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Abstract A continuum mechanical theory of fracture without singular fields is proposed.
The primary contribution is the rationalization of the structure of a ‘law of motion’ for
crack-tips, essentially as a kinematical consequence and involving topological character-
istics. Questions of compatibility arising from the kinematics of the model are explored.
The thermodynamic driving force for crack-tip motion in solids of arbitrary constitution
is a natural consequence of the model. The governing equations represent a new class of
pattern-forming equations.
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1 Introduction

The objective of this paper is to develop an approach to the continuum mechanics of fracture
viewed as the modeling of discontinuities and singularities of the (in-principle, measurable)
mass-density gradient field by everywhere-continuous fields. In adopting this approach, we
make a strict conceptual separation between discontinuities and singularities in the defor-
mation of a body—that relate to dislocations, grain and phase boundaries, and generalized
disclinations leading to plasticity and phase transformations in solids—and those that will
be discussed here as representative of fracture. As well, the treatment of fracture evolution
here unequivocally relates not to motion of 2-dimensional surfaces but to the motion of the
terminating 1-dimensional curves of crack surfaces.

Fracture mechanics is by no means a new subject, see the monograph by Freund [15]
which contains a brief historical review and detailed accounts of the major advances in the
subject; a recent perspective viewing brittle fracture as a standard dissipative process, in-
cluding computational considerations, can be found in [37]. It has also been treated from a
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Fig. 1 Geometry of an idealized crack

dislocation mechanics point of view [5, 43]. There is a reasonably successful methodology
for studying interesting physical problems involving complex fracture patterns based on the
cohesive zone methodology, see [4, 11, 26, 31, 33, 35, 36] for some examples. Developing
partial-differential-equation (pde) based or variational models for fracture that do not place
restrictions on crack paths and allow practical computational schemes is a somewhat recent
enterprise [6, 10, 16, 19, 28, 34, 42].1 Also notable is the peridynamics approach of Silling
(see [39]) with the associated mathematical work of Lipton [23] that have led to computa-
tional implementations. The utility of such approaches capable of modeling crack evolution
in 3-d can be appreciated from the reviews of atomistic and experimental aspects of fracture
in [8, 22]. The works [18, 41] relate to the concerns of our work but they involve tracking
individual crack surfaces/tips. Developed as a computational model for linear elastic frac-
ture mechanics, it is important also to note the developments in the Extended finite element
methodology for fracture [27, 40]. In Sect. 5, we point out the complementary contributions
of our work in relation to the literature mentioned above.

For the purpose of this work, we restrict attention to the ‘small-deformation’ theory. We
use standard/obvious notations of vector calculus and work with tensor components w.r.t.
a fixed orthonormal frame, unless mentioned otherwise. The curl of a second-order tensor
field is interpreted as row-wise curls of the matrix field of the tensor w.r.t. the basis of a
rectangular Cartesian coordinate system (this definition has an invariant meaning).

2 Kinematic Descriptors of Fracture and Their Physical Motivation

With reference to Fig. 1, consider the following situation: we consider the region csup as di-
vided into a set of disjoint ‘vertical’ neighborhoods as shown by the blue lines, each centered
around a point xS ∈ S. We refer to each such neighborhood as N(xS). We think of measur-
ing the mass density field ρ̃ around xS and call it the local mass density field in N(xS).
We assume this locally measured mass density field to be continuous in the neighborhood
(possibly taking on the value of 0 at some points). At the scale of observation, let it go to

1The work [6] develops the pioneering ideas of Francfort and Marigo [14] which has spawned an impressive
mathematical literature, see [7], and the related work in the dynamical context [24].
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0 on the crack surface S. Assume the locally measured density variation at each xS along
the normal direction to the surface S be of the form as shown in Fig. 1(b). The macroscopic
crack surface of 0-thickness actually is spread over the region csup where the density may
(or may not) be smooth/differentiable; but we assume that we are unable to resolve the vari-
ation of the measured density gradient in csup. Thus, gradρ̃ appears discontinuous across
the crack surface. However, since ρ̃ is continuous

�gradρ̃� = ϕn necessarily, (1)

where n is an arbitrarily chosen orientation for the crack surface and ϕ is a scalar field on
S ∩ N(xS), i.e., gradρ̃ can jump only in the normal direction to the surface.

Assume that we are able to choose the orientation field n for the crack surfaces in the
body at any given time in a continuous way except possibly at points where ϕ = 0. We now
define the crack field as

c(x) :=
{

ϕ(xS )n(xS )

cw
for x ∈ N(xS) ∈ csup

0 for x outside csup,

where cw is the width of the region csup measured along the direction n, pointwise, and the
crack tip field as

t := −curlc, globally on the body (2)

(with the minus sign for convenience). Assuming n to be oriented in the direction e2 in
Fig. 1, ϕ(x) = 2a for x ∈ csup\tcore . Thus, by thinking of the jump of the local density-
gradient to be spread out over the layer, we may interpret the field c as an approximation to
the directional derivative of the local density gradient field in the direction n.

With the above argument as physical motivation, we now consider c and t as continuous
fields for the sake of developing the mechanical model (as customary in mechanics). This
would require some form of smoothing of the field c in the above description (involving an
arbitrarily fine discretization of S into the set of points xS and some natural mollification on
the vertical boundaries of csup); however, these details are not central to our postulation of
the smooth c field as a model ingredient—we could as well have started from this premise
without the physical justification. What is important is the fact that c is a vector field gener-
ated from a local gradient of a locally defined density gradient field, and by no means does
it follow that the result should actually be compatible with an appropriately defined second-
gradient of any, globally-defined, continuous scalar field on the whole body. We return to
this point in Sect. 3.1.

To justify the terminology for the crack tip field, with reference to Fig. 1, let the density
gradient go from some constant value in csup, say ϕ0 (ϕ0 = 2a in the example considered in
Fig. 1), to 0 over the length of the region tcore . Let c vary in-plane for simplicity. Then

c = c2 e2

− curlc = t = −e312 c2,1 e3 = ϕ0 − 0

lc · cw

e3,

and this is non-vanishing only in the region tcore. Thus curlc identifies the crack-tip region.
It is also important to note that the curl is insensitive to the large gradients in c in the vertical
direction across the horizontal boundaries of the layer.
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3 Governing Field Equations

We begin this section by providing some heuristic motivation for the fundamental relation
(3) which is subsequently derived on fundamental kinematic grounds.

Keeping crack extension through crack-tip motion in mind, we note first that

t = −curlc =⇒ ṫ = −curlċ

and ċ should be a function of the crack-tip field t and the crack-tip velocity (with respect to
the material) V , postulated to be a field in this model. The crack-tip is identified by the field
t and keeping within the confines of ‘local’ and simplest theory, it is natural to look for a
relation of the type ċ = f (t,V ).

Possibly the simplest vector-valued function of two vectors that vanishes when either
of them vanishes is t × V . Noting that this is dimensionally consistent with the physical
dimensions of ċ, we assume, in this first instance, the relationship

ċ = −curlc × V . (3)

To check its validity in a simple case, consider our previous ansatz of

c(x, y, t) = w(x, t)e2 with c(x, y,0) = w(x,0)e2 = c0(x, y) := w0(x)e2,

where w0 is a prescribed initial condition (assume in the form of a terminating ‘layer’ func-
tion), and

t = −curlc = −e312w,1e3 = −∂xw e3.

Now assume V = ve1, v is a constant. Then

ċ = ∂twe2 = t ×V = −v∂xwe2 =⇒ c(x, y, t) = w(x, t)e2 = w0(x−vt)e2 = c0(x−vt, y),

and

t(x, y, t) = −∂xw(x, t) e3 = −∂xw0(x − vt) e3 = t0(x − vt, y).

Thus, the crack-tip translates in the direction of V , dragging out the crack-surface layer
behind it.

If the previous argument for choosing the evolution equation (3) seemed somewhat ad-
hoc and wanting regarding the general 3-d case, there exists a more fundamental argument
justifying its form as we show in the following.

We note first that the local, point-wise statement (2) arising purely from the kinematics
of the modeling implies

1. that div t = 0 which has the physical meaning that a crack-tip ‘line’ cannot end within
the body—it either runs from boundary to boundary or forms a closed-loop. Given that
the crack-tip is the boundary between a cracked and uncracked region, this makes sense,
by physical definition.

2. A crack-tip carries a topological charge (given by (ϕ0 − 0) in the case of the example
considered before in Sect. 2). This is given by∫

A

t · nda =
∫

∂A

−c · dx
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Fig. 2 Topological charge of a
crack-tip

by Stokes’ theorem and this holds for any area patch A (with oriented unit normal field n)
threaded by the crack-tip, regardless of the size and orientation of the patch. We call it a
topological property as it is a fixed property of any loop that encircles the core (viewed
equivalently as the closed bounding curve of an area patch), regardless of the shape or
size of the loop. This can be deduced simply by considering Fig. 2 and connecting the two
end-patches by a cylindrical surface, and applying the divergence theorem to div t = 0
on the enclosed body and subsequently using Stokes’ theorem.

The local statement (2) implies the conservation law of evolution

d

dt

∫
A

t · nda = −
∫

∂A

ċ · dx for any area patch A. (4)

So what should the flow −ċ on the boundary curves of arbitrary patches be? Now,∫
A

t · nda is the net topological charge of all crack-tips threading the patch A, its time-
derivative is the rate of change of the total topological charge content of the patch, and it is
a physical tautology that this rate of change should be equal to the charge carried in minus
what is carried out by crack-tips entering and exiting the patch through its bounding curve
(we discuss the possibility of nucleation at the end of this section). To see what this amounts
to, consider the patch A and a local orthonormal frame (p1,p2,p3) as shown in Fig. 3 based
at a point on the boundary curve of A. We consider the infinitesimal tangent patch as shown.
We also choose the orientation of the frame such that p1 points along the tangent to ∂A and

Fig. 3 Set-up for rationalizing flow of crack-tip topological charge across patch boundaries
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neither p2 nor p3 are parallel to the area patch (this can always be arranged and represents
no loss of generality). Now consider the term −t × V as a candidate for the flow:

−(t × V ) · dx = −(t · pi )(pi × V ) · dxp1

= −dx(t · p1)
{
p1 × (V1p1 + V2p2 + V3p3)

} · p1

− dx(t · p2)
{
p2 × (V1p1 + V2p2 + V3p3)

} · p1

− dx(t · p3)
{
p3 × (V1p1 + V2p2 + V3p3)

} · p1

The first term is obviously 0; physically, p1 moving in direction p1 does not move segment
p1 into the patch; p1 moving in the direction p2 does not produce an intersection of p1 with
the tangent patch A, and similarly p1 moving in the direction p3 does not either. Arguing
similarly, for the second term we have that the only term that contributes is

−dx(t · p2)V3(p2 × p3) · p1

and the third contributes

−dx(t · p3)V2(p3 × p2) · p1.

Therefore,

−(t × V ) · dx = −dx(t · p2)V3 + dx(t · p3)V2.

The first term identifies the crack-tip curve t’s component along p2 bringing in charge
−(t · p2)V3dx into the area patch per unit time (the minus sign since p2 is directed in-
wards into the projection, of the infinitesimal area with normal n, on the plane spanned by
p1 and p3) and a similar argument holds for the other term.

Therefore, −t(x) × V (x) · dx is exactly the flow of topological charge per unit time
brought in by the field t(x) crossing the element dx of ∂A at the point x with velocity V (x)

(and this quantity depends only on t , V and ∂A). Consequently, localizing the conservation
statement (4) we obtain its local statement

ṫ = −curl(t × V ). (5)

While (5) implies an evolution equation for the crack field c of the form

ċ = −curlc × V (6)

up to a gradient, our derivation for the flow shows that the gradient actually vanishes, when
the crack field c is restricted to evolve only by motion of the crack-tip field t (and not by
transverse motion of the crack surfaces, for example—see [2] Sect. 5.4.3).

In the conservation law ṫ = −curl(t × V ) one could allow for a source-term allowing
nucleation that would represent the emergence of crack-tips in the area patch but always
“within a curl” so as not to violate the relation ṫ = −curlċ. This also implies that as long as
crack-tips are not inserted from outside the whole body under consideration, the crack-tips
nucleated must be closed loops or ensure that the total topological charge within the whole
body does not evolve in time.
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Thus, the governing equations for the model are

ρ = ρ0

J
⇔ ρ̇ = −ρ divv

ρ0ü = divT + b

ċ = −curlc × V ,

(7)

where ρ0 is the time-independent mass density field corresponding to the reference config-
uration of the body from which all displacements are measured, ρ is the evolving density
field on the body, T is the symmetric stress tensor (a small deformation approximation to
the First-Piola Kirchhoff stress tensor), b is the body force density per unit volume of the
reference configuration, u is the displacement field, u̇ = v is the material velocity field, and
J is the determinant of the deformation gradient field. Also, all differential operators div,
curl are written with respect to a fixed reference configuration.

While it is entirely possible at this level of theorizing to include a crack-nucleation related
source term with an attendant thermodynamic driving force obtained by standard methods,
experience with dislocation mechanics [17, 29] shows that homogeneous nucleation may not
be related to thermodynamic driving forces, but to linear instability of the finite deformation
version of transport equations of the type (7)2 through a coupling of the c field to the material
velocity field through a convected derivative, in the complete absence of a source term.
While there are substantial differences between a crack-tip with a crack in its wake and a
dislocation with a slipped region behind it, both crack-tips and dislocations induce strong
stress concentrations around their core (albeit the crack stress ‘singularity’ is milder) and
conditions on the state that may be assumed to provide nucleation based on thermodynamic
grounds in a core can typically persist in the core after nucleation, thus creating an obvious
inconsistency in the prediction of nucleation. For this reason, we refrain from including an
explicit source term for crack nucleation in the model at this time.

3.1 The Crack Field c and Its Compatibility with a Scalar Density Field

The crack field c has been physically rationalized as some second-gradient measure of a
local density field. We think of the mass density field on the body that enters the fundamental
laws of balance of mass and balance of linear momentum as the field ρ of (7). It is then
natural to ask whether the crack field c may correspond to any global density field(s) on
the body, and what connection, if any, may exist between such fields and the mass density
field ρ. In other words, we also ask whether the introduction of a new field is really necessary
and if its introduction actually brings degrees of freedom not available through the mass
density field alone.

Our fundamental modeling philosophy is that the equations of classical continuum me-
chanics are incapable of describing the dynamics of its basic fields when they develop, at
the ‘macroscopic’ scale of observation, discontinuities along surfaces, and discontinuities
of these ‘surface-discontinuities’ along lines, except for certain very special cases; they are
best adapted to modeling continuous situations. In essence, discontinuities and singularities
of macroscopic fields are extra degrees of freedom whose kinematics and evolution need to
be defined as necessary, and we wish to do this by using at least integrable representations
of the gradients of the discontinuous fields. In order to do this, we adopt the standpoint that
the gradient of an nth-order macroscopic field is replaced by a pair of (n + 1)th-order ‘mi-
croscopic’ tensor fields consisting of a smooth gradient of an nth-order tensor field and an
(n + 1)th-order tensor field, the latter referred to as the ‘layer’ field. The theory then has to
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be designed so that the layer field, which is not a priori a gradient, resembles a smoothed
representation of the singular macroscopic gradient over an interfacial layer, with support
on the interfacial layer. For all occurrences of the original macroscopic gradient in spe-
cific energy (or its derivative) response functions, we replace the original occurrence by the
difference of the microscopic gradient and the layer field.2 We then let the burden of rep-
resenting the energetics of the layer region be carried by appropriate constitutive behavior
dependent on the layer field and its gradients. The evolution (and equilibria) of the layer
field is further governed by additional equations dictated by a kinematic understanding of
the ‘motion’ of the layer field. Coupling of the microscopic gradient and the layer field along
with other macroscopic fields occurs through thermodynamics-guided constitutive response
and the enhanced set of governing field equations (often, the macroscopic balance law for
the (in general, tensor) potential field that generates the macroscopic gradient under consid-
eration serves as the governing equation for the potential field for the microscopic gradient).
Specific examples of this approach in representing the dynamics and interactions of discrete,
non-singular line defects within a pde setting can be found in [45, 46].

We now ask the question of the existence of a scalar field, say ρ∗, the directional deriva-
tive of whose gradient field in the direction of n = c

|c| is the field c, i.e.,

ρ∗
,ij cj = (

√
ckck)ci; grad grad ρ∗ c

|c| = c, (8)

with c assumed as a given field.
We first note that when the crack field c = 0, any scalar field is a candidate solution

for ρ∗. Thus, when there are no cracks, the actual mass density field ρ serves as a trivial
solution to the compatibility equation (8), which is a reassuring consistency check.

When c �= 0, (8) amounts to three equations in one variable, and smooth solutions may
not be expected in general for all smoothly specified fields c.

At any rate, the possibilities are that a smooth ρ∗ field may exist satisfying (8), a con-
tinuous ρ∗ satisfying (8) may not exist on the body but may be constructed satisfying the
equation in an appropriate approximate sense (which needs to be made precise), and in ei-
ther case they may not equal the field ρ. Thus, the model separates the ‘macroscopic’ density
field ρ from the ‘microscopic’ crack field c and any (possibly discontinuous) density field ρ∗

that may be deemed consistent with the crack field. Of course, ρ and ρ∗ may be penalized to
be close energetically if so desired on physical grounds, or (grad grad ρ)c may be similarly
penalized to be close to |c|c, following the motivation provided earlier in this section.

We now consider the construction of the various possibilities for the field ρ∗ for a given
field c.

A necessary condition for the existence of ρ∗ satisfying (8) is that c be an eigenvector
of grad grad ρ∗ with |c| the corresponding eigenvalue. Hence, grad grad ρ∗ must be of the
form

B + |c| c

|c| ⊗ c

|c| with B symmetric, and Bc = 0. (9)

Consequently, a necessary and sufficient condition for twice-continuously differentiable so-
lutions to (8) to exist in a simply connected domain is that smooth solutions exist to the

2This suggests the interpretation of the dependence of the energy function, for the macroscopic model, on the
macroscopic gradient as really being on its integrable part.
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Pfaffian system of equations

∂iρ
∗ = fi

∂jfi = Bij + 1

|c|cicj ,
(10)

with the stipulated requirements on the field B mentioned in (9). The compatibility condition
for existence of solutions to this system is

curlB = −curl

(
1

|c|c ⊗ c

)
. (11)

We note that the requirements that B be a symmetric tensor and Bc = 0 prevent application
of standard methods, e.g., the Riemann-Graves operator method [12] or [21] without modi-
fication to obtain a solution. The question of existence of (local) solutions appears to lie in
the domain of applications of the Cartan-Kähler theorem [20] which is beyond the scope of
this paper. In any case, if a solution to (11) can be constructed, then smooth solutions ρ∗
satisfying (8) can also be constructed, compatible with c.

Suppose sufficiently smooth solutions to (11) cannot be constructed. We then look into
the possibility of characterizing the class of discontinuous solutions of (10) that may be
constructed consistent with c in the class for which the curl of the right-hand-side of (10)2

is assumed to be non-vanishing only in a (topologically equivalent shape to a) cylinder of
small radius in the body that runs from boundary to boundary (a torus along a loop would
also work).

With reference to the discussion in Sect. 2, if Ω is the body with the z-axis running
through it, the layer L = Ω ∩ {(x, y, z) | x ≤ 0,− cw

2 ≤ y ≤ cw

2 }, the crack-tip Ωc = Ω ∩
{(x, y, z) | −lc ≤ x ≤ 0,− cw

2 ≤ y ≤ cw

2 } and we define the field c in Ω\Ωc as

c(x) =
{

ϕe2
cw

for x ∈ L\Ωc

0 in Ω\L,
(12)

with ϕ a constant, then{
curl

(
1

|c|c ⊗ c

)}
ri

= eijk

(
1√

cmcm

crck

)
,j

= eijk

[
− 1

|c|3 cmcm,j crck + 1

|c|cr,j ck + 1

|c|crck,j

]

in Ω\Ωc . Since outside Ωc the field c varies only in the 2-direction and is itself oriented in
the same direction, the first two terms in parenthesis vanish. The curl of c vanishes outside
the core (despite the large gradients in c across the lateral layer boundaries) and so curlB
has to vanish as well here. Furthermore, since c is a constant vector field in the layer, it
is easy to construct (a family) of symmetric B fields that satisfy Bc = 0 in the body with
crack-tip cylinder excluded, e.g., let B = a1e1 ⊗ e1 + a3e3 ⊗ e3, where e1, e3 are constant
unit vectors perpendicular to c = e2 and a1, a3 are any scalar constants. Every pair of such a
B field and the c field would be an explicit example of a generator of the right-hand-side of
(10)2 that does not satisfy (11) at most within the crack-tip cylinder.

We first consider some results for the case of general c fields that satisfy the conditions
mentioned in the paragraph before the last outside crack-tip cylinders, i.e., corresponding
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to the c field, we assume a B can be constructed such that (11) is satisfied in Ω\Ωc . We
continue to refer to the body as Ω and the crack-tip cylinder as Ωc . We have that Ω\Ωc

is non-simply connected on which the right-hand-side of (10)2 is curl-free. Let S define a
‘cut-surface’ in Ω\Ωc as a surface that connects a curve on the boundary of Ωc to another
on the boundary of Ω such that

(Ω\Ωc)\S =: DS

is rendered simply-connected. On each such cut-surface-induced simply-connected do-
main DS , a vector field f S can be constructed satisfying (10)2 by elementary arguments
of vector analysis. Furthermore, due to the symmetry of f S

i,j in {i, j}, a ρ∗S can also be
constructed on the same domain DS .

Following the line of argument in Sect. 5.4.7 of [2] exactly, it is now possible to show
that the jump �f S � in f S across its corresponding cut-surface S is a constant vector, say δ,
regardless of the S and f S involved, i.e., δ is independent of the cut-surface, the function
induced by it, and the position on any cut-surface. It can also be shown that the jump in each
ρ∗S (whose definition does depend on the cut-surface chosen) can be characterized as

�
ρ∗S

�
(x) = �

ρ∗S
�
(x0) + δ · (x − x0)

for arbitrary choices of x ∈ S and x0 ∈ S. This may be considered an analog of Weingarten’s
theorem in dislocation theory [30] for the treatment of fracture presented herein. To see the
non-trivial dependence of the constructed, possibly discontinuous, family of ρ∗S on the sur-
face S, note that a choice of S as a planar surface perpendicular to δ �= 0 implies that the
discontinuity of the corresponding ρ∗S is constant on the surface. However, on an admissi-
ble S that does not satisfy this orthogonality condition, e.g., a non-planar cut-surface (with
δ �= 0), the jump in ρ∗S cannot be constant on the surface. It can also be shown (following
the arguments in Sect. 6.2 of [44]) that when δ = 0 the jump �ρ∗S � is a constant scalar,
regardless of the S and ρ∗S chosen to define it.

Thus, even if (11) were to be satisfied in all of the domain except a thin cylinder, the
corresponding c field would, in general, correspond to a (non-trivial) multitude of discon-
tinuous scalar ρ∗ fields. Such ‘non-uniqueness’ is not typically eliminated by the application
of standard devices like boundary conditions on ∂Ω and this provides an intuitive sense of
the problems that arise if macroscopic gradients were to develop singularities of the type
being discussed here when solved in conjunction with macroscopic governing equations of
balance. The exercise also answers the question asked at the beginning of this section as to
whether the introduction of the c field can in general be accommodated by simply consider-
ing higher-gradients of a smooth scalar density field.

We end this section by explicitly calculating the jumps of the ρ∗S and f S fields corre-
sponding to the specific c field considered in Sect. 2, with a natural choice of the surface S

and B = 0.
With reference to Fig. 4 and (12), S is chosen as

S = Ω ∩ {
(x, y, z)

∣∣ y = 0, x < −lc
}
. (13)

Let x0 ∈ S be a point on the cut-surface S. Let x+
0 and x−

0 be points in DS , arbitrarily close
to x0, and above and below x0, respectively. Defining C := 1

|c|c ⊗ c, we need to compute
the line integral

δ = lim
x+

0 →x0

x−
0 →x0

∫ x+
0

x−
0

Cdx
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Fig. 4 Contour for calculating
jumps in f S and ρ∗S

along a contour shown in Fig. 4. As mentioned before, solutions to (10) exist on DS (when
(11) is satisfied there). Any such function f S can be represented as f S(x;y) = f S(y) +∫ x

y
Cdx for arbitrarily fixed y ∈ DS and is unique up to a constant vector field on DS . We

now define

f S(x;x0) := lim
x−

0 →x0

(
f S

(
x−

0

) +
∫ x

x−
0

Cdx

)
, (14)

along any path from x−
0 to x contained in DS , and in the following we drop the superscript

S and the parametric dependence on x0 of f S (and later ρ∗S ) for notational simplicity.
We also denote the constant value of c in the layer by c0. Integrating along the path

x(s) = x−
o − se2,

lim
x−

0 →x0

f

(
x−

0 − cw

2
e2

)
= lim

x−
0 →x0

f
(
x−

0

) +
∫ cw

2

0

(
c0

|c0| ⊗ |c0|e2

)
(−e2)ds

= lim
x−

0 →x0

f
(
x−

0

) − cw

2
c0. (15)

f remains constant from x0 − cw

2 e2 to x0 + cw

2 e2 along the path shown since c vanishes
there. The computation is essentially the same as before for the path from x0 + cw

2 e2 to x+
0

and hence we obtain

lim
x+

0 →x0

f
(
x+

0

) = lim
x+

0 →x0

(
f

(
x+

0 + cw

2
e2

)
+

∫ x+
0

x+
0 + cw

2 e2

Cdx

)

= lim
x−

0 →x0

f

(
x−

0 − cw

2
e2

)
− cw

2
c0. (16)

Combining (15) and (16) we have

�f �(x0) = lim
x+

0 →x0

f
(
x+

0

) − lim
x−

0 →x0

f
(
x−

0

) = −cwc0, (17)
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and, as mentioned before, this is the value of the constant δ for the c,B considered here,
independent of x0 ∈ S as well as of S.

We now wish to construct the jump of ρ∗S across S (recalling the notational convenience
set up earlier). Further, we also use the short-hand

g
+/−
0 := lim

x
+/−
0 →x0

g
(
x

+/−
0

)
,

for any function g defined on DS . We have

ρ∗(x) = ρ∗−
0 + lim

x−
0 →x0

∫ x

x−
0

f · dx.

The function ρ∗ satisfies grad ρ∗ = f on DS regardless of x0 ∈ S and the value ρ∗− and
since all admissible f can only differ by a constant vector field, a solution ρ∗ is unique up
to an affine function on DS .

Along the path x(s) = x0 − se2,0 ≤ s ≤ cw

2 , f (s) = −sc0 + f −
0 . Hence,

ρ∗
(

x0 − cw

2
e2

)
= ρ∗− +

∫ cw
2

0
−s|c0|e2 · (−e2) ds − cw

2
f −

0 · e2

= ρ∗−
0 + |c0|c

2
w

8
− cw

2
f −

0 · e2. (18)

Since f (s) takes the constant value f −
0 − cw

2 |c0|e2 from x0 − cw

2 e2 to x0 + cw

2 e2 along the
path, using (18) we have

ρ∗
(

x0 + cw

2
e2

)
= ρ∗

(
x0 − cw

2
e2

)
+

∫ x0+ cw
2 e2

x0− cw
2 e2

f · dx

= ρ∗−
0 + |c0|c

2
w

8
− cw

2
f −

0 · e2 − |c0|c
2
w

2
+ cwf −

0 · e2. (19)

Now

∫ x0

x0+ cw
2 e2

f · dx =
∫ cw

2

0

[
f

(
x0 + cw

2
e2

)
− sc0

]
· (−e2)ds

=
∫ cw

2

0

[
f −

0 − cw

2
|c0|e2 − s|c0|e2

]
· (−e2)ds

= c2
w

4
|c0| − cw

2
f −

0 · e2 + c2
w

8
|c0|, (20)

and combining (19) and (20) we obtain

ρ∗+
0 = ρ∗

(
x0 + cw

2
e2

)
+

∫ x0

x0+ cw
2 e2

f · dx = ρ∗−
0 =⇒ �

ρ∗�
(x0) := ρ∗+

0 − ρ∗−
0 = 0

for x0 ∈ S. (21)
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Let (ρ∗
1 ,f 1), (ρ∗

2 ,f 2) be two pairs of solutions that satisfy (10) on DS . Since any two f

that satisfy these equations can only differ by a constant vector, we have

f 1

(
x+) − f 2

(
x+) = f 1

(
x−) − f 2

(
x−)

, for x+,x− ∈ DS

=⇒f 1

(
x+) − f 1

(
x−) = f 2

(
x+) − f 2

(
x−)

,

and now choosing sequences of x+ and x− converging to x ∈ S from above and below S and
taking limits we obtain that the jump function �f � on S is unique. Since any two admissible
f s can differ by a constant vector, say a, then the corresponding ρ∗s can only differ affinely,
i.e., ρ∗

1 (y) − ρ∗
2 (y) = a · (y − y0) + (ρ∗

1 − ρ∗
2 )(y0) for all y ∈ DS and any arbitrarily fixed

y0 ∈ DS . Then(
ρ∗

1

(
x+) − ρ∗

2

(
x+)) − (

ρ∗
1

(
x−) − ρ∗

2

(
x−)) = a · (x+ − x−)

, x+,x− ∈ DS

=⇒(
ρ∗

1

(
x+) − ρ∗

1

(
x−)) − (

ρ∗
2

(
x+) − ρ∗

2

(
x−)) = a · (x+ − x−)

,

and again taking sequences of x+ and x− converging to x ∈ S, we find that the jump function
�ρ∗� on S is unique. Of course, the uniqueness of the jump functions �f � and �ρ∗� also
follows from the observation that the results (17) and (21) hold for any pair (f , ρ∗) that
solves (10) on DS as shown.

We find that in this specific case (corresponding to c defined in (12) and S in (13)) leading
up to (21), the ρ∗S field is continuous in Ω\Ωc but its gradient is not. We have established
here the ‘converse’ of the heuristic construction of the c field from the ρ̃ field in Sect. 2
outside the crack-tip region; the exercise also provides an example of a cut-surface S and its
corresponding ρ∗S field with jump in ρ∗S constant on S when δ �= 0.

4 Reversible Response Functions and Driving Forces for Dissipation

We consider mechanical effects only. Assume a free-energy density function (per unit vol-
ume of reference configuration) given as

ψ
(
εe, c, t

)
where εe = ε − εp and ε = sym(gradu), with u being the displacement field, and εp is the
symmetric plastic strain tensor (that we include herein simply to show that the crack-driving
force derived subsequently accommodates general, inelastic material response in the bulk).

The mechanical dissipation is defined as the power supplied by the external forces (trac-
tions and body forces) less the rate of change of kinetic energy and the power stored in the
body:

D =
∫

∂V

t · u̇da +
∫

V

b · u̇dv − d

dt

∫
V

ψ dv − d

dt

∫
V

1

2
ρ0|u̇|2 dv. (22)

Using the governing equations (7), the dissipation can be expressed as

D =
∫

V

(T − ∂εeψ) : gradv dv

+
∫

V

T : ε̇p dv +
∫

V

{[−∂cψ + curl ∂tψ] × t
} · V dv

+
∫

∂V

V · [(∂tψ × n) × t
]
da. (23)
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On demanding classical hyperelasticity be recovered in the absence of plasticity and crack
evolution, we obtain the stress relation

T = ∂εeψ

and note the driving forces in the bulk for the mechanisms of plasticity (in the absence
of any further kinematic assumption on the nature of plastic straining like, e.g., volume-
preservation) and the crack-tip advance as

ε̇p � T

V � [−∂cψ + curl ∂tψ] × t .

A driving force on a crack-tip at the boundary also emerges as

V � (∂tψ × n) × t .

Ignoring plasticity and the boundary velocities for the moment, the closed, governing
equations of the model become

ψ = ψ̂(ε, c, curlc)

ρ0ü = div ∂εψ̂ + b

ċ = curl c × M
[{−∂cψ̂ − curl(∂curlcψ̂)

} × curlc
]
,

(24)

where M is a symmetric, positive definite tensor of crack mobility that could take the
isotropic form M = 1

B
I , where B > 0 is a scalar drag coefficient. A typical candidate for

the energy density would be

ψ̂ = 1

2
ε : C(|c|)ε + η(|c|) + ε|curlc|2 (25)

where C is the (possibly anisotropic) tensor of elastic moduli degraded to represent damage
by its dependence on c, η is a non-convex function representing an energy barrier to damage
from an undamaged state, and ε is a small parameter regularizing the crack-tip (but not the
crack layer).

5 Concluding Remarks

• A partial-differential-equation based model of fracture has been developed that allows
naturally for crack evolution through the motion of non-singular, localized crack-tips in
a brittle or ductile solid. Cracks and their tips are identified as smooth localizations of
fields, related through kinematics. The crack-field is linked to the idea of regularized
mass-density gradients. This identification with a physically observable field has the po-
tential of identifying crack-tip mobility functions linking driving force to crack velocity
from experiment. A primary contribution of this work is the essentially kinematic ratio-
nalization of a kinetic equation for crack-tip motion in the form of a pde. This pde form
of the theory allows for seamless multiphysics coupling with similar defect-mediated,
dynamical models of plasticity and phase transformations, allowing the study of com-
plex defect interactions, e.g., automatic arrest of dislocations inside a body on crossing a
crack-flank due to depletion of stress, without tracking free-boundaries.
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• Any reasonable energy/stress constitutive assumption in the theory will involve degrada-
tion of elastic modulus to negligible values where the crack field magnitude attains its
damaged value and beyond, as dictated by the function η in (25). Thus, any compact
region, say an elliptical cavity in the shape of a penny shaped-crack, where this occurs
serves as an Eshelby inhomogeneity [13], and therefore our model will predict commonly
accepted (non-singular) crack stress fields.

• The model kinematically restricts fracture evolution as arising solely from the motion of
crack-tips. The model delivers an explicit driving-force for crack-tip motion. Furthermore,
the equation of evolution of the crack field is such that the crack evolves instantaneously
only in regions where a crack-tip is present, and does not at other points regardless of the
level of energy, stress, or damage at such points. Likewise, the dissipation is manifestly
localized at crack-tips, regardless of how close to thermodynamic equilibrium the state of
the body is in, e.g., in the presence of significant material inertia. This is in contrast to
models where the driving force is simply the variational derivative of the energy density
with respect to the order parameter/phase field (see [46], which may also be considered as
a preliminary proof-of-concept that the type of model presented here has the potential of
delivering on its objectives). This feature has similarities with the viewpoint of classical
fracture mechanics viewed as a standard dissipative process [37], but without requiring
the postulate that the driving force for crack extension is related to (a priori known) stress
intensity factors (requiring a singular crack tip field) conjugate to crack extension, known
to be valid for linear elastic fracture mechanics. This feature (i.e., the crack evolves only
at locations x where t(x) �= 0) has implications for the need (or not) for surface-energy
regularization in a damaged zone behind a crack tip. The conjecture is that, in the canon-
ical case of such a region being produced by the transport of a ‘diffuse’ crack-tip along
a layer, the curlc field would vanish in the layer behind the tip and therefore, regardless
of the softening stress-strain response there due to degradation of elastic modulus, no fur-
ther evolution of c would take place (with the attendant narrowing and localization of the
layer-width).

• The kinematic representation of a crack and its tip is such that an existing crack has a
driving force on it for all of Modes I, II, and III loadings or any combination thereof. This
is in contrast to some models of fracture based on eigendeformation concepts representing
total displacement discontinuities (including modes other than the Mode I opening), as
in such situations particular loading modes can extend only particular types of cracks,
the latter identified by the eigendeformation, i.e., as in dislocation theory, a shear stress
in the 1-direction on a plane with normal in the 2-direction can only drive an existing
displacement discontinuity if it has a component in the 1-direction.

• As shown by Weertman [43], the problem statement of a dislocation mechanics based
approach to fracture (that does not degrade elastic modulus) requires the dislocation den-
sity field as well as the distortion field to be considered as unknowns, this arising from
the enforcement of traction-free conditions on the crack flanks. This is in contrast to the
dislocation problem where the dislocation density is specified and one only needs to solve
for the distortion field, since no extra conditions are required to be satisfied in the wake
of the dislocation line. These observations make the adoption of general pde methods for
solving 3-d problems for dislocation statics non-transferable to the fracture context with-
out significant conceptual and practical changes. In the present approach, the field c is
intended to degrade the elastic modulus and this along with the equation of balance of
linear momentum ensures the satisfaction of the correct traction conditions on the flanks
of the cracked region.
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• The theory is time-dependent and does not rely on assumptions of rate-independence,
especially in dynamic settings considering material inertia where rate-independence be-
comes a dubious notion (implying time-scales of crack motion are much faster than scales
associated with elastic wave propagation).

• The model does not involve tracking of line-like objects and neither of surfaces.
• As stated, the present model will not predict crack nucleation (for most reasonable consti-

tutive assumptions for V which would necessarily have the property that V = 0 if t = 0).
However, the geometrically exact form of the evolution equation for the crack-tip field t
in the Eulerian setting is (cf. [1])3

∂t t = −curl
(
t × (v + V )

)
and on linearization about a crack-free state (c = 0) it can be shown, following the argu-
ments of [17], that the coupling between t and v allows for nucleation in such models. The
upshot is that even in the small deformation setting, changing (7)3 to ċ = curlc × (V + v)

would allow for nucleation. The additional term involving the material velocity, curlc×v,
may be expected to have beneficial effects in predictions of crack-branching as well. It can
be shown that restricting attention to problems with field variations in the plane and for
isotropic mobility M in (24), if the energy ψ̂ were to depend on c only through |c| then
branching (i.e., V not orthogonal to c) can be driven only by the term curl(∂curlcψ̂)×curlc
that is, roughly speaking, to be considered not a dominant term in driving the crack mo-
tion but simply one that regularizes the tip. An anisotropic energetic dependence on c
(e.g., through a quadratic form in c) and anisotropic mobilities would produce branching
effects, but instabilities arising from the dependence on the material velocity can induce
branching even in materially isotropic material, especially in situations involving rapid
crack-motions accounting for material inertia. Such explorations will be subjects of fu-
ture work.

• As alluded to in Sect. 3.1, the structure of the model suggests energetic penalization of
values of |gradgradρ c − |c|c | away from 0. Then the formalism would change the ther-
modynamic stress relation and the driving force for crack-tip velocity to naturally include
interesting couplings to higher gradients in the mass density, reminiscent of Korteweg the-
ory. This has the potential of producing very interesting patterned equilibria and dynamics
of (7), including the mass density ρ field.

• The literature listed in Sect. 1 is well-developed and has resulted in several models well-
adapted to practical numerical computation. The model presented herein provides com-
plementary benefits to this body of work, but clearly much work remains to be done to
implement the model and assess its practical capability. Also important will be the explo-
ration of connections of the model with micromechanics of damage by void nucleation
and growth [3, 9, 25, 32, 38].
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