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Abstract The problem of pure extension or compression of a solid circular fiber-reinforced
cylinder is considered in the context of the theory of nonlinear elasticity. Here we are inter-
ested in a particular feature of this problem which only occurs for certain classes of incom-
pressible anisotropic hyperelastic materials and is completely absent in the isotropic case.
We show that pure extension or compression of a transversely isotropic fiber-reinforced
cylinder can induce twisting of the cylinder. The transverse isotropy is due to a single fam-
ily of helically wound extensible fibers distributed throughout the cylinder. For general pitch
angles, it is shown that in the absence of an applied torsional moment, the cylinder subjected
to an applied tensile or compressive force exhibits an induced twisting due to mechanical
anisotropy. Such an induced twist does not occur when the fibers are oriented longitudinally
or azimuthally. It is also shown that at a special pitch angle (a “magic” angle), the initial
slope of the axial force and induced moment with respect to stretch is independent of the
Young’s modulus of the fibers. The results on induced twist are described in detail for three
specific strain-energy densities. These models are quadratic in the anisotropic invariants, lin-
ear in the isotropic strain invariants and are consistent with the linearized theory of elasticity
for fiber-reinforced materials. The results are illustrated on using elastic moduli for muscles
based on experimental findings of other authors.

Keywords Incompressible fiber-reinforced transversely isotropic nonlinearly elastic
materials · Helically wound fibers · Pure extension or compression of solid circular
cylinders · Induced twisting · Magic angle

Mathematics Subject Classification (2010) 74B20 · 74G55

B C.O. Horgan
coh8p@virginia.edu

1 School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904,
USA

2 Department of Mechanical Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-016-9571-8&domain=pdf
mailto:coh8p@virginia.edu


74 C.O. Horgan, J.G. Murphy

1 Introduction

In the context of the theory of nonlinear elasticity for rubber-like materials, the problem of
extension and torsion of a circular bar or tube has been widely investigated. In a recent pa-
per [11], the authors have considered this problem for a solid circular cylinder composed of
an incompressible fiber-reinforced anisotropic hyperelastic material. The transverse isotropy
considered is generated by a single family of extensible fibers helically wound throughout
the cylinder. One of the results obtained in [11] that is of further concern here is that a twist
is induced in the cylinder for the special case of pure extension or compression. This in-
duced twist arises from the helically wound nature of the fibers and is absent for the case
of longitudinally oriented fibers (see Sect. 3 of [11]). This result was obtained in [11] by
formally setting the applied twist parameter in the extension plus torsion problem equal to
zero and was derived for a subclass of transversely isotropic materials.

One of our purposes here is to demonstrate this induced twist effect directly by consider-
ing the basic problem of pure extension or compression of the cylinder. In this transparent
simple setting, we treat the most general class of hyperelastic strain-energy densities that
depends on all four of the relevant strain invariants. It should be noted that the presence of
an induced twist has been observed previously by other authors in more elaborate contexts.
Demirkoparan and Pence [5] have treated the problem of extension plus radial deformation
of a hollow tube composed of a compressible hyperelastic material subject to finite defor-
mation swelling. The tube is reinforced by a single family of helically wound fibers. The
induced twist due to swelling found in [5] has been subsequently implemented in the de-
sign of a polymer torsional actuator [7]. As remarked in [5, 6, 10], the induced twist can
be eliminated by introducing a counterbalanced family of fibers of opposite pitch angle.
This might be expected intuitively. Several interesting results for general doubly reinforced
incompressible tubes under pressure are considered in [6] and [10].

We note that the nonlinear elasticity theories for anisotropic materials considered here
and in [5, 6, 10, 11] involving extensible fibers is different from the well known classical
approach considered, for example, in Adkins and Rivlin [1] where inextensible fibers in
an isotropic matrix are considered. That approach was motivated largely by applications to
rubber reinforced by inextensible cords whereas one impetus for current anisotropic models
has arisen from application to soft biological tissues where extensible collagen fibers are
imbedded in an elastin matrix. It should be noted that hollow tubes reinforced by families
of helically wound inextensible fibers are treated in [1] and an induced torsion of the type
considered in the present paper was also suggested there.

In the next section, we discuss some preliminaries from the theory of nonlinear hypere-
lasticity for transversely isotropic incompressible solids. In Sect. 3, we consider the problem
of pure extension or compression of a solid circular cylinder composed of an incompressible
transversely isotropic hyperelastic material. The transverse isotropy is due to a single fam-
ily of helically wound extensible fibers distributed throughout the cylinder. The main result
established is that this deformation can induce twisting of the cylinder due to the fiber ori-
entation. Such an induced twisting does not occur for longitudinally or azimuthally oriented
fibers. In Sect. 4, we describe how at a special pitch angle (a “magic” angle), the initial slope
of the axial force and induced moment with respect to stretch is independent of the Young’s
modulus of the fibers. The same magic angle has been discussed in recent papers [6, 10,
15] in a variety of contexts for deformations of hyperelastic fiber-reinforced materials. The
results of Sect. 3 are described in detail in Sect. 5 for three specific strain-energy densi-
ties. These models are quadratic in the anisotropic invariants, linear in the isotropic strain
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invariants and are consistent with the linearized theory of elasticity for fiber-reinforced ma-
terials. The results are illustrated on using elastic moduli for muscles based on experimental
findings of other authors.

2 Preliminaries

The constitutive law for the Cauchy stress T for incompressible transversely isotropic hy-
perelastic materials with strain-energy density W = W(I1, I2, I4, I5) is given by

T = −pI + 2W1B − 2W2B
−1 + 2W4a ⊗ a + 2W5(a ⊗ Ba + Ba ⊗ a), (2.1)

where B = FFT , where F is the gradient of the deformation, and p is a hydrostatic pressure
term associated with the incompressibility constraint detB = 1. In (2.1), the derivatives of
the strain-energy are denoted by Wi = ∂W/∂Ii (i = 1,2,4,5) and ⊗ denotes the tensor
product with Cartesian components aiaj . The three principal invariants of B are defined as

I1 = trB, I2 = 1

2

[
(trB)2 − trB2

]
, I3 = detB.

On denoting the unit vector defining the direction of anisotropy in the undeformed con-
figuration by A, let a = FA and we have I4 = FA · FA, I5 = F T a · F T a. In order to
simplify the mathematical complexity of the relation (2.1), specializations of the general
form W = W(I1, I2, I4, I5) have been used by several investigators. In particular, the forms
W = W(I1, I2, I4), W(I1, I2, I5) and further specializations have been employed to focus
attention on the influence of the individual anisotropic pseudo-invariants. The omission
of the second isotropic invariant leads to some physical limitations (see, e.g., Horgan and
Smayda [14] for a discussion). Moreover, as was pointed out by Murphy [17], simplifica-
tions where one of the anisotropic pseudo-invariants is omitted may also result in a lack of
physical generality in certain deformations. See also [4] for numerical considerations of this
issue. In Feng et al. [8], a similar conclusion is reached in the context of modeling brain
white matter. As in [17], we assume here that the strain-energy and the stress are zero in the
undeformed configuration and that, on linearization, the nonlinear theory should be com-
patible with the theory of incompressible transversely isotropic elasticity for infinitesimal
strains. In this way, one can deduce that W = W(I1, I2, I4, I5) should satisfy the conditions
(see [17])

Ŵ = 0, 2Ŵ1 − 2Ŵ2 = p̂, Ŵ4 + 2Ŵ5 = 0, (2.2)

and

2Ŵ1 + 2Ŵ2 = μT , 2Ŵ5 = μL − μT , 4Ŵ44 + 16Ŵ45 + 16Ŵ55 = EL + μT − 4μL,

(2.3)
where the hat notation denotes evaluation at I1 = I2 = 3, I4 = I5 = 1, and p̂ is the value of
the arbitrary pressure field in the undeformed configuration. Here μT ,μL are the infinites-
imal shear moduli for shearing in planes normal to the fibers and along the fibers respec-
tively and EL is the Young’s modulus in the fiber direction. A fourth elastic constant ET ,
the Young’s modulus in the plane normal to the fibers, is related to these by the relation
(see [17])

ET = 4ELμT

EL + μT

. (2.4)
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There is significant experimental evidence, particularly for muscles, (see, e.g., [9, 18, 19] to
suggest that

μL > μT (2.5)

with an order of magnitude difference recorded in some instances. There is a lack of exten-
sive experimental data for torsional testing of soft tissue. The work of Morrow et al. [16] on
tensile testing showed that

EL � μL (2.6)

for the extensor digitorum longus muscles of rabbits. These inequalities between the material
constants will be assumed to hold in what follows.

The signs of the partial derivatives of the strain-energy function will also play a role in
the following analysis. For isotropic materials, the so-called empirical inequalities given by

W1 > 0, W2 ≥ 0 (2.7)

are often enforced and these are classically employed for rubber-like materials to ensure
that specific choices for the strain-energy function are physically realistic. See Truesdell
and Noll [20] and Beatty [2] for a discussion. In the absence of experimental data to suggest
otherwise, they will be assumed to hold also for transversely isotropic materials.

3 Pure Extension or Compression of a Solid Circular Cylinder

Consider a long solid circular cylinder of radius A composed of an incompressible
transversely-isotropic hyperelastic material subjected to a stretch in the axial direction. On
using cylindrical coordinates (R,Θ,Z) in the undeformed configuration and (r, θ, z) in the
current configuration, we may thus write

r = γ −1/2R, θ = Θ, z = γZ, (3.1)

where γ denotes the axial stretch. The coefficient γ −1/2 appears in (3.1)1 in order to maintain
incompressibility, so that for extension (γ > 1), the cylinder necessarily contracts laterally
while for compression (γ < 1), one has a lateral expansion. The deformed radius a is given
by a = γ −1/2A. Corresponding to (3.1), one has the left Cauchy-Green tensor B and its
inverse

B =
⎡

⎣
γ −1 0 0

0 γ −1 0
0 0 γ 2

⎤

⎦ , B−1 =
⎡

⎣
γ 0 0
0 γ 0
0 0 γ −2

⎤

⎦ (3.2)

and so the relevant invariants are

I1 = γ 2 + 2γ −1, I2 = γ −2 + 2γ, I3 = 1. (3.3)

To describe the anisotropy of concern here, we write the unit vector A in the undeformed
configuration as A = (0, sinψ, cosψ) where ψ denotes a pitch angle measured relative to
the horizontal axis with 0 ≤ ψ ≤ π/2. Thus the fibers are considered to be helically wound
throughout the cylinder. The special case where ψ = 0 and A = (0,0,1) so that the fibers
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are orientated in the longitudinal direction will also be of particular interest in the sequel.
For general angles ψ , on using the notation c = cosψ, s = sinψ , we find that

I4 = γ −1s2 + γ 2c2, I5 = γ −2s2 + γ 4c2, (3.4)

which reduce to

I4 = γ 2, I5 = γ 4 (3.5)

in the special case of transverse-isotropy about the axis.
On using (2.1), one finds that the only non-zero stresses are given by

Trr = −p + 2W1γ
−1 − 2W2γ,

Tθθ = −p + 2W1γ
−1 − 2W2γ + 2W4γ

−1s2 + 4W5γ
−2s2,

Tzz = −p + 2W1γ
2 − 2W2γ

−2 + 2W4γ
2c2 + 4W5γ

4c2,

Tzθ = 2γ 1/2
[
W4 + W5

(
γ −1 + γ 2

)]
sc,

(3.6)

where p is the as yet unknown arbitrary pressure. For the homogeneous deformation at hand,
the equilibrium equations in the absence of body forces are satisfied if p is constant. The
lateral surface of the cylinder is assumed traction free so that the only boundary condition
to be satisfied is Trr = 0 on a = γ −1/2A. This determines p as

p = 2W1γ
−1 − 2W2γ, (3.7)

and so the stresses (3.6) can be written as

Trr = 0,

Tθθ = 2W4γ
−1s2 + 4W5γ

−2s2,

Tzz = 2W1

(
γ 2 − γ −1

) + 2W2

(
γ − γ −2

) + 2W4γ
2c2 + 4W5γ

4c2,

Tzθ = 2γ 1/2
[
W4 + W5

(
γ −1 + γ 2

)]
sc.

(3.8)

The presence of a nonzero shear stress Tzθ in (3.8) is of primary interest here and such a
stress might be expected intuitively as a consequence of the helically wound fiber reinforce-
ment. This shear stress gives rise to an induced resultant twisting moment which is

M ≡
∫ 2π

0

∫ a

0
Tzθ r

2drdθ = 4πA3

3

[
γ −1W4 + (

γ −2 + γ
)
W5

]
sc. (3.9)

The corresponding resultant axial force is

N ≡
∫ 2π

0

∫ a

0
Tzzrdrdθ = 2πA2

[(
γ − γ −2

)
W1 + (

1 − γ −3
)
W2 + γ c2W4 + 2γ 3c2W5

]
,

(3.10)
where the derivatives Wi in (3.9), (3.10) are evaluated at (3.3), (3.4).

Thus, we see from (3.9) that a resultant twisting moment is induced in the cylinder in pure
extension or compression due to the angle of orientation of the fibers. For the special case
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where W = W(I1, I4), this result was obtained in [11]. For the special case of longitudinally
oriented fibers, on setting ψ = 0 in (3.9), (3.10), we get

M = 0, N = 2πA2
[(

γ − γ −2
)
W1 + (

1 − γ −3
)
W2 + γW4 + 2γ 3W5

]
(3.11)

where the derivatives Wi are evaluated at (3.3), (3.5). Thus, there is no induced twisting
moment in this case as might be anticipated due to axial symmetry. Another special (degen-
erate) case is apparent from (3.9) namely that when ψ = π/2 where now we have

M = 0, N = 2πA2
[(

γ − γ −2
)
W1 + (

1 − γ −3
)
W2

]
, (3.12)

so that again there is no induced twisting moment for A = (0,1,0), i.e., for fibers oriented
in the purely azimuthal direction. In this case, the resultant axial force coincides formally
with that for an isotropic material.

The dimensionless ratio M/NA gives an indication of the relative size of the induced
moment and resultant axial force. If one neglects the contribution of the isotropic component
relative to the anisotropic in N , one obtains

M

NA
= 2

3γ 2

[
W4 + (1 + γ −3)W5

W4 + 2γ 2W5

]
tanψ. (3.13)

For materials independent of I5, this reduces to

M

NA
= 2

3γ 2
tanψ, (3.14)

while for materials independent of I4, we have

M

NA
= 1 + γ −3

3γ 4
tanψ. (3.15)

The relations (3.14), (3.15) are universal, that is they are independent of the particular form
of W considered. Each of these results show that for extension (γ > 1) the ratio M/NA de-
creases with axial stretch while for compression (γ < 1) this ratio increases with increasing
compression.

The last expression in (3.11) gives the resultant axial force required to produce a stretch
γ in pure extension of the cylinder with longitudinally oriented fibers. It can be easily shown
that

1

πA2

dN

dγ

∣
∣∣
∣
γ=1

= 6(Ŵ1 + Ŵ2) + 2Ŵ4 + 12Ŵ5 + 4Ŵ44 + 16Ŵ45 + 16Ŵ55, (3.16)

where we recall the notation used in Sect. 2 that the hat notation indicates evaluation of the
corresponding quantity at (3,3,1,1), i.e., in the undeformed state. It will be required that
N = 0 when γ = 1 and hence from (3.11) we obtain

Ŵ4 + 2Ŵ5 = 0. (3.17)

This is just the last assumption already made in (2.2). On using (3.17), Eq. (3.14) thus
simplifies to

1

πA2

dN

dγ

∣∣
∣∣
γ=1

= 6(Ŵ1 + Ŵ2) + 8Ŵ5 + 4Ŵ44 + 16Ŵ45 + 16Ŵ55. (3.18)
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On physical grounds, one expects the axial force required to produce a simple extension
to be a monotone increasing function of γ and so in particular we require that the right
hand side of (3.18) be positive. On using (2.3), this condition in terms of the infinitesimal
longitudinal Young’s modulus just reads

EL > 0, (3.19)

which is of course a natural assumption to make.

4 Magic Angle

We now consider the quantity

Ñ = N(γ )

2πA2
= (

γ − γ −2
)
W1 + (

1 − γ −3
)
W2 + γ c2W4 + 2γ 3c2W5 (4.1)

given in (3.10) for general W . On using the chain rule and the expressions (3.3), (3.4) for
the invariants, we find that

(
dÑ

dγ

)

γ=1

= 3(Ŵ1 + Ŵ2) + 4c2Ŵ5 + c2
(
2c2 − s2

)
(Ŵ44 + 4Ŵ54 + 4Ŵ55) (4.2)

where we recall that the superimposed hat notation introduced in Sect. 2 indicates evaluation
in the undeformed state. The last of (2.2) has also been used. On using (2.3), we simplify
(4.2) to read

1

μT

(
dÑ

dγ

)

γ=1

= 3

2
+ 2c2

(
μL

μT

− 1

)
+ 1

4

(
EL

μT

− 4
μL

μT

+ 1

)
c2

(
2c2 − s2

)
. (4.3)

We emphasize that (4.3) is valid for a general strain-energy W = W(I1, I2, I4, I5).
The special angle for which

2c2 − s2 = 0 (4.4)

is now seen to have the property that the initial slope of the axial force with respect to stretch
is independent of the Young’s modulus of the fibers and is given by

1

μT

(
dÑ

dγ0

)

γ0=1

= 5

6
+ 2μL

3μT

. (4.5)

The special pitch angle given by (4.4) may be equivalently written as

arctan(
√

2) = arcsin(
√

2/3) = arccos(1/
√

3)
.= 54.74◦ (4.6)

and is called a “magic” pitch angle. It arises naturally in a variety of contexts involving
deformations of fiber-reinforced materials. See, e.g., Demirkoparan and Pence [6], Goriely
and Tabor [10] and Kim and Segev [15] for recent discussions. In [6], this angle is shown
to arise in the analysis of a (doubly) helically wound rubber hollow tube under pressure.
A more general discussion is given in [10] where the “magic angle” terminology is used
for the complement of this angle (90◦ − 54.74◦ = 35.26◦). As described in [10], the magic
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angle concept was initially observed in biology in the context of locomotion and flattening of
worms. See also [15] for an interesting application involving the motion of an octopus arm.
It also arises in the field of soft robotics in connection with McKibben actuators (see [10]
for pertinent references). The analysis carried out in [10] is given in the context of nonlinear
elasticity modeling using doubly helically wound fiber-reinforced hollow cylinders under
internal pressure.

Similarly, we consider the quantity

M̃ = M(γ )

πA3
= 4

3

[
γ −1W4 + (

γ −2 + γ
)
W5

]
sc (4.7)

given by (3.9) for general W . On using the chain rule, the expressions (3.3), (3.4) for the
invariants and the last of (2.2) we find that

3

4

(
dM̃

dγ

)

γ=1

= [
Ŵ5 + (

2c2 − s2
)
(Ŵ44 + 4Ŵ54 + 4Ŵ55)

]
sc. (4.8)

On using (2.3), we simplify (4.8) to read

3

4μT

(
dM̃

dγ

)

γ=1

=
[

1

2

(
μL

μT

− 1

)
+ 1

4

(
EL

μT

− 4
μL

μT

+ 1

)
(
2c2 − s2

)
]
sc. (4.9)

For the special angle given by (4.4), i.e., the angle (4.6), we see again that the left hand side
of (4.9) is independent of the fiber Young’s modulus and, on using (4.6), is simply

3

4μT

(
dM̃

dγ0

)

γ0=1

=
√

2

6

(
μL

μT

− 1

)
. (4.10)

In Sect. 2, we have cited the papers [4, 8, 17] where the necessity of including both
anisotropic invariants in the constitutive mix in order to capture the full range of the mechan-
ical response of anisotropic hyperelastic materials is discussed. However, most transversely
isotropic soft tissue models that have been used in the literature only include I4 or less
commonly I5. It follows from (2.2)2, (2.3)2 that for models including only one anisotropic
invariant in the constitutive basis, one has μL = μT and so (4.5), (4.10) show that such ma-
terials with fibers helically wound at the magic angle behave as if they were isotropic for
infinitesimal deformations. See also [15] for related observations.

5 Response for Specific Strain-Energies

As discussed in [17], the restrictions (2.2), (2.3) on the strain-energy function suggest sim-
ple polynomial models for transversely isotropic elastomers or soft tissue: the strain energies
must be at least quadratic in I4, I5 and at least linear in I1, I2. As remarked earlier, Mur-
phy [17] and Feng et al. [8] have argued that it is essential that the strain-energy function be a
function of both pseudo-invariants when modeling soft tissue and this will be assumed here,
as well as a linear dependence on the two strain isotropic invariants. We will consider three
specific models of this type. The first of these emphasizes a quadratic dependence on I4, the
second a quadratic dependence on I5 while the third involves a product of these invariants.
The first model considered is

W = μT

2

[
α(I1 −3)+(1−α)(I2 −3)

]+ μT − μL

2
(2I4 −I5 −1)+ EL + μT − 4μL

8
(I4 −1)2

(5.1)
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where α is a dimensionless constant such that 0 < α ≤ 1. When α = 1, this reduces to
the modified standard reinforcing model proposed in [17]. The form (5.1) was used in re-
cent papers [3, 13] in investigations of reverse Poynting effects in simple shear and torsion
respectively. See also [12]. The isotropic part of (5.1) is the usual Mooney-Rivlin strain-
energy. It can be easily verified that the form (5.1) satisfies all the conditions (2.2), (2.3)
provided that

μT (2α − 1) = p̂. (5.2)

For the model (5.1), it is easily verified that (3.9) reduces to

M

πA3μT

= 1

3

⎡

⎢⎢
⎢
⎣

(
EL

μT

− 4
μL

μT

+ 1

)
γ −1

(
γ −1s2 + γ 2c2 − 1

)

+ 2

(
1 − μL

μT

)
(
2γ −1 − γ − γ −2

)

⎤

⎥⎥
⎥
⎦

sc. (5.3)

This is the induced non-dimensional twisting moment generated in the cylinder due to a pure
extension or compression of amount γ . Note that M is independent of the parameter α. The
corresponding value of N is given by (3.10) as

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

)

+ 1

2

(
EL

μT

− 4
μL

μT

+ 1

)
γ c2

(
γ −1s2 + γ 2c2 − 1

) + 2
(
γ − γ 3

)
c2

(
1 − μL

μT

)
.

(5.4)
In order to make further progress, estimates of the values for the material constant ra-

tios are needed. Our choice will be motivated by data from muscles. In particular, we note
that μL/μT = 5, corresponding to a typical relationship between the shear moduli for the
experimental data for muscles given in [9, 18, 19] and EL/μT = 75, motivated by the data
of Morrow et al. [16] for rabbit muscles. For these values of the elastic constant ratios, the
result (5.3) reduces to

M

πA3μT

= 8

3

[
7
(
γ −2s2 + γ c2

) + γ + γ −2 − 9γ −1
]
sc. (5.5)

The corresponding value of N is

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

)

+ 28γ c2
(
γ −1s2 + γ 2c2 − 1

) − 8c2
(
γ − γ 3

)
. (5.6)

Plots of (5.5), (5.6) are given below in Figs. 1, 2 for representative pitch angles. In Fig. 1,
we take ψ = π/6 and α = 1 while for Fig. 2, we consider the larger pitch angle ψ = π/3.
In both figures, the force curve behaves as one might expect intuitively. However note that
in Fig. 1, for extension the moment curve is monotonic increasing with stretch while for
compression, the moment curve is non-monotonic and is negative in the initial stages of
compression. This type of non-monotone behavior has also been observed in a wider context
in [10] and has interesting applications in biology. See also [5]. A similar plot is given in
Fig. 2 for the larger pitch angle ψ = π/3 and α = 1. In this case, the moment curve is
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Fig. 1 Non-dimensional
moment and force curves plotted
against axial stretch for the
model (5.1) with ψ = π/6, α = 1
using data for muscles. Note that
for extension, the moment is
monotonic increasing with
stretch while for compression, the
moment curve is non-monotonic

Fig. 2 Non-dimensional
moment and force curves plotted
against axial stretch for the
model (5.1) with ψ = π/3 and
α = 1 using data for muscles.
Note that for extension, the
moment is monotonic increasing
with stretch while for
compression, the moment curve
is monotonic decreasing but
remains positive throughout

monotonically increasing for extension and monotonically deceasing for compression but
remains positive.

The other two strain-energies considered in [3, 13] are

W = μT

2

[
α(I1 − 3) + (1 − α)(I2 − 3)

] + μT − μL

2
(2I4 − I5 − 1)

+ EL + μT − 4μL

32
(I5 − 1)2 (5.7)

and

W = μT

2

[
α(I1 − 3) + (1 − α)(I2 − 3)

] + μT − μL

2
(2I4 − I5 − 1)

+ EL + μT − 4μL

16
(I4 − 1)(I5 − 1) (5.8)

which, following the nomenclature of those papers, will be called materials I, II respec-
tively. The first of these emphasizes the quadratic dependence on I5 rather than I4 while the
second involves a product of these invariants. As remarked on by Murphy [17] in the con-
text of simple shear, the focused dependence on I5 in (5.7) is motivated by the fact that this
model captures a more complete range of shear response than model (5.1). These models
generalize those considered in [17] to include a dependence on the second strain invariant.
The model (5.1) is called model III. It can be readily verified that these models satisfy the
conditions (2.2), (2.3) provided that (5.2) holds.
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For the model (5.7), one finds that (3.9) reads

M

πA3μT

= 1

3

⎡

⎢
⎢⎢
⎣

1

4

(
EL

μT

− 4
μL

μT

+ 1

)
(
γ −2s2 + γ 4c2 − 1

)(
γ + γ −2

)

+ 2

(
1 − μL

μT

)(
2γ −1 − γ − γ −2

)

⎤

⎥
⎥⎥
⎦

sc (5.9)

while for the model (5.8) one obtains

M

πA3μT

= 1

3

⎡

⎢
⎢⎢
⎣

1

4

(
EL

μT

− 4
μL

μT

+ 1

)[
2
(
γ −3s2 + γ 3c2

) + 1 − γ − γ −1 − γ −2
]

+ 2

(
1 − μL

μT

)
(
2γ −1 − γ − γ −2

)

⎤

⎥
⎥⎥
⎦

sc.

(5.10)
The corresponding values of N follow from (3.10) as

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

)

+ 1

4

(
EL

μT

− 4
μL

μT

+ 1

)
γ 3c2

(
γ −2s2 + γ 4c2 − 1

)

+ 2

(
1 − μL

μT

)(
γ − γ 3

)
c2 (5.11)

and

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

)

+ 1

8

(
EL

μT

− 4
μL

μT

+ 1

)
γ c2

{
2γ 2

(
γ −1s2 + γ 2c2 − 1

) + (
γ −2s2 + γ 4c2 − 1

)}

+ 2

(
1 − μL

μT

)(
γ − γ 3

)
c2,

(5.12)
respectively. On using the values of the elastic constant ratios used previously, the results
(5.9) and (5.10) reduce to

M

πA3μT

= 2

3

[
7
(
γ −2s2 + γ 4c2 − 1

)(
γ + γ −2

) − 4
(
2γ −1 − γ − γ −2

)]
sc (5.13)

and

M

πA3μT

= 2

3

[
7
{
2
(
γ −3s2 + γ 3c2

)+ 1 − γ − γ −1 − γ −2
}− 4

(
2γ −1 − γ − γ −2

)]
sc, (5.14)

respectively. The corresponding values of N are

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

) + 14γ c2
(
γ −2s2 + γ 4c2 − 1

) − 8
(
γ − γ 3

)
c2

(5.15)
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and

N

πA2μT

= α
(
γ − γ −2

) + (1 − α)
(
1 − γ −3

) + 7γ c2
{
2γ 2

(
γ −1s2 + γ 2c2 − 1

)

+ (
γ −2s2 + γ 4c2 − 1

)} − 8
(
γ − γ 3

)
c2, (5.16)

respectively.
It turns out that the plots of the foregoing response for materials I, II are similar to those

shown in Figs. 1, 2 and so will not be displayed.

6 Concluding Remarks

We have investigated an interesting induced twisting effect that arises in the simple problem
of pure extension or compression of an anisotropic nonlinearly elastic solid circular cylinder.
The cylinder is composed of a transversely isotropic incompressible hyperelastic material
described by a strain-energy function that depends on the full set of relevant invariants. The
transverse isotropy is due to a single family of helically wound extensible fibers distributed
throughout the cylinder. It is shown that, for general pitch angles, a twisting moment is
induced in the cylinder whereas when the fibers are oriented longitudinally or azimuthally
no such induced twisting occurs. It is also shown that at a special pitch angle (a “magic”
angle), the initial slope of the axial force and induced moment with respect to stretch is
independent of the Young’s modulus of the fibers. The character of the induced twist has
been described in detail by using three specific strain-energy density functions that model
soft tissues. These models are quadratic in the anisotropic invariants, linear in the isotropic
strain invariants and are consistent with the linear theory. The results have been illustrated
on using elastic moduli for muscles based on experimental findings of other authors.

Acknowledgements We are grateful to a reviewer for constructive suggestions on improving an earlier
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References

1. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials. X: Reinforcement by inex-
tensible cords. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 248, 201–223 (1955)

2. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissue. Appl.
Mech. Rev. 40, 1699–1734 (1989)

3. Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft
tissues. J. Eng. Math. 95, 87–98 (2015)

4. Destrade, M., Mac Donald, B., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to
model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52,
959–969 (2013)

5. Demirkoparan, H., Pence, T.J.: Torsional swelling of a hyperelastic tube with helically wound reinforce-
ment. J. Elast. 92, 61–90 (2008)

6. Demirkoparan, H., Pence, T.J.: Magic angles for fiber reinforcement in rubber-elastic tubes subject to
pressure and swelling. Int. J. Non-Linear Mech. 68, 87–95 (2015)

7. Fang, Y., Pence, T.J., Tan, X.: Fiber-directed conjugated-polymer torsional actuator: nonlinear elasticity
modeling and experimental validation. IEEE/ASME Trans. Mechatron. 16, 656–664 (2011)

8. Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy
in brain tissue and implications for transversely isotropic material models of white matter. J. Mech.
Behav. Biomed. Mater. 23, 117–132 (2013)



Extension or Compression Induced Twisting in Fiber-Reinforced . . . 85

9. Gennisson, J.-L., Catheline, S., Chaffa, S., Fink, M.: Transient elastography in anisotropic medium:
application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114,
536–541 (2003)

10. Goriely, A., Tabor, M.: Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and
membranes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 469, 20130011 (2013)

11. Horgan, C.O., Murphy, J.G.: Finite extension and torsion of fiber-reinforced non-linearly elastic circular
cylinders. Int. J. Non-Linear Mech. 47, 97–104 (2012)

12. Horgan, C.O., Murphy, J.G.: On the modeling of extension-torsion experimental data for transversely
isotropic biological soft tissues. J. Elast. 108, 179–191 (2012)

13. Horgan, C.O., Murphy, J.G.: Reverse Poynting effects in the torsion of soft biomaterials. J. Elast. 118,
127–140 (2015)

14. Horgan, C.O., Smayda, M.: The importance of the second strain invariant in the constitutive modeling
of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)

15. Kim, D., Segev, R.: Various issues raised by the mechanics of an octopus’s arm. Math. Mech. Solids
(2016). doi:10.1177/1081286515599437

16. Morrow, D.A., Haut Donahue, T.L., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile ma-
terial properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3, 124–129 (2010)

17. Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic
invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013)

18. Papazoglou, S., Rump, J., Braun, J., Sack, I.: Shear wave group velocity inversion in MR elastography
of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006)

19. Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging
anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson.
Med. 53, 372–387 (2005)

20. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) 3rd edn. Handbuch
der Physik, vol. III/3. Springer, Berlin (2004)

http://dx.doi.org/10.1177/1081286515599437

	Extension or Compression Induced Twisting in Fiber-Reinforced Nonlinearly Elastic Circular Cylinders
	Abstract
	Introduction
	Preliminaries
	Pure Extension or Compression of a Solid Circular Cylinder
	Magic Angle
	Response for Speciﬁc Strain-Energies
	Concluding Remarks
	Acknowledgements
	References


