and shell theories [24].
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We have identified the conserved stress with P using the force boundary condition (4). That
n is conserved may also be seen by integrating the bulk equation (3), which in terms of the
contact force is simply

−∂sn = 0. (10)

Rotations correspond to a shift in the position vector of the form δx = C × x, where C is a
constant vector. The boundary term yields the conserved torque,

∂sx × (
B∂2

s x
) + x × (

σ∂sx − B∂3
s x

) = m + x × n = J. (11)

Unlike the contact force n, the contact moment m is not conserved. Differentiating (11) with
respect to s, and using (10), we obtain the bulk moment balance

∂sm + ∂sx × n = 0. (12)

For our elastica, it can be seen from (7) and (8) that ∂sx × n = −∂sx × B∂3
s x and

∂sm = ∂sx × B∂3
s x, so that the moment balance (12) is identically satisfied, and does not

provide any additional information beyond the force balance. The torque J can always be
eliminated by a shift in the origin x → x + n

n·n × J by noting that m · n = J · n = 0 in our
system [20].

The third symmetry corresponds to a shift in the independent variable s by a uniform δs.
This transformation is associated with the uniformity of the body, and has nothing to do with
the embedding space. We denote the transformed material label as s∗ ≡ s + δs. The vector
x∗(s∗) corresponds to the same material point as x(s) did in the original coordinates, while
δ̄x ≡ x∗(s)−x(s) is the shift in the position vector at the same material label due to the shift
δs (i.e. x∗(s) ≡ x∗(s∗)|s∗=s is at the same value of s, not the same material point). Note that
δ̄ and ∂s commute. For a detailed presentation of action principles, including variations in
the independent coordinates, the reader is referred to [25, 26]. Under a small uniform shift
in the material coordinate s → s∗, the variation in the Lagrangian is

L + δL =
∫ s2+δs

s1+δs

dsL(x + δ̄x) (13)

= L +L(x)δs|s2
s1

+
∫ s2

s1

ds
[
B∂2

s x · ∂2
s δ̄x + σ∂sx · ∂s δ̄x

] + higher order terms.

(14)

Integrating by parts and extremizing by setting the first order terms to zero,

0 = [
Lδs + B∂2

s x · ∂s δ̄x + (
σ∂sx − B∂3

s x
) · δ̄x]∣∣s2

s1
+

∫ s2

s1

ds
[
B∂4

s x − ∂s(σ∂sx)
] · δ̄x.

(15)

For a uniform material translation δs, the current may be associated with the boundary term
after using the condition x∗(s∗) = x(s) to express the variations in the position and the
tangent as δ̄x = −∂sxδs and ∂s δ̄x = −∂2

s xδs. Using the constitutive relations (7)–(8) for
the contact force and moment, we obtain the only component of the conserved material
force (per area),

−1

2
B∂2

s x · ∂2
s x + m · Ω + n · ∂sx = m · m

2B
+ n · ∂sx = c. (16)
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We have chosen to reverse the sign of the boundary term to align with the definition of stress
in a more general setting that includes inertia, such that the time derivative of the momentum
equals the divergence of stress, and the time derivative of the projection of the momentum
onto the tangents equals the divergence of material stress—compare with equation (8) of
Broer [28] and equation (3.2) of Maddocks and Dichmann [29]. O’Reilly [12, 27] defines
the equivalent quantity with the opposite sign, in keeping with the conventional form for the
Eshelby tensor. More general forms of c may be found in the context of static [30–33] and
dynamic [29] spatial hyperelastic rods. Another way to obtain this quantity is to integrate the
tangential component of the force balance (10). Integrating ∂sn ·∂sx by parts and anticipating
the identity of the constant, we can write c = n · ∂sx − ∫

ds n · ∂2
s x, which, upon inserting

(7)–(8), simplifies to c = n · ∂sx + m·m
2B

.
Curiously, the conserved material stress can appear directly as a multiplier in an

approach [34, 35] that employs a fully covariant description of a geometric energy,∫ √
g dα( 1

2 ∇2x · ∇2x + c). In this formalism, common in some areas of physics, the vol-
ume form

√
g dα varies, and the energy density is to be interpreted as per present volume

rather than per mass, a distinction that only matters when the rod is extensible.

2.2 Shape Equation

The shape of a planar curve may be reconstructed from the tangential angle θ(s) or its
derivative, the curvature κ = ∂sθ . For simplicity, we make use of an adapted orthonormal
frame of tangent vector ∂sx and normal d̂, such that ∂2

s x = κd̂ and ∂s d̂ = −κ∂sx. Using
the definitions of the conserved quantities (9) and (16) along with the constitutive relations
(7)–(8), we may write

(
σ + Bκ2

)
∂sx − B∂sκd̂ = P, (17)

σ + 3

2
Bκ2 = c. (18)

Eliminating the multiplier σ and squaring (17) leads to the shape equation

(B∂sκ)2 +
(

1

2
Bκ2 − c

)2

= P 2, (19)

where P 2 = P · P. This is a restricted form of a more general equation derived by Lu and
Perkins [36] for symmetric spatial Kirchhoff rods.

Alternatively, we can derive the shape equation (19) by projecting the bulk Euler-
Lagrange equation (3) onto the frame to obtain two equations,

B
(
∂2

s κ − κ3
) − σκ = 0, (20)

−3Bκ∂sκ − ∂sσ = 0. (21)

Integrating (21) and switching signs gives Eq. (18), and then inserting for σ in (20) gives

B

(
∂2

s κ + 1

2
κ3

)
− cκ = 0. (22)

Multiplying (22) by 2B∂sκ , integrating, and calling the constant of integration P 2 − c2

recovers the shape equation (19). The associated scalar boundary conditions derived from
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(4) and (6) are

σ + Bκ2 = P · ∂sx at s = l, (23)

−B∂sκ = P · d̂ at s = l, (24)

Bκ = M at s = l, (25)

where M is the only component of the moment at one boundary. Note that either (16), or
(18) along with the boundary conditions (23) and (25), lead to the relation

c = M2

2B
+ P cosφ, (26)

where φ is the angle between P and the boundary tangent ∂sx(l). Hence, the material stress
can be determined easily from the magnitude and direction of the end force, and the single
component of the end moment.

The curvature κ uniquely defines a planar curve up to rigid translations and rotations.
There are the two parameters P and c and one additional degree of freedom corresponding
to the final integration of the shape equation. However, the physical conditions one might
impose on an elastic curve are related in a complicated way to these degrees of freedom. One
might, for example, specify the ratio of the body’s length to its end to end distance, along
with the two angles made by the end tangents ∂sx and the end to end vector R. Or one might
specify another quantity such as the moment M , or the angle φ between the force and the end
tangent. Note that one can specify either the end position or P, and one can specify either the
end tangent or M. The curve may be reconstructed using ∂sθ = κ and ∂sx = (cos θ, sin θ).
We also have R = x(l) − x(0) and l = s(l) − s(0) = ∫ l

0 ds
√

∂sx · ∂sx = ∫ κ(l)

κ(0)
dκ̃/∂s κ̃ . The

significant complications that arise in applications of an elastica model are often due to
specifications of length and position.

In Sect. 4, we will detail how the two parameters in the shape equation define shapes of
infinite length, and how the moment boundary condition chooses the end point of any shape
cut from such a mother curve.

3 Scalar Approach

Before presenting our classification and examples, we briefly revisit the most well known
description of the planar elastica, which gives rise to a pendulum equation. We may write
the Lagrangian in terms of the tangential angle, rather than the position vector,

L(θ) =
∫ l

0
ds

[
1

2
B(∂sθ)2

]
+ P

[∫ l

0
ds(cos θ) − RP

]
, (27)

where P now appears as a global constraint on the distance RP between the ends in the
direction of the force. There is no constraint term corresponding to the direction orthogonal
to the force. We have measured θ with respect to the direction of force, a quantity not always
experimentally known, because it directly leads to the simplest form of the Euler-Lagrange
equations.

Extremizing the Lagrangian with respect to shifts in the angle θ → θ + δθ leads to the
bulk field equation

B∂2
s θ + P sin θ = 0, (28)
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and boundary conditions of the form

B∂sθ = M at s = l, (29)

the latter equivalent to (25). The moment term could be included in the Lagrangian using a
term −Mθ(l). The pendulum equation (28) is equivalent to the projection of the conserved
stress (9) onto the unit normal d̂, as well as the only component of the moment balance (12).
Upon integration, we recover the conserved material stress,

1

2
B(∂sθ)2 − P cos θ = c. (30)

This shape equation is equivalent to the definition (16). With the identification of the curva-
ture with the end moment (29), we recover (26). The pendulum equation (30) is a restricted
form of a more general oscillator equation derived by van der Heijden and Thompson [33]
for symmetric spatial Kirchhoff rods.

It is not immediately obvious that the shape equations (19) and (30) represent the same
curves. However, using (28) and (30) to square and add the trigonometric terms, and recall-
ing that κ = ∂sθ , we recover (19). We will return to the comparison between curvature and
angle shape equations in Sect. 4, in the context of phase portrait representations of these
equations.

4 Classification in Terms of Stress and Material Stress

The shapes of elastica curves are governed by the two parameters in the shape equation for
the curvature (19), which under the rescalings s → s/λ, κ → κλ, c → cλ2/B , P → Pλ2/B ,
and M → Mλ/B (λ an arbitrary length scale) takes the nondimensional form

(∂sκ)2 +
(

1

2
κ2 − c

)2

= P 2. (31)

This equation describes the motion of a particle with position κ and energy 1
2 P 2 in a poten-

tial 1
2 ( 1

2κ2 − c)2. This potential has a pitchfork bifurcation at c = 0, such that for negative
c there is a single minimum at κ = 0 and we require P 2 > c2, and for positive c there are
two wells with minima at κ = ±√

2c, the particle being confined to one of these wells if
P 2 < c2. Shapes are often classified as inflectional or non-inflectional [37]; if we define
P as a positive quantity, the magnitude of the conserved stress, we can express the above
relations as

c

P
∈ [−∞,−1) no solution,

c

P
∈ [−1,0] inflectional single-well,

c

P
∈ (0,1) inflectional double-well,

c

P
∈ [1,∞] non-inflectional.

(32)

The division of the inflectional solutions into single-well and double-well type, depending
on the sign of c, has a physical meaning. Recall the definition (16) of the material stress c.
The squared moment term is strictly non-negative, so the tension n · ∂sx ≤ c. When c is
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Fig. 2 Phase portraits in κ-∂sκ space and configurations of elastica curves, with larger contours correspond-
ing to larger values of stress P . Arrows indicate the direction of forces for configurations in the sequence on
either side of the figure-eight solution. Moments can be inferred from the curvature of the end points. At top,
the material stress c = 1 and the potential has two wells at (±√

2,0). Inside the c
P

= 1 separatrix, the curves
are non-inflectional. At bottom, c = −1 and the potential has one well at (0,0). These solutions are purely
compressive. The length of each non-periodic configuration is 20

negative, the rod must be in compression everywhere: the tangents ∂sx are always in op-
position to P, and the corresponding shapes can be represented by a single-valued height
function above any line parallel to the direction of the force. Shapes and phase portraits
corresponding to double-well and single-well potentials are shown in Fig. 2. Other inter-
esting landmarks include the straight line c

P
= −1, the homoclinic solitary loop c

P
= 1, the

circle P = 0, and the figure-eight solution. Clearly our formulation says nothing about the
global property of self-intersection, and we refrain from commenting on this matter here
although it is clearly of interest in some physical problems. For example, in keeping with
common experience, weaving somehow through the intersecting solutions must be a family
of racket-like loops meeting at any angle.
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Fig. 3 Two elastica curves of length l = 1.5 loaded with end forces and moments. From the ratio c
P

, the top
curve is identified as part of a non-inflectional shape, and the bottom curve part of an inflectional shape

The ratio c
P

can be simply related to parameters in elliptic integrals relating Cartesian
coordinates on the curves [38, 39]. The connection with the planar restriction of a classi-
fication of Kirchhoff rods by Nizette and Goriely [32], who use the roots of a polynomial
of a cosine of an Euler angle that generates the solutions through another elliptic integral,
appears to be more complicated.

The physical significance of inflection points is that they are points where the moment
vanishes, and so can correspond to boundaries loaded by a pure force. Hubbard [40] argues
that if one end of an elastica is loaded like this, and the other end loaded with a force and
a moment, then the curve can be extended to a fictitious curve loaded only with end forces.
This is simply a consequence of the fact that an elastica with pure force loading on one end
must be an inflectional elastica, and can be extended up to the next inflection point. Note that
the absence of inflection points on a finite length of curve does not imply a non-inflectional
elastica. Compare the two qualitatively similar curves in Fig. 3, cut from distinctly different
mother curves, one inflectional and one not.

We can also interpret a rescaled form of the pendulum equation (30) in terms of motion
with energy c in a sinusoidal potential with amplitude P , which again requires c

P
≥ −1.

A phase portrait is shown in Fig. 4. This is something of an inversion of the curvature
description, with the roles of stress and material stress reversed, and the inner librational
contours of the phase portrait now representing inflectional solutions, and the outer rota-
tional contours non-inflectional solutions. We may reproduce all the qualitative types of
configurations shown in Fig. 2 by varying the material stress c at some fixed stress P . Inside
the c

P
= 0 contour, which has the property that the tangential angle θ subtends exactly π

radians, the curves are purely compressive. However, this fact is not apparent from the pen-
dulum description, which does not contain any information about tangential forces and does
not undergo a bifurcation. Although the curvature description is also in the form of a scalar
equation representing normal force balance, it is derived using the tangential force balance
and inherits important information from it.

5 Examples

Some examples will help relate our classification, which makes use of the somewhat esoteric
conserved material force c, to physical quantities such as the magnitude P and direction of
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Fig. 4 Phase portrait in θ -∂sθ

space with stress P = 1 and
increasing contours
c
P

= (−1,−0.8,0,1,2). The
fixed points are straight lines, and
the separatrices are solitary loop
solutions separating inner
inflectional and outer
non-inflectional solutions. Not
apparent in this pendulum
description is the fact that
solutions inside the bold c

P
= 0

contour are purely compressive

Fig. 5 Orbits and configurations of a unit length elastica corresponding to different sections of a c
P

= 0.420
mother curve

the end force, the end moment M , and the length of the body. All but the length are related
by the nondimensional form of (26),

c = 1

2
M2 + P cosφ, (33)

where P is defined as positive and φ is the angle between P and the boundary tangent ∂sx(l).
The end moment is simply the end curvature at this boundary, according to the nondimen-
sional form of the boundary condition (25).

We first observe that many related finite length curves may be cut from a single mother
curve of given ratio c

P
, by applying appropriate moments at the ends. Figure 5 displays three

such configurations of an elastica with both c and P fixed. We may slide along a contour and
configuration by appropriate changes in the end moments. In Fig. 6, we increase the load on
a segment of elastica without moments, changing the potential and energy simultaneously.
These shapes correspond to orbits subtending half a contour, beginning and ending on the
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Fig. 6 Configurations of an elastica of length l = π under increasing end force and no end moments. The
corresponding contours, enlarging with increasing stress and material stress, are shown; the orbits begin and
end on the ∂sκ axis and subtend half a contour. At c = 0, the force is orthogonal to the end tangents, and the
curves transition from purely compressive to tensile near the ends and compressive in the middle

Fig. 7 Configurations of an elastica of length l = π under increasing end moment at one end, fixed slope at
the other end, and fixed end forces. The corresponding contours transform from a single-well to a double-well
potential. Inflection points, real and virtual, are denoted by open circles

∂sκ axis (zero curvature). In the absence of moments, if the stress P is orthogonal to the end
tangents, the material stress c vanishes and the curves transition from purely compressive to
tensile near the ends and compressive in the middle. In Fig. 7, we keep the load fixed and
change one end moment, while keeping the other end slope fixed. This changes the other
end moment, and the potential, while keeping the energy fixed. The elastica is transformed
from a compressive single-well inflectional curve to a double-well inflectional curve to a
non-inflectional curve living in one well of a double-well potential. An inflection point is
expelled from the body into a virtual position on a mother curve, then ceases to exist entirely.
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Fig. 8 Configurations of a partially constrained elastica of total length l = 1.6, along with orbits correspond-
ing to the freely hanging portions of lengths lh on the same c

P
= 2

3 mother contour. The sleeve loading S,
and thus the material stress, is the same for all configurations despite different free end loadings. A reaction
force and moment (not shown) exist at the sleeve edge

A related sequence without the second end moment may be found in Griner’s discussion of
pole-vaulting [41].

Finally, we consider a system with fixed material force c and variable length. This
example is inspired by O’Reilly’s interpretation of a problem studied by Bigoni and co-
workers [42, 43], featuring an elastic rod partially constrained by a straight, frictionless
sleeve through which it is free to slide. There is a jump in curvature, along with a reaction
force and moment, at the sleeve edge. A force of magnitude S acts on the rod in the sleeve
to hold it in equilibrium with any end force and moment. One way to derive results on these
configurations is to assume continuity of material stress at the sleeve edge [42]. If this is
done, the quantity S required to maintain the rod in equilibrium can be identified with the
material force c in Eq. (33). Note that our end moment M should not be confused with the
reaction moment appearing in [43]. Figure 8 shows three equilibrium configurations with
the same force in the sleeve and the same magnitude of end loading, so that they correspond
to orbits on the same inflectional double-well contour. The three orbits correspond to three
different freely hanging lengths lh. The top and middle configurations correspond to loading
by a follower force (same φ), while the bottom configuration has an additional moment and
a change in φ. The top configuration shares the same shape (rotated) as the portion of the
middle configuration far from the sleeve, while the bottom configuration shares the same
shape and orientation as the portion of the middle configuration near the sleeve. It is not
obvious whether one can easily direct the body along paths between these configurations,
that is, slide the rod in and out of the sleeve by simple changes in the end loading.

6 Summary

We have revisited the classical problem of the planar Euler elastica, compared commonly
used representations, presented a classification in terms of conserved stress and material



100 H. Singh, J.A. Hanna

stress, and provided several physically inspired examples. A scalar shape equation for the
curvature derived from a vector representation contains physical information not present in
a scalar shape equation for the tangential angle.
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