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Abstract In this paper, the governing relations and equations are derived for nonlocal elastic
solid with voids. The propagation of time harmonic plane waves is investigated in an infinite
nonlocal elastic solid material with voids. It has been found that three basic waves consisting
of two sets of coupled longitudinal waves and one independent transverse wave may travel
with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and
influenced by the presence of voids and nonlocality parameters in the medium. The trans-
verse wave is dispersive but non-attenuating, influenced by the nonlocality and independent
of void parameters. Furthermore, the transverse wave is found to face critical frequency,
while the coupled waves may face critical frequencies conditionally. Beyond each critical
frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an
incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic
solid half-space with voids has also been studied. Using appropriate boundary conditions,
the formulae for various reflection coefficients and their respective energy ratios are pre-
sented. For a particular model, the effects of non-locality and dissipation parameter (τ ) have
been depicted on phase speeds and attenuation coefficients of propagating waves. The effect
of nonlocality on reflection coefficients has also been observed and shown graphically.
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1 Introduction

The theory of nonlocal elasticity has been studied by many researchers (see [1–3]). Ede-
len and his co-workers [4–6] developed the nonlocal elasticity theories characterized by the
presence of nonlocality residuals of fields (like body force, mass, entropy, internal energy,
etc.) and determined these residuals, along with the constitutive laws, with the help of suit-
able thermodynamic restrictions. The concept of nonlocality has been extended to various
other fields by Eringen [7–11], McCay and Narsimhan [12], Narsimhan and McCay [13].
In nonlocal theory of elasticity, the stress at any reference point x within a continuous body
depends not only on the strain at that point, but also significantly influenced by the strains
at all other points x′ of the continuous body. Thus, the nonlocal stress forces act as a remote
action forces. These types of forces are frequently encountered in atomic theory of lattice
dynamics. Nonlocal continuum mechanics is now well established and is being applied to
the problems of wave propagation (see [14, 15]). Using nonlocal continuum mechanics for
modeling, the analysis of nanostructures has been made by several researchers, for example,
Narendar and Gopalakrishnan [16, 17], Narendar et al. [18], Malagu et al. [19], etc.

The theory of elastic materials with voids developed by Cowin and his co-worker [20, 21]
is a beautiful extension of the classical theory of elasticity. In their theory, the strain and the
change in void volume fraction are considered as independent kinematic variables. Later,
Puri and Cowin [22] studied the propagation of harmonic plane waves in a linear elastic
material with voids and showed that there exist two dilatational waves and one transverse
wave. One of the dilatational waves is predominantly dilatational wave of classical linear
elasticity, while the second dilatational wave is predominantly a wave carrying a change in
void volume fraction. Both the dilatational waves are found to attenuate in their direction
of propagation. At large frequencies, the predominantly elastic wave propagates with the
classical elastic dilatational wave speed, but at low frequency it propagates at a speed less
than the classical wave speed. The transverse wave is found to travel with the speed of
classical transverse wave and is not influenced by the presence of voids. Iesan [23] extended
the Cowin’s theory of elastic material with voids to incorporate thermal effect. He presented
the basic field equations and investigated the condition of propagation of acceleration waves
in a homogeneous isotropic thermo-elastic material with voids. He also showed that the
transverse wave propagates without the influence of temperature and voids present in the
medium. Using Iesan’s theory, Singh and Tomar [24] investigated the propagation of plane
waves in a thermo-elastic material with voids. They have also studied the reflection of plane
waves against the stress-free insulated boundary of a thermo-elastic material half-space with
voids. Recently, Iesan [25] further extended his earlier theory to include viscoelastic effect
and presented constitutive relations and equations for linear theory of thermo-viscoelastic
material with voids. By employing Iesan’s theory, Tomar et al. [26], Sharma et al. [27] and
D’Apice and Chirita [28] studied the propagation of plane waves in thermo-viscoelastic
material with voids.

In the present paper, we have derived the constitutive relations for nonlocal elastic solid
with voids using strain energy density function. Since the force stress tensor, equilibrated
stress vector, and intrinsic equilibrated body force depend on the strains at all points of the
body, therefore, these quantities are expressed in the form of integral over the entire vol-
ume of the body. The governing field equations for linear isotropic nonlocal elastic solid
with voids are also derived and presented in compact form. The possibility of propagation
of plane waves in an infinite isotropic, nonlocal elastic solid with voids has been investi-
gated. It has been seen that there may exist three plane waves comprising of two sets of
coupled longitudinal waves and one uncoupled transverse wave. Each set of coupled dilata-
tional waves consist of a longitudinal displacement wave and a wave carrying the change in



Waves in Nonlocal Elastic Solid with Voids 87

void volume fraction. The phase speeds and corresponding attenuations of coupled longitu-
dinal waves are found to be dependent on nonlocal parameter, elastic parameters, voids and
frequency parameters. The transverse wave is found to be dispersive but non-attenuating.
Thus, all the existing waves are not only dispersive but also influenced by the nonlocality
of the medium. The formulae for amplitude ratios and energy ratios corresponding to var-
ious reflected waves have been presented when a set of coupled longitudinal waves strikes
obliquely at the stress-free boundary surface of a nonlocal elastic solid half-space with voids.

Similar problem has been attempted in other types of generalized continuum theories
such as in couple-stress theory by Graff and Pao [29], in micropolar theory by Parfitt and
Eringen [30], and in strain-gradient theory by Gourgiotis et al. [31].

2 Field Equations and Constitutive Relations

Here, we shall extend the constitutive relations and field equations for nonlocal elastic mate-
rial with voids without memory. For isothermal linear elastic solid with voids, the equations
and relations are already developed by Cowin and Nunziato [21]. The basic idea behind the
theory of elastic material with voids is that the mass density ρ is written as a product of
matrix density γ and void volume fraction ν (0 < ν ≤ 1). The void volume fraction is a
measure of volume change of bulk material arising from void compaction and distention.
This enables to introduce a new independent kinematic variable φ corresponding to change
in void volume fraction and which depends on spatial coordinates x and time t . If νR denotes
the void volume fraction at reference configuration, then φ = ν(x, t) − νR .

Consider an elastic body with voids having volume V , bounded by the surface S and
occupying region B in R

3 at time t0 of reference configuration. Let the position of a typical
point of B in undeformed state be Xi and the position of the corresponding point in the
deformed state be xi . The displacement vector ui of the particle is given by ui = xi − Xi .
Let us denote the strain tensor, gradient of void volume fraction by eij and φ,i , respectively.
In the linear theory, the Lagrangian strain tensor reduces to

eij = 1

2
(ui,j + uj,i).

Within the context of linear theory, and assuming that the initial body is free from stresses
and has zero intrinsic equilibrated force, we take the set of basic variables at points x and x′,
respectively as

Y = {
eij (x),φ(x),φ,i(x)

}
and Y ′ = {

eij

(
x′), φ

(
x′), φ,i

(
x′)}.

The strain energy function U is given by

2U = Cijkleij (x)ekl

(
x′) + ξφ(x)φ

(
x′) + Aijφ,i(x)φ,j

(
x′) + Bij

[
eij (x)φ

(
x′)

+ eij

(
x′)φ(x)

] + Dijk

[
eij (x)φ,k

(
x′) + eij

(
x′)φ,k(x)

]

+ di

[
φ(x)φ,i

(
x′) + φ

(
x′)φ,i(x)

]
, (1)

where the constitutive coefficients Cijkl , ξ , Aij , Bij , Dijk , and di are prescribed functions of
x and x′.
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We adopt the following symmetries in the constitutive coefficients as

Cijkl

(
x,x′) = Cklij

(
x,x′) = Cjikl

(
x,x′), Aij

(
x,x′) = Aji

(
x,x′),

Bij

(
x,x′) = Bji

(
x,x′), Dijk

(
x,x′) = Djik

(
x,x′).

Following Eringen [32], the constitutive relations are obtained from

Γ =
∫

V

[
∂U

∂Y
+

(
∂U

∂Y ′

)s]
dV

(
x′),

where the superscript ‘s’ represents the symmetry of that quantity with respect to inter-
change of x and x′. The set Γ = {tij ,F − g,hi} is an ordered set with the set Y . Here, the
function F is a dissipation function given by

F = −
∫

V

τ
(
x,x′)φ̇

(
x′)dV

(
x′), (2)

where non-negative coefficient τ is a constitutive coefficient and superposed dot denotes the
time derivative. Thus, the force stress tensor tij , equilibrated stress vector hi and equilibrated
body force g are obtained as

tij =
∫

V

[
Cijkl

(
x,x′)ekl

(
x′) + Bij

(
x,x′)φ

(
x′) + Dijk

(
x,x′)φ,k

(
x′)]dV

(
x′), (3)

hi =
∫

V

[
Dkli

(
x,x′)ekl

(
x′) + di

(
x,x′)φ

(
x′) + Aij

(
x,x′)φ,j

(
x′)]dV

(
x′), (4)

g = −
∫

V

[
τ
(
x,x′)φ̇

(
x′) + ξ

(
x,x′)φ

(
x′) + Bij

(
x,x′)eij

(
x′)

+ di

(
x,x′)φ,i

(
x′)]dV

(
x′). (5)

For a centro-symmetric isotropic material, the constitutive coefficients are given by

Cijkl = λ
(
x,x′)δij δkl + 2μ

(
x,x′)δikδjl, Dijk = 0,

Aij = α
(
x,x′)δij , Bij = β

(
x,x′)δij , di = 0,

where the coefficients λ, μ, α, β , τ and ξ are functions of |x − x′|, that is, α = α(|x − x′|),
β = β(|x − x′|), etc. Thus, the constitutive relations (3)–(5) become

tij =
∫

V

[
λ
(∣∣x − x′∣∣)δij ekk

(
x′) + 2μ

(∣∣x − x′∣∣)eij

(
x′) + β

(∣∣x − x′∣∣)φ
(
x′)δij

]
dV

(
x′), (6)

hi =
∫

V

α
(∣∣x − x′∣∣)φ,i

(
x′)dV

(
x′), (7)

g = −
∫

V

[
τ
(∣∣x − x′∣∣)φ̇

(
x′) + ξ

(∣∣x − x′∣∣)φ
(
x′) + β

(∣∣x − x′∣∣)ekk

(
x′)]dV

(
x′). (8)

For most of the materials, the cohesive zone is very small, and within that zone the inter-
molecular forces decrease rapidly with distance from the reference point. Hence, we con-
sider that all the constitutive coefficients attenuate with distance, e.g.,

lim
(|x−x′|)→∞

λ
(∣∣x − x′∣∣) → 0.
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We also consider that all the constitutive coefficients attenuate with same degree and they
attain their maxima at x = x′. Therefore, we can take the following relations between non-
local and local elastic coefficients

λ(|x − x′|)
λ0

= μ(|x − x′|)
μ0

= α(|x − x′|)
α0

= β(|x − x′|)
β0

= ξ(|x − x′|)
ξ0

= τ(|x − x′|)
τ0

= G
(∣∣x − x′∣∣). (9)

Here, the quantities in the denominator are constant coefficients. The λ0, μ0 are the well
known Lame’s constants; α0, β0, ξ0, and τ0 are constants corresponding to voids and the
function G(|x − x′|) is a non-local kernel representing the effect of distant interactions of
material points between x′ and x. Also, the integral of non-local kernel G(|x − x′|) over the
domain of integration is unity, i.e.,

∫

V

G
(∣∣x − x′∣∣)dV = 1.

Hence, the kernel function G behaves as a Dirac-delta function over the domain of influence.
The function G attains its peak at |x − x′| = 0 and generally decays with increasing |x − x′|.
Eringen [33] has already shown that the function G satisfies the relation

(
1 − ε2∇2

)
G = δ

(∣∣x − x′∣∣), (10)

where ε = e0a is a non-local parameter, a being the internal characteristic length and e0

is a material constant. The internal characteristic length a is the interatomic distance, e.g.,
length of C–C bond (0.142 mm in Carbon nanotube).

Applying the operator (1 − ε2∇2) on the constitutive relations (6)–(8), owing to the re-
lation (9) and the property (10), we obtain (after suppressing the subscript ‘0’ from the
constitutive coefficients)

(
1 − ε2∇2

)
tij = tLij = λδij ekk(x) + 2μeij (x) + βδijφ(x), (11)
(
1 − ε2∇2

)
hi = hL

i = αφ,i(x), (12)
(
1 − ε2∇2

)
g = gL = −τ φ̇(x) − ξφ(x) − βekk(x), (13)

wherein the formula
∫

f (x)δ(x − a)dx = f (a),

has been employed. Here, the quantities tLij , hL
i , gL correspond to local elastic solid material

with voids.
Cowin and Nunziato [21] have already derived the following restrictions among various

material parameters as

μ ≥ 0, α ≥ 0, ξ ≥ 0, 3λ + 2μ ≥ 0, (3λ + 2μ)ξ ≥ 3β2.

Note that a correction pointed out by Puri and Cowin [22] has been taken care here.
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Equations of motion for a non-local isotropic elastic solid with voids are given by

tij,j + ρ(fi − üi ) = 0, (14)

hi,i + g + ρ(l − χφ̈) = 0, (15)

where fi is the body force, l is the extrinsic equilibrated body force, χ is the equilibrated
inertia and ρ is the bulk density. Superposed dots represent the double time derivative and
comma (,) in the subscript represents the spatial partial derivative.

Plugging the constitutive relations (11)–(13) into (14) and (15), we obtain the following
equations

β∇φ + (λ + 2μ)∇(∇ · u) − μ∇ × (∇ × u) + ρ
(
1 − ε2∇2

)
(f − ü) = 0, (16)

α∇2φ − ξφ − β∇ · u − τ φ̇ + ρ
(
1 − ε2∇2

)
(l − χφ̈) = 0. (17)

These are the equations of small motion in a nonlocal isotropic elastic solid with voids. Note
that in the absence of non-locality, that is, when ε = 0, these equations reduce to those of
local isotropic elastic solid with voids earlier derived by Puri and Cowin [22].

3 Wave Propagation

Introducing the scalar and vector potentials q and U through Helmholtz decomposition the-
orem on vectors as

u = ∇q + ∇ × U, ∇ · U = 0. (18)

With the help of (18), Eqs. (16) and (17), in the absence of body force densities, reduce to

βφ + (λ + 2μ)∇2q − ρ
(
1 − ε2∇2

)
q̈ = 0, (19)

μ∇2U − ρ
(
1 − ε2∇2

)
Ü = 0, (20)

α∇2φ − ξφ − τ φ̇ − β∇2q − ρ
(
1 − ε2∇2

)
χφ̈ = 0. (21)

We note that (19) and (21) are coupled in potentials q and φ, while (20) is uncoupled in
potential U.

For a plane wave propagating in the positive direction of unit vector n with speed c

through nonlocal elastic solid with voids, we can take

{φ,q,U} = {a1, b1,B1} exp
{
ιk(n · r − ct)

}
, (22)

where a1, b1 are scalar constants, B1 is vector constant, r (= xî + yĵ + zk̂) is the position
vector and k is the wavenumber. The wavenumber k and wave speed c are connected with
angular frequency ω through the relation ω = kc.

Plugging the expressions of q and φ from (22) into (19) and (21), we obtain

βa1 − [
(λ + 2μ) − ρc2

(
1 + k2ε2

)]
k2b1 = 0, (23)

[
ρk2

(
1 + ε2k2

)
χ − αk2 − ξ + ιτkc

]
a1 + βk2b1 = 0. (24)

These equations are system of two homogeneous equations in two unknowns, namely, a1

and b1. For a non-trivial solution of homogeneous system of equations (23) and (24), the
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determinant of coefficient matrix must be equal to zero. This yields us a quadratic equation
in c2 given by

Ac4 + Bc2 + C = 0, (25)

where

A = ρ
(
ρχω2 + ιτω − ξ

)
,

B = 2ρ2ε2χω4 + ιτρε2ω3 − ρ
[
χ(λ + 2μ) + α + ε2ξ

]
ω2

+ (λ + 2μ)(ξ − ιτω) − β2,

C = ρ2χε4ω6 − ρε2
[
χ(λ + 2μ) + α

]
ω4 + α(λ + 2μ)ω2.

(26)

The coefficients in (26) may be rearranged as

A = ρ2χ
(
ω2 + ι�2

2ω − �2
1

)
,

B = ρ2ε2χ
[
2ω4 + ι�2

2ω
3 − (

ω2
c1

+ ω2
c2

+ �2
1

)
ω2 − ιω2

c1
�2

2ω + ω2
c1

�2
1

] − β2,

C = ρ2χε4ω2
(
ω2 − ω2

c1

)(
ω2 − ω2

c2

)
,

(27)

where

ω2
c1

= c2
l

ε2
, ω2

c2
= c2

v

ε2
, c2

l = λ + 2μ

ρ
, c2

v = α

ρχ
, �2

1 = ξ

ρχ
, �2

2 = τ

ρχ
.

Note that for real ω, the coefficients A and B are complex, while the coefficient C is real.
The two roots of quadratic equation (25) are given by

c2
1,2 = 1

2A

(−B ∓
√

B2 − 4AC
)
. (28)

Here c2
1 corresponds to ‘−’ sign and c2

2 corresponds to ‘+’ sign. The values of c1 and c2

represent the speeds of two propagating waves. Since q and φ are coupled through (19) and
(21), therefore from (23) and (24), we obtain

a1 = ζb1, (29)

where ζ is the coupling coefficient given by

ζ = (c2
l − c2 − ε2ω2)ρω2

βc2
= −βρω2

Ac2 + ρω2(ρε2ω2χ − α)
, (30)

where cl has been defined earlier and represents the speed of classical longitudinal wave.
Now, plugging the expression of U from (22) into (20), we get

c2
3 = c2

t − ε2ω2, (31)

where ct = √
μ/ρ, is the speed of classical transverse wave. Clearly, the wave traveling with

speed c3 is independent of void parameters and travels slower than that in classical contin-
uum. This reduction in the speed of transverse wave is due to the presence of nonlocality in
the medium.
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It is clear that the waves propagating with speeds ci (i = 1,2,3) are all dispersive in
nature as they depend upon frequency ω. The presence of nonlocality parameter ε in the
expressions of their speeds shows that these waves are influenced by the nonlocality of the
medium.

Inserting q from (22) into (18), the displacement vector u can be written as

u = ιkb1n exp
{
ιk(n · r − ct)

}
. (32)

This shows that the vector u is parallel to the vector n. Thus, the particle motion associated
with potential q is in the direction of wave propagation. Hence, the wave propagating with
speed c1 is longitudinal in nature and we shall call it as longitudinal displacement wave.
From relations (29) and (32), we observe that the wave associated with φ is also longitudi-
nal in nature and is called as void volume fraction wave. Similarly, inserting U from (22)
into (18), one can see that the particle motion associated with potential U is normal to the
direction of wave propagation n and hence, the corresponding wave propagating with speed
c3 is transverse in nature.

It can be noticed that the expressions of speeds ci (i = 1,2) will be complex, hence the
corresponding waves are attenuating. The phase speed Vi (i = 1,2,3) and corresponding
attenuation coefficient Qi of the attenuating waves are given by (see Borcherdt [34])

Vi = (
(ci))
2 + (�(ci))

2


(ci)
, (33)

Qi = −ω�(ci)

(
(ci))2 + (�(ci))2
, (34)

where 
(·) and �(·) represent the real and imaginary parts.

3.1 Further Discussion

Here, we wish to investigate the frequency range for propagating waves in the medium. To
find out the frequency range for transverse wave traveling with speed c3, we see from (31)
that c3 = 0 at ω = ωc3(= ct/ε). For ω > ωc3 , we observe that the speed c3 will be purely
imaginary. Thus, we can declare that this wave is propagating wave for the frequency range:
0 ≤ ω < ωc3 . Beyond ω = ωc3 , the wave is no more a propagating wave.

To find out the frequency range for propagating coupled longitudinal waves, we can
notice from (27) that the coefficient C will vanish at ω = ωc1 and ω = ωc2 (provided ε �= 0).

At the frequency ω = ωc1 , one can easily check that the real part of B is negative, while
the imaginary part of B is zero. Therefore from (28), we obtain that

c2
1 = 0 and c2

2 = β2 + ρ2ε2χω2
c1

(ω2
c2

− ω2
c1

)

ρ2χ(ω2
c1

+ ι�2
2ωc1 − �2

1)
.

This means that one set of the coupled waves traveling with speed c1 disappears, while the
other one travels with complex speed c2.

At the frequency ω = ωc2 , one can check that the coefficient B is complex and from (28),
we see that

c2
1 = β2 + ρε2(ω2

c2
− ω2

c1
)(ξ − ρχω2

c2
− ιτωc2)

ρ2χ(ω2
c2

+ ι�2
2ωc2 − �2

1)
and c2

2 = 0.
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This means that one set of the coupled waves traveling with speed c2 disappears, while the
other set of coupled waves travels with complex speed c1. Thus, at each frequency ωci

, there
exist only one set of coupled longitudinal waves propagating with complex speed. This fact
has also been verified numerically through Fig. 11a.

It is clear from the expression of C given in (27) that for ω > 0 and ωc1 < ωc2 , the
quantity C becomes negative in the range given by

ωc1 < ω < ωc2 ,

and non-negative outside this range. In the entire range of frequency, the values of ci are
given by (28). In the entire frequency range 0 < ω < ∞, both the coupled waves propagate
with complex speeds, except at frequency points ω = ωc1 ,ωc2 where only one set of coupled
longitudinal waves exist.

Remark Note that the frequencies ωci
(i = 1,2) may act as critical frequencies for the cor-

responding waves, if the real part of the speed is zero or very-very small and imaginary part
is non-zero for ω > ωci

. For example, suppose for the range ω > ωc1 , the wave traveling
with complex speed c1 has its real part zero (or very-very small in magnitude) then clearly
the speed of this wave will be purely imaginary. In such a case, it would not be a propagating
wave and represents merely a distance decaying vibrations. In this situation, ω = ωc1 will
act as a critical frequency for the wave traveling with speed c1.

A similar analysis can be made for the case when ωc1 > ωc2 .
Now, let us look at the behavior of the speeds of different waves at limitly low and high

frequencies.
For limitly low frequency, i.e., when ω → 0, we note from (28) and (31) that

(i) the limiting values of speeds c1 and c2 become

c1 =
√

c2
l − β2

ρξ
, and c2 = 0.

This shows that in the limitly low frequency case, one set of the coupled longitudinal
waves disappears. The speed of remaining set of coupled longitudinal displacement
waves is less than the speed of classical longitudinal wave. This reduction in the speed
of coupled longitudinal waves is due the presence of voids in the medium.

(ii) the speed c3 becomes

c3 =
√

μ

ρ
,

which is equal to the speed of classical shear wave (ct ).

For limitly high frequency, i.e., when ω → ∞, one can see from (31) that the speed of
transverse wave c3 decreases first with increase of ω and goes to zero at ω = ωc3 . Beyond
ω = ωc3 , the speed c3 becomes purely imaginary and the absolute value of which goes on
increasing with further increase of ω. From (28), we see that beyond ω = ωci

(i = 1,2) the
absolute values of ci , go on increasing with further increase of frequency as one can check
that both c1 and c2 are proportional to ω.
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3.2 Special Cases

3.2.1 Nonlocal Non-voigt Elastic Solid

A material with voids is said to be non-voigt, if its viscous type behavior is absent, that is,
τ = 0. In this case, (25) reduces to

A∗c4 + B∗c2 + C∗ = 0,

where the coefficients A∗, B∗ and C∗ are given by

A∗ = χω2 − ξ

ρ
, B∗ = 2ε2χω4 −

(
χc2

l + α

ρ
+ ε2 ξ

ρ

)
ω2 + ξ

ρ
c2
l −

(
β

ρ

)2

,

C∗ = χε4ω6 − ε2

(
χc2

l + α

ρ

)
ω4 + α

ρ
c2
l ω

2.

Now we see that all the coefficients are real in nature. The roots of this quadratic equation
will provide us the speeds of two waves, which are given by

c2
1,2 = 1

2A∗
(−B∗ ∓

√
B∗2 − 4A∗C∗).

In the present case, it is easy to see that the waves having speeds c1,2 are dispersive. For
their corresponding speeds to be real, the roots c2

1,2 must be real and positive, for which
the discriminant (B∗2 − 4A∗C∗) must be positive. The positiveness can be checked keep-
ing in view that the order of nonlocality is very small and the frequency is not too high.
From the expression of A∗, we note that the quantity A∗ >=< 0 accordingly as ω >=< ωc

(= √
ξ/ρχ).

At ω = ωc , we see that

lim
ω→ωc

c2
1 =

[
c2
l

(
1 − ε2ξ

α

)
+ ε2ξ

αρχ
(ξ − α)

][
1 − ε2ξ

α
+ β2χ

αξ

]−1

,

and c2
2 → ∞. This means that at ω = ωc , the wave speed c1 is finite and c2 has point of

infinite discontinuity as also has been verified numerically through Fig. 12b.
As the coefficient C in (27) is independent of the constitutive coefficient τ , therefore,

the same frequencies ωci
exist in this case also (see Sect. 3.1). Consequently, we conclude

that in the frequency range ω > ωci
(i = 1,2,3) the behavior of speeds of waves in nonlocal

voigt (τ �= 0) and non-voigt (τ = 0) elastic medium with voids remains same.
It can be seen easily that in the absence of nonlocality, ωci

→ ∞ for all i = 1,2,3. Thus,
we conclude that in local elastic solid with voids, the waves with speed c1 and c3 will exist
for all values of frequency, while the wave with speed c2 will still face a cut-off frequency
at ω = √

ξ/ρχ , below which it is distance decaying vibrations only and beyond cut-off
frequency it is a propagating wave.

3.2.2 Local Elastic Solid with Voids

If we assume that the nonlocality is absent from the medium, then we shall be left with
elastic medium with voids only. Putting nonlocality parameter, that is, ε = 0, (25) becomes

Ac4 + Bc2 + C = 0,
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where A has already been defined and

B = −(
ραω2 + β2 + c2

l A
)
, C = αω2(λ + 2μ).

In this case, the speeds of coupled longitudinal waves reduce to

c2
1,2 = 1

2A

(−B ∓
√

B 2 − 4AC
)
,

and the speed of transverse wave, i.e., c3 becomes equal to the classical shear wave speed
(ct ). These expressions of speeds are exactly same as obtained by Puri and Cowin [22].

3.2.3 Nonlocal Elastic Solid Without Voids

If we neglect the presence of void parameters, then we shall be left with nonlocality only in
the medium. In this case, the speeds of coupled longitudinal waves reduce to

c1 =
√

c2
l − ε2ω2 and c2 = 0,

and the speed of the transverse wave remains same, i.e., c3 = √
c2
t − ε2ω2 as this speed is

independent of void parameters. We observe that in the absence of voids, i.e., when only
nonlocality is present in the medium, the square of the speeds of longitudinal and trans-
verse waves are frequency dependent and reduce by an amount equal to ε2ω2. At ω = ωc1 ,
the longitudinal wave ceases to propagate, while at ω = ωc3 , the transverse wave ceases to
propagate. The frequencies ω = ωci

(i = 1,3) also act as critical frequencies for respective
waves, beyond which the waves are no more propagating waves.

3.2.4 Classical Elastic Solid

If we neglect the nonlocality and void parameters together from the medium, we see that the
speeds of coupled longitudinal waves reduce to c1 = cl and c2 = 0, while the speed of the
transverse wave reduces to c3 = ct . Thus, all the waves of classical elasticity are successfully
recovered as was expected beforehand.

4 Reflection Phenomenon

Let OX1X2X3 be the cartesian coordinate system. We consider a nonlocal uniform elas-
tic half-space with voids occupied by the region M = {(x1, x2, x3);−∞ < x1, x2 < ∞,0 ≤
x3 < ∞} such that x3 = 0 be the plane boundary surface of M and x3-axis is pointing verti-
cally downward into M . The boundary surface x3 = 0 of the half-space M is assumed to be
free from mechanical stresses. For a two-dimensional problem in x1–x3 plane, we take

u = (u1,0, u3),
∂

∂x2
≡ 0,

and from (18), we have

u1 = q,1 − U2,3 and u3 = q,3 + U2,1, (35)

where U2 is the x2 component of the vector U.
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Let a train of coupled longitudinal displacement waves having amplitude A0 and travel-
ing with phase speed V1 is made incident making an angle θ0 with the normal to the free
surface x3 = 0. In order to satisfy the boundary conditions at the free surface, we postulate
the existence of following reflected waves:

(i) A set of coupled longitudinal waves of amplitude A1 traveling with phase speed V1 and
making an angle θ1 with the normal.

(ii) A similar set of coupled longitudinal waves of amplitude A2 traveling with phase speed
V2 and making an angle θ2 with the normal.

(iii) A transverse wave of amplitude A3 traveling with phase speed V3 and making an angle
θ3 with the normal.

The total wave field in the half-space M can be expressed as

q = A0 exp
{
ιk1(sin θ0x1 − cos θ0x3) − ιω1t

}

+
∑

p=1,2

Ap exp
{
ιkp(sin θpx1 + cos θpx3) − ιωpt

}
, (36)

φ = ζ1A0 exp
{
ιk1(sin θ0x1 − cos θ0x3) − ιω1t

}

+
∑

p=1,2

ζpAp exp
{
ιkp(sin θpx1 + cos θpx3) − ιωpt

}
, (37)

U2 = A3 exp
{
ιk3(sin θ3x1 + cos θ3x3) − ιω3t

}
, (38)

where ωi = kiVi (i = 1,2,3).
To satisfy the boundary conditions at the free surface, we shall assume that ω1 = ω2 = ω3

and

k1 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k0 (say),

or equivalently (Snell’s law)

V1

sin θ0
= V1

sin θ1
= V2

sin θ2
= V3

sin θ3
= v, (39)

where ‘v’ is the apparent velocity.
From Snell’s law (39), we find that θ0 = θ1, and the other angles of reflection depend upon

the phase speeds V1, V2 and V3 which are functions of material parameters. The complete
geometry of the problem is shown in Fig. 1.

The quantity ζi (i = 1,2) is the coupling coefficient (see (30)) given as

ζi = (c2
l − c2

i − ε2ω2)ρω2

βc2
i

. (40)

4.1 Boundary Conditions

Since the boundary of the half-space M is mechanically stress free, therefore, the appropriate
boundary conditions are the vanishing of force stress tensor and equilibrated stress tensor.
Mathematically, these boundary conditions are written as: At x3 = 0

t33 = t31 = h3 = 0, (41)
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Fig. 1 Geometry of the problem

or in terms of potentials as

λ(q,11 − U2,13) + (λ + 2μ)(q,33 + U2,13) + βφ = 0, (42)

μ(2q,13 + U2,11 − U2,33) = 0, (43)

αφ,3 = 0. (44)

Inserting the potentials given by (36)–(38) into these boundary conditions, one can obtain a
system of three non-homogeneous equations in three unknowns, which is written in matrix
form as

[aij ][X] = [B], (45)

where [aij ] is a 3 × 3 matrix whose elements in non-dimensional form are given by

a11 = 1, a12 = D−1

[
λ + (λ + 2μ) cot2 θ2 − βζ2

k2
0

]
,

a13 = 2μD−1 cot θ3, a21 = 1, a22 = cot θ2

cot θ0
, a23 = 1 − cot2 θ3

2 cot θ0
,

a31 = 1, a32 = ζ2 cot θ2

ζ1 cot θ0
, a33 = 0, D = λ + (λ + 2μ) cot2 θ0 − βζ1

k2
0

.

[X] = [X1,X2,X3]t is a column matrix, here ‘t ’ in the superscript represents the transpose
of the matrix and

Xi = Ai

A0
(i = 1,2,3)

are the reflection coefficients, and [B] = [−1,1,1]t . The reflection coefficients Xi are ob-
tained from (45) as

Xi = �i

� ,

where � is the determinant of the coefficient matrix [aij ] and �i can be obtained in usual
manner. Since the entries of the coefficient matrix are dependent on elastic properties of the
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half-space, angle of incidence and frequency of the incident wave, hence all the reflection
coefficients also depend on these parameters.

4.2 Particular Cases

4.2.1 Local Elastic Solid with Voids

If we neglect the nonlocality from the half-space, then we shall be left with an elastic mate-
rial with voids only. For this purpose, setting the nonlocality parameter to zero, i.e., ε = 0,
the coupling coefficients ζi, (i = 1,2) reduce to

ζi = (c2
l − c2

i )ρω2

βc2
i

.

With these considerations, (45) will provide us the reflection coefficients in the correspond-
ing problem. These expressions are similar as obtained earlier by Ciarletta and Sumbat-
yan [35].

4.2.2 Nonlocal Elastic Solid Without Voids

Here, we shall neglect the presence of voids from the half-space, but will account the pres-
ence of nonlocality. In this case, the third equation in (45) is automatically satisfied and the
second equation yields A2 = 0, indicating that the reflected wave propagating with phase
speed V2 disappears and the reflected wave propagating with speed V1 is no more coupled.
Thus, we shall be left with only two reflected waves, i.e., the reflected longitudinal displace-
ment wave and reflected transverse wave. The remaining equations in (45) reduce to

[aij ][X] = [B], (46)

where [aij ] is a 2 × 2 matrix whose elements in non-dimensional form are given by

a11 = a21 = 1, a12 = 2μ cot θ3

[λ + (λ + 2μ) cot2 θ0] , a22 = 1 − cot2 θ3

2 cot θ0
,

[X] = [X1,X3]t is a column matrix, and [B] = [−1,1]t . We find that

X1 = −2μ cot θ3X3

[λ + (λ + 2μ) cot2 θ0] − 1,

X3 = 4 cot θ0[λ + (λ + 2μ) cot2 θ0]
(1 − cot2 θ3)[λ + (λ + 2μ) cot2 θ0] − 4μ cot θ0 cot θ3

.

These are the reflection coefficients due to incidence of longitudinal displacement wave in
the present case. It can be seen that these coefficients are functions of material parameters,
non-locality parameter, frequency as well as angle of incidence of the incident wave.

4.2.3 Classical Elastic Solid

If we neglect the presence of nonlocality and voids simultaneously from the half-space, then
we shall be left with the reflection problem of incident longitudinal displacement wave from
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the boundary surface of classical elastic half-space. Setting the parameters corresponding to
nonlocality and voids equal to zero, one can see that the last equation in the matrix equation
(45), corresponding to vanishing of equilibrated stress is identically satisfied. This means
that the reflected wave corresponding to change in void volume fraction disappears. With
A2 = 0, the remaining two boundary conditions reduce to (2)–(10) given in Ewing et al. [36]
for the corresponding problem, for which we need to take λ = μ and the change of angle of
incidence into angle of emergence will be required.

Remark One can observe that the expressions of reflection coefficients obtained in
Sect. 4.2.2 for the case of nonlocal elastic solid without voids are same as those obtained in
Sect. 4.2.3 in the case of classical elastic solid. Note that in the earlier case, the speeds of
waves are dispersive (as discussed in Sect. 3.2.3, while in the classical case, the speeds of
waves are non-dispersive. Thus, the reflection coefficients do not depend upon the frequency
in classical elastic case, while they depend on frequency too in case of nonlocal elastic solid
without voids.

5 Energy Partitioning

In order to physically justify the analytic expressions of the reflection coefficients in the
problem, we must verify the energy balance at the boundary surface. To discuss the parti-
tioning of incident energy at the boundary surface, the rate of energy transmission P per
unit area is given by (see Achenbach [37])

P = tL33u̇3 + tL31u̇1 + hL
3 φ̇. (47)

Let 〈P0〉 denotes the average energy carried along incident wave, 〈Pi〉 (i = 1,2) denote
the average energy carried along reflected coupled longitudinal waves and 〈P3〉 denotes the
average energy carried along reflected transverse wave. Using (11), (12), (22) and (35) in
(47), we get the following expressions

〈P0〉 = 1

2
k4

0v cot θ0

(
D + 2μ − αζ 2

1

k2
0

)
A2

0, (48)

〈P1〉 = −1

2
k4

0v cot θ1

[
λ + (λ + 2μ) cot2 θ1 − βζ1

k2
0

+ 2μ − αζ 2
1

k2
0

]
A2

1, (49)

〈P2〉 = −1

2
k4

0v cot θ2

[
λ + (λ + 2μ) cot2 θ2 − βζ2

k2
0

+ 2μ − αζ 2
2

k2
0

]
A2

2, (50)

〈P3〉 = −1

2
k4

0vμ cot θ3

(
1 + cot2 θ3

)
A2

3. (51)

We define energy ratio Ei (i = 1,2,3) corresponding to the ith reflected wave at x3 = 0 as
the ratio of energy carried along ith reflected wave to the energy carried along the incident
wave, given by

Ei = 〈Pi〉
〈P0〉 . (52)

Thus, for an incident set of coupled longitudinal wave having phase speed V1, the energy
ratios of reflected waves are given by

E1 = −X2
1, (53)
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E2 = −
[λ + (λ + 2μ) cot2 θ2 − βζ2

k2
0

+ 2μ − αζ 2
2

k2
0

] cot θ2

(D + 2μ − αζ 2
1

k2
0

) cot θ0

X2
2, (54)

E3 = − μ cot θ3(1 + cot2 θ3)

(D + 2μ − αζ 2
1

k2
0

) cot θ0

X2
3, (55)

where D has been defined earlier. We note that these energy ratios also depend on the elastic
properties of the medium, angle of incidence and amplitude ratios.

6 Numerical Results and Discussion

In order to study the characteristics of wave propagation through nonlocal elastic material
with voids, we have computed their phase speeds and corresponding attenuation coefficients
for a specific model. The amplitude and energy ratios corresponding to reflected waves due
to incidence of a set of coupled longitudinal waves at the free surface of the half-space M ,
have also been computed and discussed. For the purpose of numerical computations, we
have borrowed the values of relevant material parameters from Puri and Cowin [22] and
Eringen [33]. These are given in Table 1.

The phase speeds and corresponding attenuation coefficients of existed waves have been
computed from the formulae (33) and (34).

Figure 2a depicts the variation of phase speeds Vi (i = 1,2,3) with the frequency f in the
range 102 < f < 106 Hz on logarithmic scale where f is given by the relation ω = 2πf . It
can be noticed that all the waves are dispersive. The wave with speed V2 is highly dispersive
in the certain initial range of frequency f than the other two waves. The wave with phase
speed V2 first increases slightly from certain value with increase in frequency, then it starts
decreasing rapidly with frequency in the range 400 < f < 5000 Hz approximately, after that
it becomes almost constant. On comparing the magnitudes of phase speeds of these waves,
we see that 0 < V3 < V1 < V2 showing that the wave with speed V2 is the fastest one and the
wave with speed V3 is the slowest one. This conclusion is in concurrence with those obtained
by Puri and Cowin [22]. Moreover, the wave with speed V2 is weakly dispersive beyond the
range 400 < f < 5000 Hz approximately, while the wave with speed V3 is weakly dispersive
throughout the frequency range chosen. The wave with speed V1 is relatively more dispersive
than the wave with speed V3. The wave with speed V3 is weakly dispersive throughout the
range due to very small value of the term ε2ω2 (occurring in the expression of its speed)
chosen in the model.

Figure 2b depicts the variation of attenuation coefficients Qi (i = 1,2,3) with the fre-
quency f for the existing waves. It is clear from the figure that the attenuation coefficient

Table 1 Numerical values of
parameters Symbol Value Symbol Value

λ 1.5 × 1010 Pa μ 7.5 × 109 Pa

ξ 1.2 × 1010 Pa β 1 × 1010 Pa

α 8 × 109 Pa m2 τ 1 × 106 Pa s

ρ 2 × 103 kg/m3 e0 0.39

a 0.5 × 10−9 m χ 0.16 m2
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Fig. 2 a Variation of Vi (i = 1,2,3) with respect to frequency. b Variation of Qi (i = 1,2,3) with respect
to frequency

Q2 corresponding to the wave with phase speed V2 dominates heavily over the attenuation
coefficients of other waves. The attenuation coefficient Q3 is zero in the considered fre-
quency range, indicating that the corresponding wave is non-attenuating. The attenuation
coefficient Q1 too is very very small and it has been shown in figure, after magnifying by
a factor of 10. It is also observed that the coefficients Q1 and Q2 are frequency dependent
in low frequency range 102 < f < 104, and after that the coefficient Q2 is almost constant,
while Q1 is almost zero.

Figure 3a depicts the comparison between the phase speeds of the coupled longitudinal
waves (V1 and V2) with the speed of classical longitudinal wave (cl). It is observed that the
phase speed V1 and cl are almost same only in the high frequency range, however in low
frequency range V1 is less than cl . The phase speed V2 is found to be always higher than cl
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Fig. 3 a Comparison of Vi (i = 1,2) with cl . b Comparison of V3 with ct

for all frequencies chosen, but the difference is more prominent in the low frequency range
where the wave is highly dispersive.

Figure 3b shows a comparison of phase speed of transverse wave V3 with classical shear
wave ct . First, we note that the wave with speed V3 is dispersive, while the classical shear
wave is non-dispersive. The figure indicates that the wave with speed V3 almost travels with
the speed of classical shear wave in the initial range of frequency, but for very-very high
frequency range the wave with speed V3 approaches to zero rapidly, while classical shear
wave maintains its value as was expected. This is not surprising at all, because the speed
c3 of shear wave given by formula (31) vanishes at ω = ct/ε. Beyond ω = ct/ε, it becomes
purely imaginary indicating that the wave is no more a progressive wave.

To investigate the effect of nonlocality parameter on existing waves, we define a non-
dimensional nonlocality parameter ε as: ε = ε2ω2

0/c
2
l , where ω0 is a standard angular fre-

quency. By taking ω0 = 2π × 2000 s−1, Fig. 4 depicts the effect of ε (0.1 × 10−5 to
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Fig. 4 Variation of Vi/cl (i = 1,2,3) with respect to ε

2.5×10−3 at frequency f = 20 kHz) on the phase speeds of existing waves. It can be noticed
that the transverse wave is highly influenced by the nonlocality parameter than the coupled
longitudinal waves. The effect of ε on coupled longitudinal waves is similar in nature and
linearly decreasing. The effect of nonlocality on the corresponding attenuation coefficients
has been depicted through Figs. 5a–c. It is clear from these figures that the attenuation
coefficient of transverse wave is zero as was excepted before hand, while the attenuation
coefficients of other waves are non-zero and possess opposite behavior against ε.

Figure 6 depicts the variation of absolute values of reflection coefficients Xi (i = 1,2,3)

with the angle of incidence θ0 of a set of coupled longitudinal waves having phase speed V1

for the range 0 < θ0 < 50◦ at a fixed frequency f = 20 kHz. The angle θ0 = 50◦ is found
to be a critical angle, beyond which total reflection occurs. This is because the phase speed
V2 is higher than V1, and therefore Snell’s law ensures the occurrence of total reflection for
θ0 > 50◦. From the figure, it is observed that the reflection coefficient X1 has its maximum
value equal to unity at normal incidence, its value then decreases with increase of angle of
incidence θ0. The reflection coefficient X2 is found to be very small, so it has been shown
after magnifying by a factor of 10. It is observed that the absolute value of reflection coeffi-
cient X2 is almost constant over the entire range of θ0, while the reflection coefficient X3 is
zero at normal incidence and it increases with increase of angle of incidence θ0.

Figure 7 depicts the variation of absolute values of corresponding energy ratios Ei

(i = 1,2,3) with the angle of incidence θ0. We see that the behavior of energy ratios with
angle of incidence is similar to the behavior of corresponding amplitude ratios. This is quite
appealing as the energy ratios are proportional to the square of corresponding amplitude ra-
tios at each angle of incidence. It has been noticed that the sum of real parts of energy ratios
Ei (i = 1,2,3) is unity, while the sum of corresponding imaginary parts of energy ratios Ei

(i = 1,2,3) is zero at each angle of incidence.
Figures 8a–c depict the variation of absolute values of reflection coefficients with the

non-dimensional nonlocality parameter ε (ranging from 0.1 × 10−5 to 2.5 × 10−3 at fre-
quency f = 20 kHz and angle of incidence θ0 = 15◦). We have observed that the value of
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Fig. 5 a Variation of Q1 with respect to ε. b Variation of Q2 with respect to ε. c Variation of Q3 with
respect to ε
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Fig. 6 Variation of |Xi | (i = 1,2,3) with respect to θ0

Fig. 7 Variation of |Ei | (i = 1,2,3) with respect to θ0

X1 increases with ε, but with very small rate. The value of amplitude ratio X2 decreases
with ε but the rate of decrease is again very small. The value of amplitude ratio X3 is almost
constant in the entire range of ε, though it appears as increasing but not appreciable. We
have also verified that for different values of nonlocality parameter ε, the energy balance
law is satisfied at fixed angle of incidence.

Figure 9a depicts the variation of absolute values of coupling coefficients ζ1 and ζ2 de-
fined in (40) with the frequency f in the range 102 < f < 106 Hz on logarithmic scale. We
found that ζ1 is very small as compared to ζ2, therefore we have plotted ζ1 after magnifying
by a factor of 106. We observe that ζ2 increases monotonically with increase of frequency.
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Fig. 8 a Variation of |X1| with respect to ε. b Variation of |X2| with respect to ε. c Variation of |X3| with
respect to ε
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Fig. 9 a Variation of |ζ1| and |ζ2| with respect to frequency. b Variation of |ζ1| and |ζ2| with respect to ε

Figure 9b depicts the variation of absolute values of coupling coefficients with the non-
dimensional nonlocality parameter ε (ranging from 0.1 × 10−5 to 2.5 × 10−3 at frequency
f = 20 kHz). It is observed that ζ1 remains almost constant, while ζ2 increases almost
linearly with ε. Since the value of ζ1 is very small, therefore its plot has been depicted after
magnifying by a factor of 400.

Figure 10 depicts the variation of absolute values of ci (i = 1,2,3) against low fre-
quency ranging from 0–106 Hz on logarithmic scale. It can be seen that the absolute value
c3 is constant as was expected since the contribution of the term ε2ω2 in (31) is almost neg-



108 D. Singh et al.

Fig. 10 Variation of |ci | (i = 1,2,3) with respect to frequency

ligible for low frequency range. The absolute value of c1 depends significantly on frequency
only for very low frequency. The absolute value of c1 starts from some definite value at
zero frequency, it increases very slowly with increase of frequency and finally goes around
3.9 km s−1 with further increase of frequency parameter. The dependence of absolute value
of c2 on frequency is interesting. First, we note that as ω approaches to zero, the value of c2

also approaches to zero, which is supporting our inference discussed in Sect. 3.1. As ω takes
value greater that 102 Hz, the absolute value of c2 increases very fast and attains maximum
value around 6.6 km s−1 at ω = 2.4π kHz and then starts decreasing with further increase
of ω and soon becomes almost constant keeping its value around 5 km s−1.

Figure 11a depicts the variation of absolute values of ci (i = 1,2,3) against frequency
parameter ranging from 108–1013 Hz for both local as well as nonlocal elastic material with
voids. It is very much clear from this figure that the waves are dispersive/non-dispersive in
nonlocal/local elastic material with voids (NESV/LESV). We further notice that the speed
of each propagating wave vanishes at certain value of frequency parameter fci

in nonlocal
elastic material with voids. These specific values of frequency may be declared as critical
frequencies for the respective waves. This is because at these critical values of frequency,
the respective waves change their behavior dramatically. What is happening there can be
made clear through Figs. 11b and c. From Figs. 11b and c, we see that beyond the range
0 < f < fci

, the real parts of all the propagating waves are almost zero in nonlocal elastic
solid with voids but they maintain their constant value in the case of local elastic solid
with voids. This means that after their critical frequencies in NESV, the speeds of all the
waves are purely imaginary indicating that these waves are no more propagating waves but
they just represent the distance decaying vibrations. The imaginary part of speed c3 is zero
within the range indicating that it is non-attenuating propagating wave as has been clarified
earlier in Sect. 3. The waves propagating with speeds c1 and c2 are poorly attenuating as
the imaginary parts of their speeds is very-very small within the range. However, the wave
with speed c1 is relatively poorer than c2 in attenuation. This attenuation is clearly arising
due to the presence of voids in the medium, in the absence of which the wave with speed c2

disappears and the wave with speed c1 propagates with real speed for range 0 < ω < cl/ε.
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Fig. 11 a Variation of |ci | (i = 1,2,3) with respect to frequency and its comparison in nonlocal and local
elastic solid with voids. b Variation of |
(ci )| (i = 1,2,3) with respect to frequency and its comparison in
nonlocal and local elastic solid with voids. c Variation of |�(ci )| (i = 1,2,3) with respect to frequency and
its comparison in nonlocal and local elastic solid with voids
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Fig. 12 a Comparison of |c2
1| in voigt and non-voigt solid. b Comparison of 
(c2

2) in voigt and non-voigt
solid. c Comparison of V1 in voigt and non-voigt solid. d Comparison of V2 in voigt and non-voigt solid.
e Comparison of |Q1| in voigt and non-voigt solid. f Comparison of |Q2| in voigt and non-voigt solid
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Fig. 12 (continued)
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Figures 12a–f show the comparison of c2
1, c2

2, phase speeds V1, V2, the attenuation coef-
ficients Q1 and Q2 for voigt (τ �= 0) and non-voigt (τ = 0) elastic solid with voids in low
frequency range on logarithmic scale. From Fig. 12a, we observe that for τ = 0, the abso-
lute value of c2

1 is little smaller than that of for τ �= 0 showing that the effect of τ on c2
1

is not much appreciable in the chosen frequency range. Next, we have seen that c2
2 is real

when τ = 0 and complex when τ �= 0. In Fig. 12b, we have plotted the graphs of 
(c2
2) with

frequency for voigt and non-voigt cases. From this figure, we note that the wave traveling
with speed c2 faces a cut-off frequency for non-voigt (τ = 0) case only. This shows that τ

has significant impact on the propagation of this wave. It has been found that the value of
cut-off frequency is exactly at ω = √

ξ/ρχ as has been mentioned in Sect. 3.2.1. For τ = 0,
the c2

2 has a point of infinite discontinuity at ωc(= √
ξ/ρχ) below ωc , c2

2 < 0 and beyond
ωc , c2

2 > 0, while for τ �= 0, c2
2 does not face any such point of infinite discontinuity. This is

because the quantity A occurring in the denominator of c2
2 remains complex. Thus, we can

conclude that for the non-voigt case, the wave with speed c2 is a propagating wave only for
ω > ωc . Figures 12c and d show the comparison of the phase speeds V1 and V2 respectively
for voigt and non-voigt cases. Very minute effect of τ has been observed on V1, while V2

does not exist for ω < ωc . This is quite clear because c2
2 < 0 for ω < ωc , hence 
(c2) = 0

and does not allow the phase speed V2 to exist in the said range. For non-voigt elastic solid
with voids, the speed c2

2 remains complex and hence 
(c2) does not vanish, which in turn
allows the V2 to exist for all frequencies in the said range. Figures 12e and f show the com-
parison of corresponding attenuation coefficients. We observe that the attenuation coefficient
Q1 is zero in the case when τ = 0, while it has significant value in the other case. Figure 12f
shows that the absolute value of the attenuation coefficient Q2 is zero after cut-off frequency
in the case when τ = 0, but in the other case, it achieve significant constant value. This is
obviously acceptable as the value of c2 is real and positive for ω > ωc in case of τ = 0. It has
also been observed that the behavior of voigt and non-voigt solids is almost same in higher
frequency range.

7 Conclusions

In this paper, we have extended the concept of nonlocality to the theory of elastic mate-
rial with voids. The constitutive relations and governing equations are developed for linear
isotropic nonlocal elastic solid with voids. The possibility of plane wave propagation has
been explored and the reflection phenomenon of a plane wave striking obliquely at the stress
free boundary surface of a nonlocal elastic half-space with voids has also been investigated.
We conclude that

(i) Three waves propagating with distinct speeds may travel in a nonlocal elastic solid
with voids, consisting of two sets of coupled longitudinal waves and an independent
transverse wave. The coupled waves are found to be dispersive and attenuating in
nature, while the transverse wave is dispersive but non-attenuating in low frequency
range. All the waves are found to be influenced by the nonlocality of the medium.

(ii) The waves propagating with phase speeds V1 and V2 are influenced by the void pa-
rameters, but the wave propagating with phase speed V3 is independent of the void
parameters.

(iii) Transverse wave propagating with speed c3 faces a critical frequency ωc3 , above
which the wave is no more a propagating wave. While the coupled waves propagating
with speeds ci (i = 1,2) may face critical frequencies provided 
(ci) = 0 at ω = ωci

(i = 1,2). For ω > ωci
, the corresponding waves will no more be propagating waves.
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(iv) In the low frequency range, for the wave traveling with speed c2 through non-voigt
elastic solid with voids, there exist a cut-off frequency in contrast to the case of voigt
elastic solid with voids.

(v) The wave propagating with phase speed V3 is highly influenced by the nonlocality
parameter as compared to coupled waves.

(vi) In the reflection problem, the maximum amount of incident energy is carried along
the reflected coupled longitudinal waves, which is of the same speed as that of the
incident coupled waves. The reflection coefficients and corresponding energy ratios
depend upon the nonlocality parameter, void parameters, angle of incidence and the
frequency of the incident wave.

(vii) The reflection coefficient corresponding to the reflected wave propagating with phase
speed V1 increases with the nonolocality parameter, while the reflection coefficient
corresponding to wave propagating with phase speed V2 decreases and the reflection
coefficient corresponding to wave propagating with phase speed V3 remains almost
constant at fixed frequency.

(viii) One of the coupling coefficients (ζ2) is highly dependent on the frequency and the
nonlocality parameters. It increases almost linearly with the nonlocality parameter.
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