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Abstract We derive a one-dimensional variational problem representing the elastic energy
of a rod with misfit, starting from a nonlinear, three-dimensional elastic energy with non-
trivial preferred strain. Our approach to dimension reduction is to find a Gamma-limit as the
thickness of the rod tends to 0. The limiting energy is a quadratic function of the rates at
which the rod bends and twists, and we give explicit expressions for the preferred curvature
and twist in the special case of isotropic elastic moduli.
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1 Introduction

There are many examples of rods in nature that deform due to misfit.1 The best-known of
these is a metallic bilayer, which bends when heated [35]. Recently, it has been proposed
that misfit causes many rod-like or ribbon-like objects to twist or form helices; examples
include some crystals [34] and plant tendrils such as Erodium awns [2]. We give a systematic
discussion of the deformation of a rod due to misfit.

1By misfit we mean preferred elastic strain. For example, this may be caused by thermal stress or the tendency
to expand (perhaps anisotropically) due to water absorption. Similar concepts in the literature sometimes go
by the names prestrain, prestress, non-Euclidean elasticity, and incompatible elasticity.
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Fig. 1 The isotropic bilayer

A rigorous treatment of rod theory as a Γ -limit of three-dimensional elasticity was given
by Mora and Müller [27] and independently by Pantz [31]. The present work uses the same
tools: we identify the elastic energy of a rod with misfit (Eq. (4)) by taking the Γ -limit of the
elastic energy of a three-dimensional rod (Eq. (2)) as its thickness tends to 0. The resulting
one-dimensional rod energy depends on the rod’s configuration through the rates at which
it bends and twists. There is, in general, a non-zero preferred curvature and twist, which we
express in terms of certain integrals over the two-dimensional cross section. We also find
symmetry conditions which guarantee that the rod will not prefer to bend or twist.

We hope that this work is interesting and accessible to audiences in both applied mechan-
ics and the calculus of variations. To that end, we include a brief orientation. Read linearly,
this paper motivates the rod theory in Sects. 1.1 and 1.2, then precisely states the dimension
reduction result (Theorem 1) and necessary definitions in Sects. 1.4–1.6. Section 2 continues
with an informal derivation of the rod energy (Eq. (4)). The remainder of this paper, except
for Sect. 7, analyzes the rod energy and provides examples. A theoretically-minded reader
could instead read Sects. 1.4–2.1, and perhaps 1.3 and 2.2, then turn to the proof of Theo-
rem 1 in Sect. 7. A practically-minded reader might instead focus on the examples, starting
with a quick characterization of the limiting rod theory through Eq. (4) and Theorems 2 (the
general case) and 3 (a more explicit version for materials with isotropic Hooke’s law).

1.1 Examples

We begin with a few examples of rods with misfit. Several of the experiments mentioned in
this section deal with ribbons rather than rods, but find results that are present in rod theory.
See Sect. 5.1 for some comments on the distinction between ribbons and rods.

THE ISOTROPIC BILAYER: We start with a well-known example. Consider a rod made
of two different layers, bonded as shown in Fig. 1. Both layers prefer to expand isotropi-
cally when heated, but by different amounts. The two layers cannot assume their stress-free
deformation because they must meet on the boundary, but one layer can expand more than
the other if the rod bends. Of course, each cross section will deform slightly, and that there
can be boundary effects. It is well known, both theoretically and experimentally, that the rod
bends.

Motivated by the application to bimetallic thermometers, Timoshenko calculated the pre-
ferred curvature of the isotropic bilayer using linear elasticity [35]. We reproduce this clas-
sical result in Sect. 6.1 using the framework of this paper, except that unlike Timoshenko we
assume that the elastic moduli are the same in both layers. This example leads to a restricted
class of deformations in that the bilayer bends, but it does not twist. This is a general pattern;
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Fig. 2 The construction of the
anisotropic bilayer

Fig. 3 Configurations of the
anisotropic bilayer

Theorem 3 implies that a rod made out of an isotropic material will never twist in response
to isotropic misfit.

THE DIAGONALLY PRESTRAINED BILAYER: In view of the previous example, it is nat-
ural to ask whether misfit can also give rise to twist. The answer is yes. We outline a simple
example of twist caused by misfit, and defer a systematic treatment to Sect. 6.2. Several
groups performed closely related experiments, motivated by the study of crystals [37], the
opening of seed pods [3], and tunable helical ribbons [6].

Consider two elastic sheets, stretched in orthogonal directions and glued together. Now
suppose that a rod is cut from the sheets along an angle θ to the principal stretches, as shown
in Fig. 2. For generic θ the rod twists and bends uniformly (Fig. 3b). If θ = 0 or θ = π/2
then it bends without twisting (Fig. 3c), and if θ = π/4 it twists without bending (Fig. 3a).

PLANT TENDRILS: Many plants have long, thin helical tendrils. It has been conjectured
that these deform due to swelling or contraction in parts of the tendril. Aharoni et al. cor-
rectly predicted the shape of long, thin cells in Erodium awns using a theory closely related
to this work [2].

QUARTZ:2 Crystals are sometimes thin in one or two dimensions. Remarkably, although
the crystal lattice seems to prefer polyhedra, crystalline rods sometimes spontaneously twist
[34]. We focus on naturally occurring α-quartz, and on the question of whether its intrinsic
twist can be explained by modeling the crystal as a linearly elastic body with misfit. The
dimension reduction discussed in the present work challenges this idea: there should be no

2We gratefully acknowledge extensive input from Alexander Shtukenberg, with whom we had many discus-
sions about twisted crystals. These discussions formed the critical nucleus for the investigation presented
here.
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intrinsic twist or curvature for a rod with the misfit and elastic stiffness tensor typical of
quartz. See Sect. 6.5 for details.

Quartz is far from the only crystal that can resemble a twisted rod, and our description
of quartz relies crucially on two conditions: that the crystal lattice has twofold rotational
symmetry about the long axis of the crystal, and that the misfit is caused by variations in the
preferred lattice lengths.

1.2 An Overview of the Problem

Classically, one would find the energy required to twist or bend an elastic rod by minimizing
the linear elastic energy of a cylinder within an appropriate ansatz [4, 24]. The resulting
energy, in the simplest setting, is of the form

Erod =
∫ L

0
c1ω

2(x1) + c2κ
2
2 (x1) + c3κ

2
3 (x1)dx1, (1)

where the rates of twisting and bending at position x1 are denoted by ω(x1) and κj (x1), j =
2,3. The purpose of the linearly elastic energy minimizations mentioned above is to identify
the constants cj , which requires knowledge of how the cross sections warp in response
to curvature or twist. This approach gives an algorithm to compute the energy, but it is
unsatisfying if viewed as a justification of Eq. (1): it describes locally how each cross section
should deform, but it does not exhibit an ansatz and does not explicitly use the fact that the
thickness is assumed to be small. Even using linear elasticity is questionable: the strains are
small but the displacements large.

One approach is to define a warping function separately for each cross section via the
linear elastic energy minimization mentioned above, then combine these to get a full ansatz.
One can then use Taylor’s Theorem to estimate the nonlinear elastic energy in terms of only
the linear strain, which takes advantage of the assumption that the thickness is small. Of
course, for this to be meaningful the ansatz must be chosen correctly. A more modern ap-
proach, called Γ -convergence, asks also that we show that the ansatz achieves the minimum
energy to leading order in thickness. We use Γ -convergence.

One feature of this framework is that it requires that we be precise about what we mean
by “the limit as the thickness vanishes”. We mean that we consider an elastic cylinder with
length parameterized by z1 ∈ (0,L) and cross section parameterized by zcs = (z2, z3) ∈ hS.
Here h, which represents the thickness, has units of length. We send h to 0, holding fixed
the curvature and twist, so in order to apply the present rod theory one should have h � 1/κ

and h � 1/ω.
In order to get a consistent theory we must also scale the linear elastic misfit, denoted

here by m(h)(z), with the thickness. Heuristically, we expect that bending the centerline with
curvature κ should result in strains of O(hκ), so m(h) should scale like h. We allow the misfit
to depend on z1 (i.e. to vary along the length of the rod), but it must vary slowly. Precisely,
we consider misfit of the form

m(h)(z1,zcs) = hm(z1,zcs/h) for z1 ∈ (0,L),zcs ∈ hS.

With slight abuse of notation we refer to m as the as the misfit. Notice however, that it has
units of length inverse, whereas the physical misfit is a strain and therefore dimensionless.
We consider the limit h → 0, so the physical misfit must be small.
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1.3 Methods and Related Results

We are not aware of any prior derivation, rigorous or otherwise, of a rod theory with general
misfit.3 The one presented here is variational in character: we show that a one-dimensional
rod energy with non-zero preferred curvature and twist arises as the Γ -limit [9] of a three-
dimensional elastic energy with misfit.4 Γ -convergence is a familiar tool in dimension re-
duction, and has been used to justify a rich class of one-dimensional [1, 27, 28] and two-
dimensional [14, 15, 20] energies for thin elastic structures. The direct analogue of the
present work without misfit was given independently by Mora and Müller [27] and Pantz
[31].

We hasten to add that there is some general work on thin structures with misfit. Kupfer-
man and Solomon used a modified Γ -limit to identify the elastic energy of an m-dimensional
manifold with a non-Euclidean metric [19], which is specialized to rods in [2]. Their metric
and our misfit play similar roles, but in the context of rods our discussion is more general. In
fact (as we show in Sect. 5.2), the Kupferman-Solomon theory, when specialized to rods, is
equivalent to our theory with a misfit that depends linearly on the cross-sectional variables.

Plates with misfit have received additional attention. Schmidt showed that multilayers—
plates with piecewise constant misfit depending only on the thin variable—can be modeled
with an energy similar to that of an inextensible plate, but with non-zero preferred second
fundamental form [33]. Assuming instead that the misfit does not depend on the thin direc-
tion there are analogues to both Kirchhoff [23] and von Kármán [21, 22] plate theories.

Classically, rod theories have often been justified using force-balance. Saint-Venant
found a twelve-dimensional set of solutions to the equations of force balance for an infi-
nite, linearly elastic prism,5 which he called the reference solutions. He conjectured that the
displacement of a long but finite prism approaches the reference solutions far from the ends.
Mielke used center manifold theory in a Banach space to prove Saint-Venant’s conjecture
in the setting of nonlinear elasticity [25, 26], assuming only that the strains are uniformly
small. This was motivated in part by Ericksen’s observation [11] that, in linear elasticity,
Saint-Venant’s reference solutions are precisely the solutions with bounded strain.

It is natural to ask how dimension reduction via Γ -convergence is related to the work of
Mielke. Γ -convergence, together with a compactness condition, implies that minima of the
three-dimensional energy converge to minima of the limiting energy, which makes it useful
when studying energy minimization. The critical points of an energy functional represent
force-balance, and in general Γ -convergence does not imply that critical points converge.
However, Mora and Müller [29] and Davoli and Mora [10] showed that critical points indeed
converge for a hierarchy of rod energies without misfit. That partially closed the gap between
force-balance and energy minimization.

After this paper was completed, we learned about simultaneous and independent work
by Cicalese, Ruf, and Solombrino on essentially the same problem [8]. Our work and theirs
overlap: in particular, a version of Theorem 1 is found in [8] as well, and we both study in
some detail the case of the bilayer. However, there are also significant differences. We show
additional properties of the reduced energy, and compare our results with different parts of
the literature. The paper [8] covers local as well as global minimizers, a topic that we do not
address.

3See, however, the final paragraph of this subsection, concerning the paper [8].
4Familiarity with Γ -convergence is not necessary to read this work if one takes on faith that Theorem 1 is an
acceptable derivation of a rod energy. See [30] for a review of thin structures and Γ -convergence.
5Six dimensions are associated to rigid motions. Twisting and stretching contribute one mode each, and
bending contributes two dimensions. The last two modes are due to shear.
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1.4 Notation

In this work we will use the convention that (∇y)ij = ∂jyi . Matrices will sometimes be
written in block notation; if so the blocks will be separated by solid lines.

It will be useful to distinguish between the coordinate x1 along the rod and the coordi-
nates xcs = (x2, x3) in the cross section. We extend this notation in various self-explanatory
ways, for example by using βcs = (β2,β3) for other vectors (typically representing linearly
elastic displacements of the cross section) and ∇csβ = (∂2β, ∂3β). Similarly, for matrices
m ∈R

3×3 we will use mcs,cs to denote the lower right 2-by-2 block and mcs,1 = (m21,m31).

1.5 The Three-Dimensional Energy

We start with a generic elastic energy with misfit, defined on a cylindrical reference domain
Ωh = (0,L)×hS. We will take the limit as the thickness h tends towards 0. The cross section
S is an open, bounded, connected subset of R2 with Lipschitz boundary. By translating the
reference domain we may assume that S is centered at the origin:

∫
S
xcsdxcs = 0. The energy

is defined for y ∈ W 1,2(Ωh,R
3) by

E(h)(y) = 1

h4

∫
Ωh

W
(∇y(z)M−1

h (z1, z2/h, z3/h)
)
dz.

By rescaling x = (z1, z2/h, z3/h) we write the energy as

E(h)(y) = 1

h2

∫
Ω

W
(∇hy(x)M−1

h (x)
)

(2)

with the notation ∇hf = (∂1f | 1
h
∂2f | 1

h
∂3f ) and Ω = Ω1.

The elastic energy density W ∈ C0(R3×3, [0,∞]) satisfies the standard conditions:

1. Frame indifference: W(RF ) = W(F ) for all F ∈R
3×3 and R ∈ SO(3).

2. Stress-free: W = 0 on SO(3).
3. Coerciveness: W(F ) ≥ dist2(F ,SO(3)).
4. Regularity: W ∈ C2 in a neighborhood of SO(3).

We use Q3 to denote the associated linear elastic energy density: Q3(F ) =
1
2W ′′(Id)(F ,F ).

We assume that the preferred strain is of the form Mh(x) = Id+hm(x) for m ∈
L∞(Sym(3)). As mentioned in Sect. 1.2, the scaling of Mh(x) is chosen such that it pro-
duces O(1) bend or twist in the limit as h → 0.

1.6 The One-Dimensional Energy

In the limit h → 0, we will find an energy for an inextensible rod depending only on the
curvature and twist. It is not enough to know the position of the midline ỹ, which must
be a unit speed curve from (0,L) to R

3 (the rod is indexed by the long variable x1). In
order to define the twist we also need to know the orientation of each cross section. The
energy depends on the material frame (Fig. 4), a function R : (0,L) → SO(3) such that the
first column is the tangent to the midline: r1(x1) = dỹ

dx1
(x1). The second and third columns,

which represent the orientation of the cross section, are normal to r1.
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Fig. 4 A sketch of the material
frame. The midline ỹ is in solid
black. The columns of R,
controlling the orientation of the
cross section, are drawn with
thick blue arrows for several
values of x1 (Color figure online)

The skew-symmetric matrix A = RT ∂1R controls the bending (in the x2 and x3 direc-
tions) of the rod as well as the twist. The one-dimensional energy derived here is a function
of A alone. We will sometimes write A in terms of the twist ω and bending κ = (κ2, κ3):

A(ω,κ) =
⎛
⎝ 0 −κ2 −κ3

κ2 0 −ω

κ3 ω 0

⎞
⎠ . (3)

The limiting energy involves the following quantities, defined in Sect. 2.1:

– Am ∈ L2((0,L),Skew(3)) measures the preferred bending and twisting at each cross sec-
tion. We will sometimes use the notation A(ωm,κm) = Am.

– Q1 : Skew(3) →R is a positive definite quadratic form.
– E0 ∈ R, E0 ≥ 0 is a constant measuring the incompatibility of the misfit with strains.

Section 3 gives more computationally useful characterizations of Q1 and Am in Theorem 2
(the general case) and Theorem 3 (isotropic rods).

Definition 1 (Limiting Energy Functional) We define E : W 1,2(Ω,R3×3) → [0,∞] by

E(R) =
{

E0 + ∫ L

0 Q1(R
T ∂1R(x1) − Am(x1))dx1 if R is admissible,

∞ otherwise,
(4)

where R ∈ W 1,2(Ω,R3×3) is admissible if and only if R(x) ∈ SO(3) and R(x) depends
only on x1.

Section 2 gives an informal derivation of the one-dimensional energy via minimization
within an ansatz. Theorem 1 rigorously derives the one-dimensional energy equation (4)
from the three-dimensional energy equation (2) in the small-thickness limit.

Theorem 1 (Γ -Convergence) The functionals E(h) Γ -converge to the functional E as
h → 0 in the following sense:
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1. (liminf inequality) For any positive sequence hj → 0 and corresponding deformations
y(hj ) in W 1,2(Ω,R3) such that ∇hy

(hj ) → R strongly in L2,

E(R) ≤ lim inf
j→∞

E(hj )
(
y(hj )

)
.

2. (limsup inequality) For any positive sequence hj → 0 and for every R ∈ L2(Ω,R3×3)

there exists a sequence y(hj ) in W 1,2(Ω,R3) such that ∇hy
(hj ) → R strongly in L2,

E(R) ≥ lim sup
j→∞

E(hj )
(
y(hj )

)
.

The proof is deferred to Sect. 7.

2 Minimization Within an Ansatz

2.1 Definitions

The one-dimensional energy E (Eq. (4)) depends on several quantities, which we now de-
fine. These definitions are geared towards a formal ansatz (Sect. 2.2) that achieves the correct
energy. Theorem 2 gives computationally explicit definitions of Q1 and Am. Equations (8)
and (9) of Sect. 2.2 give a concise but more opaque definition of E.

Definition 2 (Admissible Strains) For A ∈ Skew(3), we define the set

E(A) =
⎧⎨
⎩sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ : ξ ∈R,β ∈ W 1,2

(
S,R3

)
⎫⎬
⎭

and the vector space E = ∪A∈Skew(3)E(A). We associate to L2(S,Sym(3)) the inner prod-
uct 〈F ,G〉W ′′(Id) = ∫

S
〈F ,W ′′(Id)G〉dxcs with the inherited norm ‖·‖W ′′(Id). Note that E is a

closed subspace of L2(S,Sym(3)) with respect to this norm.

Remark 1 (Uniqueness of A, β and ξ ) Notice that a strain F ∈ E does not correspond to a
unique β . However, it does correspond to a unique skew-symmetric matrix A. To see this
more clearly, we write out F in block form:

F =
⎛
⎝ ξ − κ · xcs

1
2 (ωx⊥

cs + ∇csβ1)

1
2 (ωx⊥

cs + ∇csβ1) sym∇csβcs

⎞
⎠ .

1. ξ , κ and ω are uniquely associated to F ∈ E .
2. β1 is unique up to an additive constant.
3. F involves βcs = (β2,β3) only through sym∇csβcs. Therefore βcs is uniquely defined

modulo infinitesimal rigid motions.

Definition 3 (Decomposition of m) In this definition we hold x1 fixed. By orthogonally
projecting m onto E , we see that there exist Am(x1), ξm(x1) and βm(x) such that

m(x) = mE(x) + m⊥(x) = sym

⎛
⎝ξme1 + Am

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ
m

⎞
⎠ + m⊥(x)
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and 〈m⊥(x1,xcs),F 〉W ′′(Id) = 0 for all F ∈ E and a.e. x1. Am, ξm and βm are in L2

(by boundedness of the projection operator). By Remark 1, we can also insist that∫
S
βm(x1,xcs)dxcs = 0 and

∫
S

skew∇csβcs
m(x1,xcs)dxcs = 0. With these conditions, βm is

uniquely defined.

Let Q3(F ) = 1
2W ′′(Id)(F ,F ) denote the three-dimensional linear elastic energy den-

sity. We define a corresponding one-dimensional energy density Q1 and the limiting energy
functional.

Definition 4 (The One-Dimensional Energy Density) Let Q1 : Skew(3) → R be defined by

Q1(A) = min
F∈E(A)

∫
S

Q3(F )dxcs, (5)

and define E0 = ∫
Ω
Q3(m⊥)dx.

In the following remark we check that Q1 agrees with the one-dimensional energy den-
sity for a rod without misfit, which was found in [27]. This amounts to showing that the
minimal F in Definition 4 satisfies ξ = 0. The Euler-Lagrange equations associated to Q1

are explicitly written in [27] Remark 3.4, and specialized in Remarks 3.5 (isotropic rods)
and 3.6 (circular cross sections).

Remark 2 (Some Properties of the Optimal F in the Definition of Q1) Let F minimize∫
S
Q3(F )dxcs among E(A) as in Eq. (5). We write

F = sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ .

Then F has ξ = 0 and
∫

S
∇csβdxcs = 0.

Proof The first variation of
∫

S
Q3(F )dxcs with respect to ξ and β must vanish. This condi-

tion reads

0 =
∫

S

〈
sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ(xcs)

⎞
⎠ ,W ′′(Id) sym

(
ζe1

∣∣∇csη(xcs)
)〉

dxcs

for any η ∈ W 1,2(S,R3) and ζ ∈ R. By considering η linear, we see that for any matrix
G ∈ Sym(3),

0 =
〈∫

S

sym(ξe1 + Axcs|∇csβ)dxcs,W
′′(Id)G

〉
.

The elastic stiffness tensor W ′′(Id) maps Sym(3) onto itself, so W ′′(Id)G is an arbitrary
matrix in Sym(3). Thus the integrand must vanish. Using our convention that

∫
S
xcsdxcs = 0,

we get

0 =
∫

S

sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠dxcs = sym

(
|S|ξe1

∣∣∣∣
∫

S

∇csβdxcs

)
.
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By considering the 11 component of this matrix it follows that ξ = 0. The other components
show that

∫
S

sym(0|∇csβ)dxcs = 0. The condition that
∫

S
skew∇csβcsdxcs = 0 completes

the proof. �

This technique can be used to compute the preferred extension ξm, along with a few other
projections of mE .

Remark 3 (Some Properties of mE ) The following equations hold a.e. in x1:

– ξm(x1) = 1
|S|

∫
S
m11(x)dxcs,

–
∫

S
∇csβ

m
cs(x)dxcs = ∫

S
mcs,cs(x)dxcs, and

–
∫

S
∇csβ

m
1 (x)dxcs = 2

∫
S
mcs,1(x)dxcs.

The proof is essentially identical to that of Remark 2, and is therefore omitted.

2.2 The Ansatz

The proof of the main result, Theorem 1, is deferred to Sect. 7. Here we present a formal
ansatz which, ignoring regularity issues, gives the correct limiting energy.

Given a frame R(x1) ∈ SO(3) we define

y(h)(x) = ỹ(x1) + h
(
t(x1) + x2r2(x1) + x3r3(x1)

) + h2Rβ(x). (6)

Here t(x1) and β(x) are R
3-valued functions to be determined, and ỹ(x1) = ∫ x1

0 r1(s)ds.
Let A = RT ∂1R. As previously mentioned, the entries of A control the bending and twist of
the rod as one moves along the midline (see Eq. (3)). ξe1 = RT ∂1t measures the infinitesi-
mal stretching, and β controls the slight deformation of the cross section. We compute the
gradient:

RT ∇hy
(h)(x) = Id+h

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ + O

(
h2

)
. (7)

Therefore the energy is, at least formally, given to leading order in h by

Eansatz
m (A,β, ξ) = E(h)

(
y(h)

) =
∫

Ω

Q3

⎛
⎝sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ − m(x)

⎞
⎠dx, (8)

where Q3(F ) = 1
2 W ′′(Id)(F ,F ) is the linear elastic energy density associated with W .

The energy Eansatz
m (A,β, ξ) is closely connected to our final energy E(R). Notice in

particular that

E(R) = min
β,ξ

Eansatz
m

(
RT ∂1R,β, ξ

)
, (9)

and that Eansatz
m (A,β, ξ) is minimized by (Am,βm, ξm). To make this explicit, we plug in

m = mE + m⊥ and minimize over β and ξ .



On the Bending and Twisting of Rods with Misfit 125

Using ξ̃ = ξ − ξm, and similarly for Ã and β̃ , the energy is

lim
h→0

E(h)
(
y(h)

) =
∫

Ω

Q3

⎛
⎝sym

⎛
⎝ξ̃ψ + Ã

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ̃

⎞
⎠ − m⊥(x)

⎞
⎠dx

=
∫

Ω

Q3

⎛
⎝sym

⎛
⎝ξ̃e1 + Ã

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ̃

⎞
⎠

⎞
⎠ +Q3(m⊥)dx.

By choosing β and ξ optimally and choosing E0 = ∫
Ω
Q3(m⊥)dx, we get that

lim
h→0

E(h)
(
y(h)

) = E0 +
∫ L

0
Q1

(
A(x1) − Am(x1)

)
dx1.

3 Explicit Computation of Q1 and Am

The one-dimensional energy

E(y) = E0 +
∫ L

0
Q1

(
R(x1)

T ∂1R(x1) − Am(x1)
)
dx1

is defined in Sect. 2.1. The definition of Am is computationally cumbersome: (Am,βm, ξm)

minimize a quadratic energy Eansatz
m (A,β, ξ). The bulk of the work goes into computing βm,

which does not appear in the reduced energy. This amounts to solving a partial differential
equation in each cross section. Computing Am ought to be easier than that; we project m

onto a three-dimensional space, which by the Riesz representation theorem only requires
computing three integrals. In this section we write down those integrals.

We start the task of identifying Am. Elements of E are determined by a scalar ξ ∈ R

controlling extension, a matrix A ∈ Skew(3) controlling bending and twist, and a function β

controlling the warping of the cross section. The energy is the minimum of Eansatz
m (A,β, ξ)

over β and ξ . To find this, we write down the optimal warping of the cross section ψ (j)

associated to stretching (j = 0), twist (j = 1) or bending (j = 2,3). The optimal β is a
linear combination of ψ (j).6

It is useful to consider the response of the rod to unit twist, unit bending in each direction,
and also stretching by an amount h per unit length. We define

I (0)(ψ) =
∫

Ω

Q3
(
sym(e1|∇csψ)

)
dx,

I (1)(ψ) =
∫

Ω

Q3

(
sym(−x3e2 + x2e3|∇csψ)

)
dx,

I (j)(ψ) =
∫

Ω

Q3

(
sym(xje1|∇csψ)

)
dx.

6There is something counterintuitive about this approach. It looks like β and ξ are of similar status, because
we minimize over both of them, but instead our analysis treats ξ , ω and κ similarly. The reason for this will
become clear in the proof of Theorem 2. The key is that F (j) are orthogonal to symmetrized gradients, but
are not in general orthogonal to each other.
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Notice that these are closely related to the energy of our ansatz with no misfit (see Eq. (8)).
For example, I (0)(ψ) = Eansatz

0 (0,ψ,1) is the energy of a rod stretched by h per unit length
with a cross section warped by an amount ψ . We let ψ (j) be the minimizer of I (j), then
define the associated strains by:

F (0) = sym(e1|∇csψ
(0)),

F (1) = sym(−x3e2 + x2e3|∇csψ
(1)),

F (j) = sym(xje1|∇csψ
(j)) for j = 2,3.

(10)

Theorem 2 (Q1 and A for a General Rod) Let m̃ = m − e1⊗e1
|S|

∫
S
m11(xcs)dxcs. For a.e. x1

the preferred twist ωm and bending κm solve the following three-by-three linear system:

〈
m̃,F (j)

〉
W ′′(Id)

= ωm
〈
F (1),F (j)

〉
W ′′(Id)

+
∑
i=2,3

κm
i

〈
F (i),F (j)

〉
W ′′(Id)

(11)

for j ∈ {1,2,3}. The one-dimensional energy density is given by

Q1(ω,κ) =
∫

S

Q3
(
ωF (1) + κ2F

(2) + κ3F
(3)

)
dxcs. (12)

Proof To simplify notation we will write κ1 = ω for the duration of this proof. The sym-
metrized gradient with respect to cross-sectional variables only is denoted by ecs(α) =
sym(0|∇csα) for α ∈ W 1,2(Ω,R3).

Notice that the strains F (j) are all orthogonal to the cross-sectional symmetrized gradi-
ents: for any α ∈ W 1,2(Ω,R3),

δI (j)
(
ψ (j)

)[α] = 〈
F (j), ecs(α)

〉
W ′′(Id)

= 0.

By projecting m onto E , we have

m = (
ξmF (0) + ωmF (1) + κm

2 F (2) + κm
3 F (3)

) + ecs

(
αm

) + m⊥ (13)

for some αm, where m⊥ is orthogonal to each of the other terms in the sense of 〈·, ·〉W ′′(Id).
Recall that, according to Remark 3, ξm = 1

|S|
∫

S
m11(xcs)dxcs. Taking the inner product of

each side with F (j), j ∈ {1,2,3} yields

〈
m − F (0)

|S|
∫

S

m11(xcs)dxcs,F
(j)

〉
W ′′(Id)

=
3∑

i=1

κm
i

〈
F (i),F (j)

〉
W ′′(Id)

.

The orthogonality of F (j) with symmetrized gradients implies that 〈F (j), e1 ⊗ e1〉W ′′(Id) =
〈F (j),F (0)〉W ′′(Id), which shows Eq. (11).

Recalling Eansatz
m from Eq. (8), the one-dimensional energy is given by

E(R) = min
ξ,β

Eansatz
m

(
RT ∂1R,β, ξ

)

= min
ξ,β

∫
Ω

Q3

⎛
⎝sym

⎛
⎝ξe1 + A

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ − m

⎞
⎠dx
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= min
ξ,α

∫
Ω

Q3(m⊥) +Q3

(
ecs

(
α − αm

))

+Q3

((
ξ − ξm

)
F (0) +

3∑
j=1

(
κj − κm

j

)
F (j)

)
dx

= E0 +
∫

Ω

Q3

(
3∑

j=1

(
κj − κm

j

)
F (j)

)
dx.

The third line used orthogonality. The fourth used the definition of E0 = ∫
Ω
Q3(m⊥), and

the fact that the minimum is achieved when ξ = ξm (Remark 2). This implies Eq. (12). �

Corollary 1 (The Quadratic Nature of Q1) Q1 : Skew(3) → R is a positive definite
quadratic form.

Proof This follows immediately from Eq. (12). �

Notice that finding the energy density Q1 requires finding the strains F (j), j ∈ {1,2,3}.
Given those strains, one can compute Am by taking several integrals and solving a linear
system. If one considers a rod with misfit that depends on the cross section (i.e., m(x)

depends on x1) then the above theorem simplifies the computation immensely.
We can make Theorem 2 more explicit when the material is isotropic: W ′′(Id)(F ) =

2μF + λ tr(F ) Id where μ > 0 and λ + μ > 0. Am depends on one parameter, ν = λ
2(μ+λ)

(Poisson’s ratio).

Remark 4 (Strain of an Isotropic Rod) Let the elastic stiffness tensor be isotropic with Pois-
son’s ratio ν. Define φ(xcs) (called the torsion function) to be the solution to

{
�φ(xcs) = 0 for xcs ∈ S,

∂nφ(xcs) = (−x3, x2) · n for xcs ∈ ∂S.

The strains F (j) are given by

F (0) =
⎛
⎝1 0 0

0 −ν 0
0 0 −ν

⎞
⎠ ,

F (1) =
⎛
⎝

0 1
2 (∂2φ − x3)

1
2 (∂3φ + x2)

1
2 (∂2φ − x3) 0 0
1
2 (∂3φ + x2) 0 0

⎞
⎠ ,

F (j) = xj

⎛
⎝1 0 0

0 −ν 0
0 0 −ν

⎞
⎠ for j = 2,3.

(14)

The proof follows directly from the Euler-Lagrange Equations of I (j). For j �= 0 this
observation was also in [27].

Theorem 3 (Q1 and A for an Isotropic Rod) Let W ′′(Id) be isotropic, and assume that∫
S
x2x3dxcs = 0. Then



128 R.V. Kohn, E. O’Brien

1. the quadratic form Q1 is diagonal in ω, κ2, κ3:

Q1
(
A(ω,κ)

) =
∫

S

ω2Q3
(
F (1)

) + κ2
2Q3

(
F (2)

) + κ2
3Q3

(
F (3)

)
dxcs; (15)

2. moreover, ωm, κm
j have the simple formulas:

ωm = 〈F (1),m〉W ′′(Id)

‖F (1)‖2
W ′′(Id)

, κm
j =

∫
S
xjm11(x)dxcs∫

S
x2

j dxcs
for j = 2,3. (16)

Proof The key observation is that {F (j)}3
j=0 are mutually orthogonal with respect to

〈·, ·〉W ′′(Id). Equation (15) follows immediately from this and the analogous statement for
general rods, Eq. (12) of Theorem 2. The orthogonality of F (j), together with Eq. (11),
shows that

ωm = 〈F (1),m〉W ′′(Id)

‖F (1)‖2
W ′′(Id)

, κm
2 = 〈F (2),m〉W ′′(Id)

‖F (2)‖2
W ′′(Id)

, κm
3 = 〈F (3),m〉W ′′(Id)

‖F (3)‖2
W ′′(Id)

.

Elementary manipulations reduce this to Eq. (16). �

Remark 5 (The Geometric Effect of Poisson’s Ratio) It is remarkable that the preferred
bending and twist do not depend on ν, although this is well known in the special case of the
bimetallic rod. In general (for anisotropic materials), Am depends on W ′′(Id).

Remark 6 (Conditions on m That Produce no Bending or Twist) For isotropic rods, we see
that the preference to bend is driven by a propensity to stretch in the long direction, and the
preference to twist is driven by a propensity that cross sections prefer to shear. Specifically,
if m11 = 0 then κm = 0 and if m12 = m13 = 0 then ωm = 0. It follows in particular that
isotropic misfit will never make a rod twist. This explains why the well-known bimetallic
strip bends but does not twist, and suggests how we might create a rod that prefers to twist.
See Sects. 6.1 and 6.2 for examples related to these remarks.

4 Properties of the One-Dimensional Energy

This section discusses how properties of the three-dimensional energy have consequences
for the limiting, one-dimensional rod theory. In particular, we show in Sect. 4.1 how sym-
metries can force the preferred twist ωm or preferred bending κm to vanish, and we discuss
in Sect. 4.2 the circumstances in which E0 = 0.

4.1 Symmetries of the Rod

Finding Am typically requires computing several integrals. However, symmetries in the
three-dimensional energy can imply that certain entries in Am are 0. Consider the follow-
ing concrete example: suppose that the three-dimensional energy has a rotational symmetry
Qcs in the cross section. Rotating the cross section (in reference coordinates) by a matrix
Qcs ∈ SO(2) rotates the curvature vector κ = (κ2, κ3) by the same matrix Qcs. The energy is
minimized by some unique κ = κm, so κm = Qcsκ

m. This implies that κm = 0. A symmetry
can also imply that ωm = 0: if the rod is symmetric with respect to a reflection, then be-
cause reflections change orientation the energy cannot distinguish between left-handed and
right-handed twist. The following theorem generalizes and makes rigorous these ideas.
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Theorem 4 (Symmetries of a Rod) Let Q ∈ O(3) be of the following form:

Q =
⎛
⎝q11 0 0

0 q22 q23

0 q32 q33

⎞
⎠ ,

and let Qcs be the lower right two-by-two block of Q. Assume also that:

1. (Symmetry of the elastic stiffness tensor). For any F ∈ Sym(3),

W ′′(Id)
(
QT FQ

) = QT
(
W ′′(Id)F

)
Q.

2. (Symmetry of the cross section). If xcs ∈ S then Qcsxcs ∈ S.
3. (Symmetry of the misfit). For a.e. x ∈ Ω , QT m(x)Q = m(x1,Qcsxcs).

Then the preferred bending κm and twist ωm satisfy the following conditions:

– If det(Q) = −1 then ωm = 0.
– Qcsκ

m = κm. In particular, if Qcs ∈ SO(2) and Qcs �= Id then κm = 0.

The above conditions mean that the rod is symmetric with respect to the rigid motion
given by Q. The first special case outlined above corresponds to q11 = 1, Qcs ∈ SO(2).

Remark 7 (Symmetry of the Misfit with q11 = −1) Notice that the third condition is not
QT m(x)Q = m(Qx), which would relate the misfit in two different cross sections. Our
conditions 2 and 3, by contrast, involve symmetries of the cross section obtained by fix-
ing x1.

Proof Let x̃1 = x1, x̃cs = Qcsxcs and suppose that Eansatz
m (A,β, ξ) is minimized at

A(ωm,κm), βm, and ξm. We will show that the energy is invariant under the transformation
at ω̃ = (detQ)ω, κ̃ = Qcsκ and β̃ = Qβ . By strict convexity of the energy (Corollary 1),
the minimizers κm and ωm are unique so in fact κm = Qcsκ

m and ωm = (detQ)ωm.

Eansatz
m =

∫
Ω

Q3

⎛
⎝sym

⎛
⎝ξe1 + A(ω,κ)

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ − m(x)

⎞
⎠dx

=
∫

Ω

Q3

⎛
⎝QT

⎛
⎝sym

⎛
⎝ξe1 + A(ω,κ)

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ

⎞
⎠ − m(x)

⎞
⎠Q

⎞
⎠dx

=
∫

Ω

Q3

⎛
⎝QT

⎛
⎝ ξ − κ · xcs

1
2 (ωx⊥

cs + ∇csβ1)

1
2 (ωx⊥

cs + ∇csβ1) sym∇csβcs

⎞
⎠Q − m(x1,Qcsxcs)

⎞
⎠dx

=
∫

Ω

Q3

⎛
⎝

⎛
⎝ ξ − κ · xcs

1
2 (ωx⊥

cs + ∇csβ1)Qcs

1
2QT

cs(ωx⊥
cs + ∇csβ1) QT

cs sym∇csβcsQcs

⎞
⎠ − m(x1,Qcsxcs)

⎞
⎠dx.
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To derive the second line we used symmetry of the elastic stiffness tensor, and to find the
third we used the symmetry of the misfit. We write the energy in terms of x̃:

Eansatz
m =

∫
Ω

Q3

⎛
⎝

⎛
⎝ ξ − κ̃ · x̃cs

1
2 (ω̃x̃⊥

cs + ∇csβ̃1)

1
2 (ω̃x̃⊥

cs + ∇csβ̃1) sym∇csβ̃cs

⎞
⎠ − m(x̃)

⎞
⎠dx̃

= Eansatz
m (ω̃, κ̃; β̃, ξ).

In finding the off-diagonal components we used the fact that, if Qcs is a rotation,
(Qcsx̃cs)

⊥ = Qcsx̃
⊥
cs because rotations commute in two dimensions. If Qcs is a reflection

then by direct computation we see that (Qcsx̃cs)
⊥ = −Qcsx̃

⊥
cs. Thus,

q11

(
QT

csx̃cs

)⊥ = q11(detQcs)Q
T
csx̃

⊥
cs = (detQ)QT

csx̃
⊥
cs.

We conclude that, for any ω and κ ,

Eansatz
m (ω,κ;β, ξ) = Eansatz

m

(
(detQ)ω,Qcsκ; β̃, ξ

)
.

The theorem follows from the fact that minimizers of Eansatz
m exist and are unique. �

4.2 Condition for Vanishing E0

We present a test to determine whether the minimum energy E0 is 0. This is equivalent to
m ∈ E , which we interpret as the statement that m is a linear strain admissible achievable by
a suitable combination of bending, twist, extension, and warping of the cross section.

Theorem 5 (Conditions for E0 = 0) Note that E0 = 0 if and only if m(x1,xcs) ∈ E for
a.e. x1. For rods with simply connected cross section S, this is equivalent to the following
conditions a.e. in x. Derivatives are meant in the distributional sense.

1. m11 is affine in xcs, and
2. ∂2m13 − ∂3m12 is constant in xcs, and
3. ∂22m33 + ∂33m22 − 2∂23m23 = 0.

Proof First assume that m(xcs) ∈ E for a.e. x1, i.e. that

m(xcs) = sym

⎛
⎝ξme1 + Am

⎛
⎝ 0

x2

x3

⎞
⎠

∣∣∣∣∣∣∇csβ
m

⎞
⎠

= sym

⎛
⎝ ξm − κm · xcs

1
2 (ωmx⊥

cs + ∇csβ
m
1 )

1
2 (ωmx⊥

cs + ∇csβ
m
1 ) sym∇csβ

m
cs

⎞
⎠ . (17)

The first condition, that m11 be affine in xcs, is obvious. The second condition is obtained
by commuting derivatives:

∂2m13 − ∂3m12 = 1

2

(
ωm + ∂23β

m
1

) − 1

2

(−ωm + ∂32β
m
1

) = ωm. (18)

The third condition follows from the compatibility condition for linear strains (see e.g., [7]).



On the Bending and Twisting of Rods with Misfit 131

We show the converse: if m satisfies conditions 1–3 then m ∈ E . It suffices to find ξm,
κm, ωm and βm such that Eq. (17) holds. Finding κm and ξm is simple: by condition 1, we
can define m11 = ξm + κm · xcs.

The second condition tells us that ∂2m13 − ∂3m12 is a constant, so in order to match
Eq. (18) we call this constant ωm. Condition 2 shows that mcs,1 − 1

2ωmx⊥
cs has curl 0. The

domain S is simply connected, so there is some βm
1 such that ∇csβ

m
1 = mcs,1 − 1

2 ωmx⊥
cs.

By the compatibility condition for linear strains [7] the third condition implies that
mcs,cs = e(βm

cs) for some function βm
cs. �

Remark 8 In general, Am depends on both W ′′(Id) and m. If m ∈ E then this is not the case;
Am depends only on m.

5 Related Energy Functionals

5.1 Comparison Between Rods and Ribbons

There has been much recent interest in ribbons (informally, elastic bodies with three length
scales t � w � L) with misfit, motivated by diverse applications in physics [6], biology [3]
and chemistry [34]. In principle Theorem 1 makes no assumptions about the eccentricity
of the cross section, and so one might use this (or other rod theories) to study ribbons. We
urge caution. The bounds in Theorem 1 hold for any cross section S, but they do not hold
uniformly over all S. Audoly and Pomeau suggest [4] that a narrow enough ribbon can be
modeled as a rod; specifically they require that w � √

tL.7

Alternatively, one could model a ribbon as a narrow sheet. The Sadowsky functional
[32, 36], which was recently justified via Γ -convergence [12, 17], gives an elastic energy
functional for an inextensible ribbon (without misfit) depending only on the configuration
of the ribbon’s midline.8 In the present context it is natural to ask whether something similar
can be done for ribbons with misfit. The answer is yes, but the theory is not yet complete.
One reasonable analogue [19] of an inextensible plate with misfit is of the form

E(y) =
{∫

S Q(IIy − II0) if ∇yT ∇y = g

∞ otherwise

where IIy denotes the second fundamental form of y, II0 the preferred second fundamental
form and g the preferred metric. Both II0 and g are determined by the misfit, which is defined
on a thin, three-dimensional sheet S × (−ε, ε). Freddi et al. derived an analogue of the
Sadowsky functional assuming that g is the Euclidean metric, which is true for multilayers
[33]. We expect that extending this result to arbitrary g is non-trivial: the set of immersions
with some prescribed metric is not well understood.

The rod-like and Sadowsky energies appear to be very different, so given that they model
similar physical systems it is natural to ask how they are related. We are not aware of a
general answer, but an enlightening example due to Armon et al. [3] compares the narrow

7In this section we conflate the typical radius of curvature with L. These are closely related quantities in the
present work because the small-thickness limit of Theorem 1 holds the midline fixed as h tends to 0.
8Both results considered the Γ -limit of an inextensible plate energy in the small-width limit. Kirby and Fried
[17] used the Frenet frame with some additional assumptions amounting to small twist, whereas Freddi et al.
[12] used the material frame and derived a corrected Sadowsky functional that holds even with large twist.
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and wide regimes for a ribbon with misfit similar to the anisotropic bilayer of Sect. 1.1.9

In the narrow ribbon limit w � √
tL the bending energy dominates, which gives rise to a

rod-like theory similar to Eq. (4). If w � √
tL then the membrane energy dominates, so

Armon et al. minimize the bending energy (modified due to misfit) among isometries. This
matches the assumptions used in [13] to derive a Sadowski-like functional. The resulting
elastic energy functional illustrates a significant difference between rods and ribbons: even
with free boundary conditions it may have two local minima, which is impossible for a
quadratic functional such as Eq. (4).

5.2 Comparison to the Theory of Kupferman and Solomon

In Sect. 1.3 we mentioned a general theory of dimension reduction due to Kupferman and
Solomon [19]. We briefly outline their results, specialized to rods [2], and show that in that
case the present theory is more general: in our language, [19] uses W ′′(Id)F = symF and
assumes that m(x) is linear in xcs. Of course, the main strength of the work of Kupferman
and Solomon is that it is not restricted to rods, but instead deals with arbitrary manifolds.

The starting point of [19] is an energy of the form10

EKS
h

(
y(h)

) = C

h4

∫
Ωh

dist2
(
dy(h)(z),SO(3)

)
dvolg(z), (19)

where dy(h) is a derivative in the sense of some smooth metric g defined on Ω1. For the
sake of simplicity we take g(x1,0,0) = Id. Equation (19) closely resembles the energy
E(h)(y(h)) (Eq. (2)), where M2

h is the preferred value of (∇hy
(h))T ∇hy

(h) and therefore nat-
urally thought of as a metric. A key difference is that g does not depend on h. If we set
M2

h(x) = g(x1, hxcs) + O(h2) and take a power series expansion in h we see that m(x)

must be linear in xcs.
Kupferman and Solomon study the limit of EKS

h in the sense of reduced-convergence
(Eq. 2.3 and 2.4 of [19]), which is closely related the Γ -convergence. The limiting energy is

EKS
rod =

∫ L

0
C1

(
ω − ωKS

)2 + C2

(
κ − κKS

2

)2 + C3

(
κ − κKS

3

)2
,

where ω and κj are defined as in this work, and

κKS
j = 1

2
∂j g̃11 and ωKS = 1

2
(∂2g̃13 − ∂3g̃12) (20)

are the preferred curvatures. For notational convenience, in this section alone we use ∂j g̃ =
∂jg(x1,0,0). Here we assumed that

∫
S
x2x3dxcs = 0.

We show that, should their theory and ours both apply, the limiting energies prefer the
same bend and twist. Let m(x) = 1

2 (x2∂2g̃ + x3∂3g̃) and W(F ) = dist2(F ,SO(3)). The
misfit m as defined above is exactly achievable: m11 = 1

2 (x2∂2g̃11 +x3∂3g̃11) so the preferred

9The words ‘wide’ and ‘narrow’ are used inconsistently in the literature. Here as in [3] and [4] we refer to w

and
√

tL, whereas in [12] the authors use ‘narrow’ in relation to w/L. Additionally, we note that the analysis
of the narrow ribbon in [3] is similar to that in [4] but with misfit.
10As in the introduction, x is the reference coordinates after rescaling the cross section and z = (x1, hx2, hx3)

the reference coordinates with physically correct dimensions.
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curvatures are κm
j = 1

2∂j g̃11 = κKS
j . The preferred twist is slightly more complicated: we set

βm
1 = x2x3

2 (∂3g̃12 + ∂2g̃13) and ωm = ωKS. Then

m12 = 1

2

(−ωmx3 + ∂2β
m
1

)
and m13 = 1

2

(
ωmx2 + ∂3β

m
1

)
. (21)

Lastly, we note that the lower two-by-two block of m is affine and therefore equal to e(βcs)

for some function βcs ∈ W 1,2(S,R2). It follows that κKS
j and ωKS are the preferred values

given by both theories.
Notice that, in the rod theory of Kupferman and Solomon, the minimum energy is always

0 and the preferred bend and twist do not depend on the elastic moduli [2].

6 Examples

We make several of the examples from Sect. 1.1 precise.

6.1 The Isotropic Bilayer

We return to the classical example of the bimetallic strip. Consider a square cross section
S = [−1,1]2 and piecewise constant misfit m(x) = sgn(x3) Id. Suppose that the linear elas-
tic tensor is isotropic:11 [W ′′(Id)]F = 2μF + λ tr(F ) Id for μ > 0 and λ + μ > 0.

Our goal is to find Am, which gives us the preferred bending and twist. To find the full
energy we would also have to compute Q1 (the energy density, which does not depend on
the misfit) and the minimum energy E0. Theorem 3 reduces this to the evaluation of several
integrals. It is clear that ωm = κm

2 = 0. We calculate κ3.
According to Theorem 3,

κm
3 =

∫
S
x3m11(x)dxcs∫

S
x2

3dxcs
=

∫ 1
−1 |x3|dx3∫ 1
−1 x2

3dx3

= 3

2
.

This agrees exactly with the result found in [35] (Eq. 6).
We can alternatively invoke Theorem 4 to show that ωm = κm

2 = 0. The relevant symme-
try Q is given by q11 = 1 and Qcsxcs = (−x2, x3).

6.2 The Diagonally Prestrained Bilayer

We return to the diagonally prestrained bilayer of Sect. 1.1. The description of the diagonally
prestrained bilayer is based on experiments conducted independently by Armon et al. [3] and
Ye et al. [37]. Both experiments dealt with ribbons rather than rods.

It is worth asking why diagonal prestrains (i.e. m that have an eigenvector neither in
the cross section nor perpendicular to it) are associated with twist. Notice that F (1), which
measures the strain of a twisted rod, has eigenvectors (±c, ∂2φ − x3, ∂3φ + x2) for c =
|∇csφ + x⊥

cs|, which make an angle of 45◦ with the long axis. These have eigenvalues ±c.12

11A real bilayer is made of two different materials, so both the misfit and the Hooke’s law would depend on
xcs. In this paper, however, we have taken the Hooke’s law to be independent of xcs (since our goal is to
explore the effect of misfit in the simplest possible setting). Thus our bilayer is made from two materials with
the same Hooke’s law but different prestrains.
12The third eigenvector has eigenvalue 0.
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Geometrically, this means that twisting a rod clockwise stretches helices that wrap clockwise
around the centerline. Helices wrapping in the opposite direction are instead compressed. It
is intuitive that, if ωm �= 0, then m must favor extension or compression of helices. For
isotropic materials this cannot be accomplished with either preferred expansion along the
length of the rod or in the cross section. This can be readily seen from the formula for ωm

in Theorem 3: if e1 is an eigenvector of m(x) then 〈F (1)(x),W ′′(Id)m(x)〉 = 0.
We again use an isotropic material with square cross section. The misfit is piecewise

constant, but rather than being isotropic the two sides prefer the same magnitude of stretch-
ing but in two different directions. Making this precise: let u = (cos(θ), sin(θ),0) and
u⊥ = (− sin(θ), cos(θ),0). We define the misfit:

m(x) =
{

u ⊗ u if x3 > 0

u⊥ ⊗ u⊥ if x3 < 0.

We can also write m in the form

m(x) = 1

2
Id+ sgn(x3)

2

⎛
⎝cos(2θ) sin(2θ) 0

sin(2θ) − cos(2θ) 0
0 0 0

⎞
⎠ .

We observe that
∫

S
x2m11(x)dxcs = 0, so κm

2 = 0. Following Theorem 3 we compute:

κm
3 =

∫
S
x3m11(x)dxcs∫

S
x2

3dxcs
= 3

4

∫
S

|x3|
2

cos(2θ)dxcs = 3

4
cos(2θ).

The preferred twist is given by

ωm = 〈F (1),m〉W ′′(Id)

‖F (1)‖2
W ′′(Id)

= 2 sin(2θ)

∫
S
(∂2φ − x3) sgn(x3)dxcs∫

S
|∇csφ + x⊥

cs|2dxcs
.

Armon et al. [3] analyzed this system using plate theory of Kupferman and Solomon [19],
which requires that the misfit be linear in the thin direction. Our analysis has two principal
differences: we work with rods rather than ribbons, and we choose piecewise constant misfit.
We unsurprisingly fail to reproduce their results for wide ribbons, but up to a multiplicative
constant our results agree with those of Armon et al. in the narrow regime. See Sect. 5.1 for
further comments on the distinction between wide and narrow strips.

6.3 Rods with Surface Stress

We turn to a model meant to approximate rods with surface stress using a thin layer with
misfit. Chen et al. [6] reported an experiment in which strained latex membranes were glued
to thicker rubber sheets. Ribbons were cut out of the composite sheet. Depending on the
angle between the long axis of the ribbon and the direction in which the latex was stretched,
the ribbon can bend, twist or form a helix. As before, we use rods whereas the experiment
used ribbons. The principal difference between this experiment and [37] or [3] is that one
layer is much thinner than the other.

We again use an isotropic material and a square cross section S = [−1,1]2. Let ε > 0,
which will be the non-dimensional thickness of the (thin) latex sheet. The direction in which
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Fig. 5 A schematic of the
isotropic trilayer. The misfit
prefers expansion in the outer
layers

the latex was stretched is given by the unit vector u = (cos(θ), sin(θ),0). The misfit m is

m(x) =
{

1
ε
u ⊗ u if x3 > 1 − ε

0 otherwise.

We compute Am. We use Theorem 3 to compute the other two components of Am. As in
the last example, it is immediately clear that κm

2 = 0.

κm
3 =

∫
S
x3m11dxcs∫
S
x2

3dxcs
= 3

4
(2 − ε) cos2 θ

ωm = sin 2θ

1
ε

∫ 1
1−ε

∫ 1
−1(∂2φ − x3)dx2dx3∫

S
|∇csφ + x⊥

cs|2dxcs
.

We are especially interested in the behavior when ε is small, so we note that

lim
ε→0

ωm = sin 2θ

∫ 1
−1(∂2φ(x2,1) − 1)dx2∫

S
|∇csφ + x⊥

cs|2dxcs
.

Chen et al. [6] found an explicit minimizer to a linear elastic energy with surface stress in
a three-dimensional body. The body is thin in only one direction, and therefore the solution
resembles a plate more than a rod. For this reason their analysis does not match this example
exactly, but it is qualitatively similar. In particular, our results and theirs agree that the rod
forms a part of a circle if θ = 0, and in general the centerline forms a helix.

6.4 The Trilayer

We turn to an example in which thin rods behave very differently from thin ribbons. This is
not motivated by any particular experiment, though kelp blades are somewhat similar [18].

Consider a rod comprised of three layers, as shown in Fig. 5. The outer two layers are
identical, and the misfit favors isotropic expansion relative to the inner layer. For definite-
ness, we consider the following problem. Let S = [−ε, ε]×[−1,1] and with isotropic elastic
stiffness tensor.

m(x) =
{

Id if |x3| > 1
3

0 otherwise.

It is natural to guess that the rod should twist, because twist makes lines along the outside
of the rod expand without changing the midline. This logic is, however, incorrect: due to
mirror symmetry, the preferred twist must be 0 (Theorem 4 with q11 = −1, Qcs = Id). The
key error is that we ignored strains due to shear which are O(hω), whereas the change in
length scales as h2ω2. Shear dominates in the thin-rod limit. In Remark 6 we noticed that,
in an isotropic rod, twist is caused by misfit m that prefers shear.
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The geometric reasoning that suggested twist was not completely wrong. Ribbons with
similar misfit can prefer twist, as studied in [5] (Example 2 of Sect. 1.4). Formally, the shear
should scale as hωε while the membrane effect is order h2ω2. In a ribbon both h and ε are
small, but treating this is a rod takes the h → 0 limit first, leaving ε fixed, then sends ε to 0.
Theorem 1 applies for any ε, but it does not apply uniformly for all ε > 0. We could instead
consider the opposite distinguished limit: first we ε → 0, then h → 0. This approach treats
the ribbon as a narrow two-dimensional sheet.13

6.5 Quartz

As mentioned in Sect. 1.1, naturally occurring α-quartz sometimes resembles a twisted
macroscopic rod. It has been proposed, for an example by Shtukenberg et al. in [34]
Sect. 5.7, that the twist is caused by slight variations in the preferred lengths of the crys-
talline lattice. Attempting to capture this idea within the framework of the present study,
it seems natural to model a quartz crystal as a rod with misfit. Alas, the attempt seems to
fail: Proposition 1 shows that under some (reasonable, in our view) hypotheses based on the
symmetries of quartz, the associated rod should have no preferred twist. This is of course a
highly idealized picture of quartz, as we briefly discuss at the end of this subsection.

To get started, we begin by reviewing the physical origin of the misfit. A quartz crystal
may be long and thin because the growth processes on distinct (not symmetry related) faces
are different. In particular, some faces grow much faster than others. The differences in the
growth processes also cause slight impurities,14 which give rise to variations in m. Although
we will not use this, it is natural to assume that m is constant on polyhedral zones: each
point x in the crystal is included because some face grew through it, which partitions the
crystal. Two different points in the same zone grew through the same process, and so likely
have similar misfit.

We turn to a discussion of symmetry, which is essential in our proof of Proposition 1.
The crystal lattice of quartz has three axes of twofold rotational symmetry (called a axes),
which are perpendicular to a threefold axis of symmetry (the c axis). The crystal, should
it resemble a rod, advances along an a axis [34]. The results in this section only use the
symmetry of the crystal lattice under the rotation matrix

Q =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠

representing the twofold symmetry around the long axis. As in Theorem 4, Qcs = − IdR2

denotes the lower right two-by-two block of Q. We assume that the three-dimensional elas-
tic energy inherits the symmetry Q of the crystal lattice in the sense of Conditions 1–3 of
Proposition 1 below, and that the misfit respects this symmetry in the sense of Condition 4.15

13Rods are well-approximated by a theory allowing only finitely many degrees of freedom. Sheets are much
less restricted. Of course the ribbon might do something more complex than twisting or bending: kelp leaves,
for an example, sometimes wrinkle [18].
14Namely the substitution of silicon atoms for aluminum (and a monovalent cation). This can be precisely
measured because γ -ray irradiation causes smoky discoloration proportional to the Al concentration, and has
a known effect on the lattice constants.
15These conditions should hold for all of the symmetries, not just Q. This would imply that m is diagonal and
m11 = m22, where the c axis aligns with x3. It would also yield more information about the elastic stiffness
tensor. See [16] for measurements the elastic stiffness tensor of quartz.
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Proposition 1 Assume that W ′′(Id), S and m satisfy the following conditions for Q defined
above.

1. (Symmetry of the Hooke’s Law) For any F ∈ Sym(3), W ′′(Id)(QT FQ) =
QT (W ′′(Id)F )Q, and

2. (Symmetry of the cross section) If xcs ∈ S then Qcsxcs ∈ S, and
3. (Symmetry of the misfit) For a.e. x ∈ Ω , QT m(x)Q = m(Qx), and
4. (Misfit due to lattice parameters) For a.e. x ∈ Ω , QT m(x)Q = m(x).

It follows that Am = 0.

Proof We first check that κm = 0. Noting that q11 = 1, we see that the first three conditions
above are precisely the assumptions of Theorem 4. Q is a rotation matrix, so κm = 0.

We again invoke Theorem 4, but this time with respect to −Q rather than Q. Because
det(−Q) = −1, in order to conclude ωm = 0 it suffices to check that the minimization
problem is symmetric under −Q:

1. (Symmetry of the Hooke’s Law with respect to −Q) For any F ∈ Sym(3),

W ′′(Id)
(
(−Q)T F (−Q)

) = (−Q)T
(
W ′′(Id)F

)
(−Q).

2. (Symmetry of the cross section with respect to −Q) If xcs ∈ S then −Qcsxcs ∈ S.
3. (Symmetry of the misfit with respect to −Q) For a.e. x ∈ S, (−Q)T m(x)(−Q) =

m(x1,−Qcsxcs).

The condition for symmetry of the Hooke’s Law is quadratic in Q, so it holds for −Q as
well. The symmetry of the cross section is trivial because −Qcs = Id. The symmetry of the
misfit with respect to −Q follows from the assumption that QT m(x)Q = m(x). �

We briefly comment on the differences between our model and real quartz. The most
significant is that quartz is likely highly inelastic, except perhaps in a thin newly-accreted
layer. Alternatively, perhaps it is also possible that our assumptions on the form of m are
mistaken: although we have a plausible explanation why we might expect misfit of this form,
there might be similar explanations for different types of misfit. Finally, real quartz should
be narrow near the tip compared to the base, although the thickness changes slowly. The
present rod theory deals only with cylindrical bodies: the misfit can depend on x1, but the
shape of the cross section cannot.

7 Γ -Convergence

Although we think of a rod as a one-dimensional object, it is really a thin, three-dimensional
object governed by three-dimensional elasticity theory. We would like to rigorously reduce
this to a one-dimensional theory in the limit as thickness tends towards 0. We will show that
the three-dimensional energy functional E(h) (Eq. (2)) Γ -converges to the one-dimensional
energy E (Eq. (4)) in the sense of Theorem 1. The analogous theorem for rods without
misfit, which has a similar proof, was done independently in [31] and [27].

Whenever we study Γ -convergence it is useful to identify compact sets in the corre-
sponding topology. The compactness result for rods without misfit, stated and proved in
[27] and [31], also applies here and is restated below in Theorem 6.



138 R.V. Kohn, E. O’Brien

Theorem 6 (Compactness) Let y(h) be a sequence in W 1,2(Ω,R3) such that

lim sup
h→0

1

h2

∫
Ω

dist2
(∇hy

(h),SO(3)
)
dx < ∞.

1. There exists a subsequence (not relabeled) such that ∇hy
(h) → R strongly in L2(Ω).

Furthermore, R ∈ W 1,2(Ω → SO(3)) depends only on x1.
2. Given some R(h) (rotations approximating ∇hy

(h)) define G(h) (infinitesimal displace-
ment) by

(
R(h)

)T ∇hy
(h)(x) = Id+hG(h)(x).

For some well-chosen sequence of rotations R(h). G(h) converges weakly in L2 to a matrix
G ∈ L2(Ω,R3) with G(x1, ·, ·) ∈ E(RT ∂1R) almost everywhere.

The first part is Theorem 2.2 of [27], and the second part is embedded in the proof of
Theorem 3.1 of the same paper. Theorem 6 is closely related to Theorem 3.1 of [31].

Notice that any sequence with E(h)(y(h)) ≤ C < ∞ satisfies the hypotheses of Theorem 6
by the triangle inequality and the coerciveness of W :

C ≥ 1

h2

∫
Ω

dist2
(∇hy(x),SO(3)M−1

h

)
dx

= 1

h2

∫
Ω

dist2
(∇hy(x),R(x)M−1

h

)
dx for some R ∈ SO(3)

� 1

h2

∫
Ω

(
dist2

(∇hy(x),R
) − dist2

(
R,RM−1

h

))
dx

≥ 1

h2

∫
Ω

dist2
(∇hy(x),SO(3)

)
dx −

∫
Ω

∣∣m(x)
∣∣2

dx.

We recall Theorem 1. This theorem has two parts; the first bounds the energy from below
(called the lim inf inequality) and the second provides an ansatz achieving the lower bound
(called the lim sup inequality). The proof is similar to that of [27] Theorem 3.1 and [31]
Propositions 4.1 and 5.1. The key ideas in the ansatz are found in Sect. 2.2, assuming enough
regularity to use Taylor’s Theorem.

Proof of Theorem 1 We omit the subscripts on h, and we do not relabel subsequences.

Lim inf inequality. Assume that lim infE(h)(y(h)) < ∞ (if not, the inequality is trivial).
By the compactness lemma, there exists rotations R(h) and deformations G(h), related by
∇hy

(h) = R(h)(Id+hG(h)) such that up to a subsequence G(h) → G weakly in L2, with
G(x1) ∈ E . By frame indifference of W ,

E(h)
(
y(h)

) = 1

h2

∫
Ω

W
((

Id+hG(h)
)
(Id−hm)

)
dx.

Let ρ(F ) ∈ o(|F |2) be the Taylor Series remainder such that W(Id+F ) = Id+Q3(F ) +
ρ(F ), and let ρ̄(t) = sup|F |≤t ρ(F ). We also define

χh(x) =
{

1 if |G(h)(x)| < h−1/2

0 otherwise.
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This goes to 1 in measure because G(h) is bounded in L2. It follows that G̃
(h) := (G(h) −

m − hG(h)m)χh → G − m weakly in L2.
Returning to the computation of E(h):

E(h)
(
y(h)

) ≥ 1

h2

∫
Ω

W
((

Id+hG(h)
)
(Id−hm)

)
χhdx

=
∫

Ω

Q3

(
G̃

(h)) + 1

h2
ρ
(
hG̃

(h))
χhdx

≥
∫

Ω

Q3
(
G̃

(h)) − ∣∣G̃(h)∣∣2 ρ̄(h|G̃(h)|)
h2|G̃(h)|2

χhdx.

By using weak lower semicontinuity of the first term, boundedness of ‖G̃(h)‖L2(Ω) and that
ρ̄(t) ∈ o(t2) we conclude that

lim inf
h→0

E(h)
(
y(h)

) ≥
∫

Ω

Q3(G − m)dx

=
∫

Ω

Q3(G − mE − m⊥)dx

=
∫

Ω

Q3(G − mE) + 〈
G − mE ,W ′′(Id)m⊥

〉 +Q3(m⊥)dx

= E0 +
∫

Ω

Q3(G − mE)dx

≥ E0 +
∫ L

0
min

F∈E(RT ∂1R−Am)

∫
S

Q3(F )dxcsdx1

= E0 +
∫ L

0
Q1

(
RT ∂1R − Am

)
dx1

= E(R).

The third line uses the orthogonality of m⊥ and E . The fifth line notices that G − mE ∈
E(RT ∂1R − Am). This concludes the proof of the Γ -lim inf inequality.

Lim sup inequality. Let R ∈ W 1,2(Ω,SO(3)) depending only on x1. We construct a se-
quence y(h) such that ∇hy

(h) → R in L2 and

E(R) ≥ lim sup
h→0

E(h)
(∇hy

(h)
)
.

As before, we use A = RT ∂1R to encode the bending and torsion given by the frame R.
Recall also the definitions from Sect. 2.1. In particular, we can extract Am from the misfit
m, which gives the preferred bending and torsion. The displacement of the cross section β

will also be important. The minimization problem in Eq. (5) associates to A a minimizer16

sym(Axcs|∇csβ), which defines β . The misfit also gives a preferred displacement βm and a
small stretching ξm.

16For compactness of notation, here and below we write Axcs to mean A times (0, x2, x3).
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The core of this argument is found in Sect. 2.2. We make that section rigorous by mol-
lifying the functions involved so that we can use Taylor’s theorem. Because the functions
depend on A − Am, we mollify A − Am and β − βm. We use these to pick ∇hy

(h) to lead-
ing order in h, which allows us to define y(h) by integrating. The paper [27] uses a slightly
different proof; it instead mollifies y(h) and then projects ∇hy

(h) onto SO(3).
We will pick

y(δ,h)(x) = ỹ(δ)
(x1) + h

(
t (δ)(x1) + x2r

(δ)

2 (x1) + x3r
(δ)

3 (x1)
) + h2R(δ)(x1)β

(δ)(x)

where ỹ(δ) ∈ W 1,2([0, l],R3) controls the midline, t (δ) ∈ W 1,2([0, l],R3) controls the in-
finitesimal stretching and shear, and β(δ)(x) is the next-order deformation of the cross sec-
tion induced by the curvature and torsion of the rod in addition to the misfit. All of these
depend on a small parameter δ, which will be used to smooth out R.

Consider a family of mollifiers ψδ(x) = 1
δ3 ψ( x

δ
) with the standard properties ψ ∈

C1
0 (R

3, [0,∞)) and
∫

ψ(x)dx = 1. It follows that ‖∇ψδ‖L2 � δ−5/2.
Using the fact that Ω has Lipschitz boundary, we extend A and β in a W 1,2-bounded

fashion to some open, bounded superset of Ω̄ . Let A(δ) = Am + (RT ∂1R − Am) ∗ ψδ

and β(δ) = βm + (β − βm) ∗ ψδ , where β(x1, ·) minimizes
∫

S
Q3(sym(Axcs|∇csβ))dxcs.

We define R(δ) by the differential equation ∂1R
(δ) = A(δ)R(δ) with R(δ)(0) = R(0). The

midline is given by ỹ(δ)
(x1) = ∫ x1

0 r
(δ)

1 (s)ds, and the infinitesimal stretching by ∂1t(x1) =
r(x1)ξ

m.
We must check that y(δ,h) converges in the right sense to y as (h, δ) → 0, h ≤ δ5/2.

First, we note that A(δ) → A in L2 and β(δ) → β in W 1,2. By continuous dependence of the
differential equation defining R(δ) on A(δ) it follows that R(δ) → R in W 1,2. We compute
the gradient to conclude that ∇y(δ,h) → R in L2.

∇hy
(δ,h)(x) = R(δ) + h

(
∂1t + x2∂1r

(δ)

2 + x3∂1r
(δ)

3 |∇cs

(
R(δ)β(δ)

))

+ h2∂1

(
R(δ)β(δ)

) ⊗ e1.

The first term converges to R as δ → 0. The second term is bounded in L2 uniformly in
δ and is small in h, so it vanishes as (h, δ) → 0. We note that the final term is bounded in
L2 by h2δ−5/2 due to the bounds on ‖∂1ψ‖L2 . Thus this vanishes in the limit (h, δ) → 0 and
h ≤ δ5/2. By taking a subsequence, we can also assume that R(δ), ∂1R

(δ), β(δ) and ∇csβ
(δ)

converge almost everywhere.
We now show that the recovery sequence gives the right energy. The proof has two steps.

First, we hold δ fixed and let h → 0. We then pick a dependence of δ on h to find the
recovery sequence.

We expand (R(δ))T ∇hy
(δ,h)(x)M−1

h (xcs) in h to estimate the energy:

(
R(δ)

)T ∇hy
(δ,h)(x)M−1

h (x) = (
Id+hB(δ) + h2C(δ)

)(
Id−hm + O

(
h2

))

= Id+h
(
B(δ) − m

) + O
(
h2

)
,

where the O(h2) terms are uniform in x because m ∈ L∞ and

B(δ) = (
s + A(δ)xcs

∣∣∇csβ
(δ)

)
,

C(δ) = (
A(δ)β(δ) + ∂1β

(δ)
) ⊗ e1.
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Expanding m = mE + m⊥ as before,

B(δ) − m = ((
A(δ) − Am

)
xcs

∣∣∇cs

(
β(δ) − βm

)) − m⊥(xcs).

The next step is to apply Taylor’s Theorem to the energy. In the sequel cj denotes con-
stants possibly depending on δ but not x or h. We first notice that

dist
(∇hy

(δ,h)M−1
h ,SO(3)

)
< c1h.

By the facts that W = 0 on SO(3) and that W is C2 near SO(3) we conclude that

1

h2
W

(∇hy
(δ,h)M−1

h

)
< c2

for all sufficiently small h. Thus the bounded convergence theorem shows that:

lim
h→0

E(h)
(∇hy

(δ,h)
) = lim

h→0

1

h2

∫
Ω

W
(
Id+h

(
B(δ) − m

) + O
(
h2

))
dx

=
∫

Ω

lim
h→0

1

h2
W

(
Id+h

(
B(δ) − m

) + O
(
h2

))
dx

=
∫

Ω

Q3

(
B(δ) − m

)
dx

=
∫

Ω

Q3

(
B(δ) − mE

) +Q3(m⊥)dx,

which is equal to

E0 +
∫

Ω

Q3

(((
A − Am

) ∗ ψδ

)
xcs

∣∣∇cs

((
β − βm

) ∗ ψδ

))
dx. (22)

We now vary δ. The energy
∫
Q3(F )dx is continuous with respect to the strong L2

topology, so for any j ∈N there exists δj such that

∫
Ω

Q3

(((
A − Am

) ∗ ψδj

)
xcs

∣∣∇cs

((
β − βm

) ∗ ψδj

))
dx <

∫
Ω

Q1

(
A − Am

)
dx1 + 1

j
.

By Eq. (22), we can pick hj < δj such that

E(hj )
(∇hj

y(hj ,δj )
)
< E0 +

∫
Ω

Q3

(((
A − Am

) ∗ ψδj

)
xcs

∣∣∇cs

((
β − βm

) ∗ ψδj

))
dx + 1

j

< E0 +
∫

Ω

Q1

(
A − Am

)
dx1 + 2

j

< E(R) + 2

j
.

We conclude that limj→∞ E(h)(∇hj
y(hj ,δj )) ≤ E(R). This concludes the proof of the lim sup

inequality. �
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