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Abstract Soft tissues account for a major fraction of the body volume and mass. They
are present in all non-skeletal organs, being responsible for protecting the body, maintain-
ing internal homeostasis, and allowing for mobility. Their function in different organs is
highly diverse, as are their properties which are optimally suited for their specific tasks.
From a mechanical perspective, specificity of structure and properties is acquired via evo-
lutionary adaptation of the tissue composition and multi-scale structure. In modeling tissue
mechanics and mechano-biology, it is thus natural to seek the structural determinants of
tissues and their evolution (the “structural approach”). Earlier models were exclusively phe-
nomenological, based either on the general principles of non-linear continuum mechanics
or alternatively, on empirical mathematical expressions that fit specific response patterns. In
the late 1970’s, structural models were introduced to tissue mechanics (Lanir in J. Biome-
chanics 12(6): 423–436, 1979; Lanir in J. Biomechanics 16(1): 1–12, 1983). Ever since, a
gradually increasing number of structural models have been developed for different types
of tissues, and today, it is the method of choice (Cowin and Humphrey in J. Elasticity 61:
ix–xii, 2000). The structural approach was recently extended to incorporate a mechanis-
tic formulation of mechano-biological pathways by which tissue structures remodel during
growth (Lanir in Biomech Model Mechanobiol, 14(2): 245–266, 2015). Here, the charac-
teristic features of soft tissue structures and their constitutive modeling are reviewed. The
presentation starts with a brief survey of the multi-scale and multi-phasic soft tissues struc-
ture. The global mechanical characteristics of soft tissues and of their constituents are then
briefly reviewed. These two aspects form the basis for structural constitutive formulation
via the multi-scale structure-function link. Based on established criteria for model validity,
predictions of the formulated theory are contrasted against measured response characteris-
tics. Using this structure-function relationship, the evolutionary pathway by which tissue
structure and mechanics remodel during growth to adapt to their physiological function, is
laid down. The review concludes with an account of the state of the art, the big picture, and
future research challenges in tissue mechanobiological modeling.
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Abbreviations
CSK Cytoskeleton
CVS Cardiovascular system
ECM Extra-cellular matrix
G&R Growth and remodeling
GAG Glycosaminoglycans
LM Light microscopy
LVE Linear viscoelasticity
LV Left ventricle
OA Opening angle
PC Preconditioning
PG Proteoglycans
QLV Quasilinear viscoelasticity
REV Representative elementary volume
RPC Recruitment preconditioning
RS Residual stress
RVE Recruitment viscoelasticity
SEM Scanning electron microscopy
VE Viscoelasticity
1D, 2D, 3D One-, two-, and three-dimensional

1 Introduction

The foundations of modern soft tissues mechanics were established by Y.C. Fung, starting in
the late 1960s [1]. Over the years, Fung introduced the concepts of pseudo-elasticity, expo-
nential stress-strain models, quasilinear viscoelasticity, preconditioning and residual stress,
which are cornerstones of the field till today. Fung’s models are based on non-linear con-
tinuum mechanics, and are phenomenological in nature. As such, their material parameters
bear no physical meaning. In view of the large inter-specimen biological variability, where
each tissue sample can have its own mechanical properties, lack of physical meaning im-
plies that there is no common denominator which can serve to unify and project between
different specimen and tissues. In the late 1970s structure-based multi-scale approach was
introduced to tissue modeling wherein parameters have clear physical or structural meaning
and structure serves as the common determinant of properties.

This review is dedicated to structural modeling of soft tissues mechanics and mechano-
biology. Structural models are important not only in their potential to unify apparently un-
related observations into a coherent framework but also in facilitating insight into the un-
derlying processes and their interactions, thereby providing the groundwork for hypotheses
testing of the role and significance of the system processes. Space limitations did not allow
for including a review of various semi-structural and structure-motivated model which are
partially phenomenological. Two recent reports provide historical background of the struc-
tural approach to tissue characterization. One is a personal account of the conception of
the structural approach [2]. The other [3] is an insightful review of the history of structural
constitutive models.
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1.1 Soft Tissue Multi-scale Structure

Soft tissues exhibit a variety of structures, compositions and properties which render them
highly suitable for their physiological functions. The structure of each tissue is a multi-scale
hierarchy of elements from the molecules through cells, micro-fibrils and fibers, to the tissue
level. Mechanically, the predominant elements are the fibers, the fluid-like matrix, and the
excitable muscle cells in active tissues. The protein fibers are primarily non-excitable col-
lagen and elastin fibers, and fibronectins and laminins micro-fibers which are mechanically
less significant. Collagen is the structural building block of tendons, skin, blood vessels,
cornea, sclera, cartilage, intervertebral discs, bones, fascia and uterus cervix. Elastin fibers
are found in vertebrate skin, walls of arteries and veins, the lung parenchyma, and in the
ligamentum nuchae of horses and cows. Each fiber is itself a multi-scale structure. Colla-
gen is made of distinct fibrils, each of which is a multi-scale system ranging from the fibril
down to the sub-fibrils, the highly structured micro-fibrils, and ending in the triple-helical
tropo-collagen molecule composed of three amino acid alpha chains [4]. Elastin fibers con-
sist of two proteins, an amorphous insoluble elastin and an elastic micro-fibril composed
primarily of the glycoprotein fibrillin [5]. The structure of the fiber network is highly vari-
able. In some tissues the fibers are organized in parallel orientation (collagen in tendons and
ligaments, elastin in ligament nuchae), while in others the networks are planar (the skin,
heart valve leaflets, body membranes), or are in association with the tissue cells in a more
complex there-dimensional manner (e.g., elastin and collagen in blood vessels, collagen and
myocytes in the heart [6, 7]).

The matrix of soft tissues is comprised of a water solvent containing solutes of ions,
protein molecules and very large proteoglycans (PGs) which are encaged within the tissue
fiber networks. PGs are complex macromolecules which are made of a protein core with
covalently bound negatively charged glycosaminoglycan (GAG) chains. The fixed charges
of the GAG chains endow the matrix with osmotic pressure which attracts water and swells
the tissue up to equilibrium where the matrix pressure is mechanically counter-balanced by
tension in the tissue fibers [8]. Hence soft tissues are well hydrated thereby benefiting from
a plasticizing effect [9].

The cells in soft tissues are of different types and functions. They can have distinct dispo-
sition within the tissue system. Whereas some smooth muscle cells (depending on the tissue
type), and other non-contractile cells are often found dispersed within the fiber network,
arterial smooth muscle cells (SMCs) are encaged within the media inter-lamellar elastin
network with approximately circumferential disposition. In the bladder the SMCs are orga-
nized in three distinct, closely packed sub-layers within the detrusor layer of the wall. In
the heart wall, the myocytes are circumferentially organized parallel to each other in an ori-
entation which changes gradually between the inner endocardium to the outer epicardium
surfaces. In skeletal muscle, the cells are long, and span the entire length of the muscle.

Each cell is by itself a multi-scale system, ranging from the molecular level, via the
cytoskeleton (CSK), to the whole-cell level. In non-muscle cells, the dynamic CSK consists
of actin and microtubule filaments and of dispersed acto-myosin motor units, which enable
active contraction of the cells. Muscle cells contain highly organized contracting sarcomere
units made of inter-digitating actin and myosin filaments, and of non-contracting titin protein
filaments which protect the sarcomeres from over-stretch.

1.2 Soft Tissues Mechanical Properties

Soft tissues undergo finite reversible deformations, at times stretching by 100 % or more
(e.g., skin, mesentery membrane). Their stress-strain relationship is convexly non-linear,
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where the stiffness increases with tensile strain. Their response is in general anisotropic as
well as time-dependent, subject to reversible (with time) viscoelasticity, and to irreversible
preconditioning adaptation [10–13]. Viscoelasticity is manifested as creep under constant
stress, stress relaxation under constant strain and onset of a hysteresis loop between loading
and unloading responses. Tissue preconditioning is seen under repeated cycles of stretch,
where the stress decays asymptotically with cycle number until reaching a stable response.
Under in vitro conditions the effects of preconditioning are only partially reversible after a
long rest period. Importantly, the tissue response depends on its preconditioning protocol,
implying that any change in the testing protocol may require a new round of preconditioning
[14, 15].

Residual Stress and Strain (RS): In their unloaded state, tissues are not stress-free but
are subjected to internal residual stress and to its associated residual strain. In arteries, it
was found [16, 17] that when an artery ring is cut longitudinally, it springs open with an
opening angle (OA) whose magnitude was taken to be a measure of the RS level. A similar
phenomenon was found in left ventricle (LV) myocardial rings [18, 19].

Importantly, RS must be incorporated in tissue stress analysis since the true fibers’ strain
(and the resulting true tissue stress) is the one referenced to the stress-free state at which
all fibers are un-stretched and stress-free [20, 21]. The true strain and associate true stress
determine the actual mechanical environment of the tissue cells, to which they can respond
by remodeling their extra-cellular matrix (ECM). In addition, Fung and others showed that
RS significantly affects the tissue’s stress and strain distributions, and carries substantial
functional benefits by reducing stress concentration near the internal surface of arteries and
LV and by increasing the compliance of the latter during the diastolic feeling phase, thereby
improving its blood pumping performance [16, 19, 22, 23].

1.3 Mechanics of Tissues’ Constituents

Tissue fibers are thin and long. When contracted, they buckle under very low load and as-
sume an undulated (wavy) disposition. This is often seen in collagen fibers in unloaded
tissues. The level of fiber undulation is non-uniformly distributed amongst the fibers. Upon
stretch, the fibers become gradually straight and load-bearing [24–26], thereby increasing
the tissue stiffness. The straight collagen fiber is stiff, with an axial modulus ranging (de-
pending on the species and tissue) between 100 MPa and 1200 MPa [27]. It can be reversibly
stretched up to 5–8 %. Collagen fibers are viscoelastic and undergo preconditioning adap-
tation under repeated stretch cycles. Elastin is close to being purely elastic, and is highly
extensible being able to reversibly stretch by 100 % and more. Its stress-strain response is
linear up to approximately 60 % stretch and then curves up to a convex response. In the
linear range, the elastin stiffness is approximately (depending on the tissue) two orders of
magnitude lower than that of the collagen, i.e., approximately 1 MPa, as measured in bovine
ligamentum nuchae [28] and as estimated for elastin in the skin [14].

Tissue cells are of two classes, muscle and non-muscle cells. In non-muscle cells such
as fibroblasts, the CSK is highly dynamic, and constantly subjected to actin filaments po-
larization/depolarization, and to spontaneous activity of its acto-myosin motor units. The
cells need a homeostatic mechanical environment in order survive and proliferate [29]. They
achieve this by adapting their extra-cellular fiber matrix (ECM) and by exerting traction on
the ECM fibers, at a level which is cell- and tissue-specific [30, 31]. Traction is produced
either passively by the intra-cellular actin cytoskeleton [32], or actively by the motor units
[33]. In muscle cells, all three types (skeletal, myocytes and smooth muscle) share the actin-
myosin contractile unit. Yet, there are important mechanical differences between them. In
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response to a single short stimulus (twitch), a skeletal muscle contracts and subsequently
relaxes rapidly (it has a short refractory period). Successive twitches add up to produce
stronger response (by wave summation) which increases with frequency up to a tetanized
state at which the force can be maintained for a long period [34]. Cardiac myocytes on the
other hand, cannot tetanize. They contract rapidly but have a longer refractory period during
which they cannot be re-excited, a pre-requisite feature for the rhythmic contraction and
blood pumping function of the heart. While some SMCs properties are similar to those of
skeleton and cardiac muscle [35], they contract slowly. Some contract rhythmically in or-
gans producing peristaltic motion (e.g., ureter and intestine) while others (e.g., in the arterial
wall) maintain constant contraction force for very long periods, thereby maintaining a con-
trolled vessel diameter and blood supply as required by the organ. Smooth muscle lining
the walls of some hollow organs possess a malleable contractile apparatus—their cytoskele-
ton and sarcomeres can modify both their structure and number in series to adapt to large
length changes. This length adaptation does not change their passive tension nor their ac-
tive isomeric force [36–40]. An extreme example are smooth muscle cells in the bladder
wall, which increase their length by a factor of up to 2.0–2.2 under low urine pressure as
the bladder is gradually filled up to 7–10 times its empty volume. When activated, these
cells contract and reduce their reference length back to its initial level within seconds as the
bladder is emptied.

2 Multi-scale Structural Modeling of Tissue Mechanics

Updated reviews of soft tissues structure-motivated and structural models have recently been
published [3, 41–53]. Here, the focus will be on fully structural modeling.

The determinants of soft tissue response are its constituents’ structure and mechanics,
the manner by which structure changes with deformation, the kinematic response of each
constituent to the deformation, and the way by which the contributions of all constituents
are integrated to yield the global tissue response.

Experimental observations revealed that in the stretched tendon [26, 54] and skin [24],
there is a gradual straightening (recruitment) with stretch of initially undulated collagen
fibers, and this is accompanied by an increase in the tissue stiffness. A similar gradual
straightening was observed in bi-axially stretched mesentery [25]. In addition to their undu-
lation, observations have revealed that in flat tissues the fibers’ orientation is dispersed [25],
and that in response to tissue deformation the fibers rotate towards the direction of high-
est stretch [24, 55]. The quantitative correlates of these observations which are needed for
structural constitutive formulation, are based on the following assumptions [56, 57] which
are derived from direct observations and measured data.

2.1 Basic Assumptions

Assumption B1 Soft tissues consist of fibers and cells embedded in a matrix of fluid ground
substance.

Assumption B2 There are no voids in the tissue space.

Assumption B3 All constituents are incompressible, and so is the tissue as a whole under
short loading protocols during which there is insufficient time for fluid to filtrate in or out of
the tissue space.
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Fig. 1 Mapping scheme
between the stress-free, unloaded
and loaded fiber network and
tissue. The B’s designate the
tissue and network configurations
F ’s are the deformation
gradients, and Σ ’s are the
Cauchy stresses. Superscript
SF—stress free, UL—Unloaded

Assumption B4 Tension in the fibers and muscle cells are functions of their axial deforma-
tion. Being thin and long, the fibers buckle under contraction thereby losing their stiffness.

Assumption B5 The strain in each constituent is equal to the global tissue strain (affine
deformation) [52, 58].

Assumption B6 The global tissue response to loading equals the sum contributions of its
solid constituents and of the matrix hydrostatic pressure (rule of mixtures).

2.2 Tissue Kinematics

The formulation considers a tissue representative elementary volume (REV) whose dimen-
sions are small enough compared to those of the whole tissue/organ so that its strain can
be regarded as locally homogeneous, yet large enough (compared with the tissue cells and
fibers) to be statistically representative of the local tissue structure, kinematics and prop-
erties. Since the tissue is initially swollen by the matrix pressure from a stress-free to an
unloaded state, two reference configurations and two loaded ones are considered (Fig. 1).
The mapping between each two REV configurations is prescribed by the associated defor-
mation gradient F ≡ ∂x/∂X where X and x are respectively the REV coordinates prior to
and following the deformation. Associated with each deformation gradient F are the right
Cauchy-Green deformation tensor C = FT F and the Lagrangian Green strain E = (C−I)/2.
In view of the scheme in Fig. 1 and to simplify the notation, unless otherwise specified, these
deformation metrics relate to the fiber network.

2.3 Mechanics of Single Fibers

In most soft tissues the collagen fibers are buckled and undulated in the stress-free state. A
single fiber is characterized by its straightening stretch λs under which it becomes straight
and tension bearing. When stretched in the loaded state by stretch ratio λ, its true stretch λf

is

λf =
{
λ/λs ∀λ > λs stretched,

1 ∀λ ≤ λs buckled, unstretched.

}
(2.1)

The strains corresponding to each of the stretches λs, λ,λf are related to them by e = (λ2 −
1)/2. Substitution into Eq. (2.1) yields the true fiber strain in terms of its global (e) and
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straightening strains (es )

ef =
{
(e − es)/(1 + 2es) ∀e > es stretched,

0 ∀e ≤ es buckled, unstretched.

}
(2.2)

If the fiber is hyper-elastic then its strain energy function under adiabatic or isothermal
conditions depends solely on its true strain, i.e., wf = wf (ef ). Its second Piola-Kirchoff
stress is sf (ef ) = ∂wf /∂ef . In view of its incompressibility (Assumption B3) the fiber’s
first Piola-Kirchhoff and Cauchy’s stress are related to its second Piola-Kirchhoff stress by
tf = λf · sf and σf = λ2

f · sf , respectively.

2.4 Mechanics of Uniaxial Fiber Bundles

A fiber bundle consists of the network fibers sharing a similar orientation in the initial refer-
ence configuration. By affine deformation (Assumption B5), the bundle and its fibers rotate
and stretch during deformation in mutually similar magnitudes and thus, share similar de-
formed orientation. Hence, for all bundle fibers λ = Λbun, e = Ebun. In addition, a bundle
(and its fibers) having an initial orientation N (a unit vector with a solid angle Ω with respect
to a given Cartesian coordinate system) will assume an orientation n̂ (a unit vector) in the
deformed configuration, where

n̂ = n/|n|, n = F · N. (2.3)

Based again on affine deformation, the bundle and its fibers’ stretch and strain in the loaded
state are:

Λbun(N) = [N · CN]1/2, Ebun = (
(Λbun)

2 − 1
)
/2. (2.4)

The straightening strains are non-uniformly distributed over the bundle fibers by a den-
sity distribution function D(q,N) which is defined as follows: in the bundle of stress-
free reference orientation N, the fraction of fiber volume becoming straight between strain
levels e = q and e = q + dq is equal to D(q,N) · dq . The term N in D(q,N) denotes
that the recruitment distribution may be orientation-dependent. Normalization requires that∫ +∞

0 D(q,N) · dq = 1 for every N.
Since λ = Λbun, and Λbun is related to the global strain by affine deformation (Eq. (2.4))

then so is also the fiber global stretch λ. Yet, the fiber true deformation (Eq. (2.1)) is not
affine since it is related to the global deformation by the dispersed fiber straightening stretch
λs when stretched, and is buckled and collapsed when contracted.

In the hyper-elastic case, the bundle strain energy per unit stress-free tissue volume is the
sum of strain energies of all its straight and stretched fibers:

Wbun(Ebun,N) = φ0
f

∫ Ebun

0
wf (ef ) · D(q,N) · dq ∀N, (2.5)

where φ0
f is the total fibers volume fraction in the tissue which converts the fibers’ strain

energy per fibers volume to its level per tissue volume. The bundle second Piola-Kirchhoff
stress is derived from its strain energy by chain differentiation:

Sbun(Ebun,N) = dWbun

dEbun
(Ebun,N) = φ0

f

∫ Ebun

0
D(q,N) ·

(
dwf

def

· def

dEbun

)
· dq, (2.6)
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which in view of Eq. (2.2) and e = Ebun yields:

Sbun(Ebun,N) = φ0
f ·

∫ Ebun

0

D(q,N)

(1 + 2q)
· sf (ef ) · dq. (2.7)

2.5 Mechanics of Three-Dimensional Networks and Tissues

In 3D tissues made of a single type of fibers, each REV has a 3D network of fibers. Each
fiber, in addition to its level of undulation (or alternatively, its straightening strain es ) in
the initial reference configuration (before deformation), is characterized by its orientation N
which features a solid angle Ω . This orientation angle is distributed over the un-deformed
fiber population with a characteristic orientation density R̂(Ω), such that the volume fraction
of the network fibers oriented between the solid angles Ω and Ω + dΩ is R̂(N) · dΩ .
Normalization requires that

∫
Ω
R̂(N) · dΩ = 1.

In a spherical polar coordinate system (R,Φ,Θ) the fiber’s reference orientation N is
expressed as

N = sinΦ · cosΘ · 11 + sinΦ · sinΘ · 12 + cosΦ · 13, (2.8)

where 1i (i = 1,2,3) are unit vectors along the three Cartesian axes. The density normal-
ization condition is expressed as1,2

∫ π

0

∫ π

0
R(Φ,Θ) · dΦ · dΘ = 1, R(Φ,Θ) = R̂

(
N(Φ,Θ)

) · sinΦ, (2.9)

where the sinΦ term in dΩ = sinΦ ·dΘ ·dΦ was incorporated into R(Φ,Θ), the modified
orientation distribution. The axial strain of the bundle and its fibers is related to the global
REV strain E by affine deformation (Assumption B5), namely

Ebun = N · EN = E11 sin2 Φ · cos2 Θ + E22 sin2 Φ · sin2 Θ + E33 cos2 Φ

+ 2E12 sin2 Φ · sinΘ · cosΘ + 2E13 sinΦ · cosΦ · cosΘ

+ 2E23 sinΦ · cosΦ · sinΘ, (2.10)

where Eij (i, j = 1,2,3) are the components of the Green-Lagrange strain E in a Cartesian
system.

The total strain energy in the network fibers equals the sum contributions of all the fibers
(Assumption B6), or alternatively, all the fiber bundles. Expressed per un-deformed tissue
volume, this strain energy is given by:

Wnet(E) = φ0
f

∑
N

Wbun(Ebun,N) = φ0
f

∫
Ω

R(N) · Wbun(Ebun,N) · dΩ. (2.11)

The second Piola-Kirchhoff network stress is derived from the strain energy by chain differ-
entiation as follows:

Snet(E) = ∂Wnet

∂E
=

∫
Ω

R(N) · ∂Wbun

∂Ebun
· ∂Ebun

∂E
· dΩ. (2.12)

1The integration limits must account for the orientation symmetry since each fiber has two opposite orienta-
tions. One possibility for limits is 0 ≤ Φ ≤ π , 0 ≤ Θ ≤ π , another one is 0 ≤ Φ ≤ π/2, 0 ≤ Θ ≤ 2π .
2For example, in an isotropic network R(Φ,Θ) = sinΦ/2π .



Multi-scale Structural Modeling of Soft Tissues Mechanics 15

By using Eqs. (2.6), (2.7) and (2.10) it is seen that

Snet(E) = φ0
f

∫
Ω

R(N) ·
[∫ Ebun(N)

0

D(q,N)

(1 + 2q)
· sf (ef ) · dq

]
· N ⊗ N · dΩ, (2.13)

where N ⊗ N is the dyadic product of N with itself. In polar coordinates Eq. (2.13) is ex-
pressed as

Snet(E) = φ0
f

∫ π

0

∫ π

0
R(Φ,Θ) ·

[∫ Ebun(Φ,Θ)

0

D(q,N(Φ,Θ))

(1 + 2q)
·sf (ef ) ·dq

]
·N⊗N ·dΘ ·dΦ.

(2.14)
The total tissue second Piola-Kirchhoff stress is the sum contributions of its fiber network
and matrix pressure Pmat. Under short loading protocols the tissue is incompressible (As-
sumption B3), so that

Stiss(E) = Snet(E) − PmatC−1. (2.15)

The network first Piola-Kirchhoff stress expressed in terms of the corresponding fibers
stress is given by

Tnet(E) = FS

= φ0
f F

{∫
Ω

R(N) · Λ−1
bun(N) ·

[∫ Ebun(N)

0

D(q,N)

(1 + 2q)1/2
· tf (ef ) · dq

]
· N ⊗ N · dΩ

}
,

(2.16)

where the inner integrand is obtained by inserting tf = λf · sf and λf = Λbun/λs (Eq. (2.1)).
The global tissue first Piola-Kirchhoff stress is

Ttiss(E) = Tnet(E) − PmatF−T . (2.17)

Finally, the network and tissue Cauchy stresses are, respectively,

Σnet(E) = F · S · FT

= φ0
f · F ·

{∫
Ω

R(N) · Λ−2
bun(N) ·

[∫ Ebun(Ω)

0
D(q,N) · σf (ef ) · dq

]
· NN · dΩ · FT

}
,

(2.18)

Σtiss(E) = Σnet(E) − PmatI, (2.19)

where Λbun = (1 + 2Ebun)
1/2 is derived from the REV strain E by using Eq. (2.10).

2.6 Mechanics of Tissues with Multiple Types of Fibers

In tissues with multiple types of fibers, in general each fiber type i has its own volume frac-
tion φ0

f,i and mechanical properties si
f (ef ). Its network has its own recruitment Di(q,N)

and orientation R
i (N) distributions. In addition, each network may have its own stress-free

reference configuration. The tissue stress-free configuration corresponds to that of the fibers
network with the lowest stress-free dimensions (at this configuration no fiber of any type is
stretched). For the purpose of constitutive formulation, all networks recruitment and orien-
tation densities should be referenced to that stress-free configuration. The stress derivation
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is carried out by summing the contributions of all networks and of the matrix pressure. For
example, the second Piola-Kirchhoff stress in the i type network is derived from its fibers’
mechanics and densities by:

Si
net(E) = φ0

f,i

∫
Ω

R
i (N) ·

[∫ Ebun(N)

0

Di(q,N)

(1 + 2q)
· si

f (ef ) · dq

]
· N ⊗ N · dΩ. (2.20)

The total tissue second Piola-Kirchhoff stress is the sum of all networks stresses and of the
matrix pressure,

Stiss(E) =
∑

i

[
Si

net(E)
] − JPmatC−1. (2.21)

The first Piola-Kirchhoff and Cauchy stresses are derived in a parallel manner to Eqs. (2.16)–
(2.19).

2.7 Validity of Structural Hyper-Elastic Models

Criteria for validity of the constitutive formulation are of two types: general ones which
all models must satisfy, and specific ones relating to the model fit to the response of a
specific material under a general deformation scheme. Two important general criteria are
model convexity (which guarantees physical plausibility) and objectivity (coordinate frame
indifference). In contrast to some other hyper-elastic tissue models [59, 60], structural hyper-
elastic models were shown [61] to always be convex. The tensor nature of all terms in these
models guarantees their objectivity.

Regarding the model fit to response data, experimental tissue characterization should take
into consideration the non-linearity of tissue responses and the significant inter-sample bio-
logical variability. Non-linear responses can be characterized by a number of models which
are indistinguishable in their fit to a given data set (Albert Green, private communication).
The challenge is to determine which model is the “true” one. Two measures should be taken
to meet this challenge. The first is testing under as many different protocols as possible (e.g.,
1D, 2D, and 3D tests under several deformation schemes and strain levels)—only the model
which fits well to the response data under all protocols is acceptable. To cope with inter-
sample variability, all tests should be carried out on the same sample. Failure to adopt these
measures is common in the published literature, thereby casting doubt on the reliability of
the models proposed.

The study of Hollander and co-workers on the coronary artery media [62] could serve
as an example of multi-scale, multi-phasic structural tissue modeling. The passive media
was considered as a 3D structure consisting of helical lamellar collagen and elastin fibers
interconnected by inter-lamellar elastin (Fig. 2). Structural and mechanical parameters were
estimated from 3D data of inflation, extension, and twist tests under various combinations
of axial force, internal pressure and torsion [63, 64]. Sensitivity analysis revealed that four
parameters are sufficient to reliably represent the response under all 3D protocols (the de-
scriptive performance—Fig. 3), and to reliably predict the tissue response under protocols
not used for parameter estimation (the predictive performance—Fig. 4). These parameters
are the helical angle of the lamellar fibers, two parameters of these fibers non-linear stress-
strain law, and the stiffness of the inter-lamellar elastin. In a comparative study [65], this
structural model out-performed earlier phenomenological and semi-structural (structurally
motivated) models in both its descriptive and predictive capabilities (Fig. 5). While both the
phenomenological and semi-structural models provide reasonable fit to data at certain defor-
mation regions, they deviate from the data in other regions in both pattern and proximity to
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Fig. 2 A scheme of the vessel
wall media structure including
the lamellae helical
elastin-collagen fibers, the
inter-lamellar (IL) struts, and the
smooth muscle cell. From [62]
with permission

Fig. 3 The structural model descriptive power: predictions (lines) compared with coronary media experi-
mental data (symbols) of (A) outer radius ro , (B) axial force F , and (C) torsion stiffness μ, all as functions of
the inner luminal pressure Pi , under three axial stretch ratios λ = 1.2 (circle), λ = 1.3 (square), λ = 1.4(+).
From [62] with permission

the data. The fully structural model provided good fit under all conditions tested. Moreover,
in their predictive performance, only the structural model was able to reliably predict the
tissue response under protocols not used for parameter estimation.
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Fig. 4 The structural model predictive power: (A, B, and C)—comparison of coronary media data under
three stretch ratios (symbols as in Fig. 3) with predictions using parameters estimated from partial data under
stretch ratios 1.2 and 1.4 (black lines), and comparison with data of stretch ratio 1.3 (red line) not used for
parameter estimation. (D) comparison of torsion stiffness vs. internal pressure data under three stretch ratios
(symbols as in Fig. 3) with predictions (blue lines) of torsional stiffness with parameters estimated from
inflation-extension data. From [62] with permission

2.8 The Matrix Osmotic Pressure

The tissue matrix consists of mobile molecules of water, anions and cations and negatively
charged immobile PG macromolecules. The matrix osmotic properties arise from the ther-
modynamic conditions that under equilibrium (no flow of ions and water), the chemical
potentials of the water in the matrix and in the external fluid must be equal. In thermody-
namics the chemical potential of the water is the sum of its driving forces (the forces that
can move the water) given by [66, 67]

μw = μw
0 + RT · ln

(
aw

) + P V̄ w, (2.22)

where μw
0 is the water reference chemical potential, which is a universal constant, aw is the

water chemical activity, P and V̄ w are respectively the water hydrostatic pressure and molar
volume, and R and T are respectively the universal gas constant and absolute temperature.
Equality of the internal and external chemical potentials of the water implies that μw

mat = μ̃w ,
where the upper tilde designates external fluid. Let μ̃w, ãw , and P̃ be the corresponding
terms of Eq. (2.22) in the external fluid, and μw

mat, a
w
mat, and Pmat in the tissue matrix. Then
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Fig. 5 Comparison of the structural model (black line) to Fung [144] exponential phenomenological model
(brown line) and to Holzapfel et al. semi-structural (invariant-based) [59] model (purple line) by contrasting
the models’ predictions against 3D inflation/extension/twist response data of coronary artery media layer.
(A, B) The models descriptive performance (fit to data used for parameter estimation) in predicting axial
force and torsional stiffness responses, respectively, under axial stretch of 1.4 and increasing luminal pressure.
(C) The models predictive performances (fit to data not used for estimation) in predicting the axial force under
axial stretch of 1.4 and increasing luminal pressure based on parameter estimation from corresponding data
under axial stretches of 1.2 and 1.3. (D) The models predictions of the torsional stiffness under axial stretch of
1.4 and increasing luminal pressure based on parameters estimated from 2D inflation/extension data under the
same axial stretch. Fung’s model torsion predictions could not be compared here since its torsional stiffness
is a separate parameter that can be estimated only from twist data

by Eq. (2.22), the equality of chemical potentials implies that

Pmat − P̃ ≡ �P = −RT · [ln(
aw

) − ln
(
ãw

)]
/V̄ w. (2.23)

The water activity −RT · ln(aw)/V̄ w is termed “osmotic pressure”, designated by π . Equa-
tion (2.23) implies that under equilibrium, �P ≡ Pmat − P̃ = �π ≡ πmat − π̃ , i.e., the inte-
rior/exterior hydrostatic and osmotic pressures differences are mutually equal.

The water activity is related to its concentration by aw = ywcw , where yw is the water
activity coefficient, which is taken to be equal in the external and internal fluids, and cw is the
water molar concentration, equal to the number of moles of water in the solution divided by
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the solution volume. Insertion into Eq. (2.23) yields �π = −RT · [ln(cw)− ln(c̃w)]/V̄ w . The
presence of ions implies that the water concentration is less than one (cw, c̃w < 1), so that
the osmotic pressure terms are always positive. In addition, the interior ion concentration
is higher than the exterior one, since in addition to the negative free ion charges in both
internal/external fluids, an excess of positively charged cations exists in the matrix fluid
to counter-balance the fixed negative charges of the PGs. Higher ion concentration means
a lower water concentration, so that the interior water concentration is smaller than the
exterior one. This implies that both hydrostatic and osmotic pressure differences are positive,
(�π = �P > 0).

The matrix pressure required to balance the tissue osmotic pressure difference builds
up as water filtrates into the tissue, thereby swelling it and stretching the tissue fibers. In
an unloaded tissue at equilibrium, two conditions are satisfied: thermodynamic equilibrium
between matrix hydrostatic and osmotic pressures (�π = �P ), and mechanical equilibrium
between the fibers’ stress produced by their tension, and the matrix hydrostatic pressure.
Following the mixture theory [68], the total tissue stress is the weighted sum of the fibers
stress and of the fluid matrix pressure (the rule of mixtures—Assumption B6). Hence, in
terms of Cauchy stresses, under equilibrium, the tissue stress is the sum of all networks
stresses and the matrix pressure, namely

Σ tiss(E) =
∑

i

[
Σ i

net(E)
] − PmatI, Pmat = P̃ + �π. (2.24)

2.9 The Matrix Hydrostatic Pressure

The term Pmat representing the hydrostatic pressure in the fluid matrix, has a clear physical
meaning. Equation (2.24) has a similar form to expressions proposed in a number of previous
modeling studies where the term P (instead of Pmat in Eq. (2.24)), is a Lagrange multiplier
which arises from the constraint of tissue incompressibility. Yet soft tissues are, in general,
compressible even though their constituents are incompressible. In the transition between
equilibrium configurations under two different loadings, water may filtrate in or out of the
tissue thereby changing its volume, until a new steady state is reached, which satisfies both
mechanical and thermodynamic (�π = �P ) equilibriums. Yet, Eq. (2.24), which results
from the rule of mixtures, still holds regardless of possible volume changes. Under short
loading protocols, there is insufficient time for fluid filtration and the volume changes may
be negligible. The tissue can then be regarded as approximately incompressible. Under each
short loading the tissue can be under mechanical but not under thermodynamic equilibrium.
The pressure P can then be considered a Lagrange multiplier. Importantly however, its value
is determined by the loading boundary conditions and is, in general, different from its level
under both mechanical and thermodynamic equilibrium (second term in Eq. (2.24)).

2.10 Tissue Swelling and Residual Stress

Tissue swelling by the matrix pressure has a number of important consequences. First, tis-
sues are kept well hydrated, a requisite for the cells’ survival and a distinct mechanical
advantage associated with the water plasticizing effect. In addition, swelling increases tis-
sue rigidity and stiffness [69]. Un-swollen tissues (under vanishing matrix pressure) are
stress-free since the fibers become un-stretched. Since they have no contraction stiffness
(Assumption B4), the fibers buckle, assuming a variety of undulated configurations, and the
tissue becomes floppy, showing no resistance to loading. It has no fixed stress-free nor un-
loaded configurations and cannot develop residual stress [20]. Under non-vanishing matrix
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pressure, the tissue swells, its fibers become stretched and the tissue acquires compressive
as well as bending stiffness. Swelling and its resulting tissue stiffness lead to the onset of
residual stress (RS), which carries distinct functional advantages in a number of tissues and
organs.

An examination of the mechanisms of tissue RS [20] revealed that there is a hierarchy of
RS producing mechanisms. At the micro-level (tissue interstitium), RS is induced by local
interactions between the tissue constituents (fibers, cells, ground substance matrix). It can
stem either from direct contact stresses between the tissue solid constituents, which result
from their incompatible growth and remodeling [70, 71], or from the tissue swelling by
the osmotic matrix. Analysis of published observations and measured data [20] suggested
that under in vivo conditions, the osmotic driven swelling is the predominant micro RS-
producing mechanism. At the meso-level, additional RS, results from internal interactions
between non-homogeneities in either the tissue properties [72] or in its micro-structure and
composition (e.g., between the media and adventitia in the arterial wall [73], or between sub-
layers of the wall [74, 75]). The macro-level (organ) RS arises from organ-level kinematic
constraints on the tissue structure which produce additional internal loading (e.g., forces
and bending moments required to close the open artery from its unloaded open configura-
tion). Based on these considerations, it was proposed that the onset of macro (OA-related)
and meso (heterogeneities- related) RS depends on the presence of a micro RS. Without
micro-RS, the tissue would be floppy and incapable of developing contact stresses between
in-homogeneities nor bending resistance to closure of the opening angle. The crucial role of
tissue swelling has been experimentally supported by the observed significant effect of os-
molarity on tissue swelling and its OA level (a metric of RS magnitude) in the left ventricle,
aorta and other arteries in rats [18, 73, 76], and by the finding that a true stress-free state in a
carotid artery can only be reached by enzymatic destruction of the swelling-resisting elastin
fibers in the media layer of the vessel wall [74]. Such destruction removes the fiber network
in which the PG are encaged, thereby allowing them to exudate from the tissue space, thus
abolishing the associated micro-RS and with it, the other RS components.

3 Tissue Viscoelasticity and Preconditioning

Soft tissues are not hyper-elastic but rather viscoelastic (VE). They also undergo precondi-
tioning (PC) adaptation to loading [34]. These time-dependent response aspects are inherent
properties of tissues in the sense that they significantly affect their function. Yet they are
often ignored in tissue modeling. There is one important exceptional case in which tissues
can be considered close to hyper-elastic: cardiovascular (CVS) tissues function in vivo un-
der long-term constant cyclic loading imposed by the dynamic blood pressure. Under these
circumstances, CVS tissues are fully preconditioned to their loading and, in addition, their
VE is nearly exhausted, thereby demonstrating close to elastic response. In general, how-
ever, tissue VE and PC must be integrated into their constitutive formulation and failure to
do so results not only in inability of the model to account for the observed time-dependent
response but also in protocol-dependence of the models and their estimated parameters, thus
lacking generality and reliability under general deformation schemes and losing their use-
fulness in analysis and design.

Previous non-elastic tissues models have addressed solely the VE aspect. Linear vis-
coelastic (LVE) and quasi-linear ones (QLV) models assumed that the viscoelastic stress
relaxation function is strain-independent. While LVE considers a linear immediate (“elas-
tic”) stress-strain relationship (the tissue response under infinitely fast step deformation),
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the widely used QLV theory [11, 34] admits non-linear immediate response in line with ex-
perimental observations. For uniaxial tissue bundles, such as in tendons and ligaments, the
second Piola-Kirchhoff QLV stress is expressed as:

S
QLV
bun (e, t) =

∫ t

0
G(t − τ) · dSe

bun(e)

dτ
· dτ =

∫ t

0
G(t − τ) · dSe

bun

de
· de

dτ
· dτ, (3.1)

where G(t) is the reduced relaxation function, and Se
bun(e) is the immediate bundle response.

QLV validity has been questioned and is not generally accepted. While some studies
demonstrated good predictive performance of QLV, others did not. In particular, ligament
creep and stress relaxation responses were found to be mutually incompatible [77]. Fung
speculated [34] that the tissues’ creep response may be more non-linear than its relaxation
response. We proposed [78] that these disagreements stem from inadequacies in the ex-
perimental procedures used and from failure to consider the tissues dynamic structure in
modeling the tissue response. For example, in some studies, samples were not fully precon-
ditioned thereby introducing bias due to uncontrolled combination of PC and VE effects on
the tissue response. This occurs since both PC and VE exhibit stress decay under repeated
deformation cycles. VE and PC differ, however, in that in vitro VE decay is reversible after
rest period, while PC effects are at least partially irreversible.

To shed light on the true nature of time-dependent tissue responses, an experimental
procedure aimed to separate between PC and VE effects, was developed. The results in sheep
digital tendons show that following PC of stretch cycles repeated up to a stable response, a
pure viscoelastic response was subsequently obtained provided the highest strain used was
1 % lower than the strain used for preconditioning [78].

From the modeling aspect, it is natural to apply structural models for studying VE and
PC, since these non-elastic features are properties of the tissue fibers. As such, they can be
readily integrated into the recruiting fibers modeling in the structural approach. This can be
readily seen in Eq. (2.20). The only mechanical term in this equation is the fibers’ hyper-
elastic stress-strain law si

f (ef ). Hence, in cases of time-dependence, the sole modification
needed is to replace this term with the corresponding time-dependent term sf [ef (q, t), t],
as elaborated below.

3.1 Theory of Recruitment Viscoelasticity (RVE)

The recruitment viscoelasticity (RVE) theory was developed [78] in an attempt to recon-
cile conflicting observations and paradigms regarding tissue VE. It incorporates the fiber’
VE in the framework of a recruiting tissue structure. Viidik [54] found that when a ten-
don is stretched, its non-uniformly undulated collagen fibers at reference gradually become
straight with stretch while the tendon stiffness increases (the “toe” region), until all fibers
are stretched and the force-stretch response becomes linear (the linear region). Unloading
produces a reverse response, but is subjected to hysteresis. This suggests that the tissue fibers
are viscoelastic. Assuming that their reduced relaxation function G depends solely on time
and is stretch-independent, the fiber’s second Piola-Kirchhoff stress is

sf

[
ef (q, t), t

]

=
⎧⎨
⎩

∫ t

0
G(t − τ) · dse

f (ef )

dτ
· dτ ∀ef > 0 (stretched fiber),

0 ∀ef ≤ 0 (buckled fiber),

⎫⎬
⎭ (3.2)
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where se
f (ef ) is the fiber’s immediate response [11]. Replacing sf (et ) in the recruiting bun-

dle stress formula (2.7) by this expression, while ignoring, for now, the orientation depen-
dence of D(q), gives

SRVE
bun

[
Ebun(t)

]

=
⎧⎨
⎩

φ0
f

∫ Ebun

0

D(q)

(1 + 2q)
· dq ·

∫ t

0
G(t − τ) · dse

f (ef (q, τ ))

dτ
· dτ ∀ef > 0,

0 ∀ef ≤ 0.

⎫⎬
⎭ (3.3)

The elastic response se
f depends on time solely via the fiber strain ef (q, t). Hence by chain

differentiation, Eq. (3.3) assumes the form

SRVE
bun

[
Ebun(t)

]

=

⎧⎪⎨
⎪⎩

φ0
f

∫ Ebun

0
D̄(q) · dq ·

∫ t

0
G(t − τ) · dse

f (ef )

def

· ∂ef (q, τ )

∂τ
· dτ ∀ef > 0,

0 ∀ef ≤ 0,

⎫⎪⎬
⎪⎭ (3.4)

where D̄(q) = D(q)/(1 + 2q) is a modified fibers recruitment distribution. Equation (3.4)
is the 1D version of the RVE theory.

3.2 Validity of the Recruitment Viscoelasticity Theory

Validity testing of RVE alone was carried out [78] on each specimen in order to avoid bias
arising from inter-sample biological variability. The fibers’ relaxation function was taken to
be a three-term exponential Prony series expressed by3

G(t) = k0 + k1 Exp

(−t

τ1

)
+ k2 Exp

(−t

τ2

)
+ k3 Exp

(−t

τ3

)
, (3.5)

where the three terms represent respectively short, medium, and long relaxation processes.
The fibers’ recruitment density was assumed to be a beta function4. The model parameters
were estimated from data of sheep digital extensor tendons, subjected to a sequence of short
and long stress relaxation protocols to decreasing stretch levels of 6 %, 5 % and 4 %. RVE
validity was first tested for its descriptive performance (fit to data used for parameter estima-
tion). The results show (Fig. 6) that while in the first 6 % domain, where the tissue was not
fully preconditioned, RVE fit was poor, while in the subsequent 5 % and 4 % series, during
which the tissue was fully PC and the response was therefore purely VE, RVE predictions
fit the data very well. Another validity test addressed RVE predictive performance (fit to
data not used for parameter estimation). With parameters estimated from stress relaxation
tests, the predicted creep response fit the data very well provided the stretch level remained
slightly lower (by 1 %) than the PC stretch, a strain range under which there are no PC ef-
fects and the response is purely VE. Hence, the apparent previously reported incompatibility
[77] of stress relaxation versus creep responses, is resolved by the structural theory. Further
support of the RVE theory comes from combined VE and PC studies presented below.

3The Prony series in Eq. (3.5) is not related to the underlying mechanisms which give rise to the fiber’s
viscoelasticity. These mechanisms are insufficiently known. In common with other phenomenological VE
models, this Prony representation is not unique.
4The beta function was preferred over the normal one since it is physically more realistic and more general:
it is bounded, can be symmetric and non-symmetric, and can assume different shapes.
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3.3 Recruitment Versus Quasilinear Viscoelasticity

Examination of the RVE relative to the QLV theory can shed light on the differences between
them and elucidate the reasons for QLV success under some circumstances and failure under
others. Analytically, in the RVE stress expression (Eq. (3.3)), if and only if the integrand
dse

f
(ef (q,τ ))

dτ
is a single-single valued function, then the order of integration can be changed so

that

SRVE
bun (e, t) =

∫ t

0
G(t − τ) ·

∫ e

0

D(q)

1 + 2q
· dse

f (ef (q, τ ))

dτ
· dq · dτ. (3.6)

By Eq. (2.7), the inner integral is equal to the time derivative of the bundle elastic response
Se

bun. Hence,

SRVE
bun (e, t) =

∫ t

0
G(t − τ) · dSe

bun

dt
· dτ. (3.7)

Equation (3.7) is identical to the QLV equation (Eq. (3.1)). However, the condition of single-
single valued integrand is only valid when all fibers in the bundle are stretched. If however,
some fibers contract and buckle during the stretch protocol, then their elastic stress vanishes
along the entire range of negative fiber stretch, and the condition of single-single value is no
longer maintained.

It is thus seen that the QLV theory is equivalent to RVE theory and is valid only if no
fibers buckle during the deformation protocol. This condition is met by both creep and stress
relaxation tests. Yet, under physiological conditions, the strain is likely to be dynamic and
fibers are likely to contract and buckle during activity. In such cases the QLV theory is
invalid. RVE, on the other hand, incorporates fiber buckling and is thus valid under gen-
eral protocols. The case of quick release tests demonstrates this point. Experimentally, soft
tissues which function under tension cannot support compressive load (Fig. 7). Model real-
ization showed, however, that QLV predicts negative stress under quick release, while RVE
correctly predicts zero stress (Fig. 8).

RVE can be readily generalized to three-dimensional networks as was done for the 1D
case. When the fiber VE model (Eq. (3.2)) replaces the fiber hyper-elastic model in the three
dimensional network stress equation (Eq. (2.14), then the following network VE stress is
obtained

SRVE
net (E, t) = φ0

f

∫
Ω

R(N) ·
[∫ Ebun(Ω)

0

[
D(q,N)/(1 + 2q)

] ·
∫ t

0
G(t − τ)

· dse
f q(ef )

dτ
· dτ · dq

]
· N ⊗ N · dΩ. (3.8)

3.4 Recruitment Preconditioning (RPC)

Experimental observations showed that tendon PC under repeated stretch cycles is associ-
ated with increase in their unloaded reference length. Although the effects of PC in vivo
are fully reversible, under in vitro conditions they are only partially reversible after a long
rest. Experience has shown that in all soft tissues, PC effects are strain-dependent and have
two components, one is plastic (time-independent), the other is viscous (time-dependent). It
is logical to assume that since the tendon properties derive from its parallel fibers, PC in a
single collagen fiber is due to increased fiber reference length, and that the PC effects have
plastic and viscous components. Hence, in the structural model of sheep digital extensor
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Fig. 7 Response of the fully preconditioned tendon to quick release protocols under decreasing levels of
stretch (A). No negative stress was demonstrated in any of the tests (red arrows in B) demonstrating absence
of compressive rigidity in the tissue. From [78] with permission

Fig. 8 Simulated RVE and QLV
responses (B) to quick release to
a strain e3 at which some fiber
buckle (A). X0 is the recruitment
strain of longest fiber which
buckle under strain lower than
x0. While QLV predicts onset of
negative stress, no such stress is
predicted by RVE, in line with
experimental evidence (B). From
[78] with permission
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tendons, PC in collagen fibers was modeled [15] by a combination of linear viscous and
linear plastic components expressed respectively by:

des

dt
=

{
p1c(ef − p2c), ef > p2c,

0 otherwise,

}
(3.9)

des

dt
=

⎧⎨
⎩

def (t)

dt
, ef > p3c > 0,

def (t)

dt
> 0,

0, otherwise,
(3.10)

where es is the fiber straightening strain, p2c and p3c are strain thresholds below which
no viscous or plastic lengthening occurs, and p1c is a viscous constant. These PC laws are
applied to all collagen fibers, whether they are in a uniaxial bundle or in a multi-dimensional
network.

In contrast to the tendon, uniaxial skin tests showed that while PC affects the stress
response at low strain levels, it has an insignificant effect on the reference length [79]. Since
elastin fibers dominate the skin low strain response, it is reasonable to assume that PC affects
the elastin fiber stiffness but does not increase its length. In view of its observed initial
linearity (up to approximately 60 % stretch) which is followed by convex non-linearity at
high strain levels, the elastin stress-strain response was taken to be a combined linear and
non-linear functions of strain as in se(e) = Ae · e + Be · eNe. In most studies the strain does
not reach the non-linear elastic range. Hence it was assumed that PC affected the linear
constant Ae , while the non-linear constants Be and Ne , remained unchanged. The reduction
of elastin stiffness from its initial (A0

e ) to its fully preconditioned (Aeq
e ) value was assumed

to depend on the fiber’s highest PC strain emax (the Mullins effect [80] known in rubbers and
polymers), following the equation

Aeq
e = A0

e

[
1 + L · emax + F · eM

max

]
, L,F < 0, (3.11)

where L, F , and M are material constants which were estimated from the data.

3.5 Validity of the Combined Preconditioning-Viscoelastic Recruitment
Formulation

As discussed above in connection with hyper-elastic models, two important general valid-
ity criteria of constitutive models (model convexity and objectivity) are satisfied by hyper-
elastic structural models. Assigning VE and PC properties to the fibers does not violate this
validity. At each point in time, the fibers’ forces are integrated to produce the tissue REV
stress tensor in the same way as in the hyper-elastic case. The structural constitutive laws
are thus both objective and convex also with time-dependence of the fibers properties.

Two studies have demonstrated the essential role of VE and PC in tissue constitutive for-
mulations. One study was performed with sheep digital extensor tendons [15] which consist
of a bundle of non-uniformly undulated (gradually recruiting) collagen fibers. The recruit-
ment dispersion was assumed to follow a beta distribution. The fiber VE was modeled by
RVE and their PC, by Eqs. (3.9), (3.10). The combined recruitment, PC and VE aspects
were used to account for the tendon response under a sequence of short and long stress re-
laxation protocols at increasing (4 %, 6 %, 8 %) and then decreasing (7 %, 6 %) stretch
levels (Fig. 9). Sensitivity analysis and visual inspection revealed that a remarkably good
fit and very good predictive capabilities of the response under this complex protocol are



28 Y. Lanir

Fig. 9 The tendon composite
test protocol consisting of a
sequence of short and long-term
relaxation tests at a constant
stretch (4 % in A) which was
then repeated at increasing (6 %,
8 %) then decreasing (7 %, 6 %)
stretch levels (B). From [15] with
permission

Fig. 10 Descriptive performance
of the combined RVE and RPC
uniaxial tendon model [15].
Comparison of data to model
predictions under the protocol in
Fig. 9. The model (red line)
successfully predicts the data
(green line), including the
significant PC induced difference
between the first (Set 2) and
second (Set 5) 6 % response data.
From [15] with permission

obtained when both collagen PC and VE features are included (Fig. 10). In another study
[14], the rabbit skin non-linear and time-dependent response data [13] under various com-
binations of biaxial stretch protocols (Fig. 11), were modeled by a multi-fiber (collagen and
elastin) structural model incorporating both the fibers orientation and recruitment disper-
sions. The collagen PC and VE were modeled as in Eqs. (3.5), (3.9), (3.10). The elastin
PC was modeled by Eq. (3.11) and its VE by Eq. (3.5). Sensitivity analysis revealed that
both elastin non-linearity (the Be · eNe term) and its VE have little effect on the skin biaxial
response. Comparison with measured data showed a good fit to data under all biaxial pro-
tocols (Fig. 12), and good predictive performance (Fig. 7 and Tables 4 and 5 in reference
[14]) when the collagen and elastin PC and collagen VE were both included in the fibers
constitutive models.

It should be stressed that the indispensable role of VE and PC in the tissue constitutive
formulation is not unique to structural modeling. Tong and Fung [81] attempted to apply a
non-linear hyper-elastic phenomenological model to the same skin biaxial data [13] used in
the aforementioned structural study [14] and showed that the model fit well to the data of
each individual protocol. However, when the constants estimated in one experiment under a
specific preconditioned protocol, were used to predict the stress-strain response of the same
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Fig. 11 The biaxial stretch protocol of a flat skin rectangular specimen [13]. In the X-tests (upper panel) the
rectangular sample was first stretched in the lateral (Y ) direction to a constant stretch, then preconditioned
by repeated stretch at constant rate of stretch in the main direction (X in this test) to a set stretch level. The
sample was then allowed to rest for 10 min and was then stretched to same level while data was recorded
(lower panel). A similar protocol was applied in the Y-tests. From [14] with permission

Fig. 12 Descriptive performance of the combined VE & PC biaxial structural model [14]. Comparison of
skin 2D stress data under X-stretch at various fixed Y-stretch levels (grey dots) to model predictions (black
lines). Left panel—main (X) stress, right panel—lateral (Y ) stress responses. Predictions fit the data well for
all combinations of biaxial stretches. From [14] with permission

specimen under another preconditioned protocol, success was not uniform. They concluded
that since the estimated model parameters changed from one experiment to another, the
tissue is not elastic. Similar inter-protocol parameter variations were observed in a variety
of soft tissues (e.g., [82–86]) again demonstrating that they are not elastic.
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4 Structural Modeling of Active Tissues

Multi-scale structural modeling can readily incorporate active contraction of muscular fibers
and cells. The active muscle properties are subject of most extensive research published
in many journals and a large number of dedicated books. In spite of substantial progress
over several decades, there are still no generally accepted models for all muscle types. In
general, the active muscle force depends on its length, contraction velocity, time of acti-
vation, and muscle contractility (inotropic state). But the specifics vary greatly between
both the three muscle types and locations in the body. A review of this vast topic is out-
side the scope of the present report. Instead, the approach here is to use the framework of
the structural theory, assume that the active force model of a given single muscle cell is
known, and indicate the generic manner by which it is integrated and summed up with
the contributions of the passive constituents in the muscle to produce the total muscle
stress.

The myocardium serves here as an example. Reviews of myocardial modeling in general,
and on application of constitutive models in three dimensional stress analysis of the heart,
have been presented in Yin [87] and more recently by Glass et al. [88] and Schmid and
Hunter [89].

Activated muscle fibers (such as in skeletal muscle) apply contraction force in their axis
direction. Muscle cells (myocytes and smooth muscle cells) contract along the direction of
their sarcomere which usually coincides with their long axis.

4.1 Myocardium Structure

The myocardium is a fibrous tissue in which the myocytes occupy about 70 % of the volume
while the remaining ∼30 % is occupied by the fluid matrix (∼20 %), other types of cells
(e.g., fibroblasts) and other interstitial components [90]. Collagen fibers occupy only about
5 % of the weight [91] but are an important determinant of the tissue passive properties [92].
Light microscopy (LM) images showed that the left ventricle (LV) wall structure is both lo-
cally anisotropic and heterogeneous across the wall thickness. The myocytes are elongated
cells arranged in a layered disposition and parallel to each other with a circumferential angle
(Γ in Fig. 13) which varies gradually from the inner endocardium to the outer epicardium
wall surfaces [93]. Longitudinally, myocytes are interconnected via dense intercalated discs
which provide the cells with mechanical, electrical and chemical inter connections, thereby

Fig. 13 Scheme of the parallel
myocytes orientation distribution
across the myocardial wall and of
the transverse collagen network
interconnecting neighboring
myocytes (inset)
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forming fiber-like structures and facilitating functional integrity as a syncytium. Scanning
electron microscopy (SEM) images demonstrated that the collagen component forms both
crisscross weaves which surround individual or groups of myocytes, and a dense array of
transverse collagen struts which interconnect contiguous myocytes [94–97], thereby main-
taining structural integrity of the myocardium.

4.2 Mechanics of the Passive Myocardium

Based on LM and SEM observations [93, 94, 96–98], a hyper-elastic structural model was
developed for the passive myocardium [99, 100]. It contains an ensemble of REVs, each rep-
resenting a local structural unit consisting of a single myocyte, symmetrically interconnected
with its neighbors by a 3D network of initially undulated transverse collagen fibers (Fig. 13).
In addition, each REV incorporated a system of passive fibers running parallel to the direc-
tion of the myocytes, representing the longitudinal contribution of the crisscross fibrous
weaves which surround the myocytes, combined with that of the passive inter-myocytes
titin filaments which run along the sarcomeres and the myocytes long axes [101]. Structural
characterization of the myocardial wall entails specification of the orientation distribution of
the transmural myocytes [93], the orientation distribution of the transverse collagen fibers
relative to their REV myocyte to which they are connected, and the recruitment distribution
of the collagen fibers. With these structural attributes specified, the strain field in each REV
across the wall and the strain in each collagen fiber in the REV system were evaluated [99,
100] from the global myocardial strain field, based on affine deformation (Assumption B5).
The passive stress in each fiber was then calculated from its strain. By the rule of mixtures,
the sum of passive contributions of all transverse and parallel fibers was calculated and as-
signed as the overall myocardial passive fibers stress.

4.3 Mechanics of the Active Myocardium

The active stress of the myocardium results from and is equal to the sum contributions of all
its myocytes. In the framework of structural modeling, the law governing the development
of the active myocyte tension is assumed to be known and is a given input to the model. The
active tension in each myocyte acts along its length. Stress summation across all myocytes
is performed after each myocyte stress is mapped to a common global coordinate system.
The resultant global active stress is then added to the global passive stress and the matrix
pressure to yield the total myocardium stress.

Myocyte activation is a complex event affected by a number of determinants. The gener-
ated active force depends on external determinants (length, velocity and electric excitation),
as well as on internal factors such as the kinetics of both the actin-myosin cross-bridges and
of troponin and Ca+2 ions, which control cross-bridge attachment, and on cellular control
mechanisms. A number of models have been proposed, each highlighting different aspects of
the activation event. However, regardless of the model chosen, the generality of the structural
approach allows any model to be integrated into the stress analysis. As a simple example,
an active stress law of the form

σ act
mus(τ, t) = σmax · T (τ) · L(λmus) · V (v) (4.1)

was used [100] in LV stress analysis along the entire cardiac cycle (diastole and systole),
where σmax is the highest possible active stress under optimal muscle stretch, T (τ) is an
activation function of the time τ passed since the myocytes were activated, L(λmus) is a
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function of muscle stretch, representing the dependence of the stress on the sarcomeres
actin-myosin overlap, and V (v) is a velocity function which reflects the hyperbolic rela-
tionship between active stress and the shortening velocity [102]. Equation (4.1) was ap-
plied to each sarcomere, then mapped to the global myocardium coordinate system and
summed up across all REVs. Details on the realization and comparison of the model pre-
dictions to the LV pressure-volume data along the entire cardiac cycle are given in refer-
ence [100].

5 Multi-scale Modeling of Tissue Growth and Remodeling (G&R)

Living tissues are unique in their ability to adapt to altered mechanical environments by
changing their size, shape, structure, and mechanical properties. This adaptation, termed
Growth and Remodeling (G&R), occurs not only during growth, but also in adulthood in
response to physical activity, pregnancy, dietary changes and pathologies, such as hyper-
tension. There is strong experimental support to the notion that G&R results from the tis-
sue cells’ strive to maintain a homeostatic mechanical environment required for survival
and proliferation (e.g., [29]). The cells do so by adapting their extra-cellular fibrous ma-
trix (ECM) via turnover—degradation of some fibers and production and deposition of new
ones.

G&R models are useful not only in providing a coherent framework and facilitating in-
sight into the underlying processes occurring in health and under pathological conditions,
but also due to their key role in tissue engineering in design and fabrication of biological
constructs. For example, mechanical conditioning was found not only to stimulate matrix
production but also to be a major determinant of the construct evolution towards target struc-
tures and properties [103–105].

Previous G&R models can be classified into three categories: early phenomenological
models focused on the consequences of G&R, based on classical continuum mechanics. In
arteries for example, G&R is manifested globally by changes in diameter and wall thick-
ness in an attempt to maintain homeostatic wall hoop strain and luminal wall shear stress
[106–109]. The constraint mixture approach was later developed [110] to facilitate separate
monitoring of the evolution and contribution to the global response of each of the tissue
constituents. Structure-motivated models considered the G&R-induced evolution of specific
structural features such as the helical angle of collagen fibers in arterial media. Other tissue
constituents (such as the media elastin and matrix) were phenomenologically modeled. A
common characteristic of previous G&R models is their ad-hoc assumptions as to the phe-
nomenology of G&R-associated geometrical or structural alterations. Alternatively, since
tissue properties derive from their constituents, it is advantageous to analyze G&R in terms
of the specific turnover processes experienced by each constituent in the tissue space, based
on the constituent’s loading history and its specific mechano-biological nature (the mecha-
nistic approach [111]). The structural multi-scale framework presented here is highly suited
for this goal, since it incorporates and monitors the mechanical environment and resulting
mechano-biological turnover of each constituent, everywhere in the tissue space, and then
integrates the effects of all these local events to predict the evolution of the tissue structure
and associated properties. To demonstrate this approach, the case of tissues with one type
of uni-directional bundle of fibers (e.g., collagen in tendons and ligaments) will be formu-
lated in detail [112]. This will be followed by generalization to tissues with multiple types
of fibers.
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5.1 Basic Assumptions of the Structural G&R Theory

The multi-scale tissue G&R theory is based on similar assumptions that underlie the multi-
scale theory of inanimate tissue mechanics, supplemented with the following mechano-
biological assumptions regarding constituent turnover:

Assumption GR1 The characteristic time of tissue loading (seconds to hours) is several
orders of magnitude shorter than the characteristic time of G&R-related biological processes
(weeks to months [111]). Hence at any G&R time, the tissue response to short loading can
be analyzed independent of ongoing G&R processes.

Assumption GR2 Fibers turnover occurs through degradation of some fibers while others
are synthesized and deposited.

Assumption GR3 The biological processes of fiber degradation and synthesis are first-
order reactions.

Assumption GR4 The reaction rates are specific to each constituent and have both loading-
independent (basal) and loading-dependent components.

Assumption GR5 Synthesized fibers are deposited on extant fibers, under a stretch within
the homeostatic range.

Assumption GR6 During G&R the fibers and matrix volume fractions are maintained at
constant levels [70, 113].

The detailed theory formulation is laid down in reference [112]. A brief review of the
main features is presented here.

5.2 The Tissue and Fiber Kinematics

The growth-induced evolution of the tissue structure, combined with tissue swelling under
the matrix pressure, introduce multiple reference and loaded configurations, which are in-
terrelated by corresponding mappings (Fig. 15). During G&R, the uniaxial tissue (Fig. 14)
is progressively stretched from its original unloaded reference length LUL

tiss(0) to its growth
induced length LGR

tiss(t) by a growth protocol ΛGR
tiss(t) which is an input to the model. The fiber

bundle is simultaneously stretched from its original stress-free reference length LSF
bun(0), by

an associated bundle stretch ΛGR
bun(t). Due to fiber turnover, growth induces changes in both

the unloaded tissue and stress-free bundle reference configurations (LGR
tiss(t) and LSF

bun(t), re-
spectively). The ratio between the tissue growth-induced length LGR

tiss(t) and its remodeling-
induced unloaded reference length LUL

tiss(t) is the pre-stretch ΛPS
tiss(t). Finally, at each con-

figuration during growth the tissue and bundle lengths are interrelated by the corresponding
osmotic induced tissue swelling Λosm

tiss .
Importantly, of the several mappings between the various tissue and bundle configura-

tions, only two are given inputs to the model, namely the tissue growth protocol ΛGR
tiss(t)

and its short testing protocol Λtest
tiss(τ ). The initial tissue swelling Λosm

tiss (0) is determined
from the assumed initial bundle configuration and the matrix pressure. The other mappings
(ΛGR osm

tiss (t),Λ
ref osm
tiss (t),ΛPS

tiss(t),Λ
PS
bun(t)) can be evaluated only after the G&R-remodeled
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Fig. 14 A scheme of the
uniaxial tissue structure with its
fluid-like matrix and
non-uniformly undulated fibers.
Only stretched fibers are stressed.
From [112] with permission

bundle stress-free configuration LSF
bun(t) has been determined from the turnover-induced evo-

lution of the bundle structure.
The various tissue and bundle mappings are interrelated by multiplicative decomposition

only when the tissue configuration (structure and composition) is fixed. For example, the
bundle and tissue test stretches are inter-related by (Fig. 15):

Λtest
bun

(
t∗, τ

) = Λtest
tiss

(
t∗, τ

) · Λref osm
tiss

(
t∗

)
, (5.1)

where Λ
ref osm
tiss (t∗) is the tissue swelling under the matrix pressure in the remodeled config-

uration at the test time t∗. In contrast, tissue configurational changes which include growth
cannot be prescribed by multiplicative decomposition of the deformation gradients since
growth itself, which involves mass changes, cannot be represented by a corresponding defor-
mation gradient as FG = ∂xG/∂XG [114]. Such representation implies that the coordinates
of each material point prior to (XG) and following (xG) growth are inter-related by bijective
motion (one-to-one and onto). Bijective motion is not valid for G&R during which some
fibers are degraded and new ones are produced since such fibers do not have both XG and
xG coordinates.

The bundle fibers are variably stretched with the tissue depending on each fiber “birth”
length lbf , or its nominal birth stretch λb

f = lbf /ΛSF
bun(0). The birth stretch determines the true

fiber stretch (which in turn determines its tension and its contribution to the tissue stress).
The fiber true stretch is given by

λf

(
λb

f , t
) = Λnom

bun (t)/λb
f . (5.2)

Hence, although the bundle and its fibers global deformations are affine, the fibers true
deformations are not.
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Fig. 15 A scheme of the evolving bundle and tissue stress-free (SF), unloaded (UL), growth-induced (G&R),
and test-loaded (test) configurations and of the mappings between them. Λ∗osm

tiss designate the tissue swelling

under the matrix osmotic driven pressure. LGR
bun,LGR

tiss stand for the bundle and tissue growth induced dimen-

sional changes, and LSF
bun(t),LUL

tiss(t) are the remodeled bundle stress-free and tissue unloaded configurations,

respectively. ΛPS
bun , ΛPS

tiss are the bundle and tissue growth induced pre stretches. Λtest
bun , Λtest

bun are short test
protocols aimed to monitor the evolution of the mechanical properties

5.3 Volume and Mass

The total fiber and matrix volumes are respectively Vf (t) and Vmat(t). The corresponding
volume fractions are φf (t) = Vf (t)/V (t) and φmat(t) = Vmat(t)/V (t), where V (t) is the
total tissue volume. Since there are no voids (Assumption B2), then V (t) = Vf (t)+Vmat(t),
and φf (t)+φmat(t) = 1. Since the volume fractions remain constant during G&R (Assump-
tion GR6 [70, 113]), it follows that φf (t) = φf (0) ≡ φ0

f , and likewise for the matrix.
The evolving distribution of fiber mass over its birth stretch is m(λb

f , t) such that at time
t the mass of fibers with birth stretches between λb

f and λb
f + dλb

f is m(λb
f , t) · dλb

f . The

total fiber mass is therefore Mf (t) = ∫ +∞
0 m(λb

f , t) · dλb
f . The distributions of fibers mass

and volume are interrelated by m(λb
f , t) = ρf · v(λb

f , t) where ρf is the fiber mass density.

5.4 Turnover Kinetics

Both fiber degradation and production are first-order reactions where each has deformation-
dependent and deformation-independent components (Assumptions GR3 and GR4). The
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corresponding equations for the degradation are

∂ddmf

∂t

(
λb

f , t
) = −Bdd(λf ) · mf

(
λb

f , t
)
,

∂dbmf

∂t

(
λb

f , t
) = −Bdb · mf

(
λb

f , t
)
, (5.3)

where ∂dd/∂t and ∂db/∂t are respectively, the deformation-dependent and deformation-
independent degradation time derivatives. Bdd(λf ) and Bdb are the corresponding reaction
rate constants. Similar equations hold for fiber production with corresponding rate constants
Bpd(λf ) and Bpb where the indices pd and pb designate respectively, the deformation-
dependent and basal production rate constants.

5.5 Fiber and Bundle Mechanics

Cauchy stress in a single hyper-elastic fiber is σf (λf ), where the fiber true stretch at time t

λf (λb
f , t) depends on its birth stretch (Eq. (5.2)). In the model realization, the fiber stress-

strain relationship is taken to be linear, i.e., σf = K(λf − 1), where K is the stiffness. The
bundle Cauchy stress Σbun is the weighted sum of all the fiber contributions

Σbun(t) = (
Φf (t)/Mf (t)

) ·
∫ +∞

0
mf

(
λb

f , t
) · σf (λf ) · dλb

f , (5.4)

where Φf (t)(= Φ0
f ) transforms the stress from its level per bundle unit area to its level per

tissue unit area. By the rule of mixtures, the total tissue Cauchy stress is

Σtiss(t) = Σbun(t) − Pmat. (5.5)

Equation (5.4) cannot be used as it stands, since at a given growth time t the fibers’ birth
stretches and their distribution are unknown. The experimentally measurable quantity at
growth time t is the distribution of the fiber recruitment stretches D(x, t), which plays a key
role in the multi-scale modeling of inanimate tissue mechanics presented above5. It can be
readily shown [112] that the distributions m(λb

f , t) and D(q, t) are interrelated by

D(q, t) = Λ
ref
tiss · mf

(
λb

f , t
)
/Mf (t). (5.6)

5.6 Feasibility of the Multi-scale Structural G&R Theory

To demonstrate the feasibility and utility of the multi-scale structural G&R theory, a specific
case [112] of a uniaxial tissue whose linear elastic fibers were initially straight and un-
stretched, was analyzed. The tissue was subjected to a growth protocol of a constant stretch
rate of 0.5 per year for a period of two years. Kinetic and mechanical parameters values
were adopted from published data. Figure 16 depicts the predicted evolution of the tissue
structure in terms of fiber recruitment stretch distribution. The initial uniform distribution
evolves rapidly to a bell shaped form, with no trace of the initial uniform distribution after
approximately 5 % of the total growth time. The bell shaped recruitment stretch distribution
is a commonly observed feature of soft tissues [53, 115–118]. The predicted tissue stress-
strain response evolves from an initial linear relationship of the uniformly stretched fibers to
a convex non-linear response, in which the tissue stiffens with strain (Fig. 17). Again, this
feature is common to all soft tissues. A third observed characteristic is the onset of pre-strain
and associated pre-stress which evolve with growth (Fig. 18).

5D(q, t) has the same physical meaning at a given growth time t as the function D(q,N) in Eq. (2.5) in a
uniaxial fiber network (no dependence on N).
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Fig. 16 Evolution with growth
time of the fibers recruitment
stretch density distribution.
Fibers having recruitment stretch
lower than unity are already
stretched in the unloaded length
thereby balancing the matrix
pressure. The symbol “tf ” stands
for the total growth period
duration. From [112] with
permission

Fig. 17 Evolution of the tissue
(fibers and osmotic active matrix)
stress-strain relationship at
selected growth times of
t = 0(+), t = 0.05 ∗ tf ,
t = 0.08 ∗ tf , t = 0.20 ∗ tf ,
t = tf (tf being the duration of
the growth period). (A) The
tissue first Piola-Kirchhoff stress
as function of its stretch. (B) The
corresponding tissue total force.
The initial linear response (at
t = 0) of the uniformly straight
fibers, evolves with growth time
to convexly non-linear ones.
From [112] with permission

5.7 Evolutionary Determinants of Tissues Structure and Mechanics

Scientifically, it is both intriguing and of potential practical importance to determine if the
evolutionary attributes of tissue structure and mechanics which are depicted in Figs. 16–18
are genetically determined. The results presented here show that these characteristics could
well evolve as a result of the mechano-biology of the tissue constituents. It is shown that
based solely on the turnover processes of the constituents, these three key characteristics of
structure and mechanics evolve with growth towards their observed patterns.
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Fig. 18 Evolution with growth
time of the in situ tissue
pre-stress (A) and pre-stretch (B).
From [112] with permission

6 State of the Art, the Big Picture, Future Challenges

To summarize, an account will be given of the main merits and limitations of the multi-scale
structural tissue modeling. This will be followed by a personal outlook regarding tissues
characterization, along with future research challenges and prospects in the field.

6.1 Merits of the Multi-scale Structural Approach

The structural theory is of a physical nature, in the sense that it simulates real processes oc-
curring in realistic tissue structures. The theory parameters have clear physical meaning and
can often be measured independently using methodologies unelated to tissue mechanical
testing (e.g., testing of individual fibers, histological staining and ultrastructural imaging).
The structural approach can readily incorporate contributions of tissue constituents which
are very different in their nature (e.g., fluid matrix, passive and active solid fibers) and in-
tegrate all into a clear and precisely orchestrated global tissue response. Due to its physical
nature, the theory is free of the problem of indistinguishability between candidate non-linear
models which is often encountered in non-linear phenomenological characterization. More-
over, and probably for the same reason, experience has shown that the inter-specimen vari-
ance between parameter estimates of structural models is significantly lower than in phe-
nomenological models. Another useful feature of structural models is their aforementioned
guaranteed physical plausibility. In terms of reliability and fit to data, detailed comparison
[65] revealed that structural models are superior to non-structural models both as descriptors
and predictors of 3D response characteristics of coronary arteries media. Most importantly,
structural models have the unique ability to expand by smoothly incorporating additional tis-
sue constituents with different properties, or more complex properties of constituents, such
as fiber non-linearity, time-dependence, active contraction and mechano-biological turnover.
It was shown above that perplexing dilemmas in tissue characterization, such as the appar-
ent incompatibility between viscoelastic stress relaxation and creep responses [77, 78], the
ranges of validity and interplay between preconditioning and viscoelasticity [78], and the
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kinematic limitations and physically unrealistic response predictions occasionally encoun-
tered with nonstructural models [60, 119], can be readily resolved using structural modeling.

6.2 Limitations of the Multi-scale Structural Approach

It has been claimed that implementation of the structural approach in finite element stress
analysis, presents an excessively heavy computational load due to the need to integrate the
contributions of fibers over their entire recruitment stretch distribution and 3D orientation
dispersion. Various attempts have been made to circumvent this problem but, so far, none
have proven to reliably represent tissue response characteristics under any general loading
(see discussion below in “Reduced Structure Representation”). On the other hand, in prac-
tice, with today’s powerful fast mainframes and parallel coding interfaced with computer
clusters, the computational load is tractable, as shown for the complex case of 3D finite ele-
ment analysis of the LV with passive and active myocardium in a real geometry model [120].

Another concern raised is that by assuming deformation affinity, interactions between tis-
sue fibers are not considered in structural models [3]. Two recent studies directly addressed
this issue by experimentally testing deformation affinity [52, 58]. The results show that in the
flat tissues tested (pericardium, aortic valve leaflet and mitral valve anterior leaflet), the fiber
kinematics was affine. As the authors correctly conclude, affinity suggests that the fibers are
largely non-interacting and deform with the bulk tissue.

6.3 The Big Picture

The research in tissue mechanics has been dominated in the past almost exclusively by phe-
nomenological models within the powerful frame of classical continuum mechanics of bulk
materials, using concepts and paradigms adopted from this discipline. Biological aspects
were often adapted to fit continuum framework. Phenomenological models served as a start-
ing point and contributed significantly to progress in tissue mechanics. However, in recent
years, it is becoming clear that soft tissue characterization requires a frame of thinking that
transcends the scope of continuum mechanics. The paradigm should be to model tissues
based on the real structures and biological processes occurring in the tissue system, and to
link the resulting formulation to continuum mechanics.

A number of reasons underlie this need for paradigm change. First, tissues are multi-
scale, multi-phasic structures, exhibiting complex time-dependent responses. In addition,
tissues are thermodynamically open, rather than closed systems. In the living tissue, mass,
energy and information are constantly exchanged with the environment, and with the whole
body. Muscle tissues are excitable and develop active contractions. All in vivo tissues change
via biological processes, to adapt to their external environment. Hence, tissues do not fit the
standard requirements of continuum mechanics. For instance, classical conservation laws are
only valid in living tissues for short time periods and under passive states, but are generally
violated. For one or more of these reasons, phenomenological models have proven to be
limited in their ability to reliably represent the complex properties of live tissues under
general conditions and deformation schemes.

It is thus submitted that future prospects in tissue biomechanics research requires a
new paradigm. For tissues in vitro much progress has been achieved by moving from phe-
nomenology to structure-function and casual connections. In live tissues, there is a need
to expand the outlook to bodies which remodel via biological processes. These changes
will require massive experimental effort to elucidate hitherto unknown features of tissue
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mechano-biology and to develop testing protocols suitable for reliable model validation.
While preliminary steps have been taken, much remains to be done.

From the modeling aspect, the multi-scale structural approach presented here is a plat-
form suitable for realizing this new paradigm. On the one hand (as shown above), it can in-
corporate biological effects and resulting changes in mass, structure and properties. On the
other hand, it bridges between the mechano-biological processes and continuum mechanics
in a coherent manner. It thus affords clearer and richer insights and opens new possibilities
in a significantly wider horizon compared to continuum models of inanimate materials.

6.4 Future Challenges

The realism and versatility of multi-scale tissue characterization pave the way for future
research challenges, both theoretical and experimental, several of which are presented here.

Experimental Structural Characterization: Tissue structure is the cornerstone of the
structural approach. In the absence of pertinent information, previous structural charac-
terizations were for the most part indirect. Based on qualitative histological observations,
general forms of orientation and waviness distributions (such as the beta function) were as-
signed to both features, and parameters of these distributions were estimated to best fit given
mechanical response data. Attempts to directly determine the distribution functions based
on morphological observations, have been impeded by difficulties in reliable extraction of
the tissue 3D structural features, and by the inherent experimental uncertainties associated
with the need to process the specimen, or by the use of differential digestion, thereby dis-
torting the tissue’s micro-structure. Recent developments in non-linear optics (e.g., multi-
photon microscopy and coherent anti-Stokes Raman scattering microscopy), coupled with
computer-interfaced sequential optical sectioning, hold great promise for 3D structural char-
acterization. The advantage of these methodologies is that tissue samples are maintained in
their native state (i.e., unstrained and unprocessed). In addition, the application of two types
of nonlinear laser/tissue interaction—two photon excited fluorescence (TPEF) and second-
harmonic generation (SHG),—allow for retrieval of distinct structural data for the elastin
and collagen type I fibers [121, 122], respectively.

Reduced Structure Representation: Implementation of the structural approach in finite
element stress analysis presents a heavy computational load due to the associated need to
integrate the contributions of fibers over their entire 3D orientation distribution function
(also termed “integration on a sphere”). Although modern fast computing facilities render
this task tractable (e.g., in the case of the left ventricle [120]), attempts are being made to de-
velop a computationally more efficient representation. Although promising first steps have
been made, a methodology which is general enough to incorporate any tissue structure and
any fiber material law is still lacking. The quest for such representation is a challenging the-
oretical/numerical undertaking. One current approach relies on application of generalized
structural tensor to represents the tissue’s 3D structure [123, 124], instead of the fiber orien-
tation distribution. Higher computational efficiency was achieved with the structure tensor
since in application, it was multiplied by a weighted average of the fiber stretches, thus ig-
noring dependence of the latter on the fiber orientation. Comparison with the exact solution
revealed that this methodology is only valid when all fibers are in tension and when the fiber
orientation span is small [125, 126]. Recently, another drawback of the structural tensor was
revealed. It turns out that except for the case of uniform or close to uniform orientation
dispersion, the distributions recovered from the structure tensor fit poorly to the data. This
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stems from the fact that the second rank generalized structure tensor is associated with just
the lowest ranked term in a Fourier series expansion of the orientation distribution based
on spherical functions, and it contains the least amount of information on the distribution
compared to higher order terms in the expansion [51].

A second class of methodologies used to reduce the structural representation, attempts
to simulate the tissue properties by a discrete set of fiber-bundles. One method was de-
veloped for amorphous polymers, and represents the tissue properties by an eight-chain,
three-dimensional rectangle unit cell, whose shape determines the tissue orthotropy [127].
While this unit cell is a structure, it is unrelated to the real tissue structure. The two other
methods represent the tissue’s continuous 3D orientation distribution by a discrete set of
fibers. In the first, the fibers in the set have fixed orientations, and weight is assigned to
each set to optimize the fit to the tissue response [128]. This approach was shown, however,
to introduce undesirable anisotropy to an isotropic material [129, 130]. The second variant
applies the spherical t -design [131, 132], which is a set of N points on a sphere (or their
equivalent fiber orientation), such that the average value of any polynomial f of degree t

or less on this set equals the integral of f over the sphere. Hence, integration over the 3D
orientation distribution is replaced by a sum of discrete values of that function. The design
degree t depends on the orientation distribution function and on the fiber material law [133].
Hence, the polynomial degree t must be evaluated for each case [134] and may change as
parameter estimates evolve during iterative search for optimal parameters during the process
of tissue material characterization.

To summarize, at present, there seem to be no reliable reduced representation of tissue
structure which could serve as an alternative to the orientation distribution function. This
challenge is yet to be met.

Clinical Applications of the G&R Model: A number of pathologies are closely related
to a remodeling transition from stable healthy state into an unstable diseased state. Two
examples are cardiac hypertrophy (CH) and abdominal aortic aneurism (AAA). Untreated
maladaptive CH leads to heart failure which is a leading cause of morbidity and has a 5-year
mortality rate of 50 %. CH is a response to stress overload or to a disease. There are two
types of CH. Eccentric hypertrophy is associated with increased chamber volume without
change in the wall thickness, and can result from myocardial infarct (MI) damage to the my-
ocardium or from mitral valve regurgitation. Structurally, increased chamber volume results
from remodeling of the collagen network of the heart (which is predominant in its passive
diastolic function), and an associated increase in the number and length of sarcomeres in
series, thus leading to myocytes lengthening. The second type is concentric hypertrophy,
which is associated with increased wall thickness and may arise from increased systolic
ventricle pressure under hypertension or from aortic valve stenosis. Structurally, the wall
thickens due to over-stress-induced increased in the number of parallel sarcomeres in the
myocytes. Clinically, it is well known that mild to moderate left ventricle hypertrophy such
as observed in training athletes, need not be pathological and may actually enhance cardiac
performance (adaptive hypertrophy). The challenges are to identify the mechanical and bio-
logical culprits which lead to a pathological transition, and to establish the clinical threshold
of transition from adaptive to maladaptive hypertrophy. Multi-scale structural characteriza-
tion provides a predictive modeling platform for myocardial G&R that is realistically based
on the physical tissue constituents and incorporates their measured mechano-biology into
predictable and measurable function, thereby facilitating reliable clinical decisions.

AAA is an enlargement of the aorta, which result from deterioration of the elastin net-
work in the vessel wall. The elastin function in resisting the dynamic luminal blood pressure
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can be compensated by increased production of the other wall constituents (SMCs and col-
lagen). The important clinical goal is to establish the thresholds of transition from a stable
into an unstable state, which may lead to dissection and life-threatening massive internal
bleeding. Here again, multi-scale modeling provides a straightforward platform for incorpo-
ration of measurable mechano-biological features of tissue constituents and their integration
into global clinical measures.

Cellular Mechano-Biology: Cells are constantly exposed to mechanical forces in the body.
In fact cells require a homeostatic mechanical environment in order to survive and pro-
liferate [29]. Forces affect and control cell shape and biological functions, including gene
expression, metabolism, secretion of biological factors, apoptosis (programed cell death),
and modification of their ECM structure and properties, via turnover of fibers. Cells are
exquisite sensors of their mechanical environment. Depending on the species, tissue and
cell type, cells are sensitive to the nature of applied forces (tension/compression, pressure,
shear), and to their magnitude, waveform and duration. For example, proteoglycan synthesis
in chondrocytes (cells of the articular cartage) was found to be suppressed by static com-
pression of up to 50 % strain, but cyclic compression has varied effects, depending on the
loading regimen [135–138]: dynamic loading of 15 % at 0.3 Hz of chondrocytes seeded in
agarose, decreased GAG synthesis, while under 1 Hz frequency increased it [139]. Many
functions of endothelial cells (cells lining the blood vessel inner surface) are regulated by
the blood shear stress [140]. Cyclic stretch was found to enhance the proliferation of hu-
man myocytes seeded in a gelatin matrix [141], and to increase elastin production by SMCs
seeded in polymeric scaffold [142].

Cells mechano-biology is of fundamental importance in tissue engineering (TE) which
aims to replace diseased native tissues with in vitro generated functional biological con-
structs that possess suitable structure and mechanical properties. Yet, a major obstacle to
production of engineered tissues is the limited understanding of the mechanics-biology inter-
relationships between forces and cells’ functions. The specific forces and regimes (mag-
nitude, frequency, duration and waveform) which induce specific biological response are
insufficiently understood. Comprehensive understanding can be achieved through well con-
trolled experiments and realistic computational analysis of the mechanical forces experi-
enced by the cells.

Design and Fabrication of Engineered Tissue: The goal of tissue engineering is to de-
velop biological substitutes that restore, maintain, or improve function of native tissues,
or of a whole organ [143]. Generation of an engineered tissue featuring specific structure
and mechanical properties is an endeavor complementary to cell mechano-biology research.
Knowledge gained from the research can be integrated into G&R-related modeling and de-
sign of the requisite materials and bioreactor protocols, which should lead to evolution of
in vitro manufactured constructs to target engineered tissues. While the concepts and frame-
works of this emerging sub-discipline are just beginning to be formulated, it is reasonable
to expect that the multi-scale G&R structural theory presented above, will play a central
role due to its versatility and realism in simulating the structure and biological remodeling
that occur in the tissue substitute. With this achieved, the art of tissue engineering will be
established on principles parallel to those of classical engineering design.

6.5 Concluding Comments

The research field of tissue mechanics is in its formative period. It is characterized by rev-
olutionary transformation from the realm of classical continuum mechanics, typical of the
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early years of the field just four decades ago, towards its own new identity. New concepts
and tools are being developed to cope with the special challenges presented by the com-
plex behavioral features of tissues, concepts which were hitherto unknown in classical me-
chanics. The present period is reminiscent of the formative developments in 1950s for the
Theory of Plasticity, in the 1960s for Fracture Mechanics, and in the 1970–80s for Compos-
ite Materials. The field is experiencing an ongoing merge of biology, anatomy, physiology,
bio-chemistry and physical chemistry into concepts and tools of non-linear continuum and
structural mechanics. This results not only in improved realism of tissue characterization,
but also in expansion of scope and creation of new fronts for classical mechanics towards
more general response features such as activation, remodeling, and changing body mass.

Research in tissue mechanics is both important and rewarding. It holds the promise for
most significant potential contributions to community health, by deciphering underlying
mechanisms of physio-pathological processes, thereby paving the way towards develop-
ment of protective and therapeutic measures, anti-aging strategies, and tissue engineered
substitutes. The research work itself is highly rewarding, offering new, challenging and rich
experience, due to its inter- and multi-disciplinary nature. It incorporates and integrates non-
linear mechanics, mathematics, physiology, biology and chemistry. It is not surprising to
find that as a result of these new horizons, interesting challenges in mechanics and material
characterization present themselves. The topics presented here are just a few examples.
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