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Abstract We study chirality transitions in frustrated ferromagnetic spin chains, in view of a
possible connection with the theory of Liquid Crystals. A variational approach to the study
of these systems has been recently proposed by Cicalese and Solombrino, focusing close
to the helimagnet/ferromagnet transition point corresponding to the critical value of the
frustration parameter α = 4. We reformulate this problem for any α ≥ 0 in the framework
of surface energies in nonconvex discrete systems with nearest neighbours ferromagnetic
and next-to-nearest neighbours antiferromagnetic interactions and we link it to the gradient
theory of phase transitions, by showing a uniform equivalence by Γ -convergence on [0,4]
with Modica-Mortola type functionals.

Keywords Γ -Convergence · Equivalence · Frustrated lattice systems · Chirality
transitions · Modica-Mortola

Mathematics Subject Classification 49J45 · 49M25 · 82B20 · 82B24

1 Introduction

The phenomenon of frustration arises from the competition between different interactions,
in a continuous or discrete physical system, that favour incompatible ground states. It occurs,
for instance, in the liquid-crystalline phases of chiral molecules: a chiral molecule cannot
be superimposed on its mirror image through any proper rotation or translation. The main
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effect of chirality is that chiral molecules do not align themselves parallel to their neighbours
but tend to form a characteristic angle with them (see, e.g., [1, 13, 15]).

Edge-sharing chains of cuprates, instead, provide an example of frustrated lattice sys-
tems, where the frustration results from the competition between ferromagnetic (F) nearest-
neighbour (NN) and antiferromagnetic (AF) next-nearest-neighbour (NNN) interactions
(see, e.g., [12]).

In this paper we study the asymptotic properties of a one-dimensional frustrated spin
system at zero temperature via Γ -convergence (see [2] and [11]), focusing also on the vari-
ational equivalence with problems in gradient theory of phase transitions (see, e.g., [2, 3]
for a simple introduction to the topic). Our contribution has been inspired by the recent
results about the variational discrete-to-continuum analysis of such systems provided by
Cicalese and Solombrino [9] in the vicinity of the so called “helimagnet/ferromagnet tran-
sition point”, exhibiting at a suitable scale different scenarios not detected by a first-order
Γ -limit. Indeed, the Γ -convergence approach provides a rigorous way of deriving a con-
tinuum limit for discrete systems as the number of interacting particles is increasing. How-
ever, the Γ -limit does not always capture the main features of the discrete model and in
some cases more refined approximations are needed (see, e.g., [4, 5, 9, 18]). This motivated
the derivation of the uniformly Γ -equivalent theories, introduced by Braides and Truski-
novsky [7] for a wide class of discrete systems and developed, e.g., in the framework of frac-
ture mechanics, by Scardia, Schlömerkemper and Zanini [17] for one-dimensional chains of
atoms with Lennard-Jones interactions between nearest-neighbours. Our paper can also be
seen as a first step in the analysis of chirality transitions in more complicated physical sys-
tems like as chiral liquid crystals. A discrete-to-continuum analysis via Γ -convergence of
some problems in liquid crystals has been recently treated, e.g., by Braides, Cicalese and
Solombrino [8], but this promising research field is still largely unexplored.

We consider the so-called F-AF spin chain model, where the state of the system is de-
scribed by an S1-valued spin variable u = (ui) parameterized over the points of the set
1
n
Z∩ [0,1], n ∈N. The energy of a given state of the system is

Eα
n (u) = −α

n−1∑

i=0

(
ui, ui+1

) +
n−1∑

i=0

(
ui, ui+2

) − nmα, (1.1)

with periodic boundary conditions (u0, u1) = (un,un+1), where α ≥ 0 is the frustration pa-
rameter, (·, ·) denotes the scalar product between vectors in R

2 and mα are constants de-
pending on α (see (2.5) for the precise definition).

The first term of the energy (1.1) is ferromagnetic and favours the alignment of NN
spins, while the second, being antiferromagnetic, frustrates it as it favours antipodal NNN
spins. Consequently, the frustration of the system depends on the parameter α. In order to
characterize the ground states of this system and their dependence on the value of α, we first
associate to each pair of nearest neighbours ui, ui+1 the corresponding oriented central angle
θ i ∈ [−π,π). Then, by the periodicity assumption, we may reread the energies in terms of
this scalar variable as

Eα
n (θ) = −α

2

n−1∑

i=0

(
cos θ i + cos θ i+1

) +
n−1∑

i=0

cos
(
θ i + θ i+1

) − nmα, (1.2)

and follow the approach by Braides and Cicalese [5] for lattice systems of the form (1.2).
Indeed, by “minimizing out” for each fixed i the nearest neighbours interactions, we are led
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Fig. 1 A schematic
representation of the ground
states of the spin system for
0 ≤ α < 4 for clockwise (on the
left) and counterclockwise
(on the right) chirality (picture
taken from [13])

to the definition of the effective potential Wα (Eq. (2.9)) such that

Eα
n (θ) ≥

n−1∑

i=0

Wα

(
θ i

)
, (1.3)

where Wα is convex with minimum at θ = θα = 0 if α ≥ 4, while it is a double-well potential
with wells at θ = ±θα if 0 ≤ α ≤ 4 (see Fig. 2). Since the inequality in (1.3) is strict if
θ i �= θ i+1 or θ i �= ±θα , we deduce that if α ≥ 4 the nearest neighbours prefer to stay aligned
(ferromagnetic order); if 0 ≤ α ≤ 4, instead, the minimal configurations of Eα

n are θ i =
θ i+1 ∈ {±θα}; that is, the angle between pairs of nearest neighbours ui, ui+1 and ui+1, ui+2

is constant and depending on the particular value of α (helimagnetic order). The two possible
choices for θα (a degeneracy known in literature as chirality symmetry) correspond to either
clockwise or counterclockwise spin rotations, or, equivalently, to a positive or a negative
chirality (see Fig. 1).

The asymptotic behaviour of the energies Eα
n as n → ∞ and for fixed α (Theorem 3.1)

reflects such different regimes for the ground states. If α ≥ 4 the limit is trivially finite
(and equal to zero) only on the constant function θ ≡ 0, while if 0 ≤ α < 4 it is finite on
functions with bounded variation taking only the two values {±θα} and it counts the number
of chirality transitions. More precisely,

Γ - lim
n→+∞Eα

n (θ) = Cα#
(
S(θ)

)
,

where S(θ) is the jump set of function θ and Cα = C(α) is the cost of each chirality transi-
tion. The value Cα (see Sect. 3.1) represents the energy of an interface which is obtained by
means of a ‘discrete optimal-profile problem’ connecting the two constant (minimal) states
±θα . It is continuous as a function of α on the interval [0,4) (as shown by Proposition 3.2)
and can be defined to be equal to 0 for α ≥ 4. Moreover, Cα → 0 as α → 4 and (compare
with [14] and Remark 4.1)

Cα ∼
√

2

3
(4 − α)3/2, as α → 4−. (1.4)

In a recent paper [9], Cicalese and Solombrino investigated the asymptotic behaviour of this
system close to the ferromagnet/helimagnet transition point; that is, they found the correct
scaling (heuristically suggested by (1.4)) to detect the symmetry breaking and to compute
the asymptotic behaviour of the scaled energy describing this phenomenon as α is close to 4.
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They let the parameter α depend on n and be close to 4 from below; i.e., they rewrite the
energies (1.2) in terms of 4 − αn, with 4 − αn → 0 as n → ∞.

We state their result in a slight different form, useful for the sequel. More precisely,
we prove in Theorem 4.1 that an analogous result can be obtained if we choose as order
parameter the “flat” angular variable

v = θ

θα

,

which is equivalent to the variable considered in [9] in the regime of small angles. We
compute the Γ -limit F 0 as n → ∞, α = αn → 4 with respect to the strong L1-topology of
the scaled energies

Fαn
n (v) := Eαn

n (v)

μαn

= 8Eαn
n (v)√

2(4 − αn)3/2
, (1.5)

and show that, within this scaling, several regimes are possible depending on the value

l := lim
n

√
2

4n(4 − αn)1/2
.

Namely, if l = 0 then F 0(v) = 8
3 #(S(v)), v ∈ BV (I, {±1}), if l = +∞ then F 0 is finite (and

equal to zero) only on constant functions, while in the intermediate case l ∈ (0,+∞) we get

F 0(v) = 1

l

∫

I

(
v2(t) − 1

)2
dt + l

∫

I

(
v̇(t)

)2
dt, v ∈ W

1,2
|per|(I ),

where I = (0,1), BV (I, {±1}) is the space of functions of bounded variation defined on I

and taking the values {±1}, and W
1,2
|per|(I ) = {v ∈ W 1,2(I ) : |v(0)| = |v(1)|}.

Motivated by the particular form of this result and in the spirit of Braides and
Truskinovsky[7], with Theorem 5.2 we find a variational link between such energies (seen
as a ‘parametrized’ family of functionals) and the gradient theory of phase transitions, in the
framework of the equivalence by Γ -convergence. Roughly speaking, two families of func-
tionals are equivalent by Γ -convergence if they have the same Γ -limit (see Definition 5.1
and the subsequent ones for the rigorous definitions useful in this framework). More pre-
cisely, we show the uniform equivalence by Γ -convergence on [0,4] of the energies Fα

n (v)

defined in (1.5) with the “Modica-Mortola type” functionals given by

Gα
n(v) = 1

μα

[
λn,α

∫

I

(
v2 − 1

)2
dt + M2

α

λn,α

∫

I

(v̇)2 dt

]
, v ∈ W

1,2
|per|(I ),

where λn,α = 2nθ4
α and Mα = 3Cα/8.

The value α0 = 4 is a singular point, since the Γ -limit of Gα
n will depend on choice of

the particular sequence αn → α−
0 = 4−. Each α0 ∈ [0,4), instead, is a regular point; i.e., it is

not singular. As a consequence of Theorem 5.2, we deduce (see Corollary 5.1) the uniform
equivalence of the energies Eα

n (θ) for α ∈ [0,4) with the family

Hα
n (θ) = λn,α

θ4
α

∫

I

(
θ2(t) − θ2

α

)2
dt + M2

α

λn,αθ2
α

∫

I

(
θ̇ (t)

)2
dt, θ ∈ W

1,2
|per|(I ),

whose potentials Wα(θ) := (θ2 −θ2
α)2 have the wells located at the minimal angles θ = ±θα .
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As a final remark, we would like to observe that our result can be useful also to analyze
more general problems of interest for the applied community. For instance, a natural exten-
sion would be the case of S2-valued spins, that has been recently investigated by Cicalese,
Ruf and Solombrino [10] in the vicinity of the transition point. In that paper, the authors
modify the energies penalizing the distance of the S2 field from a finite number of copies
of S1 and prove the emergence of non-trivial chirality transitions. However, even in the case
of values in S1, the Villain Helical XY -model studied there could be attacked with our ap-
proach, at least in the regime of “strong” ferromagnetic interaction considered therein by
the authors.

2 Setting of the Problem

Preliminarily, we fix some notation that will be used throughout. We denote by I = (0,1)

and by λn = 1
n
, n ∈ N a positive parameter. Given x ∈ R, we denote by �x the integer

part of x. The symbol S1 stands for the standard unit sphere of R2. Given a vector v ∈ R
2

with components v1 and v2 with respect to the canonical basis of R2, we will use the notation
v = (v1|v2). Given two vectors v,w ∈R

2 we will denote by (v,w) their scalar product. Here
and in the following, Un(I ) will be the space of the functions w : λnZ∩ [0,1] → S1, Θn(I)

the space of the functions ϕ : λnZ∩ [0,1] → [− π
2 , π

2 ] and we use the notation wi = w(iλn),
ϕi = ϕ(iλn); Ūn(I ) will denote the subspace of those w ∈ Un(I ) satisfying the following
periodic boundary condition

(
w1,w0

) = (
wn+1,wn

)
. (2.1)

Analogously, Θ̄n(I ) will denote the subspace of those ϕ ∈ Θn(I) such that ϕ0 = ϕn.
We will identify each lattice function w ∈ Ūn(I ) with its piecewise-constant interpolation

belonging to the class

Cn(I ) = {
w :R→ S1 : w(t) = w(λni) if t ∈ (i, i + 1)λn, i ∈ {0,1, . . . , n − 1}},

while the symbol Dn(I ) will denote the analogous space for functions ϕ ∈ Θ̄n(I ).
Given a pair of vectors v = (v1|v2),w = (w1|w2) ∈ S1, we define the function χ [v,w] :

S1 × S1 → {±1} as

χ [v,w] = sign(v1w2 − v2w1), (2.2)

with the convention that sign(0) = −1, and the corresponding oriented central angle θ ∈
[−π,π) by

θ = χ [v,w] arccos
(
(v,w)

)
. (2.3)

The positivity of the determinant in (2.2) represents the counterclockwise ordering of the
vectors v and w.

2.1 The Model Energies Eα
n

We consider the energy of a given state u of the F-AF spin chain model, defined as

Eα
n (u) = P α

n (u) − nmα = −α

n−1∑

i=0

(
ui, ui+1

) +
n−1∑

i=0

(
ui, ui+2

) − nmα, (2.4)
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where u ∈ Cn(I ), α ≥ 0 and (see [9, Proposition 3.2])

mα = 1

n
min

u∈L∞(I,S1)

P α
n (u) =

{
−( α2

8 + 1) if α ∈ [0,4],
−α + 1 if α ∈ [4,+∞).

(2.5)

First we note that, thanks to the periodicity assumption (2.1), we can write the energies
(2.4) equivalently in the form

Eα
n (u) = −α

2

n−1∑

i=0

[(
ui, ui+1

) + (
ui+1, ui+2

)] +
n−1∑

i=0

(
ui, ui+2

) − nmα. (2.6)

Now we associate to each pair of neighbouring spins ui, ui+1 the corresponding oriented
central angle θ i defined as in (2.3), and taking θ i as (scalar) order parameter, the energies
(2.6) can be rewritten as

Eα
n (θ) = −α

2

n−1∑

i=0

(
cos θ i + cos θ i+1

) +
n−1∑

i=0

cos
(
θ i + θ i+1

) − nmα, (2.7)

where θ ∈ Dn(I ).

2.2 Ground States of Eα
n

In this section, we focus on the ground states of the energies Eα
n . We will show the emer-

gence of chiral ground states for α ∈ [0,4] by means of a double-minimization technique
introduced by Braides and Cicalese in [5] for lattice systems of the form (2.7). Following
their approach, for each i = 0,1, . . . , n− 1 we fix the next-to-nearest neighbour interactions
θ i + θ i+1 = 2θ and solve the minimum problem

min
θi∈[−π,π)

{
−α

2

[
cos θ i + cos

(
2θ − θ i

)] + cos 2θ − mα

}
. (2.8)

By a direct computation, we find that the unique minimizers in (2.8) for α �= 0 are θ i =
θ i+1 = θ if θ ∈ (−π/2,π/2), and θ i = θ i+1 = θ − π if |θ | ∈ (π/2,π), while for α = 0 we
have θ i = θ i+1 = ±π/2. The following picture shows that, up to a reparametrization, θ and
θ − π actually represent the same minimizer.
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Fig. 2 The potential Wα for 0 ≤ α < 4 (on the left) and for α ≥ 4 (on the right)

Without loosing generality we will assume up to the end that θ i = θ i+1 = θ ∈ J , J :=
[−π/2,π/2] and correspondingly we define the effective potential as

Wα(θ) = cos 2θ − α cos θ − mα. (2.9)

The potential Wα is thus obtained by integrating out the effect of nearest-neighbour in-
teractions optimizing over atomic-scale oscillations, and its properties strongly depend on
the value α. Indeed, if 0 ≤ α < 4 then Wα is a “double-well” potential, while if α ≥ 4 the
potential is convex (see Fig. 2). Moreover,

arg minWα(θ) =
{

{±θα} := {± arccos( α
4 )}, if α ∈ [0,4],

{0}, if α ∈ [4,+∞).
(2.10)

We note that by the definition of Wα and (2.8) we get

Eα
n (θ) ≥

n−1∑

i=0

Wα

(
θ i

)
, (2.11)

the inequality being strict if θ i �= θ i+1 or θ i �= ±θα . In particular, Eα
n (θ) ≥ 0.

Thus, the minimization procedure leading to the definition of Wα (and then to inequality
(2.11)) allows us to deduce some information about the ground states of the energies Eα

n

from the properties of this potential. More precisely, if α ≤ 4 the minimal configurations of
Eα

n are θ i = θ i+1 ∈ {±θα}; that is, the angle between pairs of nearest neighbours ui, ui+1

and ui+1, ui+2 is constant and depending on the particular value of α. If α ≥ 4, instead, the
nearest neighbours prefer to stay aligned (−θα = +θα = 0).

Let be θ ∈ Dn(I ). We may regard the energies Eα
n as defined on a subset of L∞(I, J )

and consider their extension on L∞(I, J ). With a slight abuse of notation, we set Eα
n :

L∞(I, J ) → [0,+∞] as

Eα
n (θ) =

{
− α

2

∑n−1
i=0 (cos θ i + cos θ i+1) + ∑n−1

i=0 cos(θ i + θ i+1) − nmα, if θ ∈ Dn(I ),

+∞, otherwise.
(2.12)

3 Limit Behaviour of Eα
n with Fixed α

Our first result is the explicit computation of the Γ -limit, as n → ∞, of the energies Eα
n

with fixed α ∈ [0,+∞). As we will show with Theorem 3.1, the asymptotic behaviour of
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the energies Eα
n reflects the different regimes for the ground states outlined in Sect. 2.2.

Indeed, the limit is non-trivial only in the helimagnetic regime (0 ≤ α < 4), representing the
energy the system spends on the scale 1 for a finite number of chirality transitions from −θα

to θα .

3.1 Crease Transition Energies

The cost Cα of each chirality transition can be characterized as the energy of an interface
which is obtained by means of a ‘discrete optimal-profile problem’ connecting the two con-
stant (minimal) states ±θα .

Let α ∈ [0,4). According to [5, Sect. 2.2], we define the crease transition energy between
−θα and θα as

Cα := C(−θα, θα)

= inf
N∈N

min

{ +∞∑

i=−∞

[
cos

(
θ i + θ i+1

) − α

2

(
cos θ i + cos θ i+1

) − mα

]
:

θ : Z → [−π/2,π/2], θ i = sign(i)θα, if |i| ≥ N

}
. (3.1)

We note that the infinite sums in (3.1) are well defined, since they involve only non negative
terms and, actually, for fixed N they are finite sums, since the summands are 0 for i ≥ N

and i ≤ −N − 1. Moreover, it follows by the definition a useful symmetry property of the
crease energy; that is,

C(−θα, θα) = C(θα,−θα). (3.2)

Now we prove that the optimal test function in (3.1) is constantly equal to ±θα only for
N → +∞, thus relaxing the boundary condition as a condition at infinity in the definition
of Cα . We notice that an analogous property of crease energies has been showed by Braides
and Solci in [6] for a one-dimensional system of Lennard-Jones nearest and next-to-nearest
neighbour interactions.

Proposition 3.1 The infimum in (3.1) is obtained for N → ∞; that is,

Cα = inf

{ +∞∑

i=−∞

[
cos

(
θ i + θ i+1

) − α

2

(
cos θ i + cos θ i+1

) − mα

]
:

θ : Z → [−π/2,π/2], lim
i→±∞

sign(i)θ i = θα

}
. (3.3)

Moreover, Cα > 0.

Proof Let θ i be a test function for the problem (3.3) and denote by C̃α the infimum in (3.3).
With fixed η > 0, let Nη be such that |θ i − sign(i)θα| < η for |i| ≥ Nη , and define

θ i
η =

{
θ i, if |i| ≤ Nη

sign(i)θα, if |i| > Nη.
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We then have

+∞∑

i=−∞

[
−α

2

(
cos θ i

η + cos θ i+1
η

) + cos
(
θ i
η + θ i+1

η

) − mα

]

=
Nη∑

i=−Nη−1

[
−α

2

(
cos θ i

η + cos θ i+1
η

) + cos
(
θ i
η + θ i+1

η

) − mα

]

=
Nη−1∑

i=−Nη

[
−α

2

(
cos θ i + cos θ i+1

) + cos
(
θ i + θ i+1

) − mα

]

− α

2

(
cos θNη + cos θα

) + cos
(
θNη + θα

) − mα

− α

2

(
cos θα + cos θ−Nη

) + cos
(
θ−Nη − θα

) − mα

≤
+∞∑

i=−∞

[
−α

2

(
cos θ i + cos θ i+1

) + cos
(
θ i + θ i+1

) − mα

]
+ 2ω(η),

where

ω(η) := max

{
−α

2
(cos θ + cos θα) + cos(θ + θα) − mα : |θ − θα| ≤ η

}
(3.4)

is infinitesimal as η → 0. This shows that the value Cα defined in (3.1) is less or equal
than C̃α . Then we are done, the converse inequality being trivial since any test function for
problem (3.1) is a test function for problem (3.3). The estimate Cα > 0 easily follows from
(2.11) and the fact that ±θα are the unique minimizers of Wα . �

Remark 3.1 In the ferromagnetic regime α ≥ 4, we may define Cα = 0 consistently with
(3.1), where now mα = −α + 1. Indeed, being θα = −θα = 0, we can choose θ ≡ 0 as a test
function in (3.1), thus obtaining the estimate Cα ≤ 0.

It will be useful in the sequel the following continuity property of Cα with respect to the
frustration parameter α.

Proposition 3.2 (Continuity) The crease energy Cα defined as before is continuous in
[0,4); i.e., for any ᾱ ∈ [0,4) and any sequence αj such that 0 ≤ αj < 4, αj → ᾱ it results
Cαj

→ Cᾱ .

Proof Let us fix η > 0 and let α,α′ ∈ [0,4) be such that if |α − α′| < δ(η) for a suitable
δ(η) > 0, then |θα − θα′ | < η/2.

From the definition of Cα′ as in (3.3), there exists a function θ : Z → [−π/2,π/2] such
that

∑
i∈Z E i,α′

(θ) < Cα′ + η, where we have set

E i,α′
(θ) := −α′

2

(
cos θ i + cos θ i+1

) + cos
(
θ i + θ i+1

) + (α′)2

8
+ 1,

and limi→±∞ sign(i)θ i = θα′ . This means that there exist two indices h1(η),h2(η) ∈N such
that |θ i − θα′ | < η/2 for every i > h2(η) and |θ i − (−θα′)| < η/2 for every i < −h1(η).
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Setting h̄ = h̄(η) := max{h1, h2} and Kh̄ := {i ∈ Z : |i| ≤ h̄}, we observe that for every
i /∈ Kh̄ it also holds that |sign(i)θ i − θα| < η.

Now we modify θ in order to obtain a test function for the problem defining Cα by setting

θ̃ i =
{

θ i, if i ∈ Kh̄

sign(i)θα, otherwise.
(3.5)

We then have

Cα ≤
∑

i∈Z
E i,α(θ̃ ) =

∑

|i|<h̄

E i,α(θ) + E−h̄,α(θ̃ ) + E h̄,α(θ̃ )

≤
∑

i∈Z
E i,α′

(θ) + 2|α − α′|#Kh̄ + [
E−h̄,α(θ̃ ) − E−h̄,α′

(θ)
]

+ [
E h̄,α(θ̃ ) − E h̄,α′

(θ)
]
, (3.6)

where in the second inequality we used the estimate

∑

|i|<h̄

∣∣E i,α(θ) − E i,α′
(θ)

∣∣ ≤ 2|α − α′|#Kh̄.

Each of the last two terms in (3.6) can be estimated in the same way, so we make an
explicit computation only for the latter. We have

∣∣E h̄,α(θ̃ ) − E h̄,α′
(θ)

∣∣ ≤ ∣∣cos
(
θ h̄ + θα

) − cos
(
θ h̄ + θ h̄+1

)∣∣ +
∣∣∣∣
α2 − (α′)2

8

∣∣∣∣

+
∣∣∣∣
α

2

(
cos θ h̄ + cos θα

) − α′

2

(
cos θ h̄ + cos θ h̄+1

)∣∣∣∣ ≤ η + 2|α − α′|.

Collecting all the previous estimates and inserting them into (3.6) we obtain

Cα ≤ Cα′ + η + 2|α − α′|#Kh̄ + η + 2|α − α′|
≤ Cα′ + 2η + 2|α − α′|(1 + #Kh̄).

Choosing now γ ≥ 4η and α and α′ such that

|α − α′| ≤ min

{
δ(η),

γ

4(1 + #Kh̄)

}
=: σ(γ, η),

we finally obtain Cα ≤ Cα′ + γ .
If we change the role of α and α′, we get an analogous estimate for Cα′ . Hence, we

conclude that for every γ ≥ 4η, there exists σ(γ, η) > 0 such that if |α − α′| < σ(γ,η) then
|Cα − Cα′ | ≤ γ . Since the choice of η was arbitrary, the assertion immediately follows. �

3.2 Compactness and Γ -Convergence Results

The following compactness result states that sequences θn with equibounded energy Eα
n

converge to a limit function θ which has a finite number of jumps and takes the values
{±θα} almost everywhere if 0 ≤ α < 4, while if α ≥ 4 the limit function is identically 0.
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Proposition 3.3 (Compactness) Let Eα
n : L∞(I, J ) → [0,+∞] be the energies defined by

(2.12). If {θn} is a sequence of functions such that

sup
n

Eα
n (θn) < +∞, (3.7)

then we have two cases:

(i) if 0 ≤ α < 4 there exists a set S ⊂ (0,1) with #S < +∞ such that, up to subsequences,
θn converges to θ in L1

loc((0,1)\S), where θ is a piecewise constant function and
θ(0+) = θ(1+). Moreover, θ(t) ∈ {±θα} for a.e. t ∈ (0,1) and S(θ) ⊆ S;

(ii) if α ≥ 4 then the limit function θ is identically 0.

Proof (i) We first note that −α cos θ ≥ |pαθ | − α − 1 for θ ∈ [−π/2,π/2] and a constant
pα depending on α, so that

C > Cλn ≥ λnE
α
n (θn) ≥|pα|

n−1∑

i=0

λn|θ i
n| − (α + 1)nλn + λn − nλn + α2

8
+ 1

≥|pα|
n−1∑

i=0

λn|θ i
n| − α − 1,

from which we deduce that
∫ 1

0
|θn(t)|dt < +∞. (3.8)

From the equiboundedness assumption (3.7) there exists a constant C > 0 such that

sup
n

n−1∑

i=0

E i
n(θn) ≤ C < +∞, (3.9)

where we have set

E i
n(θn) = cos

(
θ i
n + θ i+1

n

) − α

2

(
cos θ i

n + cos θ i+1
n

) − mα. (3.10)

Now, if for every fixed η > 0 we define

In(η) := {
i ∈ {0,1, . . . , n − 1} : E i

n(θn) > η
}
,

then (3.9) implies the existence of a uniform constant C(η) such that

sup
n

#In(η) ≤ C(η) < +∞. (3.11)

Let i ∈ {0,1, . . . , n − 1} be such that i /∈ In(η); that is,

E i
n(θn) = cos

(
θ i
n + θ i+1

n

) − α

2

(
cos θ i

n + cos θ i+1
n

) − mα ≤ η.

Let σ = σ(η) > 0 be defined such that if

0 ≤ cos(θ1 + θ2) − α

2
(cos θ1 + cos θ2) − mα ≤ η, θ1 + θ2 = 2θ, θ ∈ {±θα},
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then

|θ1 − θ | + |θ2 − θ | ≤ σ(η).

As a consequence, if i /∈ In(η) we deduce the existence of θ ∈ {±θα} such that

|θ i
n − θ | ≤ σ and |θ i+1

n − θ | ≤ σ.

Hence, up to a finite number of indices i, both θ i
n and its nearest neighbour θ i+1

n are close
to the same minimal angle ±θα . Namely, there exists a finite number of indices 0 = i0 <

i1 < · · · < iNn = n − 1 such that for all k = 1,2, . . . ,Nn we can find θk,n ∈ {±θα} satisfying
for all i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik − 1} the aforementioned closeness property

|θ i
n − θk,n| ≤ σ and |θ i+1

n − θk,n| ≤ σ. (3.12)

Now, let {ijr }, r = 1, . . . ,Mn be the maximal subset of 0 = i0 < i1 < · · · < iNn = n − 1
defined by the requirement that if θjr ,n = ±θα then θjr+1,n = ∓θα ; this means that
{ij1 , . . . , ijMn

} ⊆ In(η). Hence, there exists C(η) > 0 such that
∑n−1

i=0 E i
n(θn) ≥ C(η)Mn

and then Eα
n (θn) ≥ C(η)Mn, so that from (3.7) Mn are equibounded. Thus, up to fur-

ther subsequences, we can assume that Mn = M and that for every r = 1, . . . ,M , tnijr
=

λnijr → tr for some tr ∈ [0,1] and θjr ,n = θr . Set S = {t1, . . . tM} and, for fixed δ > 0,
Sδ = ⋃

r (tr − δ, tr + δ). Then, by identifying θn with its piecewise constant interpolation,
from (3.12) and for n large enough we get

sup
t∈(0,1)\Sδ

|θn(t) − θr | ≤ σ.

The previous estimates, together with (3.8) ensure that {θn} is an equicontinuous and equi-
bounded sequence in (0,1)\Sδ . Thus, thanks to the arbitrariness of δ, up to passing to a
further subsequence (not relabelled), θn converges in L∞

loc((0,1)\S) (and in L1
loc((0,1)\S))

to a function θ such that θ(t) ∈ {±θα} for a.e. t ∈ (0,1). Moreover, S(θ) ⊆ S. Finally, by the
periodicity assumption (2.1), we have θ0

n = θn
n from which passing to the limit as n → ∞

we conclude that θ(0+) = θ(1+).
(ii) The proof of (ii) requires minor changes in the argument above, so we will omit it. �

Now we can state and prove the Γ -convergence result.

Theorem 3.1

(i) Let α ∈ [0,4). Then the energies Eα
n Γ -converge with respect to the L1

loc-topology to

Eα(θ) =

⎧
⎪⎨

⎪⎩

Cα#(S(θ) ∩ [0,1)), if θ ∈ PCloc(R), θ ∈ {±θα}
θ is 1-periodic

+∞, otherwise

(3.13)

on L1
loc(R), where Cα = C(−θα, θα) is given by (3.1) and PCloc(R) denotes the space

of locally piecewise constant functions on R.
(ii) Let α ∈ [4,+∞). Then the energies Eα

n Γ -converge with respect to the L1
loc-topology to

Eα(θ) =
{

0, if θ = 0

+∞, otherwise
(3.14)

on L1
loc(R).
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Proof (i) Liminf inequality. We may assume, without loss of generality, that θ is left-
continuous at each jump. Let θn → θ in L1(0,1) be such that Eα

n (θn) < +∞. Then, from
Proposition 3.3 there exist N ∈ N, θ̄1, . . . , θ̄N ∈ {±θα} and 0 = s0 < s1 < · · · < sN = 1,
{sj } = {tk} (the set of indices may be different if sk = sk+1 for some k) such that

θn
jk

→ θ̄j , on the interval (sj−1, sj ), j ∈ {1, . . . ,N}. (3.15)

For l ∈ {0,1, . . . ,N}, let {kl
n}n be a sequence of indices such that k0

n = 0,

lim
n

λnk
l
n = sl,

and let {hl
n}n be another sequence of indices such that h0

n = 0,

lim
n

λnh
l
n = sl + sl−1

2
.

To get the Γ -liminf inequality, we rewrite the energies as follows:

Eα
n (θn) =

N−1∑

j=1

Eα
n

(
θn,h

j
n, h

j+1
n

) + rn, (3.16)

where we have set

Eα
n

(
θn,h

j
n, h

j+1
n

) =
h
j+1
n −1∑

i=h
j
n

[
cos

(
θ i
n + θ i+1

n

) − α

2

(
cos θ i

n + cos θ i+1
n

) − mα

]
,

mα = − α2

8 − 1 and

rn =
h1
n−1∑

i=0

E i
n(θn) +

n−1∑

i=hN
n +1

E i
n(θn),

with rn > 0 and E i
n(θn) as in (3.10). Defining for j ∈ {1,2, . . . ,N − 1}

θ̃ i
n =

⎧
⎪⎪⎨

⎪⎪⎩

θ̄j , if i ≤ h
j
n − k

j
n − 1,

θ
i+k

j
n

n , if h
j
n − k

j
n ≤ i ≤ h

j+1
n − k

j
n − 1,

θ̄j+1, if i ≥ h
j+1
n − k

j
n,

(3.17)

we have that θ̃ i
n is a test function for the minimum problem defining C(θ(sj−), θ(sj+)) as

in (3.1), where θ(sj−) = θ̄j and θ(sj+) = θ̄j+1.
For n large enough and any σ > 0, we then find that each summand in (3.16) can be

estimated from below as

Eα
n

(
θn, k

j
n, k

j+1
n

) =
k
j
n∑

i=h
j
n

E i
n(θn) +

h
j+1
n −1∑

i=k
j
n

E i
n(θn)

=
0∑

l=h
j
n−k

j
n

E l+k
j
n

n (θn) +
h
j+1
n −k

j
n−1∑

l=1

E l+k
j
n

n (θn)
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=
h
j+1
n −k

j
n−1∑

l=h
j
n−k

j
n

E l
n(θ̃n)

=
∑

l∈Z
E l

n(θ̃n) −
∑

l≤h
j
n−k

j
n−1

E l
n(θ̃n) −

∑

l≥h
j+1
n −k

j
n

E l
n(θ̃n)

=
∑

l∈Z
E l

n(θ̃n) − Eh
j
n−k

j
n−2

n (θ̃n)

≥
∑

i∈Z

[
cos

(
θ̃ i
n + θ̃ i+1

n

) − α

2

(
cos θ̃ i

n + cos θ̃ i+1
n

) − mα

]
− ω(σ)

≥ C(θ̄j , θ̄j+1) − ω(σ), (3.18)

where ω : [0,+∞) → [0,+∞) is a suitable continuous function, ω(0) = 0. Finally, since
for every j ∈ {1, . . . ,N − 1} it holds C(θ̄j , θ̄j+1) = Cα by (3.2), combining (3.18) with
(3.16) and passing to the liminf as n → +∞ we get the liminf inequality

lim inf
n→∞ Eα

n (θn) ≥ lim inf
n→∞

[
(N − 1)Cα − (N − 1)ω(σ )

]

= Cα#
(
S(θ) ∩ [0,1)

)
, (3.19)

where the latter equality follows by the arbitrariness of σ .
Limsup inequality. Let θ be such that Eα(θ) < +∞. Then there exist M ∈ N, θ̄1, . . . , θ̄M ∈
{±θα} and 0 = t0 < t1 < · · · < tM = 1 such that #S(θ) = M − 1 and

θ(t) = θ̄j , t ∈ (tj−1, tj ), j ∈ {1,2, . . . ,M}. (3.20)

Fixed η > 0, from the definition of C(θ(tj−), θ(tj+)) for j ∈ {1,2, . . . ,M − 1} we can find
functions ψj,j+1 : Z → [−π/2,π/2], such that

ψi
j,j+1 =

{
θ̄j for i ≤ −Nj,

θ̄j+1 for i ≥ Nj,
(3.21)

and

∑

i∈Z

[
cos

(
ψi

j,j+1 + ψi+1
j,j+1

) − α

2

(
cosψi

j,j+1 + cosψi+1
j,j+1

) − mα

]

≤ C
(
θ(tj−), θ(tj+)

) + η = Cα + η, (3.22)

where the latter equality follows again by (3.2). Note that in (3.21) we may assume N = Nj

independent of j , up to choose N = max1≤j≤M−1{Nj }.
We define a recovery sequence θ̃n by means of a translation argument involving the func-

tions ψj,j+1, j ∈ {1, . . . ,M − 1}, that will allow us to estimate the energy contribution from
above with (3.22) in a suitable neighbourhood of each jump point tj . Namely, for every j , we

set θ̃ i
n = ψ

i−�tj n
j,j+1 if i ∈ {�tj n − N, . . . , �tj n + N}, while if i ∈ {�tj n + N, . . . , �tj+1n −

N}, we define θ̃ i
n to be constantly equal to θ̄j+1, according to (3.21). This definition can be
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summarized as follows:

θ̃ i
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̄1 if 0 ≤ i ≤ �t1n − N,

ψ
i−�tj n
j,j+1 if �tj n − N ≤ i ≤ �tj n + N,

θ̄j+1 if �tj n + N ≤ i ≤ �tj+1n − N, j ∈ {1, . . . ,M − 1},
θ̄M if n − N ≤ i ≤ n − 1.

(3.23)

We note that the corresponding θ̃n ∈ Dn(I ) satisfy θ̃n → θ in L∞ and (here we use the
simplified notation for the energies as in (3.10))

Eα
n (θ̃n) =

n−1∑

i=0

E i
n(θ̃n) =

�t1n−N−1∑

i=0

E i
n(θ̃n) +

M−1∑

j=1

(�tj n+N−1∑

i=�tj n−N

E i
n(θ̃n)

)

+
M−1∑

j=1

(�tj+1n−N−1∑

i=�tj n+N

E i
n(θ̃n)

)
+

n−1∑

i=n−N

E i
n(θ̃n)

=
M−1∑

j=1

(�tj n+N−1∑

i=�tj n−N

E i
n

(
ψ

i−�tj n
j,j+1

)
)

=
M−1∑

j=1

∑

i∈Z
E i

n

(
ψi

j,j+1

)

≤ (M − 1)(Cα + η),

whence, by the arbitrariness of η, we deduce that

lim sup
n→+∞

Eα
n (θ̃n) ≤ (M − 1)(Cα + η) = Cα#

(
S(θ) ∩ [0,1)

)
. (3.24)

Thus, (3.24) shows that the lower bound (3.19) is sharp, and this concludes the proof of (i).
(ii) In this case the proof is immediate. Indeed, for any θn → 0, from Eα

n (θn) ≥ 0 we have
in particular that

lim inf
n→+∞ Eα

n (θn) ≥ 0.

As a recovery sequence, we can choose θn ≡ 0, for which we obtain limn→+∞ Eα
n (θn) = 0. �

4 Limit Behaviour Near the Transition Point α = 4

The description of the limit as n → +∞ of the energies Eα
n with fixed α, carried out in the

previous section, has a gap for α = 4. Indeed, the crease energy Cα jumps from a strictly
positive value (corresponding to 0 ≤ α < 4) to 0 (when α ≥ 4). Note also that the explicit
value of Cα defined implicitly by (3.1) is not known in literature. This suggests to focus near
the transition point α = 4, let the parameter α depend on n and be close to 4 from below;
that is, replace α by 4 − αn, αn → 4−.

Such analysis is the main content of a recent paper by Cicalese and Solombrino [9], where
they find suitable scaling and order parameter to compute the energy the system spends in a
transition between two states with different chirality when α � 4. Moreover, they show the
dependence of the limit on the particular sequence αn → 4− and the existence of different
regimes. Our aim is to show that their result can be retrieved also correspondingly to a
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different choice of the order parameter in the energies. First of all, we write the energies
(2.12) in terms of 4 − α as

Eα
n (θ) = [

4 − (4 − α)
] n−1∑

i=0

(
1 − cos θ i

) −
n−1∑

i=0

[
1 − cos

(
θ i + θ i+1

)] + n
(4 − α)2

8
, (4.1)

and when necessary, we may think also the quantities Wα , Cα , etc. to be functions of 4 − α.
Note that if we choose as a test function in (3.1) θ i,α = sign(i) arccos(α/4) then we obtain a
first rough estimate

0 < Cα ≤ (4 − α) − (4 − α)2

8
,

showing in particular that Cα → 0 as α → 4−.
The following proposition (compare with [9, Proposition 4.3]) characterizes the angles

between neighbours for an equibounded (in energy) sequence of spins as the frustration
parameter approaches the critical value from below.

Proposition 4.1 If {θn} is a sequence such that

sup
n

Eαn
n (θn) ≤ C(4 − αn)

3/2, (4.2)

then θ i
n → 0 as αn → 4− uniformly with respect to i ∈ {0,1, . . . , n − 1}.

Proof The claim follows immediately from the estimate

0 ≤ 2

(
cos θ i

n − αn

4

)2

≤
n−1∑

i=0

Wαn

(
θ i
n

) ≤ Eαn
n (θn) ≤ C(4 − αn)

3/2 (4.3)

valid for all i ∈ {0,1, . . . , n − 1}. �

We introduce a new order parameter

vi
n = θ i

n

θαn

(4.4)

and reformulate the Γ -convergence result by Cicalese and Solombrino ([9, Theorem 4.2])
in terms of this new variable. However, it is worth noting that the “flat” angular parameter vi

n

is equivalent with their variable zi
n in the regime of “small angles”, i.e., as αn → 4−, θ i

n → 0,
since in this case

θαn = arccos

(
1 − (4 − αn)

4

)
�

√
4 − αn√

2

and

zi
n = 2

√
2√

4 − αn

sin

(
θ i
n

2

)
�

√
2θ i

n√
4 − αn

.

The change of variables (4.4) associates to any given θn ∈ Dn(I ) a piecewise-constant
function vn ∈ D̃n(I ) where

D̃n(I ) := {
v : [0,1) →R : v(t) = vi

n if t ∈ λn

(
i + [0,1)

)
, i ∈ {0,1, . . . , n − 1}},
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with vn as in (4.4). With a slight abuse of notation, we regard Eαn
n as a functional defined on

v ∈ L1(I,R) by

Eαn
n (v) =

{
Eαn

n (θ), if v ∈ D̃n(I ),

+∞, otherwise,
(4.5)

and correspondingly we define the scaled energies

Fαn
n (v) := 8Eαn

n (v)√
2(4 − αn)3/2

. (4.6)

Theorem 4.1 (Cicalese and Solombrino [9]) Let Fαn
n : L1(I,R) → [0,+∞] be the func-

tional in (4.6). Assume that there exists l := limn

√
2λn/4(4 − αn)

1/2. Then F 0(v) :=
Γ - limn F αn

n (v) with respect to the L1(I ) convergence is given by:

(i) if l = 0,

F 0(v) :=
{

8
3 #(S(v)) if v ∈ BV (I, {±1}),
+∞ otherwise.

(4.7)

(ii) if l ∈ (0,+∞),

F 0(v) :=
{

1
l

∫
I
(v2(t) − 1)2 dt + l

∫
I
(v̇(t))2 dt if v ∈ W

1,2
|per|(I ),

+∞ otherwise,
(4.8)

where we have set W
1,2
|per|(I ) := {v ∈ W 1,2(I ) : |v(0)| = |v(1)|}.

(iii) if l = +∞,

F 0(v) :=
{

0 if v = const.,

+∞ otherwise.
(4.9)

Proof In order to simplify the notation, we put εn := 4 − αn → 0 as n → ∞. Let {vn} be a
sequence in D̃n(I ) such that supn

E
εn
n (vn)

ε
3/2
n

≤ C < ∞. As remarked before, correspondingly,

there exists a sequence {θn} in Dn(I ) such that supn
E

εn
n (θn)

ε
3/2
n

≤ C < ∞, satisfying θ i
n → 0

uniformly with respect to i by Proposition 4.1.
From the estimates contained in the proof of [9, Theorem 4.2] we get

Eεn
n (θn) ≥ 8

n−1∑

i=0

[
sin2

(
θ i
n

2

)
− εn

8

]2

+ 2(1 − γn)

n−1∑

i=0

[
sin

(
θ i+1
n

2

)
− sin

(
θ i
n

2

)]2

,

for some γn → 0. Since sin θ � θ as θ → 0, we may improve the estimate obtaining

Eεn
n (θn) ≥ 8

(
1 − γ ′

n

) n−1∑

i=0

[(
θ i
n

2

)2

− εn

8

]2

+ (1 − γ ′′
n )

2

n−1∑

i=0

[(
θ i+1
n

2

)
−

(
θ i
n

2

)]2

,
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for suitable γ ′
n, γ

′′
n → 0. In terms of the new order parameter vi

n defined by (4.4) the previous
inequality now reads

Eεn
n (θn) ≥ 2θ4

εn

λn

(
1 − γ ′

n

) n−1∑

i=0

λn

[(
vi

n

)2 − εn

2θ2
εn

]2

+ θ2
εn

λn

8

(
1 − γ ′′

n

) n−1∑

i=0

λn

(
vi+1

n − vi
n

λn

)2

,

where λn = 1
n

. If we multiply both the sides by 8/
√

2ε
3/2
n , since εn

2θ2
εn

→ 1 we get

8Eεn
n (θn)√
2ε

3/2
n

≥ 8
√

2θ4
εn

λnε
3/2
n

(
1 − γ ′

n

) n−1∑

i=0

λn

[(
vi

n

)2 − 1
]2

+
√

2θ2
εn

λn

2ε
3/2
n

(
1 − γ ′′

n

) n−1∑

i=0

λn

(
vi+1

n − vi
n

λn

)2

.

Since θεn = arccos(1 − εn

4 ) and θεn �
√

εn√
2

as εn → 0, we note that
8
√

2θ4
εn

λnε
3/2
n

� 4
√

εn√
2λn

and
√

2θ2
εn

λn

2ε
3/2
n

�
√

2λn

4
√

εn
as n → ∞. Thus, we finally get

8Eεn
n (θn)√
2ε

3/2
n

≥ 4
√

εn√
2λn

(
1 − γ̃ ′

n

) n−1∑

i=0

λn

[(
vi

n

)2 − 1
]2

+
√

2λn

4
√

εn

(
1 − γ̃ ′′

n

) n−1∑

i=0

λn

(
vi+1

n − vi
n

λn

)2

, (4.10)

for suitable γ̃ ′
n, γ̃

′′
n → 0. The estimate (4.10) implies the liminf inequality both in case (i)

and (ii) as remarked in [9], and the limsup inequality can be obtained in both cases by the
constructive argument contained therein, so we will omit the proof. �

Remark 4.1 (Asymptotic Behaviour of Cα) As remarked before, Cα → 0 as α → 4−. How-
ever, we may use Theorem 4.1(i) to refine this estimate and determine the right order of Cαn

with respect to 4 − αn as αn → 4.
In the regime λn � (4 − αn)

1/2 we can compute the limit of energies Fαn
n (v) first as

n → ∞ while keeping αn ≡ α0 �= 4 fixed, and then the limit as α0 → 4−. Thanks to Theo-
rem 3.1 and the continuity result ensured by Proposition 3.2, we obtain

F α0(v) := Γ - lim
n→+∞

8Eαn
n (v)√

2(4 − αn)3/2
= 8Cα0√

2(4 − α0)3/2
#
(
S(v)

)
, (4.11)

whence, by means of Theorem 4.1(i), we get

F 0(v) := Γ - lim
α0→4

Fα0(v) = 8

3
#
(
S(v)

)
. (4.12)
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The convergence of minimum problems as α → 4− finally gives

lim
α→4−

3Cα√
2(4 − α)3/2

= 1. (4.13)

Thus, near the ferromagnet-helimagnet transition point, the energy Cα coincides with the
energy Edw ∝ (4−α)3/2 for the excitation of a chiral domain wall separating two domains of
opposite chirality, which is a well-known universal low-temperature property of frustrated
classical spin chains (see, e.g., Dmitriev and Krivnov [14]).

5 A Link with the Gradient Theory of Phase Transitions

In this section we show that the variational asymptotic behaviour of the energies Fα
n for any

α ∈ [0,4], both in the case of fixed α (Theorem 3.1) and in the case α � 4 (Theorem 4.1), is
the same as that of a parametrized family of Modica-Mortola type functionals, thus provid-
ing an interesting connection between frustrated lattice spin systems and the gradient theory
of phase transitions (see also [5, Sect. 6]).

In order to do that in the framework of the equivalence by Γ -convergence, we recall some
definitions about Γ -equivalence for families of parametrized functionals, uniform equiva-
lence, regular and singular points, as introduced by Braides and Truskinovsky [7].

Definition 5.1 (Γ -Equivalence) Let A be a set of parameters. Two families of parametrized
functionals Fα

n and Gα
n are equivalent at scale 1 at α0 ∈ A if F

α0
n and G

α0
n are equivalent at

scale 1, i.e.,

Γ - lim
n→+∞Fα0

n = Γ - lim
n→+∞Gα0

n (5.1)

and these Γ -limits are non-trivial.

Definition 5.2 (Uniform Γ -Equivalence) Let A be a set of parameters. Two families of
parametrized functionals Fα

n and Gα
n are uniformly equivalent at scale 1 at α0 ∈ A if for all

αn → α0 we have, up to subsequences,

Γ - lim
n→+∞Fαn

n = Γ - lim
n→+∞Gαn

n (5.2)

and these Γ -limits are non-trivial. They are uniformly equivalent on A if they are uniformly
equivalent at all α0 ∈ A.

Definition 5.3 (Regular Point) α0 ∈ A is a regular point if for all αn → α0 we have, up to a
subsequence,

Γ - lim
n→+∞Fαn

n = Γ - lim
n→+∞Fα0

n . (5.3)

Definition 5.4 (Singular Point) α0 ∈ A is a singular point if it is not regular; that is, if there
exist α′

n → α0, α′′
n → α0 such that (up to subsequences)

Γ - lim
n→+∞F

α′
n

n �= Γ - lim
n→+∞F

α′′
n

n . (5.4)
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Fig. 3 The 1
n − α space. The

continuous line represents the
failure curve 1

n = (4 − α)1/2

According to the previous definitions, each 0 ≤ α0 < 4 is a regular point for Fα
n , since,

as already observed in Remark 4.1, for any sequence αn → α0, we have

Fα0(v) := Γ - lim
n→+∞Fαn

n (v) = 8Cα0√
2(4 − α0)3/2

#
(
S(v)

)
.

As a consequence of Theorem 4.1, instead, α0 = 4 is a singular point for Fα
n .

The behaviour of the system close to the transition point α = 4 can be pictured in the
1
n
–α plane (see Fig. 3), where the crossover line 1

n
= (4 − α)1/2 separates a zone where

there is helimagnetic order ( 1
n

� (4 − α)1/2) from one where we have ferromagnetic order
( 1

n
� (4 − α)1/2).
For our purposes, it is useful to recall the well known Γ -convergence result in gradient

theory of phase transitions due to Modica and Mortola [16]. Let Ω ⊂ R be an open set,
u : Ω → R and W = W(u) a non-convex energy such that W ≥ 0, W(u) ≥ c(u2 − 1) and
W = 0 if and only if u = a, b. W is called a double-well potential. Let C > 0 and consider
the energies

Fn(u) = n

∫

Ω

W(u)dx + C2

n

∫

Ω

(u̇)2 dx, u ∈ W 1,2(Ω). (5.5)

Theorem 5.1 (Modica-Mortola’s Theorem) The functionals Fn above Γ -converge as n →
∞ and with respect to the L1(Ω) convergence to the functional

F∞(u) =
{

C · cW #(S(u) ∩ Ω), if u ∈ {a, b} a.e.,

+∞, otherwise,
(5.6)

where cW := 2
∫ b

a

√
W(s)ds.

The following theorem states the announced uniform equivalence by Γ -convergence of
the energies Fα

n with parametrized Modica-Mortola type functionals.
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Theorem 5.2 Setting λn,α := 2nθ4
α , Mα := 3Cα/8, μα :=

√
2(4−α)3/2

8 , the energies

Gα
n(v) =

{
1

μα
[λn,α

∫
I
(v2 − 1)2 dt + M2

α

λn,α

∫
I
(v̇)2 dt], if v ∈ W

1,2
|per|(I ),

+∞, otherwise in L1
loc(R),

and Fα
n (v) := 1

μα
Eα

n (v) are uniformly equivalent by Γ -convergence on [0,4]. Moreover,

(i) each α0 ∈ [0,4) is a regular point;
(ii) α0 = 4 is a singular point.

Proof As before, we put εn := 4 − αn, so that εn ≥ 0.
(i) Let εn → ε0 �= 0 and {vn} be a sequence with equibounded energy. Correspondingly,

by (4.4) we may find a sequence {θn} such that vn = θn/θεn . The continuity of the energies
Gε

n with respect to the parameter ε = εn, ensured also by Proposition 3.2, allows us to
consider, without loss of generality, the energies

Gε0
n (v) = 8√

2ε
3/2
0

[
2nθ4

ε0

∫

I

(
v2 − 1

)2
dt + 1

2nθ4
ε0

(
3Cε0

8

)2 ∫

I

(v̇)2 dt

]
,

where v = θ/θε0 . After simplifying the constants, we may rewrite the energies in terms of θ

as

Gε0
n (θ) = 8√

2ε
3/2
0

[
2n

∫

I

(
θ2 − θ2

ε0

)2
dt + 1

2n

(
3Cε0

8θ3
ε0

)2 ∫

I

(θ̇ )2 dt

]
.

In order to compute the Γ -limit as n → ∞ of the energies G
ε0
n , we may apply the

Γ -convergence result by Modica and Mortola (Theorem 5.1), thus obtaining

Gε0(θ) := Γ - lim
n→+∞Gε0

n (θ) = 8Cε0√
2ε

3/2
0

#
(
S(θ)

)
,

since

cW = 2
∫ θε0

−θε0

|θ2 − θ2
ε0

|dθ = 8

3
θ3
ε0

.

This result coincides with (4.11), once we remark that #(S(v)) = #(S(θ)).
(ii) Let εn → 0 and v ∈ W

1,2
loc (R). The estimates contained in the proof of Theorem 4.1

and Eq. (4.13) allow us to rewrite the functional Gεn
n as

Gεn
n (v) = 4n

√
εn√

2
(1 + ηn)

∫

I

(
v2 − 1

)2
dt +

√
2

4n
√

εn

(
1 + η′

n

)∫

I

(v̇)2 dt,

for suitable sequences ηn, η
′
n → 0. In order to simplify the notation, we put

Kn :=
√

2

4n
√

εn

,

and we write

Gεn
n (v) = 1

Kn

(1 + ηn)

∫

I

(
v2 − 1

)2
dt + Kn

(
1 + η′

n

)∫

I

(v̇)2 dt.
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We distinguish between three cases:

(a) Kn → 0. In this case, we apply again Theorem 5.1 (with C = 1), thus obtaining

G0(v) := Γ - lim
n→+∞Gεn

n (v) = 8

3
#
(
S(v)

)
, (5.7)

since cW = 2
∫ 1

−1 |v2 − 1|dv = 8
3 .

(b) Kn → l ∈ (0,+∞). A sequence vn with equibounded energy is weakly compact in
W

1,2
|per|(I ), then by lower semicontinuity in W

1,2
|per|(I ) we get

lim inf
n

Gεn
n (vn) ≥ 1

l

∫

I

(
v2 − 1

)2
dt + l

∫

I

(v̇)2 dt.

In order to obtain the limsup inequality, we can argue by density considering vn ∈
W

1,2
|per|(I ) ∩ C∞(I ), vn → v such that

lim
n

Gεn
n (vn) = 1

l

∫

I

(
v2 − 1

)2
dt + l

∫

I

(v̇)2 dt.

(c) Kn → +∞. Let v be a constant function, and consider the constant sequence vn ≡ v.
Trivially,

lim inf
n

Gεn
n (vn) = lim inf

n

(
1

Kn

(1 + ηn)

∫

I

(
v2

n − 1
)2

dt

)
≥ 0,

and

lim
n

Gεn
n (vn) = 0. �

The proof of point (i) of Theorem 5.2 permits us to deduce an equivalence result also for
the energies Eα

n (θ) defined in (2.12) with Modica Mortola type functionals whose potentials
Wα(θ) := (θ2 − θ2

α)2 have the wells located at the minimal angles θ = ±θα . It can be stated
as follows.

Corollary 5.1 Let α be a positive number, α ∈ [0,4). The energies Eα
n (θ) and the family of

functionals Hα
n (θ) defined on L1

loc(R) as

Hα
n (θ) =

{
λn,α

θ4
α

∫
I
(θ2(t) − θ2

α)2 dt + M2
α

λn,αθ2
α

∫
I
(θ̇ (t))2 dt, if θ ∈ W

1,2
|per|(I ),

+∞, otherwise,

are uniformly equivalent by Γ -convergence on [0,4).
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