
J Elast (2017) 127:25–57
DOI 10.1007/s10659-016-9595-0

Crack Tip Equation of Motion in Dynamic Gradient
Damage Models

Tianyi Li1 · Jean-Jacques Marigo2

Received: 13 April 2016 / Published online: 22 September 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We propose in this contribution to investigate the link between the dynamic gra-
dient damage model and the classical Griffith’s theory of dynamic fracture during the crack
propagation phase. To achieve this main objective, we first rigorously reformulate two-
dimensional linear elastic dynamic fracture problems using variational methods and shape
derivative techniques. The classical equation of motion governing a smoothly propagating
crack tip follows by considering variations of a space-time action integral. We then give a
variationally consistent framework of the dynamic gradient damage model. Owing to the
analogies between the variational ingredients of these two models and under some basic
assumptions concerning the damage band structuration, one obtains a generalized Griffith
criterion which governs the crack tip evolution within the non-local damage model. As-
suming further that the internal length is small compared to the dimension of the body, the
previous criterion leads to the classical Griffith’s law through a separation of scales between
the outer linear elastic domain and the inner damage process zone.

Keywords Dynamic fracture · Gradient damage models · Variational methods · Shape
derivative methods · Griffith’s law
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1 Introduction

The gradient damage model as formulated in [25] and close in essence to that elaborated by
[19] is now acknowledged as a unified theoretic and computational framework for fracture
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evolution problems [10, 20, 24]. The link between damage and fracture can be rigorously
established by global or local minimizations. On the one hand, via Γ -convergence argu-
ments, the potential energy in the gradient damage model can be regarded as an elliptic
regularization of the Griffith functional in the Variational Approach to Fracture [7]. The in-
ternal length η serves as a purely vanishing numerical parameter and the gradient damage
model converges in terms of the global minimum toward the former sharp-interface fracture
model. On the other hand, by exploiting the local stability and energy balance conditions
when the damage field is concentrated inside a smoothly propagating thin band, authors of
[29] derive an asymptotic Griffith’s law based on the energy release rate G of the outer prob-
lem and the dissipated energy inside the damage band Gc. The internal length receives here
another physical interpretation since it achieves a separation of scales between the classic
linear elastic fracture mechanics and the damage process zone undergoing a strain softening
behavior.

In this paper we propose to generalize this link between gradient damage and Griffith’s
theory to the dynamic setting. The major difficulty lies in the proper definition of an energy
release rate and an equivalent material fracture resistance in gradient damage models. These
concepts involve, generally speaking, the derivative of a certain energy with respect to the
crack length, hence the damage zone evolution should be assumed to follow a specific path
parametrized by the arc length. Based on an Eulerian approach, authors of [29] then identify
a generalized damage-dependent Rice’s J -integral automatically induced by the variational
formulation of quasi-static gradient damage models. To accomplish our objective in dy-
namics, we first revisit the Griffith’s linear elastic dynamic fracture mechanics theory and
rigorously provide a variational interpretation of the dynamic J -integral obtained classically
from an energy flux integral entering into the crack tip which balances the energy dissipated
due to crack propagation [11]. We propose in Sect. 2 a Lagrangian energetic approach to the
dynamic energy release rate using calculus of variations and shape optimization. The desired
evolution laws for the cracked body and the crack itself automatically follow by considering
variations of a space-time action integral.

It turns out this off-course journey furnishes precisely an adequate framework for deriv-
ing the crack tip equation of motion in dynamic gradient damage models. The variational
formulation presented in Sect. 3 can be regarded as a generalization of the regularized dy-
namic fracture model [8] and the phase-field approaches originating from the computational
mechanics community [6]. Under the same assumption in [29] concerning the damage band
structuration and applying the same shape derivative techniques as before to a generalized
space-time action integral containing the damage dissipation energy, we identify automati-
cally a generalization of the dynamic J -integral and the dynamic energy release rate. The
equation of motion of the crack tip predicted by the dynamic gradient damage model is then
governed by Griffith-like scalar equations involving these concepts. This property can thus
be seen as a generalization of the results obtained in [29]. With the help of a similar sepa-
ration of scales in Sect. 4, the former derived generalized Griffith criterion admits also an
asymptotic interpretation. Assuming that the internal length η is small compared to the di-
mension of the body, we retrieve the classical Griffith’s law of cracks involving the dynamic
energy release rate of the outer problem and the material toughness defined as the amount
of energy dissipated across the damage process zone.

General notation conventions adopted in this paper are summarized as follows. Scalar-
valued quantities will be denoted by italic Roman or Greek letters like the crack length lt or
the damage field αt . Vectors and second-order tensors will be represented by boldface letters
such as the displacement field ut and the stress tensor σ t . Higher order tensors considered
as linear operators will be indicated by sans-serif letters: the elasticity tensor A for instance.



Crack Tip Equation of Motion in Dynamic Gradient Damage Models 27

Intrinsic notation is adopted and contraction on lower-order tensors will be written without
dots Aεt = Aijklεkl (the summation convention is assumed). Inner products between two
vectors or tensors of the same order will be denoted with a dot, such as Aεt · εt = Aijklεklεij

(the summation convention is assumed). Time dependence will be indicated by a subscript,
like u : (t,x) �→ ut (x). In particular, ut is understood as the displacement field at time t ,
whereas u refers to the time evolution of the displacement field.

2 Variational Approach to Dynamic Fracture

As discussed in the introduction, this section will be devoted to a rigorous reformulation of
an energetic approach to dynamic fracture. The basic assumptions will be a two-dimensional
homogeneous and isotropic linear elastic body Ω containing a smoothly propagating crack
Γt with a pre-defined path l �→ γ (l) ∈ R

2 parametrized by its arc length t �→ lt ≥ 0. The
symbol Pt = γ (lt ) will be used to represent the crack tip at time t . The current cracked
configuration will be denoted by Ω \ Γt on which the kinematic quantities are defined. For
the sake of simplicity, the crack Γt is assumed to remain far from the boundary ∂Ω . The
spatial crack path l �→ γ (l) can be curved but in this contribution we will only consider a
straight crack with a constant tangent γ ′(lt ) = τ t = τ 0. Generalization to a curved crack
path will be briefly discussed at the end of this section.

The basic energetic ingredients of the variational formulation are defined as follows.
Under the small strain hypothesis, the elastic energy is given by

E(ut , lt ) =
∫

Ω\Γt

ψ
(
ε(ut )

)
dx =

∫
Ω\Γt

1

2
Aε(ut ) · ε(ut )dx =

∫
Ω\Γt

1

2
σ t · ε(ut )dx, (1)

where A is the elasticity tensor, ε denotes the symmetrized gradient operator which gives
the linearized strain ε(ut ) = 1

2 (∇ut + ∇Tut ) when applied to the displacement vector, and
σ t = Aε(ut ) represents the stress tensor. The kinetic energy defined on the uncracked bulk
is the usual quadratic function of the velocity field modulated by the material density

K(u̇t , lt ) =
∫

Ω\Γt

κ(u̇t )dx =
∫

Ω\Γt

1

2
ρu̇t · u̇t dx. (2)

The Griffith surface energy [12] illustrates the hypothesis that the crack creation is accom-
panied by an energy dissipation solely proportional to its area (or length in 2-d cases) with
a material dependent factor Gc called the fracture toughness. It reads in our case

S(lt ) = Gc · (lt − l0). (3)

Finally we define the external work potential Wt taking into account any possible body
forces or surface tractions applied on a subset ∂ΩF of the boundary

Wt (ut ) =
∫

Ω\Γt

ft · ut dx +
∫

∂ΩF

Ft · ut ds. (4)

We suppose that they are sufficiently regular in time and in space.
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Fig. 1 Definition of a diffeomorphism φlt : Ω \ Γ0 → Ω \ Γt transforming the current cracked material
configuration Ω \ Γt to the initial one Ω \ Γ0. It should not be confused with the actual deformation ϕt
of the body which takes a particular material point x ∈ Ω \ Γt to its spatial location ϕt (x) in the deformed
configuration ϕt (Ω \ Γt )

Fig. 2 A particular virtual
perturbation θ∗ = θτ0 verifying
Definition 1. It is obtained by
solving the Laplace’s equation
�θ = 0 inside the crown
r ≤ ‖x∗ − P0‖ ≤ R with
adequate boundary conditions

2.1 Lagrangian Description in the Initial Cracked Configuration

The displacement ut is defined in the current crack configuration Ω \ Γt , consequently its
total variation depends on that of the crack. A Lagrangian description of the fracture prob-
lem is thus preferred if one needs to rigorously define an energy release rate with respect
to the crack length [9]. The current cracked material configuration Ω \ Γt is transformed to
the initial one Ω \ Γ0 thanks to a well-defined bijection φlt

whose inverse as well as itself is
differentiable, see Fig. 1. Proving existence of such diffeomorphisms may be technical [16]
and consequently will be directly admitted. This bijection φ should not be confused with
the actual deformation ϕt of the body which takes a particular material point x ∈ Ω \ Γt to
its spatial location ϕt (x) in the deformed configuration ϕt (Ω \ Γt). Recall that the displace-
ment field ut is defined by ϕt (x) = x + ut (x) for all x in Ω \ Γt .

We can explicit this domain transformation by using a virtual perturbation θ∗ defined on
the initial configuration [9, 16]. This virtual perturbation should verify the following

Definition 1 (Virtual perturbation)

1. It is sufficiently smooth in space to satisfy the definition of a diffeomorphism.
2. It represents a virtual crack advance along the current crack propagation direction, that

is in our case θ∗(P0) = τ 0.
3. It does not alter the crack lip shape, that is θ∗ · n = 0 on the crack lip Γ0 with n the unit

normal vector.
4. The domain boundary remains invariant, i.e., θ∗ = 0 on ∂Ω .

An example of such virtual perturbations is given in Fig. 2.

With an arbitrary virtual perturbation verifying Definition 1, we can thus construct the
bijection between the initial and current cracked material configurations. In the particular
case of a straight crack path, it reads

φlt
: x∗ �→ x = x∗ + (lt − l0)θ

∗(x∗), (5)
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where x = φlt
(x∗) denotes the material point x in the current cracked configuration Ω \ Γt

associated with the material point x∗ in the initial cracked configuration Ω \ Γ0. For nota-
tional simplicity, we will suppress its subscript by writing φ = φlt

. The (real) displacement
field ut will thus be pulled-back to the initial configuration via the introduced bijection by

ut ◦ φ = u∗
t (6)

from which along with (5) we deduce the following useful identities using the classical chain
rule

∇u∗
t

(
x∗) = ∇ut (x)∇φ

(
x∗), (7)

u̇∗
t

(
x∗) = u̇t (x) + ∇ut (x)l̇tθ

∗(x∗) = u̇t (x) + ∇u∗
t

(
x∗)∇φ

(
x∗)−1

l̇tθ
∗(x∗). (8)

As can be observed, all quantities referring to the initial material configuration Ω \ Γ0 are
indicated by a superscript (·)∗. In particular, the Lebesgue integration measure in Ω \ Γ0

will be denoted by dx∗. When spatial or temporal differentiation is present, the pullback
operation similar to (6) is performed first. Hence in (7), ∇u∗

t denotes the gradient of u∗
t in

Ω \ Γ0, and in (8), u̇∗
t is understood as the time derivative of the transported displacement.

By virtue of (7) and (8), we can thus rewrite the elastic energy (1) and the kinetic (2)
energy using the transported displacement

E(ut , lt ) = E∗(u∗
t , lt

) =
∫

Ω\Γ0

ψ

(
1

2
∇u∗

t ∇φ−1 + 1

2
∇φ−T

(∇u∗
t

)T
)

det∇φ dx∗ (9)

and

K(u̇t , lt ) = K∗(u∗
t , u̇∗

t , lt , l̇t
) =

∫
Ω\Γ0

κ
(
u̇∗

t − l̇t∇u∗
t ∇φ−1θ∗)det∇φ dx∗, (10)

where we note that the transported kinetic energy functional K∗ depends on the transported
displacement u∗

t and the crack velocity l̇t . Since the boundary ∂Ω is invariant under the
transformation φ, the external work potential (4) written in the initial configuration reads

Wt (ut ) = W∗
t

(
u∗

t , lt
) =

∫
Ω\Γ0

(ft ◦ φ) · u∗
t det∇φ dx∗ +

∫
∂ΩF

Ft · u∗
t ds. (11)

Finally, note that we can also map the original virtual perturbation θ∗ defined on the
initial configuration to the current one, via a pushforward operation

θ t = θ∗ ◦ φ−1.

All the properties discussed in Definition 1 for the initial virtual perturbation should ade-
quately apply for the push-forwarded one by using the current crack tip Pt = φ(P0) and
lip Γt .

2.2 Reformulation Based on a Space-Time Action Integral

We suppose that the body Ω evolves due to an external work potential Wt and a Dirichlet-
type imposed displacement t �→ Ut on a time-independent subset ∂ΩU of the boundary. We
will proceed to formulate the crack evolution equation from the (generalized) Hamilton’s
principle [14], by constructing a space-time action integral similar to that introduced in [2]
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and then calculating directly the action variation corresponding to arbitrary virtual displace-
ment variation and crack advance. Recall that The Principle of Least Action is formulated as
a Boundary Value Problem: fix the displacement u at two time ends, the real displacement
evolution t �→ ut renders the action stationary.1 Given an arbitrary interval of time I = [0, T ]
and the values of the (transported) displacement u∗ at both time ends noted u∗

∂I = (u∗
0,u∗

T ),
we will construct the admissible displacement evolution space

C
(
u∗) = {

v∗ : I × (Ω \ Γ0) →R
2
∣∣ v∗

t ∈ Ct for all t ∈ I and v∗
∂I = u∗

∂I

}
, (12)

where the admissible function space Ct for the current (transported) displacement at time t

is an affine space of type Ct = C0 + Ut with the associated vector space given by

C0 = {
u∗

t : Ω \ Γ0 →R
2
∣∣ u∗

t = 0 on ∂ΩU

}
.

For the admissible crack evolution, we require that the evolution of the crack tip t �→ lt
should be a non-decreasing function of time and virtual advance of the crack tip at every
instant should also be non-negative to ensure irreversibility. Concretely, given an arbitrary
but non-decreasing crack evolution t �→ lt , the admissible crack evolution space is given by

Z(l) = {
s : I →R

+ ∣∣ st ≥ lt for all t ∈ I and s∂I = l∂I

}
. (13)

With the definition of the elastic energy (9), kinetic energy (10), Griffith surface energy
(3) and external work potential (11) along with the admissible function spaces (12) and (13),
we are now in a position to form the space-time action integral given by

A
(
u∗, l

) =
∫

I

Lt

(
u∗

t , u̇∗
t , lt , l̇t

)
dt =

∫
I

(
E∗(u∗

t , lt
)+S(lt )−K∗(u∗

t , u̇∗
t , lt , l̇t

)−W∗
t

(
u∗

t , lt
))

dt

(14)
which involves a generalized Lagrangian Lt (u∗

t , u̇∗
t , lt , l̇t ). The coupled evolution described

by the couple (u∗, l) ∈ C(u∗) ×Z(l) will then be governed by

Definition 2 (Variational formulation of dynamic fracture)

1. Irreversibility: the crack length is a non-decreasing function of time l̇t ≥ 0.
2. First-order stability: the first-order action variation is non-negative with respect to ar-

bitrary admissible displacement and crack evolutions

A′(u∗, l
)(

v∗ − u∗, s − l
) ≥ 0 for all v∗ ∈ C

(
u∗) and all s ∈ Z(l). (15)

3. Energy balance: the only energy dissipation is due to crack propagation such that we
have the following energy balance

Ht = H0 +
∫ t

0

(∫
Ω\Γs

(
σ s · ε(U̇s) + ρüs · U̇s

)
dx −Ws(U̇s) − Ẇs(us)

)
ds, (16)

where the total energy is defined by

Ht = E∗(u∗
t , lt

) + S(lt ) +K∗(u∗
t , u̇∗

t , lt , l̇t
) −W∗

t

(
u∗

t , lt
)
. (17)

1But in practice it is the initial displacement u0 and velocity u̇0 that are known and we will use the equations
derived from the Hamiltonian principle to solve the physical Initial Value Problem.
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Remark 1 We assume that the considered fields are sufficiently smooth in time and in space
so that all calculations make sense. A precise statement of the functional spaces in the most
general case remains beyond the scope of this paper.

In the first-order stability principle (15), the notation A′(u∗, l)(v∗ − u∗, s − l) denotes
the Gâteaux derivative of the action functional with respect to the displacement variation
w∗ = v∗ − u∗ and crack advance δl = s − l. Recall that the transported displacement u∗

t is
defined on the initial configuration Ω \Γ0 which is fixed during the (virtual) crack increment,
thanks to the introduction of the diffeomorphism φ. The displacement variation w∗ is thus
independent from that of the crack δl, and induces automatically a variation w in the current
material configuration via a pushforward operation w ◦ φ = w∗.

2.3 Equivalence with the Classical Formulations

We will show in this section that the variational approach to dynamic fracture embodied by
Definition 2 is equivalent to the usual wave equation in the uncracked bulk and Griffith’s
law of crack evolution [11]. However, it should be noted that the variational formulation is
more general. To achieve this goal, we will carefully evaluate the derivative of the action
functional with respect to arbitrary displacement variation w∗ = v∗ − u∗ and crack advance
δl = s − l. Lengthy calculations are detailed in Appendices A and B and we will only present
here the main results.

By firstly evaluating the action variation corresponding to zero virtual crack advance
δl = s − l = 0 and using the fact that v∗

t − u∗
t = w∗

t ∈ C0 is a vector space, we obtain by
virtue of the regularity hypotheses

A′(u∗, l
)(

w∗,0
) =

∫
I

(∫
Ω\Γt

(ρüt − divσ t − ft ) · wt dx

+
∫

∂ΩF

(σ tn − Ft ) · wt ds +
∫

Γt

σ tn · wt ds
)

dt

= 0 for all w∗
t ∈ C0 (18)

from which the classical wave equation is deduced

ρüt − divσ t = ft in Ω \ Γt , σ tn = Ft on ∂ΩF and σ tn = 0 on Γt . (19)

We then evaluate the action derivative with zero virtual displacement variation w∗ = 0, lead-
ing to

A′(u∗, l
)
(0, δl) =

∫
I

(Gc − Gt)δlt dt ≥ 0 for all δlt ≥ 0 with t ∈ (0, T ), (20)

where the dynamic energy release rate Gt to be compared with the fracture toughness Gc

reads

Gt =
∫

Ω\Γt

((
κ(u̇t ) − ψ

(
ε(ut )

))
div θ t + σ t · (∇ut∇θ t ) + div(ft ⊗ θ t ) · ut

+ ρüt · ∇utθ t + ρu̇t · ∇u̇tθ t

)
dx. (21)
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From (20), we retrieve the desired crack stability condition which states that the dynamic en-
ergy release rate must be smaller or equal to the material fracture toughness. The consistency
condition can then be derived thanks to the energy balance principle (16) and calculations
in Appendix B, leading to the following Griffith’s law of crack propagation

l̇t ≥ 0, Gt ≤ Gc and (Gt − Gc)l̇t = 0. (22)

Note that we retrieve the static energy release rate [9] by setting the velocity u̇t and the
acceleration üt in (21) to zero. A similar formula for Gt is obtained in [4] by constructing
an ad-hoc field 0 ≤ ‖θ t‖ ≤ 1 which transforms surface (line) integrals to volume (surface)
integrals. Here the dynamic energy release rate Gt is identified by calculating the variation
of the space-time action integral (14) with respect to crack increment evolution. Using the
Euler-Lagrange equation

A′(u∗, l
)
(0, δl) =

∫
I

(
∂Lt

∂lt
− d

dt

∂Lt

∂ l̇t

)
· δlt dt

and the fact that the Lagrangian depends on the crack velocity l̇t solely via the kinetic en-
ergy K∗, we find the same expression for the dynamic energy release rate Gt as indicated in
[1] and [11, p. 423]

Gt = ∂(K∗ +W∗
t − E∗)

∂lt
− d

dt

∂K∗

∂l̇t
.

Contrary to the quasi-static regime, this quantity Gt doesn’t possess the physical meaning
of the derivative of the Lagrangian with respect to crack extension due to the presence of the
term (d/dt)(∂K∗/∂l̇t ), as has been already noted in [22].

Although θ t enters into the definition of Gt in (21), the dynamic energy release rate is
independent of the exact virtual perturbation used to establish the bijection (5), owing to the
following

Proposition 1 The dynamic energy release rate Gt is equivalent to the classical dynamic
J -integral in the form of a path integral [11]

Gt = lim
r→0

∫
Cr

Jtn · τ t ds with Jt = (
ψ

(
ε(ut )

) + κ(u̇t )
)
I− ∇uT

t σ t , (23)

where n is defined as the normal pointing out of the ball Br(Pt ) with Cr = ∂Br(Pt ) its
boundary. As a corollary, the dynamic energy release rate (21) is independent of the virtual
perturbation.

Proof To removing any singularities near the crack tip Pt , we will partition the cracked
domain Ω \ Γt into the part B̃r = Br(Pt ) \ Γt included in the ball Br(Pt ), and the part
Ωr = Ω \ (Γt ∪ Br(Pt )) outside the ball, see Fig. 3. Using the following identity in Ωr

div
((

κ(u̇t ) + ft · ut − ψ
(
ε(ut )

))
θ t

) = ρu̇t · ∇u̇tθ t + ∇ftθ t · ut + ft · ∇utθ t

− σ t · ε(∇ut )θ t + (
κ(u̇t ) + ft · ut − ψ

(
ε(ut )

))
div θ t

(24)

and performing an integration by parts
∫

Ωr

σ t · (∇ut∇θ t )dx = −
∫

Cr

(∇uT
t σ t

)
n ·θ t dx−

∫
Ωr

(
divσ t ·∇utθ t +σ t ·∇2utθ t

)
dx, (25)
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Fig. 3 Partition of the cracked
domain Ω \ Γt using a
Pt -centered ball Br(Pt ) of
radius r

the dynamic energy release rate Gt reads

Gt =
∫

B̃r

(. . .)dx +
∫

Ωr

(
div

((
κ(u̇t ) + ft · ut − ψ

(
ε(ut )

))
θ t

)

− (divσ t + ft − ρüt ) · ∇utθ t

)
dx −

∫
Cr

(∇uT
t σ t

)
n · θ t ds

=
∫

B̃r

(. . .)dx −
∫

Cr

((
κ(u̇t ) + ft · ut − ψ

(
ε(ut )

))
(θ t · n) + (∇uT

t σ t

)
n · θ t

)
ds

=
∫

B̃r

(. . .)dx +
∫

Cr

Etn · θ t ds −
∫

Cr

(ft · ut )(θ t · n)ds,

where the second equality follows from dynamic equilibrium (19). On the last line Et de-
notes the dynamic Eshelby tensor [21]

Et = (
ψ

(
ε(ut )

) − κ(u̇t )
)
I− ∇uT

t σ t . (26)

The last term involving the body force density ft will have a vanishing contribution as r → 0,
since ft is supposed to be regular and asymptotically ut is of order O(r1/2) in linear elastic
fracture mechanics.

To solve the contradiction [21] of having the Lagrangian density in (26) and the Hamilto-
nian density in (23), contributions from the integral on B̃r must be considered. By classical
singularity analysis and the steady state condition q̇t ≈ −∇qt l̇tτ t verified for all (tensorial)
fields q near the crack tip [11], the first two terms of Gt in (21) are of order O(r−1) and
hence have a vanishing contribution when integrated with the area element r dr dθ on B̃r

as r tends to zero. Similarly the term involving the body force density ft is not singular
enough to contribute. However the last two terms ρüt · ∇utθ t + ρu̇t · ∇u̇tθ t are integrable
[22] and will yield a finite value in the limit. Using the real velocity field u̇t in the steady
state condition and the fact that θ t → τ t when r becomes small due to continuity, we have

ρüt · ∇utθ t = ρu̇t · ∇u̇tθ t as r → 0.

Then an integration by parts in B̃r gives (noting that θ t · n = 0 on Γt )∫
B̃r

ρu̇t ·∇u̇tθ t dx =
∫

Cr

ρ(u̇t · u̇t )(θ t ·n)ds−
∫

B̃r

ρu̇t ·∇u̇tθ t dx−
∫

B̃r

ρu̇t · u̇t div θ t dx (27)

from which the contribution from the last two terms in (21) can be deduced

lim
r→0

∫
B̃r

(ρüt · ∇utθ t + ρu̇t · ∇u̇tθ t )dx

= lim
r→0

∫
B̃r

2ρu̇t · ∇u̇tθ t dx = lim
r→0

∫
Cr

ρ(u̇t · u̇t )(θ t · n)ds = lim
r→0

∫
Cr

2κ(u̇t )θ t · n ds,
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Fig. 4 Curved crack path versus
kinked crack path

where the last term in (27) vanishes in the limit r → 0. We obtain hence

Gt = lim
r→0

∫
Cr

(
Et + 2κ(u̇t )I

)
n · θ t ds = lim

r→0

∫
Cr

Jtn · τ t ds, (28)

which completes the proof. �

Remark 2 Compared to the classical J -integral, the advantage of the dynamic energy release
rate in the form of (21) resides in its direct usage for numerical computations with finite
elements, since it involves an integral in the cells.

Remark 3 (Generalization to curved or kinked crack paths) Let us recall that the crack l �→
γ (l) is supposed to follow a pre-defined straight path in this paper. It can be generalized to
arbitrary but smooth enough pre-defined curved paths without much technical difficulties. It
suffices to carefully construct a virtual perturbation θ∗ verifying Definition 1, and define the
bijection φt (x) as a solution to a particular Cauchy evolution problem

⎧⎪⎨
⎪⎩

φ0(x) = x,

d

dt
φt (x) = θ∗(φt (x)

)
for t > 0,

see [16] for a mathematical analysis of this problem. The obtained scalar crack equation of
motion will be formally the same as (22), which predicts the crack length lt as a function
of time along the this path. Note however that crack propagation direction should be at
least continuous in time (curved path) so that the shape derivative method embodied by
the diffeomorphism φ makes sense. In the presence of a crack kinking associated with a
temporal discontinuity of the crack tangent (Fig. 4), the shape derivative methods should be
adapted to capture the topology change due to the kinking [15].

When the crack path is unknown, an interesting attempt is to include the crack tangent
angle into the action integral (14) and evaluate the variation induced by arbitrary crack
direction change. Remark that the propagation criterion derived in [2, 23] corresponds in
fact to a vectorial extension of the scalar propagation law (22)

lim
r→0

∫
Cr

Jtn ds = Gcτ t

and the component perpendicular to the crack propagation direction τ t determines the crack
path.

3 Dynamic Gradient Damage Model

3.1 Variational Ingredients and Physical Principles

We present a variationally consistent formulation for dynamic gradient damage models
thanks to the definition of a generalized space-time action integral similar in essence to
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Fig. 5 The discrete crack
Γt ⊂ Ω regularized by a
continuous damage field
0 ≤ αt ≤ 1

(14) for the Griffith’s theory of dynamic fracture. Let us remain under the simplifying as-
sumptions made in Sect. 2 and consider a two-dimensional homogeneous and isotropic body
Ω under small strain hypothesis. Contrary to a sharp interface description of cracks, in the
gradient damage approach the introduction of a continuous phase field regularizes displace-
ment discontinuities which are now replaced by strain localizations within a finite band.
Cracks are tracked with the help of a scalar damage field 0 ≤ αt ≤ 1 which introduces a
smooth transition between the undamaged part αt = 0 and the crack αt = 1, see Fig. 5.

Associated with an arbitrary state of the displacement ut , the velocity u̇t and the dam-
age αt , the energetic quantities needed in the following variational formulation are defined
as follows. The elastic energy of the domain Ω is given by

E(ut , αt ) =
∫

Ω

ψ
(
ε(ut ), αt

)
dx =

∫
Ω

1

2
A(αt )ε(ut ) · ε(ut )dx =

∫
Ω

1

2
σ t · ε(ut )dx, (29)

where A(α) is the damage-dependent elasticity tensor representing stiffness degradation
in the bulk from an initial undamaged state A0 = A(0) and σ t denotes the corresponding
damage-dependent stress tensor σ t = A(αt )ε(ut ). Concerning the kinetic energy, it is de-
fined as usual by

K(u̇t ) =
∫

Ω

κ(u̇t )dx =
∫

Ω

1

2
ρu̇t · u̇t dx. (30)

The material density is independent of the damage, which implies total mass conservation.
We now turn to the definition of the damage dissipation energy which quantifies the amount
of energy consumed in the damage process. This energy is closely related to the Griffith
surface energy (3) according to the Γ -convergence theory [7] and is defined by

S(αt ) =
∫

Ω

ς(αt ,∇αt )dx =
∫

Ω

(
w(αt ) + 1

2
w1η

2∇αt · ∇αt

)
dx (31)

with η an internal length of the model controlling the damage band width from a geometric
point of view (see Fig. 5). In (31), α �→ w(α) denotes another damage constitutive function
representing the local damage dissipation during a homogeneous damage evolution and its
maximal value w(1) = w1 is the energy completely dissipated during such process when
damage attains 1. We assume that this function α �→ w(α) along with the former stiffness
degradation one α �→ A(α) verify certain constitutive properties which characterize the be-
havior of a strongly brittle material, see [29]. Contrary to local strain-softening constitutive
models, here the damage dissipation mechanism becomes non-local and localization is sys-
tematically accompanied by finite energy consumption, due to the presence of the gradient
term. It can be observed that here the elastic energy (29) as well as the damage dissipation
energy (31) retain their quasi-static definitions [24] since they are unaffected by dynamics.

The loading conditions and the admissible function spaces are now specified. Body forces
ft and surface tractions Ft applied to the body are characterized by a similar external work
potential Wt given by (4), except that the integration domain for ft extends to the whole
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body Ω . On a subset ∂ΩU of the boundary the body is subject to a prescribed displacement
t �→ Ut which is built into the definition of the admissible displacement space Ct . We sup-
pose that the admissible displacement space is an affine space of form Ct = C0 + Ut where
the associated vector space C0 is given by

C0 = {
ut : Ω →R

2
∣∣ ut = 0 on ∂ΩU

}
.

Damage is here modeled as an irreversible defect evolution. Its admissible space will be
built from a current damage state 0 ≤ αt ≤ 1 and it is defined by

D(αt ) = {
βt : Ω → [0,1] ∣∣ 0 ≤ αt ≤ βt ≤ 1

}
. (32)

It can be seen that a virtual damage field βt is admissible, if and only if it is accessible from
the current damage state αt verifying the irreversibility condition, i.e., the damage only
grows. In order to formulate the temporal displacement-damage evolution as a Boundary
Value Problem (Hamilton’s principle), we consider an arbitrary interval of time I = [0, T ]
and fix the values of (u, α) at both time ends denoted by u∂I = (u0,uT ) and α∂I = (α0, αT ),
similarly to (12) and (13) in the variational formulation of the Griffith’s theory. Hence, the
admissible displacement and damage evolution spaces read

C(u) = {
v : I × Ω →R

2
∣∣ vt ∈ Ct for all t ∈ I and v∂I = u∂I

}
,

D(α) = {
β : I × Ω → [0,1] ∣∣ βt ∈ D(αt ) for all t ∈ I and β∂I = α∂I

}
.

(33)

With all the variational ingredients set, we are now in a position to introduce the following
space-time action integral associated with an admissible pair of displacement and damage
evolutions (u, α) ∈ C(u) ×D(α)

A(u, α) =
∫

I

Lt (ut , u̇t , αt )dt =
∫

I

(
E(ut , αt ) + S(αt ) −K(u̇t ) −Wt (ut )

)
dt (34)

which generalizes (14) defined for the sharp interface dynamic fracture theory. The coupled
two-field time-continuous dynamic gradient damage problem can then be formulated by the
following:

Definition 3 (Dynamic gradient damage evolution law)

1. Irreversibility: the damage t �→ αt is a non-decreasing function of time.
2. First-order stability: the first-order action variation is non-negative with respect to ar-

bitrary admissible displacement and damage evolutions

A′(u, α)(v − u, β − α) ≥ 0 for all v ∈ C(u) and all β ∈ D(α). (35)

3. Energy balance: the only energy dissipation is due to damage

Ht = H0 +
∫ t

0

(∫
Ω

(
σ s · ε(U̇s) + ρüs · U̇s

)
dx −Ws(U̇s) − Ẇs(us)

)
ds, (36)

where the total energy is defined by

Ht = E(ut , αt ) + S(αt ) +K(u̇t ) −Wt (ut ). (37)
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As can be noted, the above dynamic gradient damage model admits a similar varia-
tional framework compared to the variational approach to the Griffith’s theory of dynamic
fracture summarized in Definition 2. In the quasi-static gradient damage model [25], the
first-order stability condition (35) is replaced by a more restrictive stability condition. It is
a physically feasible principle due to the minimization structure of static equilibrium via
the definition of a potential functional. In dynamics however, we merely have a station-
ary action integral so only the first-order stability conditions of type (15) or (35) can be
sought.

By developing the Gâteaux derivative of the action integral, further physical insights
into the first-order stability condition (35) can be obtained if sufficient spatial and temporal
regularities of the involved fields are assumed. Denoting the variation v−u by w and testing
(35) with β = α, we obtain after an integration by parts in the time domain

A′(u, α)(w,0) =
∫

I

(∫
Ω

(
σ t · ε(wt ) + ρüt · wt

)
dx −Wt (wt )

)
dt = 0 for all wt ∈ C0,

where the equality A′(u, α)(w,0) = 0 follows given that the associated linear space C0 of Ct

is a vector space. By virtue of classical arguments of the calculus of variations, one deduces
the following elastic-damage dynamic wave equation in its strong form

ρüt − divσ t = ft in Ω and σ tn = Ft on ∂ΩF . (38)

Compared to the classical elastic wave equation (19), here the stress tensor σ t is damage
dependent through the definition of the elasticity tensor (29).

We now turn to the governing equation for damage evolution induced from the first-order
stability condition (35). We observe that the admissible damage space D(αt ) defined in (32)
is convex. Due to the arbitrariness of the temporal variation of β , testing (35) now with
v = u gives the Euler’s inequality condition stating the partial minimality of the total energy
with respect to the damage variable under the irreversible constraint for every t ∈ I

E(ut , αt ) + S(αt ) ≤ E(ut , βt ) + S(βt ) for all βt ∈ D(αt ). (39)

Although the same energy minimization principle (39) holds also for quasi-static gradient
damage models [24], here the displacement field ut is governed by the elastic-damage wave
equation (38). Developing the Euler’s inequality condition and performing an integration by
parts of the damage gradient term yield a strong formulation of (39) which serves as the
local damage criterion at a particular material point

Yt + div qt ≤ 0 in Ω \ Γt and qt · n ≥ 0 on ∂Ω \ Γt . (40)

For notational simplicity, the following dual variables are defined

Yt = −1

2
A′(αt )ε(ut ) · ε(ut ) − w′(αt ) and qt = w1η

2∇αt . (41)

They can be interpreted as the energy release rate density with respect to damage and the
damage flux vector, see [29]. In (40), the subset Γt = {x ∈ Ω | αt (x) = 1} denotes the totally
damaged region. We note that the local damage criterion holds only in the uncracked part
of the body, since βt = αt = 1 on Γt because of the definition of the admissible damage
space (32). Due to the presence of the damage gradient, the criterion is described by an
elliptic type equation in space involving the Laplacian of the damage. Assuming that the
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Fig. 6 Numerical simulation of
an edge-cracked plate under
dynamic shearing impact [17].
The damage is concentrated
inside a band and varies from 0
(blue zones) to 1 (red zones). It
serves as a phase-field indicator
of the crack propagating
currently in the direction of τ t

with its tip located at Pt (Color
figure online)

considered fields are also sufficiently smooth in time, the global energy balance (36) leads
to the following consistency condition:

(Yt + div qt )α̇t = 0 in Ω \ Γt and (qt · n)α̇t = 0 on ∂Ω \ Γt . (42)

Hence damage growth is possible until a certain non-local threshold is reached. Similarly
here the local consistency condition holds only in the uncracked part of the body, since
α̇t = 0 on Γt by definition. These local interpretations (40) and (42) are also formally the
same with that derived in the quasi-static model [25, 29].

The dynamic gradient model as formulated in Definition 3 offers a general variational
framework and can be regarded as a generalization of the regularized dynamic fracture
model [8] and the phase-field models originating from the computational mechanics com-
munity [6]. Depending on the specific damage constitutive laws α �→ A(α) and α �→ w(α)

used, the material and structural behaviors could be quantitatively or even qualitatively dif-
ferent in a gradient damage modeling of fracture. An abundant literature is devoted to a
theoretic or numerical analysis of these damage constitutive laws. We refer the interested
readers to [17, 24, 26, 27] and references therein for a discussion on this point.

3.2 Generalized Griffith Criterion for a Propagating Damage Band

This section is devoted to the application of the shape derivative methods developed for the
variational approach to dynamic fracture in Sect. 2 to the dynamic gradient damage model.
Thanks to their formally similar variational framework, an evolution law similar to Griffith’s
law (22) will be obtained which governs the crack tip equation of motion in the gradient
damage model. As in [29], we are interested in the smooth dynamic propagation phase of
a damage band concentrated along a certain path. An example of such damage evolution
phase is illustrated in Fig. 6 where numerical simulations results [17] of an edge-cracked
plate under dynamic shearing impact are indicated. We observe initiation of the edge crack
and subsequent propagation of the damage band representing the crack. The objective here
is to understand the current crack tip Pt evolution during such simple propagation phase.
Complex topology changes such as crack kinking, branching or coalescence indicated by
the phase-field αt remain beyond the scope of the present paper. Formally, we admit the
following:
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Fig. 7 Damage band
structuration along a pre-defined
path l �→ γ (l) indicating a crack
propagating in the direction of τ t

with its tip located at Pt

Hypothesis 1 (Damage band structuration)

1. The time-dependent totally damaged zone can be described by a pre-defined curve
l �→ γ (l) parametrized by its arc-length lt

Γt = {
x ∈ Ω

∣∣ αt (x) = 1
} = {

γ (ls) ∈R
2
∣∣ 0 ≤ s ≤ t

}
(43)

with the current propagation direction given by τ t = γ ′(lt ), see Fig. 7. For simplicity,
similarly to Sect. 2, we only consider a straight crack path with a constant propagation
tangent τ t = τ 0, however generalization to smoothly curved crack path is possible (cf.
the end of Sect. 2). We focus on the propagation phase when the crack length is much
larger than the internal length η � l0 ≤ lt .

2. During propagation the damage profile along this curve l �→ γ (l) develops a cross-
section of the same order of η. The current damage evolution rate α̇t is partitioned into
two components: one that contributes to crack advance in the propagation direction, and
the other that describes possible profile evolution in the coordinate system that moves
with the crack tip Pt . Formally, we make use of the diffeomorphism φ introduced in
Sect. 2.1 that transforms the current cracked configuration to the initial one, in the con-
text of gradient damage models where cracks refer to the totally damaged curve (43). The
evolution of the damage field αt is thus given by

αt ◦ φ = α∗
t , (44)

where the damage profile field α∗
t corresponds to an initial crack which remains station-

ary
{
x ∈ Ω

∣∣ α∗
t (x) = 1

} = Γ0.

The establishment of such initial damage field which corresponds to Γ0 is beyond the
scope of this paper. Using the classical chain rule, the time derivative of the damage
reads

α̇t (x) = α̇∗
t

(
x∗) − l̇t∇αt (x) · θ t (x), (45)

which reflects faithfully our partition of the damage rate. Remark that if the crack is
arrested l̇t = 0, the total damage rate corresponds to that of the profile evolution.

Remark 4 Hypothesis 1 highlights the scope of the current contribution: propagation (or
arrest) of an initially existing phase-field crack (damage band), without complex topology
changes such as kinking or branching. For illustration purposes, several situations are pre-
sented in Fig. 8.

(a) The current paper focuses on the further propagation of an existing damage band as
illustrated in Fig. 8(a).



40 T. Li, J.-J. Marigo

Fig. 8 Illustrations of the scope of the present paper: (a) a simple phase-field crack with its tip Pt , (b) a dis-
crete crack in the domain with an identically zero damage field αt = 0 and (c) a phase-field crack at branching,
leading to the existence of two crack tips (same as in Fig. 5). The damage field varies from 0 (blue zones)
to 1 (red zones). The current paper focuses on (a), and studies further propagation of the existing phase-field
crack (Color figure online)

(b) Discrete cracks as a geometric discontinuity in the domain are not to be confused with
phase-field like cracks (damage band). The current paper does not consider the further
“propagation” of the tip Pt appearing in Fig. 8(b), since the damage field is identically
zero αt = 0. The determination of an initial damage field in such cracked domain refers
to the phase-field crack nucleation problem, and is subject to the irreversibility condi-
tion, the damage criterion (40) and the consistency condition (42).

(c) Complex topology changes in the damage band illustrated in Fig. 5 and Fig. 8(c) are not
considered in this paper.

Furthermore, the crack path, straight or curved, is assumed to be pre-defined. Crack
path prediction is indeed the raison d’être of phase-field models of fracture, see for ex-
ample [6, 17]. A thorough investigation of this point is a very important task to which future
work will be devoted. Nevertheless, the current contribution focuses on the behavior of gra-
dient damage models when the crack path is not of concern, which permits a direct compar-
ison with the classical Griffith’s theory of dynamic fracture without additional hypotheses,
i.e., Griffith’s law (22). We concentrate on “when” cracks propagate (temporal evolution)
and not on “how” cracks propagate (spatial evolution).

From (44), the current damage field αt can be considered as a function depending on the
current crack length lt and the current damage profile α∗

t . Using the diffeomorphism we can
thus rewrite the space-time action integral (34) in the initial cracked configuration Ω \ Γ0,
by transforming the displacement via (6). Since we assume that the crack Γt (or the totally
damaged zone) is of measure zero with respect to dx (and hence also to dx∗), contribution
on this subset Γt can be neglected. The damage-dependent elastic energy (29) is then given
by

E(ut , αt ) = E∗(u∗
t , α

∗
t , lt

) =
∫

Ω\Γ0

ψ

(
1

2
∇u∗

t ∇φ−1 + 1

2
∇φ−T

(∇u∗
t

)T
, α∗

t

)
det∇φ dx∗ (46)

and the non-local damage dissipation energy now reads

S(αt ) = S∗(α∗
t , lt

) =
∫

Ω\Γ0

ς
(
α∗

t ,∇φ−T∇α∗
t

)
det∇φ dx∗, (47)

where the identity ∇αt (x) = ∇φ−T(x∗)∇α∗
t (x

∗) is used following (44). The kinetic energy
and the external work potential are still formally given by (10) and (11) since damage is not
involved in these two functionals. The generalized space-time action integral (34) is hence
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given by

A(u, α) = A
(
u∗, α∗, l

) =
∫

I

Lt

(
u∗

t , u̇∗
t , α

∗
t , lt , l̇t

)
dt

=
∫

I

(
E∗(u∗

t , α
∗
t , lt

) + S∗(α∗
t , lt

) −K∗(ut , u̇t , lt , l̇t ) −W∗
t

(
u∗

t , lt
))

dt.

(48)

The definition of the admissible evolution spaces for the triplet (u∗, α∗, l) are discussed
as follows. The same admissible function spaces for the displacement (12) and for the crack
length evolution (13) defined in the sharp-interface fracture model can be used as long as we
interpret the crack Γt as the totally damaged curve (43). The damage profile α∗ is merely a
component contributing to the total damage evolution, hence the temporal irreversibility still
applies to the true damage evolution t �→ αt , which reads α̇t ≥ 0. Given an arbitrary such
evolution verifying Hypothesis 1, we want to consider admissible variation of the current
damage state αt corresponding to a crack length lt , based on an admissible crack length
variation δlt = st − lt ≥ 0 and a crack profile variation β∗

t − α∗
t . At time t ∈ (0, T ) the

induced admissible non-negative variation of the true damage reads

βt − αt = β∗
t ◦ φ−1

st
− α∗

t ◦ φ−1
lt

≥ 0. (49)

As can be seen, the damage profile variation β∗
t − α∗

t and the crack length variation δlt are
now involved in a unilateral fashion to ensure irreversibility of the true damage:

– If the crack length variation is zero δlt = 0, then the damage profile variation β∗
t − α∗

t

corresponds exactly to the true damage variation βt −αt . Thus it suffices that β∗
t −α∗

t ≥ 0
to ensure irreversibility.

– However if a finite extension of the crack length is considered δlt > 0, then the damage
profile variation depends non-trivially on the δlt via (49) to obtain βt − αt ≥ 0.

In practice, it means that if crack length variation is not considered, then the variation of the
action integral with respect to the displacement and to the damage (profile) can be separately
computed. Otherwise when δlt > 0, then damage variation must also be taken into account.
Given an admissible crack length evolution s ∈ Z(l), the admissible evolution space for the
damage profile will be denoted by Ds(α

∗), where the dependence on s is explicitly indicated
by the subscript and α∗ describes the profile of a damage evolution verifying Hypothesis 1.
As usual, at both ends of the time interval I , no variations of true damage profile are con-
sidered.

Associated with an admissible triplet of displacement, damage profile and crack length
evolutions (u∗, α∗, l) ∈ C(u∗) ×Dl (α

∗) ×Z(l), we can now reformulate the dynamic gradi-
ent damage model under Hypothesis 1 by the following

Definition 4 (Dynamic gradient damage evolution law for a propagating crack)

1. Irreversibility: the damage t �→ αt and the crack length t �→ lt are non-decreasing func-
tions of time.

2. First-order stability: the first-order action variation is non-negative with respect to ar-
bitrary admissible displacement, damage profile and crack evolutions

A′(u∗, α∗, l
)(

v∗ − u∗, β∗ − α∗, s − l
) ≥ 0

for all v∗ ∈ C
(
u∗), all β∗ ∈ Ds

(
α∗) and all s ∈ Z(l). (50)
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3. Energy balance: the only energy dissipation is due to crack propagation such that we
have the following energy balance

Ht = H0 +
∫ t

0

(∫
Ω\Γs

(
σ s · ε(U̇s) + ρüs · U̇s

)
dx −Ws(U̇s) − Ẇs(us)

)
ds, (51)

where the total energy is defined by

Ht = E∗(u∗
t , α

∗
t , lt

) + S∗(α∗
t , lt

) +K
(
u∗

t , u̇∗
t , lt , l̇t

) −W∗
t

(
u∗

t , lt
)
. (52)

We then exploit the first-order stability condition (50) by carefully developing the
Gâteaux derivative of the action integral (48). With the help of detailed calculations pro-
vided in Appendix A and using the same arguments developed before, the first-order action
variation testing with β∗ − α∗ = 0 and s − l = 0 leads to the elastic-damage dynamic wave
equation on the uncracked domain similar to (19) and (38)

ρüt − divσ t = ft in Ω \ Γt , σ tn = Ft on ∂ΩF and σ tn = 0 on Γt , (53)

where we recall that here the stress tensor σ t is damage-dependent. Similarly at fixed dis-
placement and crack length variations, evaluating the directional derivative of the action
integral with respect to damage variation β∗ − α∗ leads to

A′(u∗, α∗, l
)(

0, β∗ − α∗,0
)

=
∫

I

(∫
Ω\Γt

−(Yt + div qt ) · (βt − αt )dx +
∫

∂Ω\Γt

(qt · n)(βt − αt )ds
)

dt ≥ 0,

where the integration domain is first transformed to the current cracked one and an integra-
tion by parts is then performed. Since the induced true damage variation is non-negative due
to (49), we obtain thus the same local damage criterion (40) as before. Finally, we consider
the first-order action variation with respect to crack length evolution variation. Through (49),
damage profile variation is thus coupled with that of the crack length. We thus merely have

∫
Ω\Γt

−(Yt + div qt ) · (βt − αt )dx +
∫

∂Ω\Γt

(qt · n)(βt − αt )ds − Ĝt · δlt ≥ 0 (54)

with a generalized dynamic energy release rate defined by

Ĝt = Gα
t − γt . (55)

This quantity contains the conventional dynamic energy release rate (note that compared to
(21), here the elastic energy and the stress tensor depends on the damage state)

Gα
t =

∫
Ω\Γt

((
κ(u̇t ) − ψ

(
ε(ut ), αt

))
div θ t + σ t · (∇ut∇θ t ) + div(ft ⊗ θ t ) · ut

+ ρüt · ∇utθ t + ρu̇t · ∇u̇tθ t

)
dx (56)

and the damage dissipation rate as the partial derivative of the damage dissipation energy
S∗(α∗

t , lt ) with respect to the crack length

γt = ∂

∂lt
S∗(α∗

t , lt
) =

∫
Ω\Γt

(
ς(αt ,∇αt )div θ t − qt · ∇θ t∇αt

)
dx. (57)



Crack Tip Equation of Motion in Dynamic Gradient Damage Models 43

In (54), although the crack length variation is non-negative δlt ≥ 0, the sign of the gener-
alized dynamic energy release rate is undetermined in general, since the first two terms are
both positive due to (40) and (49).

It remains to use the energy balance (51) to derive the consistency conditions. With the
help of calculations given in Appendix B, we obtain

∫
Ω\Γt

−(Yt + div qt )(α̇t + l̇t∇α · θ)dx +
∫

∂Ω\Γt

(qt · n)α̇t ds − Ĝt l̇t = 0, (58)

where the first term represents energy dissipation due to damage profile evolution follow-
ing (45) and the second term corresponds to damage dissipation on the uncracked boundary
where θ t = 0. The third term denotes dissipation due to pure propagation of the phase-
field crack. It can be observed that in case of a currently stationary crack l̇t = 0, we retrieve
directly the classical consistency conditions for damage (42). However when the crack prop-
agates l̇t > 0, nothing can be deduced from (58) since the damage profile evolution α∗ is not
necessarily irreversible and the sign of Ĝt is not yet known.

From Proposition 1, the dynamic energy release rate (21) in the Griffith’s theory of frac-
ture can be written as a path integral. This property can be extended to the dynamic gradient
damage model due to the analogies with their respective variational ingredients.

Proposition 2 The generalized dynamic energy release rate (55) defines a generalized
Ĵ -integral

Ĵt = lim
r→0

∫
Cr

Ĵtn · τ t ds = Ĝt +
∫

Ω\Γt

(Yt + div qt )∇αt · θ t dx, (59)

where the generalized dynamic Ĵt tensor is defined by

Ĵt = (
ψ

(
ε(ut ), αt

) + κ(u̇t ) + ς(αt ,∇αt )
)
I− ∇uT

t σ t − qt ⊗ ∇αt . (60)

As in Proposition 1, here n denotes the normal pointing out of the ball Br(Pt ) with Cr =
∂Br(Pt ) its boundary.

Proof Equation (59) can be obtained mainly by following the proof of Proposition 1. The
last term containing the damage gradient results from the identity below which accounts for
the damage dependence of the elastic energy and the damage dissipation energy

div
((

ψ
(
ε(ut ), αt

) + ς(αt ,∇αt )
)
θ t

) = σ t · ε(∇ut )θ t − Yt∇αt · θ t + qt · ∇2αtθ t

+ (
ψ

(
ε(ut ), αt

) + ς(αt ,∇αt)
)

div θ t , (61)

together with an additional integration by parts

∫
Ωr

qt · ∇θ t∇αt dx = −
∫

Cr

(qt ⊗ ∇αt )n · θ t ds −
∫

Ωr

(
div qt∇αt · θ t + qt · ∇2αtθ t

)
dx.

To pass from the Lagrangian density in (55) to the Hamiltonian density in (60), it suffices to
observe that the most singular part of the time derivatives corresponds to the transport term.
Similar calculations at the end of the proof of Proposition 1 then lead to the desired result. �
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The tensor Ĵt can be seen as the dynamic extension of the quasi-static generalized Es-
helby tensor (or energy-momentum tensor) introduced respectively in the quasi-static gra-
dient damage model [29] and the dissipative phase field model originating from the physics
community, see for instance [5, 13]. Inserting (59) into (58), an equivalent expression of the
consistency condition can be obtained

∫
Ω\Γt

(Yt + div qt )α̇t dx +
∫

∂Ω\Γt

−(qt · n)α̇t ds + Ĵt l̇t = 0. (62)

In [29], a careful singularity analysis is conducted to determine the sign of the Ĵ -integral
with a particular strongly brittle material. Such calculations could be extended to the dy-
namic setting but are beyond the scope of this paper. Based on numerical verifications, we
assume the following:

Hypothesis 2 The generalized dynamic Ĵ -integral is non-positive

Ĵt ≤ 0 (63)

for all damage constitutive laws α �→ A(α) and α �→ w(α) which characterize the behavior
of a strongly brittle material.

Due to the local damage criterion (40) and the irreversibility conditions, each term in (62)
is non-positive while their sum yields zero, which implies that each term vanishes separately

(Yt + div qt )α̇t = 0 in Ω \ Γt , (qt · n)α̇t = 0 on ∂Ω \ Γt and Ĵt l̇t = 0, (64)

which represent local energy balances. We note that the first two equalities correspond to
the consistency condition (42) derived without Hypothesis 1.

It can be seen from (63) and the last equation in (64) that the generalized dynamic Ĵ -
integral plays the role of Gt − Gc in the classical Griffith’s law (22). It involves a path
integral on a contour Cr that shrinks to the crack tip r → 0, which may lead to difficulties
in a finite element calculation. From a numerical point of view, the generalized dynamic
energy release rate Ĝt defined in (55) should be preferred since it is written as a cell integral
on a finite domain. It turns out that under a particular circumstance, these two objects are
equivalent and they both define the following generalized Griffith criterion.

Proposition 3 (Generalized Griffith criterion) The crack tip equation of motion predicted
by the dynamic gradient damage model is governed by the following generalized Griffith
criterion:

l̇t ≥ 0, Ĵt ≤ 0 and Ĵt l̇t = 0. (65)

If we assume that in (45) the time derivative of the damage profile is negligible com-
pared to the transport term and furthermore the damage gradient in the direction of crack
propagation is non-positive at every time t and almost everywhere

α̇t ≈ −l̇t∇αt · θ t , ∇αt · θ t ≤ 0, (66)

then the generalized dynamic energy release rate (55) can be equivalently used in the above
generalized Griffith criterion, which leads to

l̇t ≥ 0, Ĝt ≤ 0 and Ĝt l̇t = 0. (67)
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Proof Using the definition of Ĵt in (59) and the second condition in (66), we obtain the
equivalent stability condition

Ĝt = Ĵt −
∫

Ω\Γt

(Yt + div qt )∇αt · θ t dx ≤ 0

since Yt + div qt ≤ 0 due to the local damage criterion (40). If the first condition in (66)
holds, then the local consistency condition for damage in (58) reads

(Yt + div qt )l̇t∇αt · θ t = 0.

Multiplying (59) by l̇t gives the desired condition Ĝt l̇t = 0. �

Remark 5 These two conditions (66) needed to establish (67) can be justified in the crack
tip problem when the internal length is small compared to the dimension of the body.

Remark 6 Proposition 3 and in particular (65) and (67) constitute one of the main results
of the present contribution. Above all, arbitrary damage evolution in the dynamic gradient
damage model is governed by the irreversibility condition, the damage criterion (40) and the
consistency condition (42). However it is shown that the propagation (or arrest) of an exist-
ing damage band (phase-field crack) is governed by the above Griffith like scalar equations
involving several energy release rate concepts.

4 Separation of Scales and Asymptotic Griffith’s Law

We remind the reader that the generalized dynamic Ĵ -integral as well as the generalized
dynamic energy release rate Ĝt that enter into the generalized Griffith’s law (Proposition 3)
don’t possess directly an intuitive interpretation in fracture mechanics terminology. To estab-
lish the link between damage and fracture, we will essentially follow the separation of scales
made in the quasi-static case [29] (and similar in essence to that reviewed in [13]) which
decomposes the complete gradient damage evolution problem into three subproblems, see
Fig. 9. From now on, all quantities that depend on the internal length will be indicated by a
superscript η. We also adopt the assumption made on the internal length dependence of the
external loading, namely

fηt = √
ηft , Fη

t = √
ηFt and Uη

t = √
ηUt . (68)

4.1 Outer Linear Elastic Dynamic Fracture Problem

Due to the linear nature of the macroscopic dynamic fracture problem on the cracked domain
Ω \ Γt , dependence of the real mechanical fields on the internal length can be given by

uη
t = √

ηut + · · · , u̇η
t = √

ηu̇t + · · · , üη
t = √

ηüt + · · · and σ
η
t = √

ησ t + · · · .

(69)
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Fig. 9 Separation of scales conducted in [29] which decomposes the gradient damage evolution problem into
three sub-problems: the outer linear elastic fracture mechanics problem where the damage band is replaced
by a true crack in the domain, the damage band problem in which the fracture toughness can be identified
with the energy dissipated during the damage band creation and the crack tip problem where the matching
conditions with the previous two subproblems will be used

In linear elastic fracture mechanics, the displacement and stress present a well-known
O(r1/2) and O(r−1/2) asymptotic behaviors and in the case of an in-plane fracture prob-
lem they admit the following near-tip form

uη
t (r, θ) ≈ K

η

I (t)
√

r√
2πμ

Θ I(θ, l̇t ) + K
η

II(t)
√

r√
2πμ

Θ II(θ, l̇t ) + · · · and

σ
η
t (r, θ) ≈ K

η
I (t)√
2πr

Σ I(θ, l̇t ) + K
η
II(t)√
2πr

Σ II(θ, l̇t ),

(70)

where compared to the quasi-static regime the angular functions Θ’s and Σ’s depend on the
current crack speed [11]. When the crack propagates l̇t > 0, the near tip behaviors for the
velocity and the acceleration fields develop the following steady state form:

u̇η
t (x) ≈ −l̇t∇uη

t τ t = O
(
r−1/2

)
and üη

t (x) ≈ −l̇t∇u̇η
t τ t = O

(
r−3/2

)
. (71)

In particular, the asymptotic expansion of the velocity reads

u̇η
t (r, θ) ≈ l̇tK

η
I (t)√

2πrμ
VI(θ, l̇t ) + l̇tK

η
II(t)√

2πrμ
VII(θ, l̇t ). (72)

An equivalent dynamic energy release rate associated with this outer problem can then be
defined using Proposition 1 and the asymptotic near-tip behavior of the fields (70) and (72),
which under the plane strain condition results in

G
η
t = 1 − ν2

E

(
AI(l̇t )K

η
I (t)2 + AII(l̇t )K

η
II(t)

2
)
, (73)

where A’s are again two universal material-dependent functions, see [11, p. 234]. Due to
(69), (70) and (73), the energy release rate G

η
t is of order O(η) while the stress intensity

factors Kη’s are of order O(
√

η), i.e.,

G
η
t = ηGt and K

η

i = √
ηKi for i = I and II, (74)

where Gt and K’s are respectively the rescaled equivalent dynamic energy release rate and
the rescaled stress intensity factors.
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4.2 Damage Band Problem

The damage band problem will be essentially the same as in the quasi-static case [29], due
to the formally identical energy minimization principle (39) and its local interpretations (40)
and (42). The first-order term of the damage field α

η
t inside or near the crack band but far

from the crack tip admits the following form

α
η
t (x) ≈ α∗(s, ζ ) = α∗

(
s,dist(x,Γt )/η

)
, (75)

where α∗ is the normalized (with respect to η) damage profile along the crack normal at a
certain arclength s of the crack Γt and dist(x,Γt ) is the Euclidean distance from the point x
near the crack band to the crack Γt . The damage gradient in the tangential direction is thus
negligible compared to that in the normal direction

∇α
η
t · τ t ≈ 0. (76)

Using the definition of the dual quantities (41), the consistency condition (42) during the
crack band creation reads

1

2
A′(α∗)ε

(
uη

t

) · ε(
uη

t

) + w′(α∗) − w1
∂2α∗
∂ζ 2

= 0. (77)

Note that in this damage band problem the term 1
2 A′(α∗)ε(uη

t ) · ε(uη
t ) is still of order O(η)

due to (69) while the other two terms in (77) are of order O(1), which leads to the following
first-order damage profile condition:

w′(α∗) − w1
∂2α∗
∂ζ 2

= 0. (78)

One can easily solve this autonomous second order differential equation within the nor-
malized damage band [−D,D] by using the boundary conditions of α∗ and the reader are
referred to [29] for a detailed derivation. The energy per unit length dissipated during the
damage band creation can be calculated by the integral of the damage dissipation density
(31) over the real cross section [−ηD,ηD], which gives

Gη
c = ηGc where Gc = 2

√
2
∫ 1

0

√
w1w(β)dβ. (79)

This energy as in the quasi-static case [29] will play the role of the fracture toughness in the
asymptotic Griffith’s law.

4.3 Crack Tip Problem

We perform the same translation and rescaling of the system of coordinates y = (x − Pt )/η

in the vicinity of the crack tip and assume the following near-tip forms of the displacement,
stress and damage fields established in Sect. 3.3 of [29]:

uη
t (x) = √

ηut (Pt ) + ηut (y) + · · · , σ t (x) = σ t (y) + · · · and αt (x) = αt (y) + · · ·
with ut (Pt ) the displacement of the crack tip given by the outer problem (69) and σ t =
A(αt )ε(ut ). In dynamics, the asymptotic expansion of the velocity u̇η

t and the acceleration



48 T. Li, J.-J. Marigo

üη
t can be obtained by differentiating uη

t with respect to time, which gives to their first order
with respect to the internal length

u̇t ≈ −l̇t∇utτ t = O(1),

üt ≈ −l̇t∇u̇tτ t = O(1).
(80)

These equations illustrate in fact the steady-state condition (71) for the crack tip problem.
We note that here the stress, the velocity and the acceleration are of order O(1) while they
are of order O(

√
η) in the outer problem. Using the expressions (70) and (72), the behavior

of σ t and u̇t far from the crack tip can thus be obtained by virtue of the following matching
conditions

lim
r→∞

(
σ t (r, θ) − K I(t)√

2πr
Σ I(θ, l̇t ) − K II(t)√

2πr
Σ II(θ, l̇t )

)
= 0,

lim
r→∞

(
u̇t (r, θ) − l̇tK I(t)√

2πrμ
VI(θ, l̇t ) − l̇tK II(t)√

2πrμ
VII(θ, l̇t )

)
= 0.

(81)

Since the body force density fηt is of higher order, the first-order dynamic equilibrium for
this crack tip problem reads

ρüt − divσ t = 0 in R
2 \ Γ and σ tn = 0 on Γ , (82)

where Γ = (−∞,0) × {0} corresponds to a rescaled crack along the direction e1, where
αt = 1.

We now turn to damage evolution in the crack tip problem. In the rescaled coordinate
system the virtual perturbation admits the form θ t (y) = θt (y)e1 where 0 ≤ θt (y) ≤ 1. From
the chain rule, the rate of damage (45) is of order O(1/η) and reads

α̇
η
t (x) = − l̇t

η
∇αt (y) · θ t (y) + · · · = − l̇t

η
θt

∂αt

∂y1
(y) + · · · , (83)

where the damage profile rate disappears since it is of higher order. This corresponds to the
first condition assumed in (66). Due to the irreversibility condition of damage, when the
crack propagates l̇t > 0 the term ∇αt (y) · θ t (y) is necessarily non-positive. We assume that
the condition remains true at every time. It is sufficient that the damage remains constant
near the crack tip when the crack is arrested.

Hypothesis 3 We assume that ∇αt · θ t ≤ 0 for every time.

This corresponds to the second condition of (66). All the terms in the local damage
criterion (40) are of order O(1), hence at the first order we have

1

2
A′(αt )ε(ut ) · ε(ut ) + w′(αt ) − w1�αt ≤ 0. (84)

The damage field αt should also be matched to its asymptotic expansions for the outer and
the damage band problems, which implies

lim
y1→+∞ or |y2|→∞

αt (y) = 0 and lim
y1→−∞αt (y) = α∗(y2). (85)
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Fig. 10 A particular virtual
perturbation θ t in the scaled
coordinate system y = (x − Pt )/η

adapted from Fig. 2

Since all conditions in (66) are satisfied in the crack tip problem, the generalized Griffith
criterion admits the form (67) involving the above two objects. We will take advantage of the
asymptotic behavior of the fields (81) and (85) to analyze that of the conventional dynamic
energy release rate (56) and the damage dissipation rate (57). Note that they are both of
order O(η) as in the case for G

η
t in (74) as well as for Gη

c in (79), and thus are rescaled
accordingly

(
Gα

t

)η = ηG
α

t and γ
η
t = ηγ t . (86)

Proposition 4 Using virtual perturbations defined in Fig. 10, the damage dissipation rate
(57) converges to the fracture toughness (79) defined in the damage band problem in the
limit r → ∞.

Proof Within the scaled coordinate system we will construct a particular family of virtual
perturbations of form θ t (y) = θt (y)e1 as illustrated in Fig. 10. As can be seen, the definition
is adapted from Fig. 2. The asymptotic behavior of the rescaled damage dissipation rate γ t

is analyzed when the inner radius r goes to infinity with a fixed ratio of R/r . As ∇θt = 0
inside Br(Pt ), the scaled damage dissipation rate γ t reads

γ t =
∫
�r

(
ς(αt ,∇αt )div θ t − qt · ∇θ t∇αt

)
dy,

where the integral is defined on the uncracked crown by �r = (BR(Pt ) \ Br(Pt )) \ Γt and ς

is the rescaled damage dissipation energy given by

ς(αt ,∇αt ) = w(αt ) + 1

2
w1∇αt · ∇αt =⇒ qt = w1∇αt .

Integrating by parts the virtual perturbation gradient term and using (61), we obtain

γ t =
∫
�r

(
div

(
ς(αt ,∇αt )θ t

) − ∂ς

∂α
(αt ,∇αt )∇αt · θ t + div qt (∇αt · θ t )

)
dy

−
∫

Cr

(qt · n)(∇αt · θ t )da,

where the boundary integral is due to the fact that θ t = e1 �= 0 only on the inner circle
Cr = ∂Br(Pt ) and θ t ·n = 0 on Γt . Note that here the vector n is defined as the normal point-
ing into the circle Cr and da denotes the arc length measure associated with dy. From the
damage band problem we have ∇αt · e1 = 0 away from the crack tip Pt , see (76). Hence us-
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ing the matching condition with the damage band problem (85) we have in the limit r → ∞

lim
r→∞γ t =

∫
�∞

div
(
ς(αt ,∇αt )θ t

)
dy =

∫
C∞

ς(αt ,∇αt )e1 · n da

=
∫ D

−D

ς
(
α∗(y),∇α∗(y)

)
dy = Gc,

where the last equality comes from the definition of Gc in (79). �

Proposition 5 Using virtual perturbations defined in Fig. 10, the conventional dynamic
energy release rate (56) converges to the equivalent dynamic energy release rate of the
outer problem (73) in the limit r → ∞.

Proof The conventional dynamic energy release rate will still be calculated with the above
introduced virtual perturbation of Fig. 10. The term involving the body force density in
(56) will be neglected since it is of higher order. By denoting the uncracked inner ball by
B̃r = Br(Pt ) \ Γt , we will partition G

α

t defined on BR(Pt ) \ Γt into two parts

G
α

t =
∫
�r

((
κ(u̇t ) − ψ

(
ε(ut ), αt

))
div θ t + σ

(
ε(ut ), αt

) · (∇ut∇θ t ) + ρüt · ∇utθ t

+ ρu̇t · ∇u̇tθ t

)
dy +

∫
B̃r

(ρüt · ∇utτ t + ρu̇t · ∇u̇tτ t )dy, (87)

where we note that the virtual perturbation θ t is constant and is equal to the crack propaga-
tion direction e1 inside Br(Pt ) by definition. Using the identities and integrations by parts
similar to (24), (25) and (61), the first part defined in the crown �r can be written as

(
G

α

t

)
1
=

∫
�r

(
div

((
κ(u̇t ) − ψ

(
ε(ut ), αt

))
θ t

) + ∂ψ

∂α

(
ε(ut ), αt

)∇αt · θ t + ρüt · ∇utθ t

− divσ t · ∇utθ t

)
dy −

∫
Cr

(∇uT
t σ t

)
n · e1 da,

where the integral on the circle Cr = ∂Br(Pt ) comes from the integration by parts of the term
σ (ε(ut ), αt ) · (∇ut∇θ t ), the boundary conditions of θ t due to definition, and the fact that
n is defined as the normal pointing out of the ball ∂Br(Pt ). Thanks to dynamic equilibrium
(82), we have

(
G

α

t

)
1
=

∫
�r

(
div

((
κ(u̇t ) − ψ

(
ε(ut ), αt

))
θ t

) + ∂ψ

∂α

(
ε(ut ), αt

)∇αt · θ t

)
dy

−
∫

Cr

(∇uT
t σ t

)
n · e1 da

=
∫

Cr

((
ψ

(
ε(ut ), αt

) − κ(u̇t )
)
(e1 · n) − (∇uT

t σ t

)
n · e1

)
da

+
∫
�r

∂ψ

∂α

(
ε(ut ), αt

)∇αt · θ t dy,
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where the second equality follows by the integration by parts of the divergence term with
the same remarks about the normal and the boundary conditions of θ t .

Using the steady state condition (80) for this crack tip problem and the integration by
parts similar to (27), the second part of (87) reads

(
G

α

t

)
2
=

∫
Cr

ρ(u̇t · u̇t )(e1 · n)da −
∫

B̃r

ρu̇t · u̇t div θ t dy =
∫

Cr

2κ(u̇t )e1 · n da

because div θ t = 0 inside the inner ball Br(Pt ). Regrouping (G
α

t )1 and (G
α

t )2, we obtain
thus

G
α

t =
∫

Cr

((
ψ

(
ε(ut ), αt

)+κ(u̇t )
)
(e1 ·n)−(∇uT

t σ t

)
n·e1

)
da+

∫
�r

∂ψ

∂α

(
ε(ut ), αt

)∇αt ·θ t dy.

When the inner radius r tends to infinity, we observe that the angular sector corresponding
to αt > 0 goes to zero. Using the matching conditions of the mechanical fields (81) and of
the damage field (85) which implies that ∇αt · e1 → 0, see (76), we obtain in this limit

lim
r→∞G

α

t =
∫

C∞

((
ψ

(
ε(ut ),0

) + κ(u̇t )
)
(e1 · n) − (∇uT

t σ t

)
n · e1

)
da =

∫
C∞

(Jtn · e1)da = Gt,

where Jt is the rescaled dynamic J tensor (23) corresponding to the outer problem and the
last equality comes from Proposition 1 and (74). �

Proposition 6 (Asymptotic Griffith’s law) The crack tip evolution in the dynamic gradient
damage model is governed by the following asymptotic Griffith’s law as long as the material
internal length is sufficiently small compared to the dimension of the body:

l̇t ≥ 0, G
η
t ≤ Gη

c and
(
G

η
t − Gη

c

)
l̇t = 0.

Proof Irreversibility follows directly by the generalized Griffith criterion (67). Using its
definition (55) and the rescaling condition (86), the generalized dynamic energy release rate
reads

Ĝ
η
t = η

(
G

α

t − γ t

)
.

Thanks to the two asymptotic results from Propositions 4 and 5 and the rescaling conditions
(74) and (79), the desired crack stability and energy balance conditions can be obtained by
passing the limit r → ∞ using virtual perturbations defined in Fig. 10. �

Remark 7 Proposition 6 constitutes another main result of the present paper. It can be re-
garded as an asymptotic interpretation of Proposition 3. When the internal length is small,
it is shown that the propagation of a phase-field like crack is driven by the dynamic en-
ergy release rate of the outer mechanical response. Numerical verification of this asymptotic
Griffith’s law is performed in [18] for a mode-III crack propagation situation.

Remark 8 Based on a generalized energy-momentum tensor in the quasi-static phase-field
model of fracture, authors of [5, 13] also established a link between the phase-field crack
evolution and classical Griffith’s theory, by providing an equivalent energy release rate. The
separation of scales considered here summarizes and justifies the asymptotic behaviors of
the displacement and damage fields assumed in their analyses.
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Table 1 Analogies between the Variational Dynamic Fracture Model and the Dynamic Gradient Damage
Model during the crack propagation phase

Variational dynamic fracture model Dynamic gradient damage model

Irreversibility l̇t ≥ 0 α̇t ≥ 0 and l̇t ≥ 0

Elastic energy E∗(u∗
t , lt ) E∗(u∗

t , α∗
t , lt )

Kinetic energy K∗(u∗
t , u̇∗

t , lt , l̇t ) K∗(u∗
t , u̇∗

t , lt , l̇t )

Dissipated energy S(lt ) = Gc · lt S∗(α∗
t , lt )

Stability condition A′(u∗, l)(v∗ − u∗, δl) ≥ 0 A′(u∗, α∗, l)(v∗ − u∗, β∗ − α∗, δl) ≥ 0

Equation for u ρüt = div Aε(ut ) + ft ρüt = div A(αt )ε(ut ) + ft
Equation for l Griffith’s law (22) Generalized Griffith criterion (65)

Energy release rate Classical J -integral (23) Generalized Ĵ -integral (59)

5 Conclusion and Perspectives

In the formulation of dynamic gradient damage models, inertia effects are taken into account
solely via an inclusion of the kinetic energy into the space-time action integral. Static equi-
librium is thus replaced by an elastic-damage wave equation (38), however the same energy
minimization principle (39) still governs the damage evolution as in the quasi-static model.
Nevertheless it turns out that the crack tip equation of motion becomes automatically rate-
dependent and follows a dynamic evolution law (Proposition 3 and Proposition 6), thanks
to the definition of the generalized dynamic Ĵ -integral and the generalized dynamic energy
release rate Ĝt . The attentive reader can not fail to realize the essential role played by the
variational nature of the formulation in the derivation of these concepts, which is appli-
cable for a large class of damage constitutive laws. Using the three physical principles of
irreversibility, stability and energy balance, analogies between different models can be rig-
orously formalized. Properties derived in one model can be translated to the others, which
is the case observed for the variational dynamic fracture model and the dynamic gradient
damage model during the crack propagation phase, see Table 1. In particular, the equation
of motion governing the crack tip can be obtained by calculating the first-order action vari-
ation with respect to arbitrary crack evolution and by using the energy balance condition.
This procedure could be repeated for other variational formulations of crack evolutions. An
interesting extension would be the gradient damage model coupled with plasticity [3].

Another novelty of this contribution concerns the application of shape derivative methods
[9] to the gradient damage model. Thanks to a well-defined diffeomorphism, in the sharp-
interface fracture model the current cracked material configuration on which mechanical
quantities are defined is transformed to the initial cracked one. Similarly in the phase-field
approach the current damage field representing a propagating crack is mapped from a dam-
age profile field which corresponds to a stationary initial crack. This Lagrangian formalism
gives a rigorous sense to the Gâteaux derivative of the action integral with respect to the
current crack length, which leads in return to the definition of an energy release rate even in
the absence of stress singularities.

The most essential assumption behind the generalized Griffith criterion resides in the
non-positivity of the generalized J -integral. A theoretic proof of Hypothesis 2 calls for
a careful singularity analysis similar to that conducted in [29]. Let’s recall that the crack
topology is restricted in this paper to a single straight line. Following the discussion at
the end of Sect. 2, predefined curved crack paths can as well be considered. When several
cracks are present in the body, as long as a diffeomorphism similar to (5) can be constructed
between the initial cracked configuration and a perturbed multi-cracked configuration (gen-
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erally speaking when those cracks do not interact with each other), the formalism described
in this paper can still be applied. By relaxing furthermore the hypothesis of a pre-defined
crack propagation path, we may hope to identify a macroscopic kinking/branching criterion
hidden behind the stability condition (35). An interesting challenge would be to use more ad-
equate shape derivative methods [15] in order to differentiate the action integral with respect
to the propagation angle. Furthermore we assume that the totally damaged zone corresponds
to a subset of measure zero with respect to dx. When it is not the case, more energy would
be dissipated during crack propagation which could represent an increase of the apparent
fracture toughness observed during dynamic crack microbranching processes [28]. Finally,
only the crack propagation phase of an existing damage band (phase-field crack) is con-
sidered in this paper. The establishment of an initial damage field in a body with possible
geometric defects is subject to the irreversibility condition, the damage criterion (40) and
the consistency condition (42). The generalized Griffith criterion stated in Proposition 3 and
the asymptotic Griffith’s law stated in Proposition 6 no longer apply in this situation since
an initial phase-field crack is absent and a separation of scales is not possible. It refers to the
dynamic phase-field crack nucleation problem to which future work will be devoted.

Appendix A: Calculation of the First-Order Action Variation

We will carefully explore the first-order stability principle (15) by calculating the action
variation with respect to arbitrary displacement and crack variations. The following easily
established identities

d

dlt
det∇φ

(
x∗) = det∇φ

(
x∗) tr

(∇θ∗(x∗)∇φ
(
x∗)−1) = div θ t (x)det∇φ

(
x∗),

d

dlt
∇φ

(
x∗)−1 = −∇φ

(
x∗)−1∇θ∗(x∗)∇φ

(
x∗)−1 = −∇φ

(
x∗)−1∇θ t (x),

will be used for all subsequent calculations.
The classical wave equation can be obtained by calculating the action variation with zero

crack advance δl = 0

A′(u∗, l
)(

w∗,0
) =

∫
I

dt

∫
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(
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)
dx∗

−W∗
t

(
w∗

t

)
,

which gives

A′(u∗, l
)(
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) =

∫
I

dt

∫
Ω\Γt

(
σ t · ε(wt ) + ρl̇t u̇t · ∇wtθ t
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+
∫
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︸ ︷︷ ︸
R

, (88)

where w denotes the pushforward of w∗ to the current cracked configuration via (6).
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To proceed, we observe that the real acceleration üt can be obtained by differentiating
(8)

üt (x) = −∇u̇t (x)l̇tθ
∗(x∗) + d
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u̇∗

t

(
x∗) − ∇u∗
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(
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(
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l̇tθ
∗(x∗)), (89)

where ∇u̇t is the (Eulerian) velocity gradient. Using (89), the last term above can be written

R =
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where an integration by parts in Ω \ Γt has been used on establishing the last equality.
Regrouping (88) and (90), we obtain thus the spatially weak dynamic equilibrium
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(
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An integration by parts then gives the desired wave equation (18) for the displacement.
We then evaluate the action variation with respect to arbitrary crack increment δl but zero

displacement variation
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(92)

The last term can be written using integration by parts in the time domain
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We obtain thus
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Differentiating (7) to obtain the material time derivative of the deformation gradient
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and with its definition

d

dt

(∇ut (x)
) = ∇u̇t (x) + ∇2ut (x)l̇tθ

∗(x∗),
where ∇2ut is the second gradient of the displacement field (a third-order tensor), we obtain
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Using an integration by parts in the domain Ω \Γt knowing that θ t = 0 on ∂Ω and θ t ·n = 0
on Γt by definition
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we get finally
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which permits with (92) to deduce the desired equations (20) and (21).

Appendix B: Local Energy Balance Condition

In this section we will derive the equivalent local condition of the global energy balance
(16), which gives the desired Griffith’s law of motion (22) when combined with the local
stability condition (20). The Lagrangian defined in (14) is explicitly dependent on time
solely through the external work potential (11). Its total derivative can thus be given by
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Using the weak dynamic equilibrium (91) and the fact that u̇∗
t − U̇t ∈ C0, we have
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Plugging (94) into (93), we obtain
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With all necessary temporal regularity, we note that the energy balance condition (16)
can be equivalently written as
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Comparing (95) and (96), we obtain the desired local energy balance condition

(
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