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Abstract We consider a family of linearly viscoelastic shells with thickness 2ε, clamped
along their entire lateral face, all having the same middle surface S = θ(ω̄) ⊂ R

3, where
ω ⊂ R

2 is a bounded and connected open set with a Lipschitz-continuous boundary γ .
We make an essential geometrical assumption on the middle surface S, which is satis-
fied if γ and θ are smooth enough and S is uniformly elliptic. We show that, if the ap-
plied body force density is O(1) with respect to ε and surface tractions density is O(ε),
the solution of the scaled variational problem in curvilinear coordinates, u(ε), defined
over the fixed domain Ω = ω × (−1,1) for each t ∈ [0, T ], converges to a limit u with
uα(ε) → uα in W 1,2(0, T ,H 1(Ω)) and u3(ε) → u3 in W 1,2(0, T ,L2(Ω)) as ε → 0. More-
over, we prove that this limit is independent of the transverse variable. Furthermore, the
average ū = 1

2

∫ 1
−1 udx3, which belongs to the space W 1,2(0, T ,VM(ω)), where

VM(ω) = H 1
0 (ω) × H 1

0 (ω) × L2(ω),

satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic
membrane elliptic shell, which includes a long-term memory that takes into account previ-
ous deformations. We finally provide convergence results which justify those equations.
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1 Introduction

In solid mechanics, the obtention of models for rods, beams, plates and shells is based on
a priori hypotheses on the displacement and/or stress fields which, upon substitution in
the three-dimensional equilibrium and constitutive equations, lead to useful simplifications.
Nevertheless, from both constitutive and geometrical point of views, there is a need to justify
the validity of most of the models obtained in this way.

For this reason a considerable effort has been made in the past decades by many authors
in order to derive new models and justify the existing ones by using the asymptotic expan-
sion method, whose foundations can be found in [1]. Indeed, the first applied results were
obtained with the justification of the linearized theory of plate bending in [2, 3].

The existence and uniqueness of solution of elliptic membrane shell equations, can be
found in [4] and in [5]. These two-dimensional models are completely justified with con-
vergence theorems. A complete theory regarding elastic shells can be found in [6], where
models for elliptic membranes, generalized membranes and flexural shells are presented.
It contains a full description of the asymptotic procedure that leads to the corresponding sets
of two-dimensional equations. Also, the dynamic case has been studied in [7–9], concerning
the justification of dynamic equations for membrane, flexural and Koiter shells.

A large number of real problems had made it necessary the study of new models which
could take into account effects such as hardening and memory of the material. An example
of these are the viscoelasticity models (see [10–12]). Many authors have contributed to the
nowadays knowledge of this sort of problems, providing justified models and results. Indeed,
we can find examples in the literature as [13–18] and in the references therein, a variety of
models for problems concerning the viscoelastic behaviour of the material. In particular,
there exist studies of the behaviour of viscoelastic plates as in [19, 20], where models for
von Kármán plates are analysed. In some of these works, we can find analysis of the in-
fluence of short or long term memory in the equations modelling a problem. These terms
take into account previous deformations of the body, hence, they are commonly presented in
some viscoelastic problems. For instance, on one hand, we can find in [21] models includ-
ing a short term memory presented by a system of integro-differential and pseudoparabolic
equations describing large deflections on a viscoelastic plate. On the other hand, in [22] a
long term memory is considered on the study of the asymptotic behaviour of the solution of
a von Kármán plate when the time variable tends to infinity. Also, in the reference [23], the
authors study the effects of great deflections in thin plates covering both short and long term
memory cases. Concerning viscoelastic shell problems, in [24] we can find different kind
of studies where the authors also remark the viscoelastic property of the material of a shell.
For the problems dealing with the shell-type equations, there exists a very limited amount of
results available, for instance, [25] where the authors present a model for a dynamic contact
problem where a short memory (Kelvin-Voigt) material is considered. Particularly remark-
able is the increasing number of studies of viscoelastic shells problems in order to reproduce
the complex behaviour of tissues in the field of biomedicine. For example, in [26] the dif-
ficulties of this kind of problems are detailed and even though an one-dimensional model
is derived for modelling a vessel wall, the author comments the possibility of considering
two-dimensional models with a shell-type description and a viscoelastic constitutive law.
In this direction, to our knowledge, in [27] we gave the first steps towards the justification
of existing models of viscoelastic shells and the finding of new ones. By using the asymp-
totic expansion method, we found a rich variety of cases, depending on the geometry of
the middle surface, the boundary conditions and the order of the applied forces. The most
remarkable feature was that from the asymptotic analysis of the three-dimensional problems
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which included a short term memory represented by a time derivative, a long term memory
arised in the two-dimensional limit problems, represented by an integral with respect to the
time variable. This fact, agreed with previous asymptotic analysis of viscoelastic rods in
[28, 29] where an analogous behaviour was presented as well.

In this work we justify the two-dimensional equations of a viscoelastic membrane shell
where the surface S is elliptic and the boundary condition of place is considered in the whole
lateral face of the shell:

Problem 1 Find ξ ε : [0, T ] × ω −→R
3 such that,

ξ ε(t, ·) ∈ VM(ω) := H 1
0 (ω) × H 1

0 (ω) × L2(ω), ∀t ∈ [0, T ],

ε

∫

ω

aαβστ,εγστ

(
ξ ε(t)

)
γαβ(η)

√
ady + ε

∫

ω

bαβστ,εγστ

(
ξ̇

ε
(t)

)
γαβ(η)

√
ady

− ε

∫ t

0
e−k(t−s)

∫

ω

cαβστ,εγστ

(
ξ ε(s)

)
γαβ(η)

√
adyds

=
∫

ω

pi,ε(t)ηi

√
ady ∀η = (ηi) ∈ VM(ω), a.e. in (0, T ),

ξ ε(0, ·) = ξ ε
0(·),

where,

γαβ(η) := 1

2
(∂αηβ + ∂βηα) − Γ σ

αβησ − bαβη3,

pi,ε(t) :=
∫ ε

−ε

f i,ε(t)dxε
3 + hi,ε

+ (t) + hi,ε
− (t) and hi,ε

± (t) = hi,ε(t, ·,±ε),

and where the contravariant components of the fourth order two-dimensional tensors aαβστ,ε ,
bαβστ,ε , cαβστ,ε are defined as rescaled versions of two-dimensional fourth order tensors that
we shall recall later in (5.1)–(5.3).

In what follows, we shall prove that the scaled three-dimensional unknown, u(ε), con-
verges as the small parameter ε tends to zero to a limit, u, independent of the transversal
variable. Moreover, we find that this limit can be identified with transversal average, ū, for
all point of the middle surface of the shell. Furthermore, we prove that ū is the unique so-
lution of Problem 1, hence, the limit of the scaled unknown can be also identified with the
solution of the two-dimensional problem, ξ , defined over the middle surface of the shell.

We will follow the notation and style of [6], where the linear elastic shells are studied.
For this reason, we shall reference auxiliary results which apply in the same manner to the
viscoelastic case. One of the major differences with respect to previous works in elasticity,
consists on the time dependence, that will lead to ordinary differential equations that need
to be solved in order to find the zeroth-order approach of the solution.

The structure of the paper is the following: in Sect. 2 we shall recall the three-dimensional
viscoelastic problem in Cartesian coordinates and then, considering the problem for a family
of viscoelastic shells of thickness 2ε, we formulate the problem in curvilinear coordinates.
In Sect. 3 we will use a projection map into a reference domain independent of the small
parameter ε, we will introduce the scaled unknowns and forces and we present the assump-
tions on coefficients. In Sect. 4 we recall some technical results which will be needed in
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what follows. In Sect. 5, first we recall the results in [27], where the two-dimensional equa-
tions for a viscoelastic membrane shell were studied, in the particular case where the middle
surface is elliptic and the boundary condition of place is considered in the whole lateral face
of the shell. Then, we present the convergence results when the small parameter ε tends to
zero, which is the main result of this paper. After that, we present the convergence results
in terms of de-scaled unknowns. In Sect. 6 we shall present some conclusions, including a
comparison between the viscoelastic models and the elastic case studied in [6] and announce
the convergence results regarding other cases in forthcoming papers.

2 The Three-Dimensional Linearly Viscoelastic Shell Problem

We denote S
d , where d = 2,3 in practice, the space of second-order symmetric tensors

on R
d , while “·” will represent the inner product and | · | the usual norm in S

d and R
d . In

what follows, unless the contrary is explicitly written, we will use summation convention on
repeated indices. Moreover, Latin indices i, j, k, l, . . ., take their values in the set {1,2,3},
whereas Greek indices α,β,σ, τ, . . ., do it in the set {1,2}. Also, we use standard notation
for the Lebesgue and Sobolev spaces. Also, for a time dependent function u, we denote u̇

the first derivative of u with respect to the time variable. Recall that “→” denotes strong
convergence, while “⇀” denotes weak convergence.

Let Ω∗ be a domain of R
3, with a Lipschitz-continuous boundary Γ ∗ = ∂Ω∗. Let

x∗ = (x∗
i ) be a generic point of its closure Ω̄∗ and let ∂∗

i denote the partial derivative with
respect to x∗

i . Let dx∗ denote the volume element in Ω∗, dΓ ∗ denote the area element along
Γ ∗ and n∗ denote the unit outer normal vector along Γ ∗. Finally, let Γ ∗

0 and Γ ∗
1 be subsets

of Γ ∗ such that meas(Γ ∗
0 ) > 0 and Γ ∗

0 ∩ Γ ∗
1 = ∅.

The set Ω∗ is the region occupied by a deformable body in the absence of applied
forces. We assume that this body is made of a Kelvin-Voigt viscoelastic material, which
is homogeneous and isotropic, so that the material is characterized by its Lamé coefficients
λ ≥ 0,μ > 0 and its viscosity coefficients, θ ≥ 0, ρ ≥ 0 (see for instance [10, 11, 30]).

Let T > 0 be the time period of observation. Under the effect of applied forces, the
body is deformed and we denote by u∗

i : [0, T ] × Ω̄∗ → R
3 the Cartesian components of

the displacements field, defined as u∗ := u∗
i e

i : [0, T ] × Ω̄∗ → R
3, where {ei} denotes the

Euclidean canonical basis in R
3. Moreover, we consider that the displacement field vanishes

on the set Γ ∗
0 . Hence, the displacements field u∗ = (u∗

i ) : [0, T ] × Ω∗ −→ R
3 is solution of

the following three-dimensional problem in Cartesian coordinates.

Problem 2 Find u∗ = (u∗
i ) : [0, T ] × Ω∗ −→R

3 such that,

−∂∗
j σ ij,∗(u∗) = f i,∗ in Ω∗, (2.1)

u∗
i = 0 on Γ ∗

0 , (2.2)

σ ij,∗(u∗)n∗
j = hi,∗ on Γ ∗

1 , (2.3)

u∗(0, ·) = u∗
0 in Ω∗, (2.4)

where the functions

σ ij,∗(u∗) := Aijkl,∗e∗
kl

(
u∗) + Bijkl,∗e∗

kl

(
u̇∗),
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are the components of the linearized stress tensor field and where the functions

Aijkl,∗ := λδij δkl + μ
(
δikδjl + δilδjk

)
,

Bijkl,∗ := θδij δkl + ρ

2

(
δikδjl + δilδjk

)
,

are the components of the three-dimensional elasticity and viscosity fourth order tensors,
respectively, and

e∗
ij

(
u∗) := 1

2

(
∂∗

j u∗
i + ∂∗

i u∗
j

)
,

designates the components of the linearized strain tensor associated with the displacement
field u∗of the set Ω̄∗.

We now proceed to describe the equations in Problem 2. Expression (2.1) is the equilibrium
equation, where f i,∗ are the components of the volumic force densities. The equality (2.2) is
the Dirichlet condition of place, (2.3) is the Neumann condition, where hi,∗ are the compo-
nents of surface force densities and (2.4) is the initial condition, where u∗

0 denotes the initial
displacements.

Note that, for the sake of briefness, we omit the explicit dependence on the space and
time variables when there is no ambiguity. Let us define the space of admissible unknowns,

V
(
Ω∗) = {

v∗ = (
v∗

i

) ∈ [
H 1

(
Ω∗)]3;v∗ = 0 on Γ ∗

0

}
.

Therefore, assuming enough regularity, the unknown u∗ = (u∗
i ) satisfies the following vari-

ational problem in Cartesian coordinates:

Problem 3 Find u∗ = (u∗
i ) : [0, T ] × Ω∗ → R

3 such that,

u∗(t, ·) ∈ V
(
Ω∗) ∀t ∈ [0, T ],

∫

Ω∗
Aijkl,∗e∗

kl

(
u∗)e∗

ij

(
v∗)dx∗ +

∫

Ω∗
Bijkl,∗e∗

kl

(
u̇∗)e∗

ij

(
v∗)dx∗

=
∫

Ω∗
f i,∗v∗

i dx∗ +
∫

Γ ∗
1

hi,∗v∗
i dΓ ∗ ∀v∗ ∈ V

(
Ω∗), a.e. in (0, T ),

u∗(0, ·) = u∗
0(·).

Let us consider that Ω∗ is a viscoelastic shell of thickness 2ε. Now, we shall express the
equations of Problem 3 in terms of curvilinear coordinates. Let ω be a domain of R2, with
a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic point of its closure ω̄

and let ∂α denote the partial derivative with respect to yα .
Let θ ∈ C2(ω̄;R3) be an injective mapping such that the two vectors aα(y) := ∂αθ(y)

are linearly independent. These vectors form the covariant basis of the tangent plane to the
surface S := θ(ω̄) at the point θ(y) = y∗. The surface S is uniformly elliptic, in the sense
that the two principal radius of curvature are either both positive at all points of S, or both
negative at all points of S. We can consider the two vectors aα(y) of the same tangent plane
defined by the relations aα(y) ·aβ(y) = δα

β , that constitute the contravariant basis. We define
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the unit vector,

a3(y) = a3(y) := a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)| , (2.5)

normal vector to S at the point θ(y) = y∗, where ∧ denotes vector product in R
3.

We can define the first fundamental form, given as metric tensor, in covariant or con-
travariant components, respectively, by

aαβ := aα · aβ, aαβ := aα · aβ,

the second fundamental form, given as curvature tensor, in covariant or mixed components,
respectively, by

bαβ := a3 · ∂βaα, bβ
α := aβσ bσα,

and the Christoffel symbols of the surface S by

Γ σ
αβ := aσ · ∂βaα.

The area element along S is
√

ady = dy∗ where

a := det(aαβ). (2.6)

For each ε > 0, we define the three-dimensional domain Ωε := ω × (−ε, ε) and its
boundary Γ ε = ∂Ωε . We also define the following parts of the boundary,

Γ ε
+ := ω × {ε}, Γ ε

− := ω × {−ε}, Γ ε
0 := γ × [−ε, ε].

Let xε = (xε
i ) be a generic point of Ω̄ε and let ∂ε

i denote the partial derivative with respect
to xε

i . Note that xε
α = yα and ∂ε

α = ∂α . Let Θ : Ω̄ε →R
3 be the mapping defined by

Θ
(
xε

) := θ(y) + xε
3a3(y) ∀xε = (

y, xε
3

) = (
y1, y2, x

ε
3

) ∈ Ω̄ε. (2.7)

The next theorem shows that if the injective mapping θ : ω̄ → R
3 is smooth enough, the

mapping Θ : Ω̄ε → R
3 is also injective for ε > 0 small enough (see Theorem 3.1-1, [6]).

Theorem 1 Let ω be a domain in R
2. Let θ ∈ C2(ω̄;R3) be an injective mapping such that

the two vectors aα = ∂αθ are linearly independent at all points of ω̄ and let a3, defined
in (2.5). Then there exists ε0 > 0 such that the mapping Θ : Ω̄0 → R

3 defined by

Θ(y, x3) := θ(y) + x3a3(y) ∀(y, x3) ∈ Ω̄0, where Ω0 := ω × (−ε0, ε0),

is a C1− diffeomorphism from Ω̄0 onto Θ(Ω̄0) and det(g1,g2,g3) > 0 in Ω̄0, where
gi := ∂iΘ .

For each ε, 0 < ε ≤ ε0, the set Θ(Ω̄ε) = Ω̄∗ is the reference configuration of a vis-
coelastic shell, with middle surface S = θ(ω̄) and thickness 2ε > 0. Furthermore for ε > 0,
gε

i (x
ε) := ∂ε

i Θ(xε) are linearly independent and the mapping Θ : Ω̄ε → R
3 is injective for

all ε, 0 < ε ≤ ε0, as a consequence of injectivity of the mapping θ . Hence, the three vectors
gε

i (x
ε) form the covariant basis of the tangent space at the point x∗ = Θ(xε) and gi,ε(xε)
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defined by the relations gi,ε · gε
j = δi

j form the contravariant basis at the point x∗ = Θ(xε).
We define the metric tensor, in covariant or contravariant components, respectively, by

gε
ij := gε

i · gε
j , gij,ε := gi,ε · gj,ε,

and Christoffel symbols by

Γ
p,ε

ij := gp,ε · ∂ε
i g

ε
j . (2.8)

The volume element in the set Θ(Ω̄ε) = Ω̄∗ is
√

gεdxε = dx∗ and the surface element
in Θ(Γ ε) = Γ ∗ is

√
gεdΓ ε = dΓ ∗ where

gε := det
(
gε

ij

)
. (2.9)

Therefore, for a field v∗ defined in Θ(Ω̄ε) = Ω̄∗, we define its covariant curvilinear coordi-
nates vε

i by

v∗(x∗) = v∗
i

(
x∗)ei =: vε

i

(
xε

)
gi

(
xε

)
, with x∗ = Θ

(
xε

)
.

Besides, we denote by uε
i : [0, T ] × Ω̄ε → R

3 the covariant components of the displace-
ments field, that is U ε := uε

i g
i,ε : [0, T ] × Ω̄ε → R

3. For simplicity, we define the vector
field uε = (uε

i ) : [0, T ] × Ωε → R
3 which will be denoted vector of unknowns.

Recall that we assumed that the shell is subjected to a boundary condition of place; in
particular that the displacements field vanishes in Θ(Γ ε

0 ) = Γ ∗
0 , this is, on the whole lateral

face of the shell.
Accordingly, let us define the space of admissible unknowns,

V
(
Ωε

) = {
vε = (

vε
i

) ∈ [
H 1

(
Ωε

)]3;vε = 0 on Γ ε
0

}
.

This is a real Hilbert space with the induced inner product of [H 1(Ωε)]3. The corre-
sponding norm is denoted by ‖ · ‖1,Ωε .

Therefore, we can find the expression of Problem 3 in curvilinear coordinates (see [6]
for details). Hence, the “displacements” field uε = (uε

i ) verifies the following variational
problem of a three-dimensional viscoelastic shell in curvilinear coordinates:

Problem 4 Find uε = (uε
i ) : [0, T ] × Ωε → R

3 such that,

uε(t, ·) ∈ V
(
Ωε

) ∀t ∈ [0, T ],
∫

Ωε

Aijkl,εeε
k‖l

(
uε

)
eε
i‖j

(
vε

)√
gεdxε +

∫

Ωε

Bijkl,εeε
k‖l

(
u̇ε

)
eε
i‖j

(
vε

)√
gεdxε

=
∫

Ωε

f i,εvε
i

√
gεdxε +

∫

Γ ε+∪Γ ε−
hi,εvε

i

√
gεdΓ ε ∀vε ∈ V

(
Ωε

)
, a.e. in (0, T ),

uε(0, ·) = uε
0(·),

where the functions

Aijkl,ε := λgij,εgkl,ε + μ
(
gik,εgjl,ε + gil,εgjk,ε

)
, (2.10)

Bijkl,ε := θgij,εgkl,ε + ρ

2

(
gik,εgjl,ε + gil,εgjk,ε

)
, (2.11)
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are the contravariant components of the three-dimensional elasticity and viscosity tensors,
respectively. We assume that the Lamé coefficients λ ≥ 0, μ > 0 and the viscosity coeffi-
cients θ ≥ 0, ρ ≥ 0 are all independent of ε. Moreover, the terms

eε
i‖j

(
uε

) := 1

2

(
uε

i‖j + uε
j‖i

) = 1

2

(
∂ε

j u
ε
i + ∂ε

i u
ε
j

) − Γ
p,ε

ij uε
p,

designate the covariant components of the linearized strain tensor associated with the dis-
placement field U εof the set Θ(Ω̄ε). Moreover, f i,ε denotes the contravariant compo-
nents of the volumic force densities, hi,ε denotes contravariant components of surface force
densities and uε

0 denotes the initial “displacements” (actually, the initial displacement is
U ε

0 := (uε
0)ig

i,ε).
Note that the following additional relations are satisfied,

Γ
3,ε
α3 = Γ

p,ε

33 = 0 in Ω̄ε,

Aαβσ3,ε = Aα333,ε = Bαβσ3,ε = Bα333,ε = 0 in Ω̄ε,
(2.12)

as a consequence of the definition of Θ in (2.7).
The existence and uniqueness of solution of Problem 4 for ε > 0 small enough, estab-

lished in the following theorem, was proved in [27].

Theorem 2 Let Ωε be a domain in R
3 defined previously in this section and let Θ be

a C2-diffeomorphism of Ω̄ε in its image Θ(Ω̄ε), such that the three vectors gε
i (x) =

∂ε
i Θ(xε) are linearly independent for all xε ∈ Ω̄ε . Let Γ ε

0 be a dΓ ε-measurable subset of
Γ ε = ∂Ωε such that meas(Γ ε

0 ) > 0. Let f i,ε ∈ L2(0, T ;L2(Ωε)), hi,ε ∈ L2(0, T ;L2(Γ ε
1 )),

where Γ ε
1 := Γ ε+ ∪ Γ ε−. Let uε

0 ∈ V (Ωε). Then, there exists a unique solution uε = (uε
i ) :

[0, T ] × Ωε → R
3 satisfying Problem 4. Moreover, uε ∈ W 1,2(0, T ;V (Ωε)). In addition to

that, if ḟ i,ε ∈ L2(0, T ;L2(Ωε)), ḣi,ε ∈ L2(0, T ;L2(Γ ε
1 )), then uε ∈ W 2,2(0, T ;V (Ωε)).

3 The Scaled Three-Dimensional Shell Problem

For convenience, we consider a reference domain independent of the small parameter ε.
Hence, let us define the three-dimensional domain Ω := ω × (−1,1) and its boundary
Γ = ∂Ω . We also define the following parts of the boundary,

Γ+ := ω × {1}, Γ− := ω × {−1}, Γ0 := γ × [−1,1].

Let x = (x1, x2, x3) be a generic point in Ω̄ and we consider the notation ∂i for the partial
derivative with respect to xi . We define the following projection map,

πε : x = (x1, x2, x3) ∈ Ω̄ → πε(x) = xε = (
xε

i

) = (
xε

1 , x
ε
2, x

ε
3

) = (x1, x2, εx3) ∈ Ω̄ε,

hence, ∂ε
α = ∂α and ∂ε

3 = 1
ε
∂3. We consider the scaled unknown u(ε) = (ui(ε)) : [0, T ] ×

Ω̄ →R
3 and the scaled vector fields v = (vi) : Ω̄ → R

3 defined as

uε
i

(
t,xε

) =: ui(ε)(t,x) and vε
i

(
xε

) =: vi(x) ∀xε = πε(x) ∈ Ω̄ε, ∀t ∈ [0, T ].
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Also, let the functions, Γ
p,ε

ij , gε,Aijkl,ε,Bijkl,ε defined in (2.8), (2.9), (2.10) and (2.11),
be associated with the functions Γ

p

ij (ε), g(ε),Aijkl(ε),Bijkl(ε) defined by

Γ
p

ij (ε)(x) := Γ
p,ε

ij

(
xε

)
, (3.1)

g(ε)(x) := gε
(
xε

)
, (3.2)

Aijkl(ε)(x) := Aijkl,ε
(
xε

)
, (3.3)

Bijkl(ε)(x) := Bijkl,ε
(
xε

)
, (3.4)

for all xε = πε(x) ∈ Ω̄ε . For all v = (vi) ∈ [H 1(Ω)]3, let there be associated the scaled
linearized strains components ei‖j (ε)(v) ∈ L2(Ω), defined by

eα‖β(ε;v) := 1

2
(∂βvα + ∂αvβ) − Γ

p

αβ(ε)vp, (3.5)

eα‖3(ε;v) := 1

2

(
1

ε
∂3vα + ∂αv3

)

− Γ
p

α3(ε)vp, (3.6)

e3‖3(ε;v) := 1

ε
∂3v3. (3.7)

Note that with these definitions it is verified that

eε
i‖j

(
vε

)(
πε(x)

) = ei‖j (ε;v)(x) ∀x ∈ Ω.

Remark 1 The functions Γ
p

ij (ε), g(ε),Aijkl(ε),Bijkl(ε) converge in C0(Ω̄) when ε tends to
zero.

Remark 2 When we consider ε = 0 the functions will be defined with respect to y ∈ ω̄. We
shall distinguish the three-dimensional Christoffel symbols from the two-dimensional ones
by using Γ σ

αβ(ε) and Γ σ
αβ , respectively.

The next result is an adaptation of (b) in Theorem 3.3-2, [6] to the viscoelas-
tic case. We will study the asymptotic behaviour of the scaled contravariant compo-
nents Aijkl(ε),Bijkl(ε) of the three-dimensional elasticity and viscosity tensors defined in
(3.3)–(3.4), as ε → 0. We show their uniform positive definiteness not only with respect to
x ∈ Ω̄ , but also with respect to ε, 0 < ε ≤ ε0. Finally, their limits are functions of y ∈ ω̄

only, that is, independent of the transversal variable x3.

Theorem 3 Let ω be a domain in R
2 and let θ ∈ C2(ω̄;R3) be an injective mapping such

that the two vectors aα = ∂αθ are linearly independent at all points of ω̄, let aαβ denote the
contravariant components of the metric tensor of S = θ(ω̄). In addition to that, let the other
assumptions on the mapping θ and the definition of ε0 be as in Theorem 1. The contravari-
ant components Aijkl(ε),Bijkl(ε) of the scaled three-dimensional elasticity and viscosity
tensors, respectively, defined in (3.3)–(3.4) satisfy

Aijkl(ε) = Aijkl(0) + O(ε) and Aαβσ3(ε) = Aα333(ε) = 0,

Bijkl(ε) = Bijkl(0) + O(ε) and Bαβσ3(ε) = Bα333(ε) = 0,
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for all ε, 0 < ε ≤ ε0, and

Aαβστ (0) = λaαβaστ + μ
(
aασ aβτ + aατ aβσ

)
, Aαβ33(0) = λaαβ,

Aα3σ3(0) = μaασ , A3333(0) = λ + 2μ,

Aαβσ3(0) = Aα333(0) = 0,

Bαβστ (0) = θaαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
, Bαβ33(0) = θaαβ,

Bα3σ3(0) = ρ

2
aασ , B3333(0) = θ + ρ,

Bαβσ3(0) = Bα333(0) = 0.

Moreover, there exist two constants Ce > 0 and Cv > 0, independent of the variables and ε,
such that

∑

i,j

|tij |2 ≤ CeA
ijkl(ε)(x)tkl tij , (3.8)

∑

i,j

|tij |2 ≤ CvB
ijkl(ε)(x)tkl tij , (3.9)

for all ε, 0 < ε ≤ ε0, for all x ∈ Ω̄ and all t = (tij ) ∈ S
2.

Remark 3 Note that the proof for the scaled viscosity tensor (Bijkl(ε)) would follow the
steps of the proof for the elasticity tensor (Aijkl(ε)) in Theorem 3.3-2, [6], since from a
quality point of view their expressions differ in replacing the Lamé constants by the two
viscosity coefficients.

Let the scaled applied forces f i (ε) : [0, T ]×Ω →R
3 and hi (ε) : [0, T ]× (Γ+ ∪Γ−) →

R
3 be defined by

f ε = (
f i,ε

)(
t,xε

) =: f (ε) = (
f i(ε)

)
(t,x)

∀x ∈ Ω, where xε = πε(x) ∈ Ωε and ∀t ∈ [0, T ],
hε = (

hi,ε
)(

t,xε
) =: h(ε) = (

hi(ε)
)
(t,x)

∀x ∈ Γ+ ∪ Γ−, where xε = πε(x) ∈ Γ ε
+ ∪ Γ ε

− and ∀t ∈ [0, T ].
Also, we introduce u0(ε) : Ω → R

3 by

u0(ε)(x) := uε
0

(
xε

) ∀x ∈ Ω, where xε = πε(x) ∈ Ωε,

and define the space

V (Ω) := {
v = (vi) ∈ [

H 1(Ω)
]3;v = 0 on Γ0

}
,

which is a Hilbert space, with associated norm denoted by ‖ · ‖1,Ω .
We assume that the scaled applied forces are given by

f (ε)(t,x) = εpf p(t,x) ∀x ∈ Ω and ∀t ∈ [0, T ],
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h(ε)(t,x) = εp+1hp+1(t,x) ∀x ∈ Γ+ ∪ Γ− and ∀t ∈ [0, T ],

where f p and hp+1 are functions independent of ε and where p is a natural number that will
show the order of the volume and surface forces, respectively. Then, the scaled variational
problem can be written as follows:

Problem 5 Find u(ε) : [0, T ] × Ω → R
3 such that,

u(ε)(t, ·) ∈ V (Ω) ∀t ∈ [0, T ],
∫

Ω

Aijkl(ε)ek‖l
(
ε,u(ε)

)
ei‖j (ε,v)

√
g(ε)dx +

∫

Ω

Bijkl(ε)ek‖l
(
ε, u̇(ε)

)
ei‖j (ε,v)

√
g(ε)dx

=
∫

Ω

εpf i,pvi

√
g(ε)dx +

∫

Γ+∪Γ−
εphi,p+1vi

√
g(ε)dΓ ∀v ∈ V (Ω), a.e. in (0, T ),

u(ε)(0, ·) = u0(ε)(·).

From now on, for each ε > 0, we shall use the shorter notation ei‖j (ε) ≡ ei‖j (ε;u(ε)) and
ėi‖j (ε) ≡ ei‖j (ε; u̇(ε)), for its time derivative. We recall the existence and uniqueness of
Problem 5 in the following theorem whose proof can be found in [27]:

Theorem 4 Let Ω be a domain in R
3 defined previously in this section and let Θ be a

C2-diffeomorphism of Ω̄ onto its image Θ(Ω̄), such that the three vectors gi = ∂iΘ(x) are
linearly independent for all x ∈ Ω̄ . Let f i(ε) ∈ L2(0, T ;L2(Ω)), hi(ε) ∈ L2(0, T ;L2(Γ1)),
where Γ1 := Γ+ ∪ Γ−. Let u0(ε) ∈ V (Ω). Then, there exists a unique solution u(ε) =
(ui(ε)) : [0, T ] × Ω → R

3 satisfying Problem 5. Moreover u(ε) ∈ W 1,2(0, T ;V (Ω)).
In addition to that, if ḟ i (ε) ∈ L2(0, T ;L2(Ω)), ḣi(ε) ∈ L2(0, T ;L2(Γ1)), then u(ε) ∈
W 2,2(0, T ;V (Ω)).

4 Technical Preliminaries

Concerning geometrical and mechanical preliminaries, we shall present some theorems,
which will be used in the following sections. First, we recall Theorem 3.3-1, [6].

Theorem 5 Let ω be a domain in R
2, let θ ∈ C3(ω̄;R3) be an injective mapping such that

the two vectors aα = ∂αθ are linearly independent at all points of ω̄ and let ε0 > 0 be as in
Theorem 1. The functions Γ

p

ij (ε) = Γ
p

ji (ε) and g(ε) are defined in (3.1)–(3.2), the functions
bαβ, bσ

α ,Γ σ
αβ, a, are defined in Sect. 2 and the covariant derivatives bσ

β |α are defined by

bσ
β

∣
∣
α
:= ∂αb

σ
β + Γ σ

ατ b
τ
β − Γ τ

αβbσ
τ .

The functions bαβ, bσ
α ,Γ σ

αβ, bσ
β |α and a are identified with functions in C0(Ω̄). Then

Γ σ
αβ(ε) = Γ σ

αβ − εx3b
σ
β

∣
∣
α
+O

(
ε2

)
,

∂3Γ
p

αβ(ε) = O(ε),

Γ 3
α3(ε) = Γ

p

33(ε) = 0,

Γ 3
αβ(ε) = bαβ − εx3b

σ
αbσβ,

Γ σ
α3(ε) = −bσ

α − εx3b
τ
αb

σ
τ + O

(
ε2

)
,

g(ε) = a + O(ε),
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for all ε, 0 < ε ≤ ε0, where the order symbols O(ε) and O(ε2) are meant with respect to the
norm ‖ · ‖0,∞,Ω̄ defined by

‖w‖0,∞,Ω̄ = sup
{∣∣w(x)

∣
∣;x ∈ Ω̄

}
.

Finally, there exist constants a0, g0 and g1 such that

0 < a0 ≤ a(y) ∀y ∈ ω̄,

0 < g0 ≤ g(ε)(x) ≤ g1 ∀x ∈ Ω̄ and ∀ε, 0 < ε ≤ ε0.
(4.1)

Remark 4 The asymptotic behaviour of g(ε) and the contravariant components of elasticity
and viscosity tensors, Aijkl(ε), Bijkl(ε) also implies that

Aijkl(ε)
√

g(ε) = Aijkl(0)
√

a + εÃijkl,1 + ε2Ãijkl,2 + o
(
ε2

)
, (4.2)

Bijkl(ε)
√

g(ε) = Bijkl(0)
√

a + εB̃ijkl,1 + ε2B̃ijkl,2 + o
(
ε2

)
, (4.3)

for certain regular contravariant components Ãijkl,α, B̃ijkl,α of certain tensors.

We now include the following result that will be used repeatedly in what follows (see
Theorem 3.4-1, [6], for details).

Theorem 6 Let ω be a domain in R
2 with boundary γ , let Ω = ω × (−1,1), and let

g ∈ Lp(Ω), p > 1, be a function such that

∫

Ω

g∂3vdx = 0, for all v ∈ C∞(Ω̄) with v = 0 on γ × [−1,1].

Then g = 0.

Remark 5 This result holds if
∫

Ω
g∂3vdx = 0 for all v ∈ H 1(Ω) such that v = 0 in Γ0. It is

in this way that we will use this result in the following.

We now introduce the average with respect to the transversal variable, which plays a
major role in this study. To that end, let v represent real or vectorial functions defined almost
everywhere over Ω = ω × (−1,1). We define the transversal average as

v̄(y) = 1

2

∫ 1

−1
v(y, x3)dx3

for almost all y ∈ ω. Given η = (ηi) ∈ [H 1(ω)]3, let

γαβ(η) := 1

2
(∂βηα + ∂αηβ) − Γ σ

αβησ − bαβη3, (4.4)

denote the covariant components of the linearized change of metric tensor associated with a
displacement field ηia

i of the surface S. Next theorem will show some results related with
the transversal averages that will be useful in the next section.

Theorem 7 Let ω be a domain in R
2, let Ω = ω × (−1,1) and T > 0.
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(a) Let v ∈ W 1,2(0, T ,L2(Ω)). Then v̄(y) is finite for almost all y ∈ ω, belongs to
W 1,2(0, T ,L2(ω)), and

|v̄|W1,2(0,T ,L2(ω)) ≤ 1√
2
|v|W1,2(0,T ,L2(Ω)).

If ∂3v = 0 in the distributions sense (
∫

Ω
v∂3ϕdx = 0 ∀ϕ ∈ D(Ω)) then v does not de-

pend on x3 and

v(y, x3) = v̄(y) for almost all (y, x3) ∈ Ω.

(b) Let v ∈ W 1,2(0, T ,H 1(Ω)). Then v̄ ∈ W 1,2(0, T ,H 1(ω)), ∂αv̄ = ∂αv and

‖v̄‖W1,2(0,T ,H 1(ω)) ≤ 1√
2
‖v‖W1,2(0,T ,H 1(Ω)).

Let γ0 be a subset ∂γ -measurable of γ . If v = 0 on γ0 × [−1,1] then v̄ = 0 on γ0; in
particular, v̄ ∈ W 1,2(0, T ,H 1

0 (ω)) if v = 0 on γ × [−1,1].
(c) Let (v(ε))ε>0 be a sequence of functions v(ε) ∈ W 1,2(0, T ,H 1(Ω)) and let v̄ ∈

W 1,2(0, T ,L2(ω)) such that

∂3v(ε) → 0 in W 1,2
(
0, T ,L2(Ω)

)
and

v̄(ε) → v̄ in W 1,2
(
0, T ,L2(ω)

)
when ε → 0.

Then, v(ε) → v̄ in W 1,2(0, T ,L2(Ω)) when ε → 0, where the function v̄ ∈
W 1,2(0, T ,L2(ω)) is identified with a function in W 1,2(0, T ,L2(Ω)) taking
v̄(y, x3) := v̄(y) for almost all (y, x3) ∈ Ω .

(d) Let θ ∈ C3(ω̄;R3). We consider a sequence (v(ε))ε>0 of vector fields v(ε) = (vi(ε)) ∈
W 1,2(0, T , [H 1(Ω)]3) that is bounded in W 1,2(0, T , [L2(Ω)]3). Then,

(
eα‖β

(
ε;v(ε)

) − γαβ

(
v(ε)

)) → 0 in W 1,2
(
0, T ,L2(ω)

)
when ε → 0.

Remark 6 This theorem is a corollary of Theorem 4.2-1, [6] and its proof follows straight-
forward from the result presented there. The main difference is that we are interested in
obtaining the corresponding conclusions in the Bochner spaces, namely W 1,2(0, T ,L2(Ω)),
W 1,2(0, T ,L2(ω)), W 1,2(0, T ,H 1(Ω)), W 1,2(0, T ,H 1(ω)). Therefore, most of the changes
of the proof consist in adding an additional integral with respect to the time variable and
proving the statements for the functions and their time derivatives, alternately, over the
spaces L2(0, T ,L2(Ω)), L2(0, T ,L2(ω)), L2(0, T ,H 1(Ω)), L2(0, T ,H 1(ω)).

In the next theorem we recall a three-dimensional inequality of Korn’s type for a family
of elliptic membrane shells, that can also be found in Theorem 4.3-1, [6].

Theorem 8 Assume that θ ∈ C3(ω̄;R3) and consider ε0 defined as in Theorem 1. We con-
sider a family of elliptic membrane shells with thickness 2ε with each having the same mid-
dle surface S = θ(ω̄). Then there exist a constant ε1 verifying 0 < ε1 < ε0 and a constant
C > 0 such that, for all ε,0 < ε ≤ ε1, the following three-dimensional inequality of Korn’s
type holds,

(∑

α

‖vα‖2
1,Ω + |v3|20,Ω

)1/2

≤ C

(∑

i,j

∣
∣ei‖j (ε;v)

∣
∣2

0,Ω

)1/2

∀v = (vi) ∈ V (Ω). (4.5)
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Let us define the space

V (ω) := {
v = (vi) ∈ [

H 1(ω)
]3;vi = 0 on γ

}
.

Theorem 9 Let ω be a domain in R
2 and let θ ∈ C2,1(ω̄;R3) be an injective mapping such

that the two vectors aα = ∂αθ are linearly independent at all points of ω̄ and such that the
surface S = θ(ω̄) is elliptic. Then the following inequality is verified

(∑

α

‖ηα‖2
1,ω + |η3|20,ω

)1/2

≤ CM

(∑

α,β

∣
∣γαβ(η)

∣
∣2

0,ω

)1/2

∀η ∈ VM(ω). (4.6)

The proof of this result can be found in Theorem 2.7-3, [6]. Note that this implies that the
completion of V (ω) with the norm

| · |Mω :=
(∑

α,β

∣
∣γαβ(η)

∣
∣2

0,ω

)1/2

is precisely VM(ω).

5 Asymptotic Analysis. Convergence Results as ε → 0

Firstly, we recall the two-dimensional equations obtained for a viscoelastic membrane shell
as a consequence of the formal asymptotic study made in [27]. For the case of elliptic mem-
branes, the right space where the problem is well posed is VM(ω). Moreover, the space
defined by

V0(ω) := {
η ∈ [

H 1(ω)
]3;η = 0 on γ, γαβ(η) = 0 on ω

}
,

is such that only contains the element η = 0 (see (4.6)).
From the asymptotic analysis made in [27], we show that, if the applied body force

density is O(1) with respect to ε and surface tractions density is O(ε) in Problem 5, we
obtain the two-dimensional variational problem for a viscoelastic membrane shell. Let us
remind the definition of the two-dimensional fourth-order tensors that appeared naturally in
that study,

aαβστ := 2λρ2 + 4μθ2

(θ + ρ)2
aαβaστ + 2μ

(
aασ aβτ + aατ aβσ

)
, (5.1)

bαβστ := 2θρ

θ + ρ
aαβaστ + ρ

(
aασ aβτ + aατ aβσ

)
, (5.2)

cαβστ := 2(θΛ)2

θ + ρ
aαβaστ , (5.3)

where

Λ :=
(

λ

θ
− λ + 2μ

θ + ρ

)

. (5.4)

Therefore, we can enunciate the two-dimensional variational problem for a linear viscoelas-
tic elliptic membrane shell:
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Problem 6 Find ξ : [0, T ] × ω →R
3 such that,

ξ(t, ·) ∈ VM(ω) ∀t ∈ [0, T ],
∫

ω

aαβστ γστ (ξ)γαβ(η)
√

ady +
∫

ω

bαβστ γστ (ξ̇)γαβ(η)
√

ady

−
∫ t

0
e−k(t−s)

∫

ω

cαβστ γστ

(
ξ(s)

)
γαβ(η)

√
adyds

=
∫

ω

pi,0ηi

√
ady ∀η = (ηi) ∈ VM(ω), a.e. t ∈ (0, T )

ξ(0, ·) = ξ 0(·),
where we introduced the constant k defined by

k := λ + 2μ

θ + ρ
, (5.5)

and

pi,0(t) :=
∫ 1

−1
f i,0(t)dx3 + hi,1

+ (t) + hi,1
− (t), with hi,1

± (t) = hi,1(t, ·,±1).

The Problem 6 is well posed and it has existence and uniqueness of solution. Furthermore,
we obtained the following result (see [27] for details of the proof of the de-scaled version):

Theorem 10 Let ω be a domain in R
2, let θ ∈ C2(ω̄;R3) be an injective mapping such

that the two vectors aα = ∂αθ are linearly independent at all points of ω̄. Let f i,0 ∈
L2(0, T ;L2(Ω)), hi,1 ∈ L2(0, T ;L2(Γ1)), where Γ1 := Γ+ ∪ Γ−. Let ξ 0 ∈ VM(ω). Then
Problem 6, has a unique solution ξ ∈ W 1,2(0, T ;VM(ω)). In addition to that, if ḟ i,0 ∈
L2(0, T ;L2(Ω)), ḣi,1 ∈ L2(0, T ;L2(Γ1)), then ξ ∈ W 2,2(0, T ;VM(ω)).

For each ε > 0, we assume that the initial condition for the scaled linear strains is

ei‖j (ε)(0, ·) = 0, (5.6)

this is, the domain is on its natural state with no strains on it at the beginning of the period
of observation.

Now, we present here the main result of this paper, namely that the scaled three-
dimensional unknown u(ε) converges, as ε tends to zero, towards a limit u independent
of the transversal variable. Moreover, this limit can be identified with the solution ξ = ū of
Problem 6, posed over the set ω.

Theorem 11 Assume that θ ∈ C3(ω̄;R3). Consider a family of viscoelastic elliptic mem-
brane shells with thickness 2ε approaching zero and with each having the same elliptic
middle surface S = θ(ω̄), and let the assumptions on the data be as in Theorem 10. For
all ε, 0 < ε ≤ ε0 let u(ε) be the solution of the associated three-dimensional scaled Prob-
lem 5 for p = 0. Then, there exist functions uα ∈ W 1,2(0, T ,H 1(Ω)) satisfying uα = 0 on
γ × [−1,1] and a function u3 ∈ W 1,2(0, T ,L2(Ω)), such that

(i) uα(ε) → uα in W 1,2(0, T ,H 1(Ω)) and u3(ε) → u3 in W 1,2(0, T ,L2(Ω)) when ε → 0,
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(ii) u := (ui) is independent of the transversal variable x3.

Furthermore, the average ū := 1
2

∫ 1
−1 udx3 verifies Problem 6.

Proof We follow the same structure of the proof in Theorem 4.4-1, [6]. Hence, we shall
reference some steps which apply in the same manner. We start by considering that the
proposed problem is subjected only to volume forces in order to simplify the exposition. We
will add the surface forces in latter steps. Therefore, we suppose that the scaled unknown
u(ε) satisfies the following variational problem:

Find u(ε)(t, ·) ∈ V (Ω) ∀t ∈ [0, T ] such that
∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε,v)
√

g(ε)dx +
∫

Ω

Bijkl(ε)ėk‖l (ε)ei‖j (ε,v)
√

g(ε)dx

=
∫

Ω

f ivi

√
g(ε)dx ∀v ∈ V (Ω), a.e. t ∈ (0, T ) (5.7)

u(ε)(0, ·) = u0(ε)(·),
where we identified f i ≡ f i,0, for notational brevity. The proof is divided into several parts,
numbered from (i) to (x).

(i) A priori boundedness and extraction of weak convergent sequences.
The norms |ei‖j (ε)|W1,2(0,T ,L2(Ω)),‖uα(ε)‖W1,2(0,T ,H 1(Ω)), and |u3(ε)|W1,2(0,T ,L2(Ω)) are
bounded independently of ε,0 < ε ≤ ε1, where ε1 > 0 is given in Theorem 8. Con-
sequently, there exists a subsequence, also denoted (u(ε))ε>0, and functions ei‖j ∈
W 1,2(0, T ,L2(Ω)),uα ∈ W 1,2(0, T ,H 1(Ω)), satisfying uα = 0 on Γ0, and u3 ∈
W 1,2(0, T ,L2(Ω)), such that

ei‖j (ε) ⇀ ei‖j in W 1,2
(
0, T ,L2(Ω)

)
, (5.8)

uα(ε) ⇀ uα in W 1,2
(
0, T ,H 1(Ω)

)
and hence (5.9)

uα(ε) → uα in W 1,2
(
0, T ,L2(Ω)

)
, (5.10)

u3(ε) ⇀ u3 in W 1,2
(
0, T ,L2(Ω)

)
. (5.11)

For the proof of this step we take v = u(ε)(t, ·) in (5.7) and find
∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε)
√

g(ε)dx +
∫

Ω

Bijkl(ε)ėk‖l (ε)ei‖j (ε)
√

g(ε)dx

=
∫

Ω

f iui(ε)
√

g(ε)dx, a.e. in (0, T ),

which is equivalent to,
∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε)
√

g(ε)dx + 1

2

∂

∂t

∫

Ω

Bijkl(ε)ek‖l (ε)ei‖j (ε)
√

g(ε)dx

=
∫

Ω

f iui(ε)
√

g(ε)dx, a.e. in (0, T ).

Now, integrating over [0, T ] and using (3.9) and (5.6), we find that

∫ T

0

(∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε)
√

g(ε)dx

)

dt ≤
∫ T

0

(∫

Ω

f iui(ε)
√

g(ε)dx

)

dt, (5.12)
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Now, using the Cauchy-Schwartz inequality and (4.1),

∫

Ω

f iui(ε)
√

g(ε)dx ≤ g
1/2
1

(∑

i

∣
∣f i

∣
∣2

0,Ω

)1/2(∑

i

∣
∣ui(ε)

∣
∣2

0,Ω

)1/2

. (5.13)

On the other hand, by using (3.8), (4.1) and (4.5) we obtain
∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε)
√

g(ε)dx ≥ g
1/2
0 Ce

∣
∣ek‖l (ε)

∣
∣2

0,Ω

≥ g
1/2
0 CeC

−2

(∑

α

∥
∥uα(ε)

∥
∥2

1,Ω
+ ∣

∣u3(ε)
∣
∣2

0,Ω

)

, (5.14)

Now, (5.12)–(5.14) together and the Cauchy-Schwartz inequality imply that

g
1/2
0 CeC

−2
∫ T

0

(∑

α

∥
∥uα(ε)(t)

∥
∥2

1,Ω
+ ∣

∣u3(ε)(t)
∣
∣2

0,Ω

)

dt

≤ g
1/2
1

∫ T

0

(∣∣f (t)
∣
∣
0,Ω

∣
∣u(ε)(t)

∣
∣
0,Ω

)
dt

≤ g
1/2
1

(∫ T

0

∣
∣f (t)

∣
∣2

0,Ω
dt

)1/2(∫ T

0

∣
∣u(ε)(t)

∣
∣2

0,Ω
dt

)1/2

.

Hence, since |u(ε)(t)|20,Ω ≤ ∑
α ‖uα(ε)(t)‖2

1,Ω + |u3(ε)(t)|20,Ω , ∀t ∈ [0, T ], we conclude

that there exists a constant k̃1 > 0 independent of ε such that

∫ T

0

(∑

α

∥
∥uα(ε)(t)

∥
∥2

1,Ω
+ ∣

∣u3(ε)(t)
∣
∣2

0,Ω

)

dt ≤ k̃1.

Now, if we take v = u̇(ε)(t, ·) in (5.7), we find that
∫

Ω

Aijkl(ε)ek‖l (ε)ėi‖j (ε)
√

g(ε)dx +
∫

Ω

Bijkl(ε)ėk‖l (ε)ėi‖j (ε)
√

g(ε)dx

=
∫

Ω

f iu̇i(ε)
√

g(ε)dx, a.e. in (0, T ).

Integrating over [0, T ] and using (3.8) and (5.6), we find that

∫ T

0

(∫

Ω

Bijkl(ε)ėk‖l (ε)ėi‖j (ε)
√

g(ε)dx

)

dt ≤
∫ T

0

(∫

Ω

f iu̇i(ε)
√

g(ε)dx

)

dt,

that is analogous to (5.12) with the contravariant components of the viscoelasticity tensor
instead. Hence, using similar arguments and (3.9), we find that there exists a constant k̃2 > 0
independent of ε such that

∫ T

0

(∑

α

‖u̇α(ε)(t)‖2
1,Ω + |u̇3(ε)(t)|20,Ω

)

dt ≤ k̃2.

Therefore, there exists uα ∈ W 1,2(0, T ,H 1(Ω)), u3 ∈ W 1,2(0, T ,L2(Ω)) and ei‖j ∈
W 1,2(0, T ,L2(Ω)), such that the convergences considered in (5.8)–(5.11) are verified.
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Remark 7 Note that from a functional analysis result which can be found, for exam-
ple, in Lemma 2.55, [31] convergences (5.8)–(5.11) imply that uα(ε)(t, ·) ⇀ uα(t, ·) in
H 1(Ω), ∀t ∈ [0, T ], u3(ε)(t, ·) ⇀ u3(t, ·) in L2(Ω), ∀t ∈ [0, T ] and ei‖j (ε)(t, ·) ⇀

ei‖j (t, ·) in L2(Ω), ∀t ∈ [0, T ].

(ii) The limits of the scaled unknown found in step (i) are independent of x3.
We adapt the proof in step (ii) in Theorem 4.4-1 [6] for this case. By the step (i) we have
that

∂3uα(ε) + ε∂αu3(ε) = 2ε
(
eα‖3(ε) + Γ σ

α3(ε)uσ (ε)
) → 0, in W 1,2

(
0, T ,L2(Ω)

)
,

since the functions Γ σ
α3(ε) converge in C0(Ω̄) (see Theorem 5). Let there be given ϕ ∈ D(Ω)

and ψ ∈ D(0, T ). Since uα(ε) ⇀ uα in W 1,2(0, T ,H 1(Ω)) and (u3(ε))ε>0 is bounded in
W 1,2(0, T ,L2(Ω)) by the step (i) we find that

∫ T

0

(∫

Ω

∂3uαϕdx

)

ψdt = lim
ε→0

(∫ T

0

(∫

Ω

∂3uα(ε)ϕdx

)

ψdt

)

,

lim
ε→0

(∫ T

0

(∫

Ω

ε∂αu3(ε)ϕdx

)

ψdt

)

= − lim
ε→0

(∫ T

0

(∫

Ω

εu3(ε)∂αϕdx

)

ψdt

)

= 0

hence,

0 = lim
ε→0

(∫ T

0

(∫

Ω

(
∂3uα(ε) + ε∂αu3(ε)

)
ϕdx

)

ψdt

)

=
∫ T

0

(∫

Ω

∂3uαϕdx

)

ψdt,

which means that ∂3uα = 0 in L2(0, T ,L2(Ω)). Analogously, we use the same arguments
for the respective time derivatives, hence, we have that ∂3uα = 0 in W 1,2(0, T ,L2(Ω)). Now,
by the step (i) we also have that

∂3u3(ε) = εe3‖3(ε) → 0 in W 1,2
(
0, T ,L2(Ω)

)
.

Let ϕ ∈ D(Ω) and ψ ∈ D(0, T ). Since u3(ε) ⇀ u3 in W 1,2(0, T ,L2(Ω)) by the step (i)
then,

∫ T

0

(∫

Ω

u3∂3ϕdx

)

ψdt = lim
ε→0

(∫ T

0

(∫

Ω

u3(ε)∂3ϕdx

)

ψdt

)

= − lim
ε→0

(∫ T

0

(∫

Ω

∂3u3(ε)ϕdx

)

ψdt

)

= 0

and correspondingly for its time derivative, which means that ∂3u3 = 0 in the sense of dis-
tributions. Applying Theorem 7 (a), the conclusion follows.

(iii) The limits ei‖j found in (i) are independent of the variable x3. Moreover, they are
related with the limits u := (ui) by

eα‖β = γαβ(u) := 1

2
(∂αuβ + ∂βuα) − Γ σ

αβuσ − bαβu3, eα‖3 = 0,

e3‖3(t) = − θ

θ + ρ

(

aαβeα‖β(t) + Λ

∫ t

0
e−k(t−s)aαβeα‖β(s)ds

)

, in Ω, ∀t ∈ [0, T ],
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where the constants Λ and k are defined in (5.4) and (5.5), respectively. Moreover,

ė3‖3(t) = − λ

θ + ρ
aαβeα‖β(t) − λ + 2μ

θ + ρ
e3‖3(t) − θ

θ + ρ
aαβ ėα‖β(t),

in Ω , a.e. t ∈ (0, T ).
Considering v = u(ε) in (3.5) and η = u in (4.4) (par abus de langage, since u ∈ V (Ω)),

taking into account step (i) and the convergences Γ σ
αβ(ε) → Γ σ

αβ and Γ 3
αβ(ε) → bαβ in C0(Ω̄)

given by Theorem 5, we have that

eα‖β(ε) = 1

2

(
∂βuα(ε) + ∂αuβ(ε)

) − Γ
p

αβ(ε)up(ε) ⇀ eα‖β = γαβ(u) in W 1,2
(
0, T ,L2(Ω)

)
.

Moreover, eα‖β are independent of x3, as a straightforward consequence of the indepen-
dence on x3 of ui (step (ii)). In addition, let v ∈ V (Ω). As a consequence of the definition
of the scaled strains in (3.5)–(3.7), we find

εeα‖β(ε;v) → 0 in L2(Ω),

εeα‖3(ε;v) → 1

2
∂3vα in L2(Ω),

εe3‖3(ε;v) = ∂3v3 for all ε > 0.

Using the variational formulation (5.7) for v = εv and taking into account (2.12), (3.3)
and (3.4), we have

∫

Ω

Aijkl(ε)
(
εek‖l (ε)ei‖j (ε,v)

)√
g(ε)dx +

∫

Ω

Bijkl(ε)
(
εėk‖l (ε)ei‖j (ε,v)

)√
g(ε)dx

=
∫

Ω

(
Aαβστ (ε)eσ‖τ (ε) + Aαβ33(ε)e3‖3(ε)

)(
εeα‖β(ε;v)

)√
g(ε)dx

+
∫

Ω

4Aα3σ3(ε)eσ‖3(ε)
(
εeα‖3(ε;v)

)√
g(ε)dx

+
∫

Ω

(
A33στ (ε)eσ‖τ (ε) + A3333(ε)e3‖3(ε)

)(
εe3‖3(ε;v)

)√
g(ε)dx

+
∫

Ω

(
Bαβστ (ε)ėσ‖τ (ε) + Bαβ33(ε)ė3‖3(ε)

)(
εeα‖β(ε;v)

)√
g(ε)dx

+
∫

Ω

4Bα3σ3(ε)ėσ‖3(ε)
(
εeα‖3(ε;v)

)√
g(ε)dx

+
∫

Ω

(
B33στ (ε)ėσ‖τ (ε) + B3333(ε)ė3‖3(ε)

)(
εe3‖3(ε;v)

)√
g(ε)dx

= ε

∫

Ω

f ivi

√
g(ε)dx ∀v ∈ V (Ω), a.e. in (0, T ).

We pass to the limit as ε → 0 and by taking into account the asymptotic behaviour of the
contravariant components of the fourth order tensors Aijkl(ε), Bijkl(ε) (see Theorem 3 and
(4.2)–(4.3)), g(ε) (see Theorem 5) and the convergences above, we obtain the following
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integral equation
∫

Ω

(
2μaασ eα‖3∂3vσ + (λ + 2μ)e3‖3∂3v3

)√
adx +

∫

Ω

λaαβeα‖β∂3v3
√

adx

+
∫

Ω

(
ρaασ ėα‖3∂3vσ + (θ + ρ)ė3‖3∂3v3

)√
adx +

∫

Ω

θaαβ ėα‖β∂3v3
√

adx = 0, (5.15)

in Ω , a.e. in (0, T ). On one hand, if we take v ∈ V (Ω) such that v2 = v3 = 0 and using
Theorem 6, we have

2μaα1eα‖3 + ρaα1ėα‖3 = 0, a.e. in (0, T ). (5.16)

On the other hand, if we take v ∈ V (Ω) such that v1 = v3 = 0 and using Theorem 6, we
have

2μaα2eα‖3 + ρaα2ėα‖3 = 0, a.e. in (0, T ). (5.17)

Multiplying (5.16) by a22 and (5.17) by −a21 and adding both expressions we have

2μ
(
a22a11 − a21a12

)
e1‖3 + ρ

(
a22a11 − a21a12

)
ė1‖3 = 2μae1‖3 + ρaė1‖3 = 0,

a.e. in (0, T ), by (2.6). Now, by the initial condition in (5.6) we conclude

e1‖3(t) = 0 in Ω, for all t ∈ (0, T ).

Multiplying (5.16) by a12 and (5.17) by −a11 and adding both expressions we have

2μae2‖3 + ρaė2‖3 = 0, a.e. in (0, T ).

Now, by the initial condition in (5.6) we conclude

e2‖3(t) = 0 in Ω, for all t ∈ (0, T ).

Taking v ∈ V (Ω) such that vα = 0 in (5.15), we obtain
∫

Ω

(
λaαβeα‖β + (λ + 2μ)e3‖3

)
∂3v3

√
adx +

∫

Ω

(
θaαβ ėα‖β + (θ + ρ)ė3‖3

)
∂3v3

√
adx = 0,

for all v3 ∈ H 1(Ω) with v3 = 0 in Γ0 and a.e. in (0, T ). By Theorem 6, we obtain the
following differential equation

λaαβeα‖β + (λ + 2μ)e3‖3 + θaαβ ėα‖β + (θ + ρ)ė3‖3 = 0. (5.18)

Remark 8 Note that removing time dependency and viscosity, that is taking θ = ρ = 0, the
equation leads to the one studied in [6], that is, the elastic case.

In order to solve (5.18) in the more general case, we assume that the viscosity coefficient
θ is strictly positive. Thus, we can prove that this equation is equivalent to

θe− λ
θ
t ∂

∂t

(
aαβeα‖βe

λ
θ
t
) = −(θ + ρ)e

− λ+2μ
θ+ρ

t ∂

∂t

(
e3‖3e

λ+2μ
θ+ρ

t
)
.
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Integrating with respect to the time variable and using (5.6) we find that,

e3‖3e
λ+2μ
θ+ρ

t = − θ

θ + ρ

∫ t

0
e

(
λ+2μ
θ+ρ

− λ
θ
)s ∂

∂s

(
aαβeα‖β(s)e

λ
θ
s
)
ds,

now integrating by parts and simplifying we conclude that,

e3‖3(t) = − θ

θ + ρ

(

aαβeα‖β(t) + Λ

∫ t

0
e−k(t−s)aαβeα‖β(s)ds

)

,

in Ω , ∀t ∈ [0, T ], and where Λ and k are defined in (5.4) and (5.5), respectively. Moreover,
from (5.18) we obtain that,

ė3‖3(t) = − λ

θ + ρ
aαβeα‖β(t) − λ + 2μ

θ + ρ
e3‖3(t) − θ

θ + ρ
aαβ ėα‖β(t),

in Ω , a.e. t ∈ (0, T ).
(iv) The function ū = (ūi ) satisfies the two-dimensional variational Problem 6 with

pi,0 := ∫ 1
−1 f idx3. In particular, since the solution of this problem is unique (by Theo-

rem 4), the convergences on (i) are verified for all the family (u(ε))ε>0. We have that
ū(t, ·) = (ūi(t, ·)) ∈ VM(ω), ∀t ∈ [0, T ].

Let v = (vi) ∈ V (Ω) be independent of the variable x3, then, the asymptotic behaviour
of the functions Γ

p

αβ(ε) and Γ σ
α3(ε) in Theorem 5 implies the following convergences when

ε → 0 (see (3.5)–(3.7)):

eα‖β(ε;v) → γαβ(v) := 1

2
(∂αvβ + ∂βvα) − Γ σ

αβvσ − bαβv3 in L2(Ω),

eα‖3(ε;v) → 1

2
∂αv3 + bσ

α vσ in L2(Ω),

e3‖3(ε;v) = 0.

Let v = (vi) ∈ V (Ω) be independent of x3 in (5.7) and take the limit when ε → 0.
Then, the asymptotic behaviour of the functions ei‖j (ε;v),Aijkl(ε),Bijkl(ε) (see Theorem 3
and (4.2)–(4.3)) and g(ε) (see Theorem 5) and the weak convergences ei‖j (ε) ⇀ ei‖j in
W 1,2(0, T ,L2(Ω)) from step (i), lead to

∫

Ω

Aijkl(0)ek‖lei‖j (v)
√

adx +
∫

Ω

Bijkl(0)ėk‖lei‖j (v)
√

adx

=
∫

Ω

(
λaαβaστ + μ

(
aασ aβτ + aατ aβσ

))
eσ‖τ γαβ(v)

√
adx

+
∫

Ω

λaαβe3‖3γαβ(v)
√

adx

+
∫

Ω

(

θaαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ γαβ(v)
√

adx

+
∫

Ω

θaαβ ė3‖3γαβ(v)
√

adx

=
∫

Ω

f ivi

√
adx, (5.19)
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a.e. t ∈ (0, T ). Using the findings presented in step (iii), we have that the left-hand side can
be simplified as follows:

∫

Ω

(
λaαβaστ + μ

(
aασ aβτ + aατ aβσ

))
eσ‖τ γαβ(v)

√
adx +

∫

Ω

λaαβe3‖3γαβ(v)
√

adx

+
∫

Ω

(

θaαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ γαβ(v)
√

adx +
∫

Ω

θaαβ ė3‖3γαβ(v)
√

adx

=
∫

Ω

(
λaαβaστ + μ

(
aασ aβτ + aατ aβσ

))
eσ‖τ γαβ(v)

√
adx

+
∫

Ω

(

θaαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ γαβ(v)
√

adx

+
∫

Ω

(

λ − θ
λ + 2μ

θ + ρ

)(

− θ

θ + ρ

(

aστ eσ‖τ

+ Λ

∫ t

0
e−k(t−s)aστ eσ‖τ (s)ds

))

aαβγαβ(v)
√

adx

−
∫

Ω

θ

θ + ρ

(
λaστ eσ‖τ + θaστ ėσ‖τ

)
aαβγαβ(v)

√
adx,

a.e. t ∈ (0, T ), which is equivalent to,

∫

Ω

((

λ − θ

θ + ρ
(θΛ + λ)

)

aαβaστ + μ
(
aασ aβτ + aατ aβσ

)
)

eσ‖τ γαβ(v)
√

adx

+
∫

Ω

(
θρ

θ + ρ
aαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ γαβ(v)
√

adx

−
∫

Ω

(θΛ)2

θ + ρ

∫ t

0
e−k(t−s)aστ eσ‖τ (s)dsaαβγαβ(v)

√
adx.

Since both u and v are independent of x3 (see step (i)), we obtain from (5.19) that

∫

ω

aαβστ γστ (ū)γαβ(v̄)
√

ady +
∫

ω

bαβστ γστ ( ˙̄u)γαβ(v̄)
√

ady

−
∫ t

0
e−k(t−s)

∫

ω

cαβστ γστ

(
ū(s)

)
γαβ(v̄)

√
adyds

=
∫

ω

(∫ 1

−1
f idx3

)

v̄i

√
ady, a.e. in (0, T ), (5.20)

where aαβστ , bαβστ and cαβστ denote the contravariant components of the fourth order two-
dimensional tensors, defined in (5.1)–(5.3).

Now, given η = (ηi) ∈ [H 1
0 (ω)]3 we can define v = (vi) such that v(y, x3) = η(y) for

all (y, x3) ∈ Ω . Then v ∈ V (Ω) and it is independent of x3; hence, as a consequence of
Theorem 7 (b), the variational problems above are satisfied for v̄ = η.

Since both members of equations are continuous linear forms with respect to v̄3 = η3 ∈
L2(ω) for any given v̄α ∈ H 1

0 (ω), these equations are valid for all η = (ηi) ∈ VM(ω), since
H 1

0 (ω) is dense in L2(ω).
(v) The weak convergences ei‖j (ε)(t, ·) ⇀ ei‖j (t, ·) in W 1,2(0, T ,L2(Ω)) are, in fact,

strong.
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Indeed, we define

Ψ (ε) :=
∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

+
∫

Ω

Bijkl(ε)
(
ėk‖l (ε) − ėk‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

=
∫

Ω

f iui(ε)
√

g(ε)dx −
∫

Ω

Aijkl(ε)
(
2ek‖l (ε) − ek‖l

)
ei‖j

√
g(ε)dx

+
∫

Ω

Bijkl(ε)

(

ėk‖lei‖j − ∂

∂t

(
ek‖l (ε)ei‖j

)
)√

g(ε)dx.

We have that,
∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

+ 1

2

∂

∂t

∫

Ω

Bijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx = Ψ (ε), a.e. t ∈ (0, T ).

Integrating over the interval [0, T ], using (3.9) and (5.6) we find that

∫ T

0

(∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

)

dt ≤
∫ T

0
Ψ (ε)dt,

Now, by (3.8) and (4.1)

C−1
e g

1/2
0

∑

i,j

|ei‖j (ε) − ei‖j |20,Ω ≤
∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

Therefore, together with the previous inequality leads to

C−1
e g

1/2
0

∫ T

0

(∑

i,j

|ei‖j (ε)(t) − ei‖j (t)|20,Ω

)

dt ≤
∫ T

0
Ψ (ε)dt. (5.21)

Let ε → 0. Taking into account the weak convergences studied in (i) and the asymptotic
behaviour of the functions Aijkl(ε),Bijkl(ε) (see Theorem 3 and (4.2)–(4.3)) and g(ε) (see
Theorem 5), we find that

Ψ := lim
ε→0

Ψ (ε) =
∫

Ω

f iui

√
adx −

∫

Ω

Aijkl(0)ek‖lei‖j
√

adx −
∫

Ω

Bijkl(0)ėk‖lei‖j
√

adx,

a.e. t ∈ (0, T ). By the expressions of Aijkl(0) and Bijkl(0) (see Theorem 3) we have that

∫

Ω

Aijkl(0)ek‖lei‖j
√

adx +
∫

Ω

Bijkl(0)ėk‖lei‖j
√

adx

=
∫

Ω

(
λaαβaστ + μ

(
aασ aβτ + aατ aβσ

))
eσ‖τ eα‖β

√
adx +

∫

Ω

λaαβe3‖3eα‖β
√

adx

+
∫

Ω

(
λaστ eσ‖τ + (λ + 2μ)e3‖3

)
e3‖3

√
adx
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+
∫

Ω

(

θaαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ eα‖β
√

adx +
∫

Ω

θaαβ ė3‖3eα‖β
√

adx

+
∫

Ω

(
θaστ ėσ‖τ + (θ + ρ)ė3‖3

)
e3‖3

√
adx, a.e. t ∈ (0, T ),

which using the expressions of the limits ei‖j studied in (iii) can be written as

∫

Ω

((

λ − θ

θ + ρ
(θΛ + λ)

)

aαβaστ + μ
(
aασ aβτ + aατ aβσ

)
)

eσ‖τ eα‖β
√

adx

+
∫

Ω

(
θρ

θ + ρ
aαβaστ + ρ

2

(
aασ aβτ + aατ aβσ

)
)

ėσ‖τ eα‖β
√

adx

−
∫

Ω

(θΛ)2

θ + ρ

∫ t

0
e−k(t−s)aστ eσ‖τ (s)dsaαβeα‖β(t)

√
adx,

hence,

Ψ =
∫

Ω

f iui

√
adx − 1

2

∫

Ω

aαβστ eσ‖τ eα‖β
√

adx − 1

2

∫

Ω

bαβστ eσ‖τ ėα‖β
√

adx

+ 1

2

∫ t

0
e−k(t−s)

∫

Ω

cαβστ eσ‖τ (s)eα‖β(t)
√

adxds, a.e. t ∈ (0, T ),

where aαβστ , bαβστ and cαβστ denote the contravariant components of the fourth order
two-dimensional tensors, defined in (5.1)–(5.3). Then, taking v̄ = ū in (5.20) and us-
ing that eα‖β = γαβ(ū) (see (iii)), we conclude that Ψ = 0. As a consequence, using the
Lebesgue dominated convergence theorem in (5.21), the strong convergences ei‖j (ε) → ei‖j
in L2(0, T ,L2(Ω)) are satisfied. Analogously, if we define

Ψ̃ (ε) :=
∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ėi‖j (ε) − ėi‖j

)√
g(ε)dx

+
∫

Ω

Bijkl(ε)
(
ėk‖l (ε) − ėk‖l

)(
ėi‖j (ε) − ėi‖j

)√
g(ε)dx

=
∫

Ω

f iu̇i(ε)
√

g(ε)dx +
∫

Ω

Aijkl(ε)

(

ek‖l ėi‖j − ∂

∂t

(
ek‖l (ε)ei‖j

)
)√

g(ε)dx

−
∫

Ω

Bijkl(ε)
(
2ėk‖l (ε) − ėk‖l

)
ėi‖j

√
g(ε)dx.

We have that,

1

2

∂

∂t

∫

Ω

Aijkl(ε)
(
ek‖l (ε) − ek‖l

)(
ei‖j (ε) − ei‖j

)√
g(ε)dx

+
∫

Ω

Bijkl(ε)
(
ėk‖l (ε) − ėk‖l

)(
ėi‖j (ε) − ėi‖j

)√
g(ε)dx = Ψ̃ (ε), a.e. t ∈ (0, T ).

Integrating over the interval [0, T ], using (3.8) and (5.6) we find that

∫ T

0

(∫

Ω

Bijkl(ε)
(
ėk‖l (ε) − ėk‖l

)(
ėi‖j (ε) − ėi‖j

)√
g(ε)dx

)

dt ≤
∫ T

0
Ψ̃ (ε)dt,
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Now, by (3.9) and (4.1)

C−1
v g

1/2
0

∑

i,j

∣
∣ėi‖j (ε) − ėi‖j

∣
∣2

0,Ω
≤

∫

Ω

Bijkl(ε)
(
ėk‖l (ε) − ėk‖l

)(
ėi‖j (ε) − ėi‖j

)√
g(ε)dx

Therefore, together with the previous inequality leads to

C−1
v g

1/2
0

∫ T

0

(∑

i,j

∣
∣ėi‖j (ε)(t) − ėi‖j (t)

∣
∣2

0,Ω

)

dt ≤
∫ T

0
Ψ̃ (ε)dt, (5.22)

which is similar with (5.21). Therefore, using analogous arguments as before, we find that

Ψ̃ := lim
ε→0

Ψ̃ (ε) =
∫

Ω

f iu̇i

√
adx − 1

2

∫

Ω

aαβστ eσ‖τ ėα‖β
√

adx − 1

2

∫

Ω

bαβστ ėσ‖τ ėα‖β
√

adx

+ 1

2

∫ t

0
e−k(t−s)

∫

Ω

cαβστ eσ‖τ (s)ėα‖β(t)
√

adxds, a.e. t ∈ (0, T ),

Then, taking v̄ = ˙̄u in (5.20) and using that eα‖β = γαβ(ū) (see (iii)), we conclude that Ψ̃ = 0.
As a consequence, using the Lebesgue dominated convergence theorem in (5.22), the strong
convergences ėi‖j (ε) → ėi‖j in L2(0, T ,L2(Ω)) are satisfied. Therefore, we conclude that
ei‖j (ε) → ei‖j in W 1,2(0, T ,L2(Ω)).

(vi) The family (ū(ε))ε>0 converges strongly to ū (when ε → 0) in W 1,2(0, T ,VM(ω)),
that is,

ūα(ε) → ūα in W 1,2
(
0, T ,H 1(ω)

)
, ū3(ε) → ū3 in W 1,2

(
0, T ,L2(ω)

)
.

This proof is a corollary of the step (vi) in Theorem 4.4-1 [6]. In order to do that, we follow
the same arguments made there to prove that ūα(ε) → ūα in L2(0, T ,H 1(ω)), ū3(ε) → ū3

in L2(0, T ,L2(ω)) and the corresponding convergences of the time derivatives in the same
spaces. Then the conclusion follows.

(vii) The convergence u3(ε) ⇀ u3 in W 1,2(0, T ,L2(Ω)) is, in fact, strong.
Indeed, by (3.7) and step (i), we have ∂3u3(ε) = εe3‖3(ε) → 0 in W 1,2(0, T ,L2(Ω)). On

the other hand, we have ū3(ε) → ū3 in W 1,2(0, T ,L2(ω)). Hence by Theorem 7 (c), the
conclusion follows.

(viii) The convergences uα(ε) → uα are strong in W 1,2(0, T ,H 1(Ω)). This proof is a
corollary of the step (viii) in Theorem 4.4-1 [6]. In order to do that, we follow the same
arguments made there to prove that uα(ε) → uα in L2(0, T ,H 1(ω)) and the corresponding
convergences of the time derivatives in the same spaces. Then the conclusion follows.

(ix) Let X(0, T ;Ω) := {v ∈ W 1,2(0, T ,L2(Ω)); ∂3v ∈ W 1,2(0, T ,L2(Ω))}. The trace
v(·, s) of whatever function v ∈ X(0, T ;Ω) is well defined by a function in W 1,2(0,T ,L2(ω))

for every s ∈ [−1,1] and the trace operator defined in this fashion is continuous. In particu-
lar, there exists a constant c1 > 0 such that:

‖v‖W1,2(0,T ,L2(Γ+∪Γ−)) ≤ c1
(|v|2

W1,2(0,T ,L2(Ω))
+ |∂3v|2

W1,2(0,T ,L2(Ω))

)1/2

for all v ∈ X(Ω). As consequence there exists a constant c2 > 0 such that

‖v3‖W1,2(0,T ,L2(Γ+∪Γ−)) ≤ c2

(∑

i,j

∣
∣ei‖j (ε;v)

∣
∣2

W1,2(0,T ,L2(Ω))

)1/2

for all v ∈ V (Ω).
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This proof is a corollary of the step (ix) in Theorem 4.4-1 [6]. In order to do that, we use
the same arguments made there obtaining the analogous inequalities for ‖v‖L2(0,T ,L2(Γ+∪Γ−))

and then, for the norm of the corresponding time derivative ‖v̇‖L2(0,T ,L2(Γ+∪Γ−)). Therefore,
together we claim the conclusion.

(x) We add in this step the surface forces.
Assume that the problem is only subjected to surface forces. That is, find u(ε) such that

satisfies the following variational problem,

u(ε)(t, ·) ∈ V (Ω) ∀t ∈ [0, T ]
∫

Ω

Aijkl(ε)ek‖l (ε)ei‖j (ε,v)
√

g(ε)dx +
∫

Ω

Bijkl(ε)ėk‖l (ε)ei‖j (ε,v)
√

g(ε)dx

=
∫

Γ+∪Γ−
hivi

√
g(ε)dΓ ∀v ∈ V (Ω), a.e. t ∈ (0, T )

u(ε)(0, ·) = u0(ε)(·),
where we identified hi ≡ hi,1 for notational brevity. The proof follows the same arguments
made in (x) of Theorem 4.4-1, [6], which will need step (ix). Hence, with minor changes,
we can conclude for this problem the same results found in steps (i)–(viii).

Therefore, the proof of the theorem is complete. �

Remark 9 For each ε > 0, let σ ij,ε = Aijkl,εeε
i‖j (u

ε) + Bijkl,εeε
i‖j (u̇

ε) denote the contravari-
ant components of the linearized stress tensor field for a family of linearly viscoelas-
tic shells that satisfy the conditions of Theorem 11 and let us define the scaled stresses
σ ij (ε) : Ω̄ ←→ R by letting σ ij,ε(xε) =: σ ij (ε)(x) for all xε = πε(x) ∈ Ω̄ε . Then, the
scaled stresses satisfy

σ ij (ε) = Aijkl(ε)ei‖j (ε) + Bijkl(ε)ėi‖j (ε).

Hence, using the asymptotic behaviour of Aijkl(ε), Bijkl(ε) (see Theorem 3) and the strong
convergences of ei‖j (ε)(t, ·) in W 1,2(0, T ,L2(Ω)) and their independence of the transversal
variable x3 found in Theorem 11, we can prove that σαβ(ε) converge in L2(0, T ,L2(Ω)) and
that 1

ε
σ i3(ε) converge in L2(0, T ,H 1(−1,1,H−1(ω))). To obtain these results we follow

similar arguments to those used in [32] for the elastic case (see Exercise 4.4 in [6], as well).

It remains to be proved an analogous result to the previous theorem but in terms of de-
scaled unknowns. The convergences uα(ε) → uα in W 1,2(0, T ,H 1(Ω)) and u3(ε) → u3

in W 1,2(0, T ,L2(Ω)) from Theorem 11, the scaling proposed in Sect. 3, the de-scalings
ξε
i := ξi for each ε > 0 and Theorem 7 together lead to the following convergences:

1

2ε

∫ ε

−ε

uε
αdxε

3 → ξα in W 1,2
(
0, T ,H 1(ω)

)
,

1

2ε

∫ ε

−ε

uε
3dxε

3 → ξ3 in W 1,2
(
0, T ,L2(ω)

)
.

Furthermore, we can prove the following theorem regarding the convergences of the aver-
ages of the tangential and normal components of the three-dimensional displacement vector
field:
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Theorem 12 Assume that θ ∈ C3(ω̄;R3). Consider a family of viscoelastic elliptic mem-
brane shells with thickness 2ε approaching zero and with each having the same elliptic
middle surface S = θ(ω̄), and let the assumptions on the data be as in Theorem 10.

Let uε = (uε
i ) ∈ W 1,2(0, T ,V (Ωε)) and ξ ε = (ξ ε

i ) ∈ W 1,2(0, T ,VM(ω)) respectively de-
note for each ε > 0 the solutions to the three-dimensional and two-dimensional Problems 4
and 1. Moreover, let ξ = (ξi) ∈ W 1,2(0, T ,VM(ω)) denote the solution to Problem 6. Then
we have that

ξ ε
α = ξα and thus ξε

αaα = ξαa
α in W 1,2

(
0, T ,H 1(ω)

)
, ∀ε > 0,

1

2ε

∫ ε

−ε

uε
αg

α,εdxε
3 → ξαa

α in W 1,2
(
0, T ,H 1(ω)

)
as ε → 0,

and

ξ ε
3 = ξ3 and thus ξε

3 a3 = ξ3a
3 in W 1,2

(
0, T ,L2(ω)

)
, ∀ε > 0,

1

2ε

∫ ε

−ε

uε
3g

3,εdxε
3 → ξ3a

3 in W 1,2
(
0, T ,L2(ω)

)
as ε → 0.

Proof Since θ ∈ C3(ω̄;R3) the vector fields gα(ε) : Ω̄ → R
3 defined by gα(ε) := gα,ε(xε)

for all xε = π(x) ∈ Ω̄ε are such that gα(ε) − aα = O(ε), where the fields aα have been
identified with vector fields defined over the whole set Ω̄ . Now we have that,

1

2ε

∫ ε

−ε

uε
αg

α,εdxε
3 − ξε

αaα = 1

2

∫ 1

−1
uα(ε)g

α(ε)dx3 − ξαa
α

= 1

2

∫ 1

−1
uα(ε)

(
gα(ε) − aα

)
dx3 − (

uα(ε) − ξα

)
aα.

On one hand, since uα(ε) → uα in W 1,2(0, T ;H 1(Ω)) and gα(ε) → aα in C1(Ω̄) imply that

uα(ε)
(
gα(ε) − aα

) → 0 in W 1,2
(
0, T ;H 1(Ω)

)
,

hence, applying Theorem 7 (b) we have that

1

2

∫ 1

−1
uα(ε)

(
gα(ε) − aα

)
dx3 → 0 in W 1,2

(
0, T ;H 1(ω)

)
,

and by using the same argument we have that (uα(ε) − ξα)a
α → 0 in W 1,2(0, T ;H 1(ω)).

For the normal components we have that g3,ε = a3, then

1

2ε

∫ ε

−ε

uε
3g

3,εdxε
3 − ξε

3 a3 = (
u3(ε) − ξ3

)
a3,

hence applying Theorem 7 (a) we have that (u3(ε) − ξ3)a
3 → 0 in W 1,2(0, T ;L2(ω)). �

Remark 10 The fields ξ̃
ε

T , ξ̃
ε

N : [0, T ] × ω̄ → R
3 defined by ξ̃

ε

T := ξ ε
αaα and ξ̃

ε

N := ξ ε
3 a3,

are known as the limit tangential and normal displacement fields, respectively, of the middle
surface S of the shell. If we denote the limit displacement field of S by ξ̃

ε := ξia
i then

ξ̃
ε = ξ̃

ε

T + ξ̃
ε

N .
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6 Conclusions

We have found and mathematically justified a model for viscoelastic shells in the particular
case of the so-called elliptic membranes. To this end we used the insight provided by the
asymptotic expansion method (presented in our previous work [27]) and we have justified
this approach by obtaining convergence theorems.

The main novelty that this model presented is a long-term memory, represented by an
integral on the time variable, more specifically

M(t,η) =
∫ t

0
e−k(t−s)

∫

ω

cαβστ γστ

(
ξ(s)

)
γαβ(η)

√
adyds,

for all η ∈ VM(ω). An analogous behaviour has been found in beam models for the bending-
stretching of viscoelastic rods [28], obtained by using asymptotic methods as well. Also,
this kind of viscoelasticity has been described in [10, 12], for instance.

As an example, this two-dimensional model could be useful in order to model the vis-
coelastic behaviour of a ventricle or atria wall of the human heart, considering that its surface
is elliptic and taking the boundary condition of place accordingly.

As the viscoelastic case differs from the elastic case on time dependent constitutive law
and external forces, we must consider the possibility that these models and the convergence
result generalize the elastic case (studied in [6]). However, analogously to the asymptotic
analysis made in [27], the reader can easily check that when the ordinary differential equa-
tion (5.18) was presented, we had to use assumptions that make it impossible to include the
elastic case. Hence, the viscoelastic and elastic problems must be treated separately in order
to reach reasonable and justified conclusions.

In this paper we have presented the convergence results concerning the models for the
so-called viscoelastic elliptic membrane shells which implied that V0(ω) = {0} and also, it
is easy to check that the space

VF (ω) := {
η = (ηi) ∈ H 1(ω) × H 1(ω) × H 2(ω);
ηi = ∂νη3 = 0 on γ0, γαβ(η) = 0 in ω

} = {0}.
In [33] we shall consider the cases when the membrane is not elliptic or the shell is clamped
only in a portion of its lateral face, but still VF (ω) = {0}. For these cases, additional spaces
must be considered in order to obtain well posed problems. They are the so-called viscoelas-
tic generalized membranes, where we also distinguish the cases where V0(ω) contains only
the zero function (first kind) or not (second kind). Further, regarding the case where the
space VF (ω) contains non-zero functions, in [34] we shall study the problem of viscoelastic
flexural shells.
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