
J Elast (2017) 126:95–125
DOI 10.1007/s10659-016-9583-4

Static and Dynamic Green’s Functions in Peridynamics

Linjuan Wang1 · Jifeng Xu2 · Jianxiang Wang1,3

Received: 16 November 2015 / Published online: 2 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We derive the static and dynamic Green’s functions for one-, two- and three-
dimensional infinite domains within the formalism of peridynamics, making use of Fourier
transforms and Laplace transforms. Noting that the one-dimensional and three-dimensional
cases have been previously studied by other researchers, in this paper, we develop a method
to obtain convergent solutions from the divergent integrals, so that the Green’s functions
can be uniformly expressed as conventional solutions plus Dirac functions, and convergent
nonlocal integrals. Thus, the Green’s functions for the two-dimensional domain are newly
obtained, and those for the one and three dimensions are expressed in forms different from
the previous expressions in the literature. We also prove that the peridynamic Green’s func-
tions always degenerate into the corresponding classical counterparts of linear elasticity as
the nonlocal length tends to zero. The static solutions for a single point load and the dynamic
solutions for a time-dependent point load are analyzed. It is analytically shown that for static
loading, the nonlocal effect is limited to the neighborhood of the loading point, and the dis-
placement field far away from the loading point approaches the classical solution. For dy-
namic loading, due to peridynamic nonlinear dispersion relations, the propagation of waves
given by the peridynamic solutions is dispersive. The Green’s functions may be used to solve
other more complicated problems, and applied to systems that have long-range interactions
between material points.
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1 Introduction

During the past forty years, it has become clear that neither distributed damage in mate-
rials nor transitions to discrete microstructural models can be adequately characterized by
local constitutive relations between stress and strain tensors [1]. Simple examples show that
nonlocality may arise in a homogenized model of a heterogeneous medium, even though
the behavior of the constituents is modeled by conventional local theories [2]. In order to
describe effects that are not captured in the local formulation, nonlocal theories involving
integral formulations in continuum mechanics have been developed since the 1960s. For
example, Kröner added a nonlocal integral term to the local equation of motion [3]; Erin-
gen and Edelen proposed a theory of nonlocal elasticity represented by integral constitutive
relations [4, 5]; Kunin expressed the internal forces directly by integrals of displacements.
Bazant and Jirasek [1] made a comprehensive review focusing on the early nonlocal integral
formulations. Recently, Silling and co-workers [6, 7] developed the nonlocal theory of peri-
dynamics. Thereinto, according to the suggested classification by Bazant and Jirasek [1],
peridynamics can be classified as a strongly nonlocal theory owing to an integral operator
in the equation of motion. It reformulates the equations of classical continuum mechanics
in terms of integro-differential equations instead of partial differential equations. This refor-
mulation brings special advantages in dealing with material deformations, such as damage,
cracking, and fracture problems [8–12]. A detailed description of the peridynamic theory can
be found in a review article [13]. While the formulation of peridynamics has been recently
applied to various topics such as thermal diffusion [14], crystal plasticity [15], fully coupled
thermomechanics [16], pitting corrosion damage [17], and flow in porous media [18], the re-
lation between peridynamics and the conventional differential formulation, and convergence
of the numerical computation of peridynamics itself have also been addressed with rigorous
mathematical analyses [19–23].

However, generally, it is difficult to obtain peridynamic analytical solutions owing to the
integro-differential formulation. Thus, most work mentioned above is based on numerical
computations. There are few closed-form analytical solutions [19, 24–28]. Silling et al. [24]
firstly studied the deformation of an infinite bar subjected to a single point load. The formal
solution given by Silling et al. [24] is expressed as an infinite series derived from the residue
theorem. Then Weckner and Abeyaratne [25] investigated the effect of long-range forces on
the dynamics of a bar, and presented the Green’s function for the one-dimensional infinite
dynamic problem. Recently, Mikata [28] pointed out that both the integral formulation and
the infinite series in the paper of Silling et al. [24] are divergent. Static and dynamic prob-
lems for a one-dimensional infinite bar with two concentrated point loads are analytically
solved with Fourier transforms by Mikata [28]. The divergent integrals of the analytical
solutions are transformed into singular solutions plus convergent integrals. The singular so-
lutions can be expressed as generalized functions. This kind of treatment is similar to that
of Weckner et al. [27]. With Fourier transforms and Laplace transforms, Weckner et al. [27]
presented the three-dimensional static and dynamic Green’s functions. The static Green’s
function is expressed as the sum of generalized functions and convergent integrals. But
for one- and two-dimensional static problems, as will be shown in this paper, even though
generalized functions can be separated from the original divergent integrals, the remaining
integral parts are still divergent. Moreover, to the authors’ knowledge, the static and dy-
namic Green’s functions of peridynamics in an infinite two-dimensional domain have not
been reported.

Green’s functions as fundamental solutions have many applications (e.g. [29]). The fo-
cus of this work is solutions of the static and dynamic Green’s functions in an infinite two-
dimensional domain within the formalism of bond-based peridynamics. We also use Fourier
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transforms and Laplace transforms to solve the dynamic integro-differential equations. How-
ever, for the static loading, the integral directly obtained by the Fourier transform is diver-
gent. We then obtain the analytical solution by transforming the divergent integral into three
parts: a distribution, the classical solution, and a convergent integral. The classical solution
is recovered in the limit of the peridynamic theory as the material nonlocal length tends to
zero (l → 0). As the above treatment is also applicable to one- and three-dimensional cases,
we also include the static and dynamic Green’s functions for a one-dimensional bar and a
three-dimensional infinite domain. The static Green’s function for the one-dimensional bar
is expressed as convergent analytical expressions, which are different from the expressions
in the paper of Silling et al. [24]. For three-dimensional cases, the final analytical expres-
sions of the Green’s functions are expressed in forms different from those given by Weckner
et al. [27]. In addition, we give numerical results for two kinds of commonly used micro-
modulus as examples, and the limits to the local solutions are also analyzed. The one-, two-
and three-dimensional problems are solved in Sects. 2, 3 and 4, respectively. In each case,
the classical limit is discussed. Examples and applications are given in Sect. 5. Section 6
draws the conclusions.

2 Green’s Functions in One Dimension

For the dynamic problem, the Green’s function expressed as an infinite series [24] has been
used to deal with the initial Gauss displacement [24, 26], two concentrated forces [24, 28],
and so on. However, the static Green’s function described by an infinite series is divergent,
even though Mikata [28] developed a convergent solution for two concentrated forces. Thus,
the convergent Green’s function for a static point force is presented in this section, and the
classical limits are recovered as the nonlocal length tends to zero (l → 0). To this end, we
begin with a summary of the dynamic Green’s function.

2.1 Dynamic Loading

For one-dimensional linear bond-based peridynamics, the equation of motion of the material
point x in an infinite homogeneous medium at time t is expressed as

ρü(x, t) =
∫
H

C(ξ)
[
u(x + ξ, t) − u(x, t)

]
dξ + b(x, t), (1)

where ρ is the density. H is the neighborhood with a radius l. The radius l is called the
horizon in peridynamics. ξ = x − x ′ denotes the relative position of two material points x

and x ′ in the reference configuration. b(x, t) is the external force, and the integral operator
represents the internal force acting on the displacement field u(x, t). The micromodulus
function C(ξ) can be related to the constitutive parameters of classical elasticity [6], and
C(ξ) = C(−ξ). The initial condition is set as

u(x,0) = u0(x), u̇(x,0) = u̇0(x). (2)

Equation (1) with the initial condition Eq. (2) has been solved with the Fourier transform
as shown in the work of Silling et al. [24]. We only summarize the results here. An overbar
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is used to denote the Fourier transform of a function. Thus the Fourier pair is defined as

ū(k, t) = F
{
u(x, t)

} :=
∫ +∞

−∞
e−ikxu(x, t)dx,

u(x, t) = F−1
{
ū(k, t)

} := 1

2π

∫ +∞

−∞
eikx ū(k, t)dk,

(3)

where i2 = −1. With the above definition, the equation of motion Eq. (1) and the initial
condition Eq. (2) can be written as

¨̄u(k, t) + ω2ū(k, t) = b̄(k, t)/ρ,

ū(k,0) = ū0(k), ˙̄u(k,0) = ˙̄u0(k),
(4)

in which

ω(k) = √
M(k)/ρ, (5)

is the peridynamic dispersion relation and

M(k) =
∫
H

C(ξ)(1 − coskξ)dξ. (6)

The relation between the angular frequency ω and the wave number k is nonlinear in peri-
dynamics, whereas it is linear in the classical elasticity. Details about the one-dimensional
peridynamic dispersion relation can be found in the paper of Mikata [28]. Now Eq. (4) is
a second-order ordinary differential equation with respect to t . With the help of the inverse
transform and the convolution theorem of the Fourier transform, the general solution takes
the following form:

u(x, t) =
∫ +∞

−∞
u0(x − x̂)Ġ(x̂, t)dx̂ +

∫ +∞

−∞
u̇0(x − x̂)G(x̂, t)dx̂

+
∫ t

0

∫ +∞

−∞

b(x − x̂, t − t̂ )

ρ
G(x̂, t̂)dx̂dt̂ , (7)

where

G(x, t) = F−1

{
sin(ω(k)t)

ω(k)

}
= 1

2π

∫ +∞

−∞
eikx sin(ω(k)t)

ω(k)
dk. (8)

As discussed by Weckner and Abeyaratne [25], the function G(x, t) is the Green’s function
for the dynamic loading in the one-dimensional infinite linear microelastic medium. Due to
the symmetry of C(ξ), M(k) and ω(k) are both even functions. The Green’s function Eq. (8)
is further expressed as

G(x, t) = 1

π

∫ +∞

0
cos kx

sin(ω(k)t)

ω(k)
dk. (9)

From Eq. (9), we note that the Green’s function depends on the dispersion relation ω(k),
while the dispersion relation ω(k) is determined by the micromodulus function C(ξ). It is
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Table 1 One-dimensional wave modes

Wave mode Physical meaning of u Λ

Longitudinal motion of a uniform straight bar Longitudinal displacement E

Plan shear wave in homogeneous elastic medium Lateral displacement μ

Plan compressional wave in homogeneous elastic medium Longitudinal displacement λ + μ

Twisting motion of a uniform straight bar Torsional angle KT with ρ → J

Lateral motion of a uniform shear beam Lateral displacement K with ρ → m

Note: μ–shear modulus, λ–Lame constant, KT –torsional rigidity, J –cross-sectional moment of inertia,
K–shear stiffness, m–mass per unit length. ρ in Eq. (1) is replaced by J or m for the last two motions

noteworthy that the equation of motion Eq. (1) is usually considered as the longitudinal mo-
tion of a homogeneous bar. Thus the micromodulus function C(ξ) is related to the Young’s
modulus E as [6]

E = 1

2

∫
H

ξ 2C(ξ)dξ. (10)

In fact, we point out that the equation of motion Eq. (1) can be regarded as the generic
equation of other one-dimensional wave motions, such as the twisting motion of a homo-
geneous bar, the plane compressional wave, and the plane shear wave in a homogeneous
elastic medium. Therefore, the micromodulus function C(ξ) has more forms than that given
in Eq. (10), and can be expressed as

Λ = 1

2

∫
H

ξ 2C(ξ)dξ, (11)

where Λ depends on the specific wave modes, as listed in Table 1. The detailed derivation
is given in Appendix A. Thus, the solution of Eq. (7) described by the Green’s function is
applicable to a series of one-dimensional peridynamic wave modes.

2.2 Static Loading

The governing equation of one-dimensional static problems is

∫
H

C(ξ)
[
u(x + ξ) − u(x, t)

]
dξ + b(x, t) = 0. (12)

The solution is

u(x) = 1

2π

∫ +∞

−∞
eikx ū(k)dk, (13)

where

ū(k) = Fp
1

M(k)
b̄(k), (14)

in which Fp 1
M(k)

is the Hadamard’s finite part of 1
M(k)

, i.e., the distribution defined by [30]

〈
Fp

1

M(k)
,ϕ

〉
= lim

ε→0

∫
|k|>ε

ϕ(k) − ϕ(0)

M(k)
dk, (15)
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where ϕ is a test function. This is because as k tends to zero, the asymptotic value of M(k)

in Eq. (6) is

M(k) ≈
∫
H

C(ξ)
1

2
(kξ)2dξ = 1

2
k2

∫
H

ξ 2C(ξ)dξ = Λk2. (16)

This means that the function 1/M(k) is not integrable in any neighborhood of 0. Thus, the
theory of distribution [30] is introduced in Eqs. (14) and (15).

Using the convolution theorem of the Fourier transform, Eq. (13) is expressed as

u(x) =
∫ +∞

−∞
b(x − x̂)G(x̂)dx̂, (17)

in which the function G(x) is the Green’s function in the one-dimensional infinite linear
microelastic medium, when it is subjected to the body force b(x) = δ(x), where δ(x) is the
one-dimensional Dirac function. The finite integral part of G(x) is

G(x) = F−1

{
Fp

1

M(k)

}
= 1

2π

∫ +∞

−∞

1

M(k)

(
eikx − 1

)
dk. (18)

In addition, M(k) does not tend to zero as k → +∞. The complete form of the Green’s
function G(x) should be the finite part plus the singular parts at k → 0 and at k → +∞, and
can be expressed as

G(x) = 1

2π

∫ +∞

−∞

1

M(k)

(
eikx − 1

)
dk + 1

2π

∫ +∞

−∞

1

M(k)
dk

= − |x|
2Λ

+ δ(x)

M∞
+ 1

2π

∫ ∞

−∞
eikx

(
1

M(k)
− 1

M∞
− 1

Λk2

)
dk, (19)

where

M∞ =
∫
H

C(ξ)dξ. (20)

Every term in the brackets of the integrand in Eq. (19) is an even function; thus it can be
rewritten as

G(x) = − |x|
2Λ

+ δ(x)

M(∞)
+ 1

π

∫ ∞

0
cos kx

(
1

M(k)
− 1

M(∞)
− 1

Λk2

)
dk. (21)

The Green’s function G(x) now is decomposed into three parts: the first term is exactly
equal to the classical solution; the second term is expressed by the one-dimensional Dirac
function; the third term is a convergent integral representing the nonlocal effect.

It is noted that the peridynamic Green’s function has a distribution δ(x). This naturally
emerging distribution from the solution of the equation of motion does not pose a diffi-
culty in the peridynamic integro-differential formulation. This difference between the peri-
dynamic Green’s function and the classical one has been discussed by Weckner et al. [25].
Moreover, the sum of the last two terms in Eq. (21) tends to zero as l → 0, which will be
proved below.

2.3 Relation to Classical Solutions

The classical static and dynamic Green’s functions can be obtained from Eq. (9) and
Eq. (19), respectively, when M(k) = Λk2. Thus the relation between the peridynamic and
classical solutions is determined by the value of M(k).
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When replacing ξ in Eq. (6) with ξ̂ = ξ/ l, Eq. (6) becomes

M(k) =
∫
H0

C(ξ̂ l)(1 − cos kξ̂ l)ldξ̂ , (22)

where H0 is the unit circle. As l → 0, Eq. (22) is rewritten as

M(k) =
∫
H0

C(ξ̂ l)
1

2
(kξ̂ l)2ldξ̂ = k2 1

2

∫
H

C(ξ)(ξ)2dξ = Λk2, (23)

which means that the classical M(k) is recovered in the limit l → 0. To elaborate on the
above limits, we consider two micromodulus functions as follows:

Case 1

C(ξ) =
{ 3E

l3
, |ξ | ≤ l,

0, |ξ | > l.
(24)

Case 2

C(ξ) = 4E

l3
√

π
e−(

ξ
l
)2
. (25)

Substituting Eq. (24) and Eq. (25) into Eq. (6), we obtain

Mcase1(k) = 6E

l2

(
1 − sinkl

kl

)
(26)

and

Mcase2(k) = 4E

l2

(
1 − e− k2 l2

4
)
. (27)

Using the Taylor expansion, we note

Mcase1(k) = 6Ek2

[
1

3! − (kl)2

5! + O
(
k4l4

)]
(28)

and

Mcase2(k) = 4Ek2

[
1

4
− 1

42

(kl)2

2! + O
(
k4l4

)]
. (29)

When l → 0, it is easy to obtain

lim
l→0

Mcase1(k) = Ek2, lim
l→0

Mcase2(k) = Ek2. (30)

This result is consistent with Eq. (23).
Therefore, for both static and dynamic cases, the peridynamic Green’s functions always

degenerate into the classical Green’s functions as the nonlocal length tends to zero.
On the other hand, when replacing k in Eq. (9) with k̂ = kx, Eq. (9) becomes

G(x, t) = 1

π

∫ +∞

0
cos k̂

sin(ω(k̂/x)t)

xω(k̂/x)
dk̂, (31)
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in which ω(k̂/x) =
√

M(k̂/x)/ρ. Combining with Eq. (22), we have

M(k̂/x) =
∫
H0

C(ξ̂ l)
(
1 − cos(k̂ξ̂ l/x)l

)
dξ̂ . (32)

As l/x is an infinite small quantity, namely, the considered material point is far away from
the loading point, the same method in Eq. (23) is adopted, and Eq. (32) becomes

M(k̂/x) =
∫
H0

C(ξ̂ l)
1

2
(k̂ξ̂ l/x)2ldξ̂ = Λ(k̂/x)2 = Λk2. (33)

Eq. (33) shows that as l/x is small enough, the peridynamic Green’s functions always ap-
proach the classical Green’s functions, whether l tends to zero or not. The solution of the
material point far away from the loading point is not affected by the nonlocal effect of peri-
dynamics.

3 Green’s Functions in Two Dimensions

In this section, we obtain two-dimensional dynamic and static Green’s functions which are
applicable to both plane-stress and plane-strain conditions. As the nonlocal length tends to
zero (l → 0), the limits of these peridynamic Green’s functions are also discussed.

3.1 Dynamic Loading

In an infinite homogeneous plane B, the peridynamic equation of motion for material point
x ∈ B at time t is

ρü(x, t) =
∫
H

C(ξ) · [u(x + ξ , t) − u(x, t)
]
dAξ + b(x, t), (34)

where u(x, t) and b(x, t) are the displacement and body force density fields of material point
x at time t , respectively. ξ = x ′ − x is the bond vector, and ξ = ‖ξ‖ represents the initial
length of a bond. C(ξ) is the micromodulus tensor and satisfies C(ξ) = C(−ξ) = CT(ξ).
For a linear isotropic microelastic material, the micromodulus can be written as

C(ξ) = λ(ξ)ξ ⊗ ξ , (35)

in which the micromodulus function λ(ξ) contains all constitutive information. The micro-
modulus function λ(ξ) for plane-stress and plane-strain conditions can be determined by
(Appendix A),

E = π

3

∫ l

0
λ(ξ)ξ 5dξ (36)

and

E = 5π

16

∫ l

0
λ(ξ)ξ 5dξ. (37)

The initial conditions are

u(x,0) = u0(x), u̇(x,0) = u̇0(x). (38)
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Under the two-dimensional Fourier transform with respect to x, the equation of motion
Eq. (34) and the initial conditions Eq. (38) take the following forms:

ρ ¨̄u(k, t) + M(k) · ū(k, t) = b̄(k, t),

ū(k,0) = ū0(k), ˙̄u(k,0) = ˙̄u0(k),
(39)

where

M(k) =
∫
H

C(ξ)
(
1 − eik·ξ )dAξ . (40)

Because tensor C is symmetric and is an even function, tensor M must be symmetric and
the components of tensor M must be real values. Thus Eq. (40) is rewritten as the following
form:

M(k) =
∫
H

C(ξ)(1 − cosk · ξ)dAξ . (41)

The solution of tensor M is very important to the further derivation. For the three dimen-
sional region, Silling [6] first gave the solution of tensor M for the special case of k = e1,
where e1 is a base vector of a set of orthonormal bases {e1, e2, e3}. The solution for a gen-
eral case was not obtained until the work of Weckner et al. [27]. The solution was calculated
by Weckner et al. [27] with a special equation, but this equation was not suitable for the
two-dimensional case. Thus, we take a new approach of coordinate transformation here. We
calculate the integral Eq. (41) in polar coordinates (the details are given in Appendix B) and
obtain the following form:

Mim = M II
⊥δim + kikm

k2

(
M II

‖ − M II
⊥
)
, (42)

for which

M II
‖ = 2π

∫ l

0
λ(ξ)ξ 3A1(kξ)dξ, (43)

M II
⊥ = 2π

∫ l

0
λ(ξ)ξ 3A2(kξ)dξ, (44)

AII
1 (kξ) = 1

2
− J0(kξ) + J1(kξ)

kξ
, (45)

AII
2 (kξ) = 1

2
− J1(kξ)

kξ
, (46)

where J0(kξ) and J1(kξ) are the zeroth-order and first-order Bessel functions, respectively,
and k = ‖k‖.

Then the Laplace transform with respect to t is applied to Eq. (39) and the transformed
solution is

ũ(k, s) = [
s2I + M(k)/ρ

]−1 · [b̃(k, s)/ρ + sū0(k) + ˙̄u0(k)
]
, (47)

where I is a unit tensor. With the help of Eq. (42), we get

[
s2I + M(k)/ρ

]−1

mi
= δmi

s2 + M II
⊥/ρ

+ kmki

k2

(
1

s2 + M II
‖ /ρ

− 1

s2 + M II
⊥/ρ

)
. (48)
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The inverse transform of Eq. (48) is

Ḡmi(k, t) =: L
{[

s2I + M(k)/ρ
]−1}

mi

= sin(ωII
⊥(k)t)

ωII
⊥(k)

δmi + kmki

k2

(
sin(ωII

‖ (k)t)

ωII
‖ (k)

− sin(ωII
⊥(k)t)

ωII
⊥(k)

)
, (49)

where ωII
⊥(k) =

√
MII⊥(k)

ρ
, and ωII

‖ (k) =
√

MII‖ (k)

ρ
. Then the solution in the k-space is obtained

by the convolution theorem of Laplace transforms

ū(k, t) =
∫ t

0
Ḡ(k, t) · b̄(k, t − τ)

ρ
dτ + ˙̄G(k, t) · ū0(k) + Ḡ(k, t) · ˙̄u0(k). (50)

With the convolution theorem of Fourier transforms, the solution is finally expressed as

u(x, t) =
∫
B

∫ t

0
G(x̂, t̂ ) · b(x − x̂, t − t̂ )

ρ
dt̂dAx̂

+
∫
B

Ġ(x̂, t̂ ) · u0(x − x̂)dAx̂ +
∫
B

G(x̂, t̂ ) · u̇0(x − x̂)dAx̂, (51)

in which G(x, t) = F−1{Ḡ(k, t)} is the Green’s function for the two-dimensional dynamic
problem. Its components are

Gmi = GII
Aδmi + xmxi

x2
GII

B, (52)

with

GII
A = 1

2π

∫ +∞

0

[
J0(kx)

sin(ωII
⊥(k)t)

ωII
⊥(k)

+ aII
2 (kx)

(
sin(ωII

⊥(k)t)

ωII
⊥(k)

− sin(ωII
‖ (k)t)

ωII
‖ (k)

)]
kdk (53)

and

GII
B = 1

2π

∫ +∞

0

[(
aII

1 (kx) − aII
2 (kx)

)( sin(ωII
⊥(k)t)

ωII
⊥(k)

− sin(ωII
‖ (k)t)

ωII
‖ (k)

)]
kdk, (54)

where x = ‖x‖ and aII
1,2(kx) = AII

1,2(kx)− 1
2 . Superscript II represents that the solution is for

a two-dimensional region. Substituting Eqs. (51) and (52) into Eqs. (34) and (38) confirms
that the equation of motion and the initial conditions are satisfied. The Green’s function (52)
is suitable for both plane-stress and plane-stain conditions.

3.2 Static Loading

In the static case, the governing equation for material point x ∈ B is

∫
H

C(ξ) · [u(x + ξ , t) − u(x, t)
]
dAξ + b(x, t) = 0. (55)
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Using the two-dimensional Fourier transform with respect to x, the governing equa-
tion (55) is

M(k) · ū(k) = b̄(k), (56)

where tensor M(k) is the same as that in Eq. (40), and

[
M(k)

]−1

mi
= δmi

M II
⊥

+ kmki

k2

(
1

M II
‖

− 1

M II
⊥

)
. (57)

Like the one-dimensional static case, [M(k)]−1 is singular at k = 0, and does not tend to
zero as k → +∞. The transformed solution is

ū(k) = Fp
[
M(k)

]−1
b̄(k), (58)

where the components of Fp[M(k)]−1 are defined like that in Eq. (15) in one dimension

〈
Fp

[
M(k)

]−1

mi
, ϕ

〉 = lim
ε→0

∫
|k|>ε

[
M(k)

]−1

mi

(
ϕ(k) − ϕ(0)

)
dk. (59)

Similarly, the solution is obtained by the convolution theorem of Fourier transforms

u(x) =
∫
B

G(x̂) · b(x − x̂)dAx̂, (60)

in which G(x) is the Green’s function for the two-dimensional static case. Its components
are

Gmi = GII
Aδmi + xmxi

x2
GII

B (61)

with

GII
A = 8 lnx

9πE
+ δII(x)

M II∞
+ 1

2π

∫ +∞

0

[
J0(kx)

(
1

M II
⊥(k)

− 1

M II∞
− 8

3Ek2

)

+ aII
2 (kx)

(
1

M II
⊥(k)

− 1

M II
‖ (k)

− 16

9Ek2

)]
kdk, (62)

and

GII
B = 1

2π

∫ +∞

0

[(
aII

1 (kx) − aII
2 (kx)

)( 1

M II
⊥(k)

− 1

M II
‖ (k)

)]
kdk, (63)

in which δII(x) is the two-dimensional Dirac function and

M II
∞ = π

∫ l

0
λ(ξ)ξ 3dξ. (64)

Equation (62) also consists of three parts: the classical solution, the Dirac function, and
the nonlocal effect. Substituting Eq. (63) and Eq. (62) into Eq. (61), we get the conver-
gent Green’s function for the two-dimensional static loading. The classical two-dimensional
Kelvin’s solution can be recovered as l → 0.
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3.3 Relation to Classical Solutions

We examine the limits of the peridynamic Green’s functions in Eqs. (52) and (61) as l → 0.
We first analyze the classical Green’s functions. Then the relation between them will be
made clear.

For the two-dimensional plane-stress condition, the equation of motion for a linearly
elastic and isotropic medium within the formalism of classical elasticity is

ρü(x, t) = μ(1 + ν)

1 − ν
∇∇ · u(x, t) + μ∇2u(x, t) + b(x, t), (65)

where μ is the shear modulus and ν is the Poisson ratio. Under the Fourier transform with
respect to x, Eq. (65) becomes

ρ ¨̄u(k, t) + Mc(k) · ū(k, t) = b̄(k, t), (66)

in which the tensor Mc(k) can be expressed as

Mc
im = μk2δim + kikm

μ(1 + ν)

1 − ν
. (67)

Using the same derivation process as that in Sect. 3.1, the classical Green’s function can
be expressed as the forms in Eqs. (52) and (61), with M II

⊥ and M II
‖ replaced by μ and 2μ

1−ν
,

respectively. Therefore, we just need to discuss the limit values of M II
‖ and M II

⊥ as l → 0.

With variable substitution ξ̂ = ξ/ l, Eq. (43) and Eq. (44) become

M II
‖ = 2π

∫ 1

0
λ(ξ̂ l)(ξ̂ l)3A1(kξ̂ l)ldξ̂ (68)

and

M II
⊥ = 2π

∫ 1

0
λ(ξ̂ l)(ξ̂ l)3A2(kξ̂ l)ldξ̂ . (69)

As l → 0, with the Taylor expansion, A1(kξ̂ l) and A2(kξ̂ l) can be expressed as

A1(kξ̂ l) = 3(kξ̂ l)2

16
+ O

(
(kξ̂ l)4

)
(70)

and

A2(kξ̂ l) = (kξ̂ l)2

16
+ O

(
(kξ̂ l)4

)
. (71)

Substituting the above two equations into Eqs. (68) and (69), and by dropping the high-order
terms, and using coordinate inversion, we obtain

M II
‖ = 3πk2

8

∫ l

0
λ(ξ)(ξ)3dξ = 9Ek2

8
(72)

and

M II
⊥ = πk2

8

∫ l

0
λ(ξ)(ξ)5dξ = 3Ek2

8
. (73)
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As ν = 1
3 for the plane-stress condition in peridynamics, the classical parameters can be

rewritten as μ = 3E
8 and 2μ

1−ν
= 9E

8 . This means that the limits of M II
‖ and M II

⊥ as l → 0
are equal to the classical parameters. Thus, the peridynamic Green’s functions converge to
those of classical linear elasticity as l → 0. On the other hand, by the same treatment in
Sect. 2.3, we can also demonstrate that the peridynamic Green’s functions also converge to
classical Green’s functions as l/x → 0. We can draw the same conclusion for the plane-
strain condition.

4 Green’s Functions in Three Dimensions

In this section, we adopt a method similar to that in Sect. 3, and choose different microfunc-
tions from that in the work of Weckner et al. [27] to solve the three-dimensional Green’s
functions. Moreover, we recover the classical solutions from the peridynamic solutions as
l → 0, which was not analytically proved in the previous work [27].

4.1 Dynamic Loading

Now we consider the three-dimensional dynamic problem in an infinite homogeneous
body V . The peridynamic equation of motion for material point x ∈ V at time t is

ρü(x, t) =
∫
H

C(ξ) · [u(x + ξ , t) − u(x, t)
]
dVξ + b(x, t), (74)

with

C(ξ) = λ(ξ)ξ ⊗ ξ , (75)

in which the micromodulus function λ(ξ) satisfies

E = π

3

∫ l

0
λ(ξ)ξ 6dξ. (76)

The initial conditions are

u(x,0) = u0(x), u̇(x,0) = u̇0(x). (77)

Under three-dimensional Fourier transforms with respect to x, the equation of motion
Eq. (74) and the initial conditions Eq. (77) are converted into

ρ ¨̄u(k, t) + M(k) · ū(k, t) = b̄(k, t),

ū(k,0) = ū0(k), ˙̄u(k,0) = ˙̄u0(k),
(78)

where

M(k) =
∫
H

C(ξ)
(
1 − eik·ξ )dVξ . (79)

Following Sect. 3.1, we calculate the integral in Eq. (79) in polar coordinates (the details are
given in Appendix B) and obtain the following form:

Mim = M III
⊥ δim + kikm

k2

(
M III

‖ − M III
⊥

)
, (80)
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for which

M III
‖ = 4π

∫ l

0
λ(ξ)ξ 4AIII

1 (kξ)dξ, (81)

M III
⊥ = 4π

∫ l

0
λ(ξ)ξ 4AIII

2 (kξ)dξ, (82)

AIII
1 (kξ) = 1

3
− sin(kξ)

kξ
− 2 cos(kξ)

(kξ)2
+ 2 sin(kξ)

(kξ)3
, (83)

AIII
2 (kξ) = 1

3
+ cos(kξ)

(kξ)2
− sin(kξ)

(kξ)3
. (84)

Superscript III represents that the solution is for the three-dimensional body.
With the same process of derivation, the solution for Eq. (74) with initial conditions

Eq. (77) is obtained as follows:

u(x, t) =
∫
V

∫ t

0
G(x̂, t̂ ) · b(x − x̂, t − t̂ )

ρ
dt̂dVx̂

+
∫
V

Ġ(x̂, t̂ ) · u0(x − x̂)dVx̂ +
∫
V

G(x̂, t̂ ) · u̇0(x − x̂)dVx̂, (85)

in which G(x, t) is the Green’s function for the three-dimensional dynamic loading. Its
components are

Gmi = GIII
A δmi + xmxi

x2
GIII

B , (86)

with

GIII
A = 1

2π2

∫ +∞

0

[
sin(kx)

kx

sin(ωIII
⊥ (k)t)

ωIII
⊥ (k)

+ aIII
2 (kx)

(
sin(ωIII

⊥ (k)t)

ωIII
⊥ (k)

− sin(ωIII
‖ (k)t)

ωIII
‖ (k)

)]
k2dk (87)

and

GIII
B = 1

2π2

∫ +∞

0

[(
aIII

1 (kx) − aIII
2 (kx)

)( sin(ωIII
⊥ (k)t)

ωIII
⊥ (k)

− sin(ωIII
‖ (k)t)

ωIII
‖ (k)

)]
k2dk, (88)

where aIII
1,2(kx) = AIII

1,2(kx) − 1
3 . The peridynamic solution in Eq. (85) and the Green’s func-

tion in Eq. (86) are the same as those given by Weckner et al. [27].

4.2 Static Loading

The governing equation for material point x ∈ V is
∫
H

C(ξ) · [u(x + ξ) − u(x)
]
dVξ + b(x) = 0. (89)

Similarly, with three-dimensional Fourier transforms, the solution is obtained

u(x) =
∫
B

G(x̂) · b(x − x̂)dVx̂, (90)
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in which G(x) is the Green’s function for the three-dimensional body. Its components are
expressed as

Gmi = GIII
A δmi + xmxi

x2
GIII

B (91)

with

GIII
A = 1

2π2

∫ +∞

0

[
sin(kx)

kx

1

M III
⊥ (k)

+ aIII
2 (kx)

(
1

M III
⊥ (k)

− 1

M III
‖ (k)

)]
k2dk (92)

and

GIII
B = 1

2π2

∫ +∞

0

[(
aIII

1 (kx) − aIII
2 (kx)

)( 1

M III
⊥ (k)

− 1

M III
‖ (k)

)]
k2dk. (93)

Eq. (92) is divergent because the integrand does not tend to zero as k → +∞.
Thus, we rewrite Eq. (92) as

GIII
A = δIII(x)

M III∞
+ 1

2π2

∫ +∞

0

[
sin(kx)

kx

(
1

M III
⊥ (k)

− 1

M III∞

)

+ aIII
2 (kx)

(
1

M III
⊥ (k)

− 1

M III
‖ (k)

)]
k2dk, (94)

in which δIII(x) is the three-dimensional Dirac function and

M III
∞ = 4π

3

∫ l

0
λ(ξ)ξ 4dξ. (95)

Eq. (94) also consists of a Dirac function and a convergent integral. Substituting Eqs. (93)
and (94) into Eq. (91) leads to the convergent Green’s function for the three-dimensional
static loading of an infinite body. The solution is the same as that given by Weckner et
al. [27], though obtained in a different way.

4.3 Relation to Classical Solutions

The equation of motion of linear elasticity is

ρü(x, t) = μ

1 − 2ν
∇∇ · u(x, t) + μ∇2u(x, t) + b(x, t). (96)

Thus, the classical Green’s functions can be expressed as the forms of Eqs. (86) and (91),
with M III

⊥ and M III
‖ replaced by μ and 2μ(1−ν)

1−2ν
, respectively. For three-dimensional deforma-

tion, the Poisson ratio ν = 1
4 in peridynamics, in which case μ = 2E

5 and 2μ(1−ν)

1−2ν
= 6E

5 .
AII

1 (kξ) and AII
2 (kξ) can be expanded as

AIII
1 (kξ) = (kξ)2

10
+ O

(
(kξ)4

)
(97)

and

AIII
2 (kξ) = (kξ)2

30
+ O

(
(kξ)4

)
. (98)
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By coordinate transforms in Sect. 3.3, M III
‖ and M III

⊥ as l → 0 can be evaluated as the fol-
lowing forms:

M III
‖ = 2π

5

∫ l

0
λ(ξ)ξ 6dξ = 6Ek2

5
(99)

and

M III
⊥ = 2π

15

∫ l

0
λ(ξ)ξ 6dξ = 2Ek2

5
. (100)

We readily find that the parameters μ = 2E
5 and 2μ(1−ν)

1−2ν
= 6E

5 in the classical Green’s
function are recovered from the peridynamic counterparts M III

‖ and M III
⊥ as l → 0. Thus,

for three dimensional dynamic and static cases, the peridynamic Green’s functions always
degenerate into those of classical elasticity as l → 0. At the same time, by the same treatment
in Sect. 2.3, we can also demonstrate that the peridynamic Green’s functions also converge
to classical Green’s functions as l/x → 0.

5 Examples

5.1 Static Solutions for a Single Point Load

Static solutions for a single point load will be examined in this section. Two kinds of com-
monly used microfunction are used to show the influence of the microfunction on the peri-
dynamic results. The first kind is a constant and invariable with the distance between the
material points, and the second is a normal distribution [31]. The material parameters in the
microfunctions can be calculated by equations relating the peridynamic parameters to con-
ventional elastic constants, for example, Eq. (11) for one dimension, Eq. (36) or Eq. (37) for
two dimensions and Eq. (76) for three dimensions.

5.1.1 One-Dimensional Static Solution

We consider an infinite bar subjected to a single point load b(x) = P
A
δ(x) in the longitudinal

direction. P represents the magnitude of the force and A is the cross section of the bar. The
micromoduli for the two kinds of microfunction are calculated in Eqs. (24) and (25). The
values of M(k) are calculated in Eqs. (26) and (27). Inserting M(k) into the static Green’s
function in Eq. (19) eventually leads to static displacements as follows:

Case 1

u(x) = − P |x|
2EA

+ P l2

6EA
δ(x)

+ P l2

6πEA

∫ ∞

0
cos kx

(
sinkl

kl − sinkl
− 6

k2l2

)
dk, (101)

Case 2

u(x) = − P |x|
2EA

+ P l2

4EA
δ(x)

+ P l2

4πEA

∫ ∞

0
cos kx

(
e− k2 l2

4

1 − e− k2 l2
4

− 4

k2l2

)
dk. (102)
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Fig. 1 One-dimensional static
solutions of Case 1 (Color figure
online)

The normalized displacements for different values of the nonlocal length l are plotted in
Fig. 1(a) and Fig. 2(a), for the two kinds of microfunction, without including the Dirac
function. The results of numerical integrations, namely, the third terms on the right hand
side of Eqs. (101) and (102), for the two cases are presented in Fig. 1(b) and Fig. 2(b).

The classical displacement u(x) = − P |x|
2EA

is also shown in Fig. 1(a) and Fig. 2(a). For
material points away from the loading point, the peridynamic displacements agree with the
local solutions and are not affected by nonlocal factors such as the form of the microfunction
and the value of the nonlocal length l. At these material points, the values of the integrals
approach zero (Fig. 1(b) and Fig. 2(b)). However, in the region within a radius of about
2l around the loading point, the displacements are dependent on the nonlocal factors. The
nonlocal effect disappears and the peridynamic displacements converge to the classical so-
lutions as l → 0. The displacement curve of case 2 is smoother than that of case 1 which has
discontinuities at the position of about l from the loading point, because the microfunction
Eq. (24) is truncated at the boundary of the nonlocal neighborhood. Finally, it should be
mentioned that the singular part of both cases diminishes with the rate of l2 when l → 0.

5.1.2 Two-Dimensional Static Solution

A plane-stress problem is investigated. An infinite plate with thickness h0 is subjected to
a single point load. Assume that the single point load is parallel to the base vector ej and
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Fig. 2 One-dimensional static
solutions of Case 2 (Color figure
online)

expressed as b(x) = P
h0

δ(x)ej . The classical solution is the well-known two-dimensional
Kelvin’s solution

u
(j)

i = P

h0
· ρ(1 + ν)

8πμ

(
−3 − ν

1 + ν
δij lnx + xixj

x2

)
, (103)

where the subscript (j) represents that the displacement is resulted from the load component
parallel to the base vector ej . The peridynamic solution can be determined from Eq. (60)
and expressed as

u
(j)

i = P

h0

(
GII

Aδij + xixj

x2
GII

B

)
= uII

Aδij + xixj

x2
uII

B. (104)

Again, two kinds of microfunction determined by Eq. (36) are considered:
Case 1

λ(ξ) =
{ 12E

πl4
1
ξ2 , ξ ≤ l,

0, ξ > l.
(105)
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Fig. 3 Two-dimensional static
solutions of Case 1 (Color figure
online)

Case 2

λ(ξ) = 6E

πl4

1

ξ 2
e
− ξ2

l2 , (106)

where ξ = ‖ξ‖ represents the distance between two material points. Without including the
Dirac function, the peridynamic displacements along with the classical solutions are shown
in Fig. 3 and Fig. 4.

The displacements of the two-dimensional case have the same features as those of the
one-dimensional case. However, it is interesting to note that for any nonzero horizon, the
peridynamic displacement uII

B is always equal to zero at the loading point, whereas the clas-
sical displacement uII

B is a nonzero constant.

5.1.3 Three-Dimensional Static Solution

Weckner et al. [27] used an exponential microfunction λ(ξ) = 8E

π3/2l7
e
− ξ2

l2 . In this paper, we
use different microfunctions:

Case 1

λ(ξ) =
{ 15E

πl5
1
ξ2 , ξ ≤ l,

0, ξ > l.
(107)
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Fig. 4 Two-dimensional static
solutions of Case 2 (Color figure
online)

Case 2

λ(ξ) = 8E

π3/2l5

1

ξ 2
e
− ξ2

l2 . (108)

When b(x) = Pδ(x)ej , the peridynamic results are obtained from Eq. (90) as follows:

u
(j)

i = P

(
GIII

A δij + xixj

x2
GIII

B

)
= uIII

A δij + xixj

x2
uIII

B . (109)

The classical solution (Kelvin’s solution) is

u
(j)

i = P

16πμ(1 − ν)x

[
(3 − 4ν)δij − xixj

x2

]
. (110)

All peridynamic results in Fig. 5 and Fig. 6 converge to the classical solutions as l → 0.
The nonlocal effect is limited to the region near the loading point.

5.2 Dynamic Solutions for a Time-Dependent Point Load

The peridynamic transient response of a bar has been studied by previous researchers, such
as the initial value problem with the initial Gauss displacement [24, 26], and the dynamic
response subject to a pair of self-equilibrated point loads [27, 28].
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Fig. 5 Three-dimensional static
solutions of Case 1 (Color figure
online)

In this paper, we consider the case when the bar is at rest for t < 0 and is subject to a
Ricker pulse at the origin for t > 0,

u(x,0) = 0, u̇(x,0) = 0,

b(x, t) = P

A
δ(x)

(
1 − 2πf 2

p t2
)
e−πf 2

p t2
, t > 0,

(111)

in which fp is the peak frequency.
Inserting Eq. (111) into Eq. (7) leads to the solution for this problem

u(x, t) =
∫ t

0

P (1 − 2πf 2
p (t − t̂ )2)e−πf 2

p (t−t̂ )2

Aρ
G(x, t̂)dt̂ . (112)

We introduce the normalization

X = x

L
, T = c0t

L
, (113)

where c0 = √
E/ρ and L = √

A. Let fp = hc0/L. The normalized solution of displacement
can be written as
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Fig. 6 Three-dimensional static
solutions of Case 2 (Color figure
online)

U(X,T ) = EL

P
u(LX,LT/c0)

=
∫ T

0

(
1 − 2πh2(T − T̂ )2

)
e−πh2(T −T̂ )2

G̃(X, T̂ )dT̂ , (114)

in which the normalized Green’s function is

G̃(X,T ) = 1

π

∫ +∞

0
cos k̃X

sin(ω̃(k̃)T )

ω̃(k̃)
dk̃, (115)

where the one-dimensional normalized dispersion relation is

ω̃(k̃) = ω(k̃/L)

c0/L
. (116)

For example, ω̃(k̃) = k̃ in classical elasticity. Combining Eqs. (114) and (116), the normal-
ized classical displacement is

U(X,T ) = 1

2

∫ T

|X|

(
1 − 2πh2(T − T̂ )2

)
e−πh2(T −T̂ )2

dT̂ . (117)
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Fig. 7 Dynamic solutions for a
time-dependent point load:
(a) Displacement distributions at
T = 1 and (b) Displacements at
X = 1 (Color figure online)

For the microfunction in Eq. (25), and h = 2, the normalized displacements of peridy-
namics and the classical results are shown in Fig. 7. The normalized nonlocal length is
γ = l/L. The displacement distributions for different values of γ at time T = 1 are shown
in Fig. 7(a), while the displacements at position X = 1 are plotted in Fig. 7(b).

The peridynamic displacements exhibit decaying oscillations, as found by Weckner and
Abeyaratne [25]. The amplitude of oscillations approaches zero as γ → 0. Oscillations exist
near X = 0.5 in Fig. 7(a), whereas oscillations appear after T = 1.25 in Fig. 7(b). These
phenomena mean that the decaying oscillations only exist in the wave tail and not appear in
the wave front. This feature is resulted from the peridynamic nonlinear dispersion relation.
Due to the nonlinear dispersion relation, the wave speed of a high frequency wave is smaller
than that of a low frequency wave. Therefore, high frequency waves fall behind and lead to
oscillations as shown in Figs. 7(a) and (b). On the contrary, the linear dispersion relation of
classical theory ensures the same wave speed for waves of different frequencies. Finally, the
peridynamic results fall behind the classical solutions as shown in both Figs. 7(a) and (b),
because the wave speed given by peridynamics is always smaller than that given by the
classical theory, as discussed in the papers of Mikata [28]. As γ → 0, these features will
disappear and the peridynamic solutions degenerate into the classical solutions.
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6 Conclusions

We present solutions of the static and dynamic Green’s functions for one-, two- and three-
dimensional infinite domains within the formalism of peridynamics. For static Green’s func-
tions, a new method is developed in this paper to obtain convergent integrals in the final
expressions of the functions. The Green’s functions are all expressed as conventional solu-
tions plus Dirac functions, and convergent nonlocal integrals. Therefore, while the Green’s
functions for the two-dimensional domain are newly obtained, those for the one and three
dimensions are expressed in forms different from the previous solutions in the literature. We
also show that the peridynamic Green’s functions always degenerate into the corresponding
classical Green’s functions as the nonlocal length tends to zero. As examples, the static so-
lutions for a single point load and the dynamic solutions for a time-dependent point load are
analyzed. We find that for static loading, the nonlocal effect is limited to the neighborhood
of the loading point. The displacement field far away from the loading point approaches the
classical solution. For dynamic loading, due to peridynamic nonlinear dispersion relations,
the propagation of waves given by the peridynamic solutions is dispersive. Apart from ap-
plications to infinite domains, the Green’s functions in classical elasticity have been used
to develop the Betti’s reciprocal theorem, and boundary integral equations to solve prob-
lems of finite domains. Thus, in Appendix C, we derive the Betti’s reciprocal theorem, the
Somigliana formula and the boundary integral equation in peridynamics, which involve the
peridynamic Green’s functions. As pointed out by Weckner et al. [27], the Green’s functions
can be used to solve other more complicated problems. These functions may also be applied
to systems that have long-range interactions between material points.
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Appendix A: Peridynamic Material Parameters

Peridynamic material parameters can be determined by equating the strain energy density
from the peridynamic theory to that of classical continuum theory [32]. By this approach
(following [32]), the peridynamic parameters for one-dimensional and two-dimensional do-
mains are derived as follows.

A.1 PD Material Parameters for One-Dimensional Deformation

The peridynamic material parameters can be determined by considering an infinitely long
bar subjected to a uniform deformation of s = ζ . This uniform deformation can be a stretch,
a torsion or a shear. The micropotential for this loading is

w = 1

2
C(ξ)ξ 2ζ 2. (A.1)

Thus, the peridynamic strain energy density can be expressed as

W = 1

2

∫
H

(
1

2
C(ξ)ξ 2ζ 2

)
dξ = 1

4
ζ 2

∫
H

C(ξ)ξ 2dξ. (A.2)
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For the same deformation condition, the strain energy density based on the classical linear
theory is

W = 1

2
Λζ 2, (A.3)

where Λ is the classical material parameter as listed in Table 1. By equating the strain
density Eq. (A.2) to Eq. (A.3), the peridynamic material parameters can be determined by
the following equation:

Λ = 1

2

∫
H

C(ξ)ξ 2dξ. (A.4)

A.2 PD Material Parameters for Two-Dimensional Deformation

In an infinite domain, the displacements of material points x ′ and x are represented by u′
and u, respectively. The relative position vector is ξ = x ′ − x and the relative displacement
vector is η = u′ − u. Then the micropotential can be evaluated as

w = 1

2
η · C(ξ) · η. (A.5)

The PD material parameters for two-dimensional plane-strain or plane-stress deformation
can be determined by considering two different loading conditions. We take the derivation
of the parameters for the plane-stress deformation as an example.

In the first loading condition, an isotropic expansion is applied to an infinite domain. In
other words, all PD bonds is subjected to a uniform stretch s = ζ , that is, η = ζ ξ for all the
PD bonds. Using Eq. (A.5) and Eq. (35), the corresponding micropotential is equal to

w = 1

2
λ(ξ)ξ 4ζ 2. (A.6)

The peridynamic strain energy density for this deformation can be evaluated as

W = 1

2

∫
H

(
1

2
λ(ξ)ξ 4ζ 2

)
dAξ = π

2
ζ 2

∫ l

0
λ(ξ)ξ 5dξ. (A.7)

Based on linear elasticity, the strain energy density becomes

W = E

1 − ν
ζ 2. (A.8)

The equality of the two quantities leads to the following relation

E

1 − ν
= π

2

∫ l

0
λ(ξ)ξ 5dξ. (A.9)

In the second loading condition, an infinite domain is subjected to a pure shear loading
of γxy = ζ/2, that is, all PD bonds are subjected to stretches of εxx = ζ , εyy = −ζ . For
material points x ′ and x, the relative displacement under this loading is u′

x − ux = ζ ξx and
u′

y −uy = −ζ ξy . Assume that the angle between the relative position vector ξ and the x-axis
is θ . The relative displacement vector can be expressed as

η = [(
u′

x − ux

)
cos θ + (

u′
y − uy

)
sin θ

]
ξ . (A.10)
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Due to ξx = ξ cos θ and ξy = ξ sin θ , Eq. (A.10) becomes

η = ζ
(
cos2 θ − sin2 θ

)
ξ . (A.11)

By substituting Eq. (A.10) into Eq. (A.5), the micropotential for this pure shear deformation
is

w = 1

2
λ(ξ)ξ 4ζ 2

(
cos2 θ − sin2 θ

)2
. (A.12)

Then the peridynamic strain energy density is

W = 1

2

∫
H

[
1

2
λ(ξ)ξ 4ζ 2

(
cos2 θ − sin2 θ

)2
]

dAξ = π

4
ζ 2

∫ l

0
λ(ξ)ξ 5dξ. (A.13)

The strain energy density of classical theory is

W = E

1 + ν
ζ 2. (A.14)

Equating Eq. (A.13) to Eq. (A.14) leads to

E

1 + ν
= π

4

∫ l

0
λ(ξ)ξ 5dξ. (A.15)

Combining Eq. (A.9) with Eq. (A.15) results in ν = 1
3 and

E = π

3

∫ l

0
λ(ξ)ξ 5dξ. (A.16)

As for plane-strain deformation, the PD parameters can be obtained with the same derivation
process through replacing ν with ν

1−ν
and E with E

1−ν2 . Thus, the parameters for the plane-

strain deformation satisfy ν = 1
4 and

E = 5π

16

∫ l

0
λ(ξ)ξ 5dξ. (A.17)

Appendix B: Calculation of Tensor M(k)

We need to calculate the following two tensors:

M(k) =
∫
H

C(ξ)(1 − cosk · ξ)dAξ (B.1)

and

M(k) =
∫
H

C(ξ)(1 − cosk · ξ)dVξ . (B.2)

For the second tensor, Silling [6] first gave the solution in the special case of k = e1, and the
solution for the general case has also been obtained by Weckner et al. [27]. The approach of
Weckner et al. [27] is not suitable for the first tensor, so it has not been calculated. Now we
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adopt a new method to solve the second tensor in spherical coordinates. Then the first tensor
can be solved in polar coordinates in the same way.

Inspired by the solutions of Silling [6], we find that the tensor M(k) is easily obtained
when the direction of vector k is parallel to any of the base vectors of an orthonormal basis
{e1, e2, e3}. Therefore, by coordinate transformation, we establish a new orthonormal basis
{e′

1, e
′
2, e

′
3} and make the new base vector e′

1 parallel to the vector k. The new orthonormal
basis can be expressed as ⎡

⎣e′
1

e′
2

e′
3

⎤
⎦ = D

⎡
⎣e1

e2

e3

⎤
⎦ , (B.3)

where

D =

⎡
⎢⎢⎢⎣

k1
k

k2
k

k3
k

k2√
k2

1+k2
2

−k1√
k2

1+k2
2

0

k1k3

k
√

k2
1+k2

2

k2k3

k
√

k2
1+k2

2

−
√

k2
1+k2

2
k

⎤
⎥⎥⎥⎦ . (B.4)

The components of the vector ξ in the two sets of orthonormal bases satisfy the following
relations: ⎡

⎣ξ1

ξ2

ξ3

⎤
⎦ = DT

⎡
⎣ξ ′

1
ξ ′

2
ξ ′

3

⎤
⎦ . (B.5)

We first calculate the component M11 as follows

M11 =
∫ l

0

∫ π

0

∫ 2π

0
λ(ξ)ξ 2

1

(
1 − cos(kξ cos θ)

)
ξ 2 sin θdφdθdξ

= k2
1

k2
M III

‖ +
(

1 − k2
1

k2

)
M III

⊥ , (B.6)

where

M III
‖ =

∫ l

0

∫ π

0

∫ 2π

0
λ(ξ)(ξ cos θ)2

(
1 − cos(kξ cos θ)

)
ξ 2 sin θdφdθdξ (B.7)

and

M III
⊥ =

∫ l

0

∫ π

0

∫ 2π

0
λ(ξ)(ξ sin θ cosφ)2

(
1 − cos(kξ cos θ)

)
ξ 2 sin θdφdθdξ. (B.8)

Eq. (B.5) has been used in the above derivation. M III
‖ and M III

⊥ can be easily calculated,
as shown by Silling [6]. Similarly, the other components are calculated and the component
form of tensor M(k) is finally expressed as

Mim = M III
⊥ δim + kikm

k2

(
M III

‖ − M III
⊥

)
, (B.9)

for which

M III
‖ = 4π

∫ l

0
λ(ξ)ξ 4AIII

1 (kξ)dξ, (B.10)
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M III
⊥ = 4π

∫ l

0
λ(ξ)ξ 4AIII

2 (kξ)dξ, (B.11)

AIII
1 (kξ) = 1

3
− sin(kξ)

kξ
− 2 cos(kξ)

(kξ)2
+ 2 sin(kξ)

(kξ)3
, (B.12)

AIII
2 (kξ) = 1

3
+ cos(kξ)

(kξ)2
− sin(kξ)

(kξ)3
. (B.13)

For the first tensor in (B.1), the above method is adopted and a new orthonormal basis
{e′

1, e
′
2) is established with e′

1 parallel to the vector k. The component form of the tensor
in (B.1) is finally given as

Mim = M II
⊥δim + kikm

k2

(
M II

‖ − M II
⊥
)
, (B.14)

for which

M II
‖ =

∫ l

0

∫ 2π

0
λ(ξ)(ξ cos θ)2

(
1 − cos(kξ cos θ)

)
ξdθdξ

= 2π

∫ l

0
λ(ξ)ξ 3A1(kξ)dξ, (B.15)

M II
⊥ =

∫ l

0

∫ 2π

0
λ(ξ)(ξ sin θ)2

(
1 − cos(kξ cos θ)

)
ξdθdξ

= 2π

∫ l

0
λ(ξ)ξ 3A2(kξ)dξ, (B.16)

AII
1 (kξ) = 1

2
− J0(kξ) + J1(kξ)

kξ
, (B.17)

AII
2 (kξ) = 1

2
− J1(kξ)

kξ
. (B.18)

Appendix C: Betti’s Reciprocal Theorem, Somigliana Formula and
Boundary Integral Equation in Peridynamics

By the definitions of a nonlocal divergence operator and a nonlocal gradient operator in [33],
and the concept of peridynamic stress tensor in [34], we can obtain

∫
Ω

(u ·Lv − v ·Lu)dV =
∫

∂Ω

(
u · τ (v) − v · τ (u)

)
dS, (C.1)

in which u and v are any vector fields; τ is the surface traction due to the vector field u

or v. Ω is the reference configuration of a closely bounded body with the boundary ∂Ω .
L represents the peridynamic linear operator

Lu ≡
∫
H

C(ξ) · [u(x + ξ , t) − u(x, t)
]
dVξ . (C.2)

Eq. (C.1) is the Betti’s reciprocal theorem in peridynamics. The derivation is as follows.
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The nonlocal divergence operator D on β is defined as [33]

D(β)(x) ≡
∫
H

(
β(x,x ′) + β(x ′,x)

) · α(x,x ′)dVx′ , (C.3)

in which β(x,x ′) is a tensor, and α is an antisymmetric vector, i.e., α(x ′,x) = −α(x,x ′).
The adjoint operator corresponding to D is defined as [33]

D∗(u)(x,x ′) ≡ −(
u(x ′) − u(x)

) ⊗ α(x,x ′). (C.4)

If β is a second-order tensor, based on (C.3) and (C.4), there is

D(u · β) = u ·D(β) −
∫
H
D∗(u) : β(

x ′,x
)
dVx′ . (C.5)

For linear elasticity in peridynamics, β(x,x ′) is expressed as β(x,x ′) = Θ : D∗(u). Θ is
a fourth-order tensor satisfying Θ(x,x ′) = Θ(x ′,x) with the symmetry Θijkl = Θklij =
Θjikl = Θijlk , which is similar to the classical stiffness tensor. Then

D
(
Θ : D∗(u)

) = −2
∫
H

{
Θ : [(u(x ′) − u(x)

) ⊗ α(x,x ′)
]} · α(x,x ′)dVx′

= −2
∫
H

[
α
(
x,x ′) · Θ · α(

x,x ′)] · (u(
x ′) − u(x)

)
dVx′ , (C.6)

in which the symmetry of Θ has been used. Comparing Eq. (C.6) with Eq. (C.2), we can get

Lu = −D
(
Θ : D∗(u)

)
, (C.7)

where

C(ξ) = 2α(x,x ′) · Θ · α(x,x ′), (C.8)

with ξ = x ′ − x. Thus, the linear elastic micromodulus Eq. (75) is retrieved by choosing

α(x,x ′) = ξ

|ξ |2 ,

Θ = 1

2
λ
(|ξ |)(ξ ⊗ ξ ⊗ ξ ⊗ ξ).

(C.9)

The peridynamic force flux vector or surface traction at a point x is given by [34]

τ (x,n) = ν(x) · n, (C.10)

in which ν(x) is the peridynamic stress tensor defined in [34], and n denotes the unit normal
vector of a plane. It is proved in [34] that

Lu = ∇ · ν(u), (C.11)

where ν(u) represents the stress field corresponding to the displacement field u. Combining
Eqs. (C.7) and (C.11), we can obtain the following relation by the Gauss theorem:

∫
Ω

LudVx = −
∫

Ω

D
(
Θ : D∗(u)

)
dVx =

∫
Ω

∇ · ν(u)dVx =
∫

∂Ω

ν · ndSx =
∫

∂Ω

τ (u)dSx .

(C.12)
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For any displacement vector filed v, we can get
∫

Ω

v ·LudVx = −
∫

Ω

v ·D(
Θ : D∗(u)

)
dVx

=
∫

∂Ω

v · τ (u)dSx −
∫

Ω

∫
H
D∗(v) : (Θ : D∗(u)

)
dVx′dVx, (C.13)

where Eqs. (C.5), (C.7) and (C.12) have been used. Exchanging v and u leads to

∫
Ω

u ·LvdVx =
∫

∂Ω

u · τ (v)dSx −
∫

Ω

∫
H
D∗(u) : (Θ : D∗(u)

)
dVx′dVx . (C.14)

Due to the symmetry of the last term of Eq. (C.13) or Eq. (C.14) with respect to u and v,
subtracting Eq. (C.13) from Eq. (C.14) leads to the Betti’s reciprocal theorem in Eq. (C.1).

In the Betti’s reciprocal theorem Eq. (C.1), let u be the Green’s function of the infinite
domain, that is, (

LuK
)
i
= δiKδ(x − x0). (C.15)

The superscript K denotes the direction of the point force. Substituting Eq. (C.15) into
Eq. (C.1) and changing x0 to x lead to the Somigliana formula of peridynamics,

u(x) · eK =
∫

∂Ω

[
uK(ζ − x) · τ (x) − u(ζ ) · τK(ζ − x)

]
dSζ +

∫
Ω

(
uK(ζ − x) · b(ζ )

)
dVζ ,

(C.16)
in which eK is the base vector in the direction of the point force, and the static governing
equation Lu + b = 0 has been used.

If the point x is on the smooth boundary ∂Ω , the integral
∫

Ω
(u · Lv)dV is equal to

half of that when the point is not on the boundary. Thus the boundary integral equation in
peridynamics is

1

2
u(x) · eK =

∫
∂Ω

[
uK(ζ − x) · τ (x) − u(ζ ) · τK(ζ − x)

]
dSζ +

∫
Ω

(
uK(ζ − x) · b(ζ )

)
dVζ .

(C.17)
From Eq. (C.17), the unknown displacement u on the boundary can be calculated from

the given traction τ on the boundary; if the traction τ is unknown, it can be calculated from
the given displacement u. Then, using the determined boundary displacement and traction,
one can obtain the displacement field in the region Ω by the Somigliana formula (C.16).
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