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Abstract We formulate a nonlocal cohesive model for calculating the deformation inside
a cracking body. In this model a set of physical properties including elastic and softening
behavior are assigned to each point in the medium. We work within the small deformation
setting and use the peridynamic formulation. Here strains are calculated as difference quo-
tients. The constitutive relation is given by a nonlocal cohesive law relating force to strain.
At each instant of the evolution we identify a process zone where strains lie above a thresh-
old value. Perturbation analysis shows that jump discontinuities within the process zone
can become unstable and grow. We derive an explicit inequality that shows that the size of
the process zone is controlled by the ratio given by the length scale of nonlocal interaction
divided by the characteristic dimension of the sample. The process zone is shown to con-
centrate on a set of zero volume in the limit where the length scale of nonlocal interaction
vanishes with respect to the size of the domain. In this limit the dynamic evolution is seen
to have bounded linear elastic energy and Griffith surface energy. The limit dynamics cor-
responds to the simultaneous evolution of linear elastic displacement and the fracture set
across which the displacement is discontinuous. We conclude illustrating how aspects of the
approach developed here can be applied to limits of dynamics associated with other energies
that Γ -converge to the Griffith fracture energy.

Keywords Peridynamics · Dynamic brittle fracture · Fracture toughness · Process zone ·
Γ -Convergence

Mathematics Subject Classification 34A34 · 74H55 · 74R10

1 Introduction

Dynamic brittle fracture is a multiscale phenomenon operating across a wide range of length
and time scales. Contemporary approaches to brittle fracture modeling can be broadly char-
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acterized as bottom-up and top-down. Bottom-up approaches take into account the discrete-
ness of fracture at the smallest length scales and are expressed through lattice models. This
approach has provided insight into the dynamics of the fracture process [22, 48, 49, 66].
Complementary to the bottom-up approaches are top-down computational approaches us-
ing cohesive surface elements [23, 44, 58, 71]. In this formulation the details of the process
zone are collapsed onto an interfacial element with a force traction law given by the cohesive
zone model [7, 27]. Cohesive surfaces have been applied within the extended finite element
method [11, 26, 54] to minimize the effects of mesh dependence on free crack paths. Higher
order multi-scale cohesive surface models involving excess properties and differential mo-
mentum balance are developed in [57]. Comparisons between different cohesive surface
models are given in [32]. More recently variational approaches to brittle fracture based on
quasi-static evolutions of global minimizers of Grifffith’s fracture energy have been devel-
oped [16, 35, 36]. Phase field approaches have also been developed to model brittle fracture
evolution from a continuum perspective [14, 16, 17, 53, 59, 69]. In the phase field approach
a second field is introduced to interpolate between cracked and undamaged elastic material.
The evolution of the phase field is used to capture the trajectory of the crack. A concurrent
development is the emergence of the peridynamic formulation introduced in [60] and [64].
Peridynamics is a nonlocal formulation of continuum mechanics expressed in terms of dis-
placement differences as opposed to spatial derivatives of the displacement field. These
features provide the ability to simultaneously simulate kinematics involving both smooth
displacements and defect evolution. Numerical simulations based on peridynamic modeling
exhibit the formation and evolution of sharp interfaces associated with defects and fracture
[13, 28, 34, 42, 61, 62, 68]. In an independent development nonlocal formulations have
been introduced for modeling the passage from discrete to continuum limits of energies for
quasistatic fracture models [2, 6, 19, 21], for smeared crack models [47] and for image pro-
cessing [40] and [41]. A complete review of contemporary methods is beyond the scope of
this paper however the reader is referred to [1, 8, 12, 15, 16, 18, 20] for a more complete
guide to the literature.

In this paper we formulate a nonlocal, multi-scale, cohesive continuum model for as-
sessing the deformation state inside a cracking body. This model is expressed using the
peridynamic formulation introduced in [60, 64]. Here strains are calculated as difference
quotients of displacements between two points x and y. In this approach the force between
two points x and y is related to the strain through a nonlinear cohesive law that depends upon
the magnitude and direction of the strain. The forces are initially elastic for small strains and
soften beyond a critical strain. We introduce the dimensionless length scale ε given by the
ratio of the length scale of nonlocal interaction to the characteristic length of the material
sample D. Working in the new rescaled coordinates the nonlocal interactions between x and
its neighbors y occur within a horizon of radius ε about x and the characteristic length of
D is taken to be unity. This neighborhood of x is the ball of radius ε with center x and is
denoted by Hε(x).

To define the potential energy we first assume the deformation z is given by z(x) =
u(x) + x where u is the displacement field. The strain between two points x and y inside D

is given by

S = |z(y) − z(x)| − |y − x|
|y − x| . (1.1)

In this treatment we assume small deformation kinematics and the displacements are small
(infinitesimal) relative to the size of the body D. Under this hypothesis (1.1) is linearized
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and the strain is given by

S = S(u) = u(y) − u(x)

|y − x| · e,

where e = y−x

|y−x| . Both two and three dimensional problems will be considered and the di-
mension is denoted by d = 2,3. The cohesive model is characterized through a nonlocal
potential

Wε(S, y − x)

associated with points x and y. The associated energy density is obtained on integrating over
y for x fixed and is given by

Wε(S, x) = 1

Vd

∫
Hε (x)

Wε(S, y − x)dy, (1.2)

where Vd = εdωd and ωd is the (area) volume of the unit ball in dimensions d = (2)3. The
potential energy of the body is given by

PDε(u) =
∫

D

Wε
(
S(u), x

)
dx. (1.3)

We introduce the class of potentials associated with a cohesive force that is initially
elastic and then softens after a critical strain. These potentials are of the generic form given
by

Wε(S, y − x) = |y − x|Wε(S, y − x), (1.4)

where Wε(S, y − x) is the peridynamic potential per unit length associated with x and y

given by

Wε(S, y − x) = 1

ε
J ε

(|y − x|)
(

1

|y − x|f
(|y − x|S2

))
. (1.5)

These potentials are of a general form and are associated with potential functions f :
[0,∞) →R that are positive, smooth and concave with the properties

lim
r→0+

f (r)

r
= f ′(0) > 0, lim

r→∞f (r) = f∞ < ∞. (1.6)

The composition of f with |y−x|S2 given by (1.5) delivers the convex-concave dependence
of Wε(S, y − x) on S for fixed values of x and y, see Fig. 1. Here J ε(|y − x|) is used to
prescribe the influence of separation length |y − x| on the force between x and y inside
Hε(x). J ε is defined by the rescaling J ε(|y − x|) = J (|y − x|/ε) where we require 0 ≤
J (|ξ |) < M for ξ in the unit ball H1(0) and J = 0 for |ξ | > 1. For fixed x and y the inflection
point for the potential energy (1.5) with respect to the strain S is given by r/

√|y − x|, where
r is the inflection point for the function r :→ f (r2), see Fig. 1. This choice of potential
delivers an initially elastic and then softening constitutive law for the force per unit length
along the direction e given by

force per unit length = ∂SWε(S, y − x) = 2

ε

(
J ε

(|y − x|)f ′(|y − x|S2
)
S
)
. (1.7)
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Fig. 1 Cohesive potential as a
function of S for x and y fixed

Fig. 2 Cohesive relation
between force and strain for x

and y fixed

The force between points y and x begins to drop at the softening value where the strain S
exceeds the critical strain

|S| > r√|y − x| = Sc, (1.8)

see Fig. 2. The energy per unit length necessary to bring the force between two points x and
y to its softening value is the area under the force strain curve (1.7) between S = 0 and Sc

and is given by Wε(Sc, y − x). The energy per unit length necessary to bring the force far
into the softening phase of the force-strain relation is Wε(S+

c , y − x), where S+
c > Sc and

is S+
c = r/|y − x|1/2+δ , δ > 0.

We prescribe boundary conditions for the displacement u on a layer of thickness α = 2ε

surrounding D, see Fig. 4, and apply the principle of least action to recover the cohesive
equation of motion describing the state of displacement inside the body D ⊂R

d given by

ρ∂2
t t u(t, x) = 2

1

Vd

∫
Hε (x)

∂SWε(S, y − x)
y − x

|y − x| dy + b(t, x), for x ∈ D, (1.9)

where ρ is the density and b(t, x) is the body force. This is a well posed formulation in that
existence and uniqueness (within a suitable class of evolutions) can be shown, see Sect. 2
and Theorem 6.1 of Sect. 6.1.

In this model a more complete set of physical properties including elastic and softening
behavior are assigned to each point in the medium. Here each point in the domain is con-
nected to its neighbors by a cohesive law see Fig. 2. We define the process zone to be the
collection of points x inside the body D associated with peridynamic neighborhoods Hε(x)
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for which the strain S between x and y exceeds a threshold value for a sufficiently large
proportion of points y inside Hε(x). Here the force vs. strain law departs from linear be-
havior when the strain exceeds the threshold value. The mathematically precise definition of
the process zone is given in Sect. 4, see Definition 4.1. In this model the fracture set is asso-
ciated with peridynamic neighborhoods Hε(x) with strains beyond the threshold |S| > S+

c

for which the force vs. strain law is softenting and is defined in Sect. 4, see Definition 4.2.
The nonlinear elastic-softening behavior put forth in this paper is similar to the ones used
in cohesive zone models [7, 27]. However for this model the dynamics selects whether a
material point lies inside or outside the process zone. The principal feature of the cohesive
dynamics model introduced here is that the evolution of the process zone together with the
fracture set is governed by an equation consistent with Newton’s second law given by (1.9).
This is a characteristic feature of peridynamic models [60, 64] and lattice formulations for
fracture evolution [22, 48, 49, 66].

The first goal of this paper is to characterize the size of the process zone for cohesive
dynamics as a function of domain size and the length scale of the nonlocal forces. For the
model introduced here the parameter that controls the size of the process zone is given by
the radius of the horizon ε. We derive an explicit inequality that shows that the size of the
process zone is controlled by the horizon radius. Perturbation analysis shows that jump dis-
continuities within the process zone can become unstable and grow. This analysis shows that
the horizon radius ε for cohesive dynamics is a modeling parameter that can be calibrated
according to the size of the process zone obtained from experimental observations.

The second focus is to identify properties of the distinguished limit evolution for these
models in the limit of vanishing non-locality as characterized by the ε → 0 limit. In order to
anticipate the limiting behavior we introduce a notion of fracture toughness for the cohesive
models developed here. The fracture toughness Gε

c is defined to be the energy per unit length
required to send the cohesive force between each point x and y on either side of a planar
surface far into the softening phase of the force-strain relation associated with S > S+

c .
Because of the finite length scale of interaction only the force between pairs of points within
an ε distance from the surface need to be considered. For this model we can proceed to
calculate the fracture toughness Gε

c as in [61]. The fracture toughness is given by the formula

Gε
c = 2

Vd

∫ ε

0

∫ 2π

0

∫ ε

z

∫ arccos(z/ζ )

0
Wε

(
S+

c , ζ
)
ζ 2 sinψ dψ dζ dz, (1.10)

where ζ = |y − x|, see Fig. 3. A similar computation can be carried out for two dimensional
problems. Substitution of Wε(S, y − x) given by (1.5) into (1.10) and calculation delivers
the formulas

Gε
c = 2ωd−1

ωd

∫ 1

0
f

(
r/|εr|δ)rdJ (r) dr, for d = 2,3, (1.11)

where ωd is the volume of the n dimensional unit ball, ω1 = 2,ω2 = π,ω3 = 4π/3.
For small homogeneous strains the energy density for the cohesive model is related to

the strain energy density of a linearly elastic material. For this case the energy density is de-
scribed to leading order by shear and Lamé moduli μ and λ when the strain field is uniform
across Hε(x) Consider the linear displacement associated with a constant strain tensor F

given by u(x) = Fx. A straight forward calculation provided in Sect. 6.6 reveals that μ and
λ defined by (5.7) describe the strain energy density to leading order for S = Fe · e < Sc ,
i.e.,

Wε(x) = 2μ|F |2 + λ|Tr{F }|2 + O
(
ε|F |4). (1.12)
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Fig. 3 Evaluation of fracture
toughness Gε

c . For each point x

along the dashed line, 0 ≤ z ≤ ε,
the work required to break the
interaction between x and y in
the spherical cap is summed up in
(1.10) using spherical
coordinates centered at x

Further calculation shows that the volume of the process zone goes to zero with ε in the
limit of vanishing non-locality, ε → 0. Application of compactness arguments Theorem 6.2
and Theorem 6.4 shows the existence of distinguished ε → 0 limits of cohesive evolutions.
For a suitable class of initial data the limit evolutions are found to lie in the space of special
functions of bounded deformation and have both bounded linear elastic energy and Grif-
fith surface energy, see Theorem 5.2. Γ -convergence arguments, see Theorems 6.4 and 6.5
show in an independent way that the fracture toughness characterizing the Griffith surface
energy for the limit evolution (5.8) is precisely the one recovered from the cohesive model
on sending ε → 0 in (1.11). The limit dynamics is shown to correspond to the simultaneous
evolution of linear elastic displacement and a fracture set across which the displacement is
discontinuous. Here the evolving fracture set is shown to be confined to a set of d −1 dimen-
sional Hausdorf measure. It is seen under suitable hypotheses the displacement field evolves
elastodynamically for points away from the fracture set and is governed by the balance of
linear momentum expressed by the Navier Lamé equations. The elastic moduli mediating
the balance of linear momentum together with energy release rate of the fracture surface
for the limit evolution are recovered directly from the cohesive model and given by (5.7)
and (5.8). The results presented here are consistent with the asymptotic behavior seen in the
convergence of solutions of the Barenblatt model to the Griffith model when cohesive forces
are confined to a surface act over a sufficiently short range [50, 70].

Earlier work has shown that linear peridynamic formulations recover the classic linear
elastic wave equation in the limit of vanishing non-locality see [30, 63]. The convergence
of linear peridynamics to the Navier Lamé equations in the sense of solution operators is
demonstrated in [52]. Recent work shows that analogous results can be found for dynamic
problems and fully nonlinear peridynamics [46] in the context of antiplane shear. There dis-
tinguished ε → 0 limits of cohesive evolutions are identified and are found to have both
bounded linear elastic energy and Griffith surface energy. It is shown that the limiting dis-
placement evolves according to the linear elastic wave equation away from the crack set,
see [46]. For large deformations, the connection between hyperelastic energies and the small
horizon limits of nonlinear peridynamic energies is recently established in [10]. In the cur-
rent paper both two and three dimensional problems involving multi-mode fracture are ad-
dressed. For these problems new methods are required to identify the existence of a limit
dynamics as the length scale of nonlocal interaction ε goes to zero. A crucial step is to es-
tablish a suitable notion of compactness for sequences of cohesive evolutions. The approach
taken here employs nonlocal Korn inequalities introduced in [25]. This method is presented
in Sect. 6.3. We conclude noting that the cohesive dynamics model introduced here does not
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Fig. 4 Boundary value problem
on Dc ∪ D

have an irreversibility constraint and that the constitutive law (1.7) applies at all times in the
fracture evolution. However with this caveat in mind, the nonlocal cohesive model offers
new computational and analytical opportunities for understanding the effect of the process
zone on fracture patterns.

In the next section we write down the Lagrangian formulation for the cohesive dynamics
and apply the principle of least action to recover the equation of motion. In that section it is
shown that the nonlinear-nonlocal cohesive evolution is a well posed initial boundary value
problem. It is also shown that energy balance is satisfied by the cohesive dynamics. A for-
mal stability analysis is carried out in Sect. 3 showing that jump discontinuities within the
process zone can become unstable and grow, see Proposition 3.1. In Sect. 4 we provide a
mathematically rigorous inequality explicitly showing how the volume of the process zone
for the cohesive evolutions is controlled by the length scale of nonlocal interaction ε, see
Theorem 4.1. In Sect. 5 we introduce suitable technical hypothesis and identify the distin-
guished limit of the cohesive evolutions as ε → 0, see Theorem 5.1. It is shown that the
solution is elastodynamic and governed by the Navier Lamé equations away from the evolv-
ing crack set, see Theorem 5.4. These displacements are shown to have bounded bulk elastic
and surface energy in the sense of Linear Elastic Fracture Mechanics (LEFM), see Theo-
rem 5.2. In Sect. 6 we provide the mathematical underpinnings and proofs of the theorems.
In Sect. 7 we apply the approach developed here to examine limits of dynamics associated
with other energies that Γ -converge to the Griffith fracture energy. As an illustrative ex-
ample we examine the Ambrosio-Tortorelli [4] approximation as applied to the dynamic
problem in [17] and [45].

2 Cohesive Dynamics

We formulate the initial boundary value problem for the cohesive evolution. Since the prob-
lem is nonlocal we define a boundary layer surrounding D of thickness α = 2ε and denote
it by Dc , see Fig. 4. The boundary condition for the displacement u is nonlocal and given by
u(t, x) = 0 for x in Dc . To incorporate nonlocal boundary conditions we introduce the space
L2

0(D;Rd), of displacements that are square integrable over D and zero in the layer Dc . The
initial conditions for the cohesive dynamics belong to L2

0(D;Rd) and are given by

u(0, x) = u0(x), and ut (0, x) = v0(x). (2.1)
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We will investigate the evolution of the deforming domain for general initial conditions.
These can include an initially un-cracked body or one with a preexisting system of cracks.
For two dimensional problems the cracks are given by a system of curves of finite total
length, while for three dimensional problems the crack set is given by a system of surfaces of
finite total surface area. Depending on the dimension of the problem the displacement suffers
a finite jump discontinuity across each curve or surface. The initial condition is specified by
a crack set K and displacement u0. The strain Eu0 = (∇u0 +∇uT

0 )/2 is defined off the crack
set and the displacement u0 can suffer jumps across K . Griffith’s theory of fracture asserts
that the energy necessary to produce a crack K is proportional to the crack length (or surface
area). For Linear Elastic Fracture Mechanics (LEFM) the total energy associated with bulk
elastic and surface energy is given by

LEFM(u0) =
∫

D

(
2μ|Eu0|2 + λ|divu0|2

)
dx + Gc|K|, (2.2)

where μ, λ are the shear and Lamé moduli, Gc is the critical energy release rate for the
material, |Eu0|2 = ∑d

i,j=1(Eij u0)
2, and divu0 = ∑d

i=1 Eiiu0. Here |K| denotes the length
or surface area of the crack. In what follows we will assume that the bulk elastic energy
and surface energy of the initial displacement are bounded as well as the initial velocity
and displacement. In this work we consider a broad class of initial displacements u0 for
which LEFM(u0) is well defined. This class is defined by the space of functions of bounded
deformation SBD introduced in [9]. This space is appropriate for describing discontinuities
associated with linear elastic fracture. To expedite the presentation we postpone the technical
description of SBD functions until Sect. 5. We note here that SBD functions u belong to
L1(D;Rd) and the set of jump discontinuities Ju for elements of SBD is described by a
countable number of components K1,K2, . . . , contained within smooth manifolds. Here the
notion of arc length or (surface area) of the jump set is the d − 1 dimensional Hausdorff
measure of Ju and Hd−1(Ju) = ∑

i Hd−1(Ki). The strain [5] of a displacement u belonging
to SBD, written as Eu, is a generalization of the classic strain tensor and is related to the
strain

S(y, x) = u(y) − u(x)

|y − x| · e, e = (y − x)/|y − x|, (2.3)

introduced here by

lim
ε↘0

1

Vd

∫
Hε (x)

|S(y, x) − Eu(x)e · e|dy = 0, d = 2,3 (2.4)

for almost every x ∈ D, with respect to d-dimensional Lebesgue measure Ld .
The energy of linear elastic fracture mechanics extended to the class of SBD functions is

given by:

LFEM(u,D) =
∫

D

(
2μ|Eu|2 + λ|divu|2)dx + GcHd−1(Ju), d = 2,3, (2.5)

for u belonging to SBD. Here the fracture surface is described by the jump set Ju of the
displacement u.

We state the following lemma that provides an inequality between the potential energy
for cohesive dynamics and the free energy of Linear Elastic Fracture Mechanics.
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Theorem 2.1 For any function u belonging to SBD the inequality between its peridynamic
potential energy and its LEFM energy is given by

PDε(u) ≤ LEFM(u,D), for every ε > 0. (2.6)

This theorem follows directly from the inequality for the cohesive potential between x

and y given by

Wε(S, y − x) ≤ J ε
(|y − x|) × 1

ε
|y − x| × min

{
f ′(0)|S|2, f∞

|x − y|
}
. (2.7)

The upper bound (2.7) is a local Griffith dichotomy expressed as the minimum of two ener-
gies; one given by a quadratic elastic energy and the second given by the energy required to
completely soften the force between x and y. The proof of Theorem 2.1 is given in Sect. 6.8.

With these observations in mind we take the initial displacement u0 in L2
0(D;Rd) and

require that it belong to the space SBD and make the following definition.

Definition 2.1 Initial data u0 ∈ L2
0(D;Rd), v0 ∈ L2

0(D;Rd) with u0 belonging to SBD that
satisfy

LEFM(u0) < ∞, sup
x∈D

|u0(x)| < ∞, sup
x∈D

|v0(x)| < ∞, (2.8)

are defined to be LEFM initial data.

In what follows we write u(t, x) as u(t) to expedite the presentation. The displacements
u(t) considered here are twice differentiable in time and take values in L2

0(D;Rd). The space
of such functions is denoted by C2([0, T ];L2

0(D;Rd)). The cohesive dynamics is described
by the Lagrangian

Lε
(
u(t), ∂tu(t), t

) = K
(
∂tu(t)

) − PDε
(
u(t)

) + U
(
u(t)

)
, (2.9)

with

K
(
∂tu(t)

) = 1

2

∫
D

ρ|∂tu(t, x)|2 dx, and

U
(
u(t)

) =
∫

D

b(t, x)u(t, x) dx, (2.10)

where ρ is the mass density of the material and b(t, x) is the body force density. The LEFM
initial data u(0, x) = u0(x) and ut (0, x) = v0(x) are prescribed and the action integral for
the peridynamic evolution is

I ε(u) =
∫ T

0
Lε

(
u(t), ∂tu(t), t

)
dt. (2.11)

The principle of least action delivers the evolution uε(t) in C2([0, T ];L2
0(D;Rd)) that sat-

isfies the initial conditions and Euler Lagrange Equation for this system described by

ρuε
tt = −∇PDε

(
uε

) + b, (2.12)
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where

∇PDε
(
uε

) = − 2

Vd

∫
Hε (x)

∂SWε
(
Sε, y − x

) y − x

|y − x| dy, (2.13)

and

Sε = S
(
uε

) = uε(y) − uε(x)

|y − x| · e. (2.14)

The initial value problem for the peridynamic evolution (2.12) is seen to have a unique solu-
tion in C2([0, T ];L2

0(D;Rd)), see Theorem 6.1 of Sect. 6.1. The cohesive evolution uε(x, t)

is uniformly bounded in the mean square norm over bounded time intervals 0 < t < T , i.e.,

max
0<t<T

{‖uε(t, x)‖2
L2(D;Rd )

}
< C. (2.15)

Here ‖uε(t, x)‖L2(D;Rd ) = (
∫

D
|uε(t, x)|2 dx)1/2 and the upper bound C is independent of ε

and depends only on the initial conditions and body force applied up to time T , see Sect. 6.2.
The cohesive evolution has the following properties that are established in Sect. 6.2. The

evolution has uniformly bounded kinetic and elastic potential energy

Theorem 2.2 (Bounds on Kinetic and Potential Energy for Cohesive Dynamics) There ex-
ists a positive constant C depending only on T and independent of ε for which

sup
0≤t≤T

{
PDε

(
uε(t)

) + ρ

2
‖uε

t (t)‖2
L2(D;Rd )

}
≤ C. (2.16)

The evolution is uniformly continuous in time as measured by the mean square norm.

Theorem 2.3 (Continuous Cohesive Evolution in Mean Square Norm) There is a positive
constant K independent of t2 < t1 in [0, T ] and index ε for which

‖uε(t1) − uε(t2)‖L2(D;Rd ) ≤ K|t1 − t2|. (2.17)

The evolution satisfies energy balance. The total energy of the cohesive evolution at time
t is given by

EPDε
(
t, uε(t)

) = ρ

2
‖uε

t (t)‖2
L2(D;Rd )

+ PDε
(
uε(t)

) −
∫

D

b(t) · uε(t) dx (2.18)

and the total energy of the system at time t = 0 is

EPDε
(
0, uε(0)

) = ρ

2
‖v0‖2

L2(D;Rd )
+ PDε(u0) −

∫
D

b(0) · u0 dx. (2.19)

The cohesive dynamics is seen to satisfy energy balance at every instant of the evolution.

Theorem 2.4 (Energy Balance for Cohesive Dynamics)

EPDε
(
t, uε(t)

) = EPDε
(
0, uε(0)

) −
∫ t

0

∫
D

bt (τ ) · uε(τ ) dx dτ, for every t ∈ [0, T ].

(2.20)
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3 Dynamic Instability and Fracture Nucleation

In this section we present a fracture nucleation condition that arises from the unstable force
law (1.7). This condition is manifested as a dynamic instability. In the following companion
section we investigate the localization of dynamic instability as εk → 0 and define the no-
tion of process zone for the cohesive evolution. Fracture nucleation conditions can be viewed
as instabilities and have been identified for peridynamic evolutions in [65]. Fracture nucle-
ation criteria formulated as instabilities for one dimensional peridynamic bars are developed
in [68]. In this treatment we define a source for crack nucleation as jump discontinuity in
the displacement field that can become unstable and grow in time. Here we establish a direct
link between the growth of jump discontinuities and the appearance of strain concentrations
inside the deforming body.

We proceed with a formal perturbation analysis and consider a time independent body
force density b and a smooth equilibrium solution u of (2.12). Now perturb u in the neigh-
borhood of a point x by adding a piecewise constant vector field δ. The perturbation takes
the value zero on one side of a plane with normal vector ν passing through x and on the
other side of the plane takes the value δ = us(t). Here s(t) is a scalar function of time and
u is a constant vector. Consider the neighborhood Hε(x), then δ(y) = 0 for (y − x) · ν < 0
and δ(y) = us(t) for (y − x) · ν ≥ 0, see Fig. 5. The half space on the side of the plane for
which (y − x) · ν < 0 is denoted by E−

ν .
Write up = u + δ and assume

ρu
p
tt = −∇PDε

(
up

) + b. (3.1)

We regard s(t) as a small perturbation and expand the integrand of ∇PDε(up) in a Taylor
series to recover the linearized evolution equation for the jump s = s(t). The evolution
equation is given by

ρsttu = Aν(x)us, (3.2)

where the stability matrix Aν(x) is a d × d symmetric matrix with real eigenvalues and is
defined by

Aν(x) = − 2

Vd

{∫
Hε (x)∩E−

ν

1

|y − x|∂
2
SW

ε(S, y − x)
y − x

|y − x| ⊗ y − x

|y − x| dy

}
, (3.3)

Fig. 5 Jump discontinuity
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and

S = S(y, x) =
(

u(y) − u(x)

|y − x|
)

· y − x

|y − x| .

Calculation shows that

∂2
SW

ε(S, y − x) = 2

ε
J ε

(|y − x|)(f ′(|y|S2
) + 2f ′′(|y − x|S2

)|y − x|S2
)
, (3.4)

where f ′(|y|S2) > 0 and f ′′(|y|S2) < 0. On writing

Sc = r√|y − x| , (3.5)

we have that

∂2
SW

ε(S, y) > 0 for |S(y, x)| < Sc (3.6)

and

∂2
SWε(S, y) < 0 for |S(y, x)| > Sc. (3.7)

Here r is the inflection point for the function r :→ f (r2) and r = √
x where x is the root of

the equation

f ′(x) + 2xf ′′(x) = 0. (3.8)

Note that the critical strain Sc for which the cohesive force between a pair of points y and x

begins to soften is akin to the square root singularity seen at the crack tip in classical brittle
fracture mechanics.

For eigenvectors u in the eigenspace associated with positive eigenvalues λ of Aν(x) one
has

ρ∂2
t t s(t) = λs(t) (3.9)

and the perturbation s(t) can grow exponentially. Observe from (3.7) that the quadratic form

Aν(x)w · w = − 2

Vd

{∫
Hε (x)∩E−

ν

1

|y − x|∂
2
SW

ε(S, y − x)

(
y − x

|y − x| · w
)2

dy

}
(3.10)

will have at least one positive eigenvalue provided a sufficiently large proportion of bonds
y − x inside the horizon have strains satisfying

|S(x, y)| > Sc (3.11)

for which the cohesive force is in the unstable phase. For this case we see that the jump
can grow exponentially. The key feature here is that dynamic instability is explicitly linked
to strain concentrations in this cohesive model as is seen from (3.7) together with (3.10).
Collecting results we have the following proposition.
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Proposition 3.1 (Fracture Nucleation Condition for Cohesive Dynamics) A condition for
crack nucleation at a point x is that there is at least one direction ν for which Aν(x) has
at least one positive eigenvalue. This occurs if there is a square root strain concentration
|S(y, x)| > Sc over a sufficiently large proportion of cohesive bonds inside the peridynamic
horizon.

Proposition 3.1 together with (3.7) provide the explicit link between dynamic instability
and the critical strain where the cohesive law begins to soften.

More generally we may postulate a condition for the direction along which the opposite
faces of a nucleating fissure are oriented and the direction of the displacement jump across
it. Recall that two symmetric matrices A and B satisfy A ≥ B in the sense of quadratic forms
if Aw · w ≥ Bw · w for all w in R

d . We say that a matrix A is the maximum of a collection
of symmetric matrices if A ≥ B for all matrices B in the collection.

We postulate that the faces of the nucleating fissure are perpendicular to the direction ν∗
associated with the matrix Aν∗(x) for which

Aν∗(x) = max
{
Aν(x); over all directions ν such that Aν(x) has a positive eigenvalue

}
,

(3.12)

and that the orientation of the jump in displacement across opposite sides of the fissure lies
in the eigenspace associated with the largest positive eigenvalue of Aν∗ , i.e., the fissure is
oriented along the most unstable orientation and the displacement jump across the nucleat-
ing fissure is along the most unstable direction.

4 The Process Zone for Cohesive Dynamics and Its Localization in the
Small Horizon Limit

In this section it is shown that the collection of centers of peridynamic neighborhoods with
strain exceeding a certain threshold concentrate on sets with zero volume in the limit of
vanishing non-locality. In what follows we probe the dynamics to obtain mathematically
rigorous and explicit estimates on the size of the process zone in terms of the radius of the
peridynamic horizon 0 < ε < 1.

We consider solutions uε of (2.12) and define a mathematical notion of process zone
based the strain exceeding threshold values associated with Sc . The process zone is best
described in terms of the basic unit of peridynamic interaction: the peridynamic neighbor-
hoods Hε(x) of radius ε > 0 with centers x ∈ D. The strain between x and a point y inside
the neighborhood is denoted by

Sε(y, x) = uε(y) − uε(x)

|y − x| · y − x

|y − x| .

The collection of points y inside Hε(x) for which the strain |Sε(y, x)| exceeds the thresh-
old function Sc = r/

√|y − x| is denoted by {y ∈ Hε(x) : |Sε(x, y)| > Sc}. Recall for the
cohesive model there is softening in the cohesive force-strain behavior given by (1.7) when
|S(y, x)| > Sc .

The fraction of points inside the neighborhood Hε(x) with strains exceeding the thresh-
old is written

P
({

y in Hε(x) : |Sε(y, x)| > Sc

})
, (4.1)
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where the weighted volume fraction for any subset B of Hε(x) is defined as

P (B) = 1

εdm

∫
B

J (|y − x|/ε) dy, (4.2)

with normalization constant

m =
∫
H1(0)

J (|ξ |) dξ (4.3)

chosen so that P (Hε(x)) = 1.

Definition 4.1 (Process Zone) Fix a volume fraction 0 < θ ≤ 1, and with each time t in the
interval 0 ≤ t ≤ T , define the process zone PZε(θ, t) to be the collection of centers of peri-
dynamic neighborhoods for which the portion of points y with strain Sε(t, y, x) exceeding
the threshold Sc is greater than θ , i.e., P ({y ∈ Hε(x) : |Sε(t, y, x)| > Sc}) > θ .

The fracture set lies within the process zone process zone and is the collection of neigh-
borhoods with centers with strains exceed the threshold S+

c > Sc .

Definition 4.2 (Fracture Set) The fracture set is defined to be the collection of centers of
peridynamic neighborhoods for which the portion of points y with strain Sε(t, y, x) exceed-
ing the threshold S+

c is greater than 1/2, i.e., P ({y ∈ Hε(x) : |Sε(t, y, x)| > S+
c }) > 1/2.

The definition of fracture set given here is consistent with the fracture toughness for this
model and is different from the usual one which collapses material damage onto a surface
across which the displacement jumps.

It follows from Proposition 3.1 that the process zone contains peridynamic neighbor-
hoods associated with softening cohesive forces. Within this zone pre-existing jump discon-
tinuities in the displacement field can grow.

Remark 4.1 Here we have described a range of process zones depending upon the choice
of θ . In what follows we show that for any choice of 0 < θ ≤ 1 the volume of the process
zone is explicitly controlled by the radius of the peridynamic horizon ε.

We consider problem formulations in two and three dimensions and the volume or area
of a set is given by the d dimensional Lebesgue measure denoted by Ld , for d = 2,3. We let

C(t) =
((

2LEFM(u0) + ρ‖v0‖L2(D;Rd ) + 1
)1/2 +

√
ρ−1

∫ t

0
‖b(τ)‖L2(D;Rd ) dτ

)2

− 1

(4.4)

and note that C(t) ≤ C(T ) for t < T .
We now give the following bound on the size of the process zone.

Theorem 4.1 (Dependence of the Process Zone on the Radius of the Peridynamic Horizon)

Ld
(
PZε(θ, t)

) ≤ ε

θmf (r2)
× C(t)

2
, (4.5)

where 0 ≤ β < 1 and β = 2α − 1 and 0 ≤ t ≤ T .
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A straight forward calculation shows that the energy necessary to soften the force be-
tween x and a fraction θ of all points y inside the neighborhood is given by

θ
1

Vd

∫
Hε (x)

|y − x|Wε(Sc, y − x)dy = θmf (r2)

ε
. (4.6)

The inequality (4.5) together with (4.6) shows in a quantitative way that the process zone
scales inversely with the energy required to soften bonds. Theorem 4.1 explicitly shows
that the size of the process zone is controlled by the radius ε of the peridynamic horizon,
uniformly in time. The calculation establishing theorem is 4.1 provided in Sect. 6.7.

Remark 4.2 This analysis shows that the horizon size ε for cohesive dynamics is a modeling
parameter that may be calibrated according to the size of the process zone obtained from
experimental observations.

5 The Small Horizon Limit of Cohesive Dynamics

In this section we identify the distinguished small horizon ε → 0 limit for cohesive dy-
namics. It is shown here that the limit dynamics has bounded bulk linear elastic energy and
Griffith surface energy characterized by the shear moduli μ, Lamé modulus λ, and energy
release rate Gc respectively.

We consider a family of cohesive evolutions uεk , each associated with a fixed potential
Wεk and horizon length εk , with k = 1,2, . . . and εk → 0. Each uεk (t, x) can be thought
of as being the result of a perfectly accurate numerical simulation of a cohesive evolution
associated with the potential Wεk . It is shown in this section that the cohesive dynamics
uεk (t, x) converges to a limit evolution u0(t, x) in the limit, εk → 0. The limit evolution
describes the dynamics of the cracked body when the scale of nonlocality is infinitesimally
small with respect to the material specimen. We show that the cohesive dynamics uεk (t, x)

approaches the limit dynamics u0(t, x) characterized by μ, λ, and Gc given by the formulas
(5.7) and (5.8).

In what follows the sequence of cohesive dynamics described by uεk is shown to con-
verge to the limiting free crack evolution u0(t, x) in mean square, uniformly in time, see
Theorem 5.1. The limit evolution is shown to have the following properties:

• It has uniformly bounded energy in the sense of linear elastic fracture mechanics for
0 ≤ t ≤ T .

• It satisfies an energy inequality involving the kinetic energy of the motion together with
the bulk elastic and surface energy associated with linear elastic fracture mechanics for
0 ≤ t ≤ T .

• It is elastodynamic away from the fracture set.

We provide explicit conditions under which these properties are realized for the limit dy-
namics.

Hypothesis 5.1 We suppose that the magnitudes of the displacements uεk for cohesive dy-
namics are bounded for 0 ≤ t ≤ T uniformly in εk , i.e., supεk

sup0≤t≤T ‖uεk (t)‖L∞(D;Rd ) < ∞.
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The convergence of cohesive dynamics is given by the following theorem,

Theorem 5.1 (Convergence of Cohesive Dynamics) For each εk we prescribe identical
LEFM initial data u0(x) and v0(x) and the solution to the cohesive dynamics initial value
problem is denoted by uεk . Now consider a sequence of solutions uεk associated with a
vanishing peridynamic horizon εk → 0 and suppose Hypothesis 5.1 holds true. Then, on
passing to a subsequence if necessary, the cohesive evolutions uεk converge in mean square
uniformly in time to a limit evolution u0 belonging to C([0, T ];L2

0(D;Rd)) with the same
LEFM initial data, i.e.,

lim
εk→0

max
0≤t≤T

{‖uεk (t) − u0(t)‖L2(D;Rd )

} = 0 (5.1)

and u0(0, x) = u0(x) and ∂tu
0(0, x) = v0(x).

It is shown in Theorem 6.6 of Sect. 6.4 that the limit evolution u0(t, x) has a weak
derivative u0

t (t, x) belonging to L2([0, T ] × D;Rd).
The limiting εk → 0 dynamics is given by displacements described by functions of

bounded deformation SBD. Functions u ∈ SBD belong to L1(D;Rd) and are approximately
continuous, i.e., have Lebesgue limits for almost every x ∈ D given by

lim
ε↘0

1

Vd

∫
Hε (x)

|u(y) − u(x)|dy = 0, d = 2,3, (5.2)

where Hε(x) is the ball of radius ε centered at x. The jump set Ju for elements of SBD is
defined to be the set of points of discontinuity which have two different one sided Lebesgue
limits. One sided Lebesgue limits of u with respect to a direction νu(x) are denoted by
u−(x), u+(x) and are given by

lim
ε↘0

1

Vd

∫
H−

ε (x)

|u(y) − u−(x)|dy = 0,

lim
ε↘0

1

Vd

∫
H+

ε (x)

|u(y) − u+(x)|dy = 0, d = 2,3,

(5.3)

where H−
ε (x) and H+

ε (x) are given by the intersection of Hε(x) with the half spaces (y −x) ·
νu(x) < 0 and (y − x) · νu(x) > 0 respectively. SBD functions have jump sets Ju, described
by a countable number of components K1,K2, . . . , contained within smooth manifolds, with
the exception of a set K0 that has zero d − 1 dimensional Hausdorff measure [5]. Here the
notion of arc length or (surface area) is the d − 1 dimensional Hausdorff measure of Ju and
Hd−1(Ju) = ∑

i Hd−1(Ki). The strain [5] of a displacement u belonging to SBD, written
as Eu, is a generalization of the classic strain tensor and is related to the strain S introduced
here by

lim
ε↘0

1

Vd

∫
Hε (x)

|S(y, x) − Eu(x)e · e|dy = 0, d = 2,3 (5.4)

for almost every x ∈ D, with respect to d-dimensional Lebesgue measure Ld . The sym-
metric part of the distributional derivative of u, Eu = 1/2(∇u + ∇uT ) for SBD functions
is a d × d matrix valued Radon measure with absolutely continuous part described by the
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density Eu and singular part described by the jump set [5, 9] and

〈Eu,Φ〉 =
∫

D

d∑
i,j=1

EuijΦij dx +
∫

Ju

d∑
i,j=1

(
u+

i − u−
i

)
νjΦij dHd−1, (5.5)

for every continuous, symmetric matrix valued test function Φ .
We now describe the elastic energy for the limit dynamics associated with LEFM initial

data.

Theorem 5.2 (The Limit Dynamics Has Bounded LEFM Energy) For LEFM initial data
and if the initial displacement u0 ∈ SBD and ‖u0‖L∞(D;Rd ) < ∞ then the limit evolution u0

belongs to SBD for every t ∈ [0, T ]. Furthermore there exists a constant C depending only
on T bounding the LEFM energy,

∫
D

2μ|Eu0(t)|2 + λ|divu0(t)|2 dx + GcHd−1(Ju0(t)) ≤ C, d = 2,3, (5.6)

for 0 ≤ t ≤ T where Ju0(t) denotes the evolving fracture surface and Hd−1(Ju0(t)) is its d − 1
dimensional Hausdorff measure at time t . Here μ, λ are given by the explicit formulas

μ = λ = 1

4
f ′(0)

∫ 1

0
r2J (r) dr, d = 2 and

μ = λ = 1

5
f ′(0)

∫ 1

0
r3J (r) dr, d = 3, (5.7)

and

Gc = 2ωd−1

ωd

f∞
∫ 1

0
rdJ (r) dr, for d = 2,3, (5.8)

where f∞ is defined by (1.6) and ωn is the volume of the n dimensional unit ball, ω1 = 2,
ω2 = π , ω3 = 4π/3. The potential f and influence function J can always be chosen to
satisfy (5.7) and (5.8) for any μ = λ > 0 corresponding to the Poisson ratio ν = 1/3, for
d = 2 and ν = 1/4, for d = 3, and Gc > 0.

Remark 5.1 The absolutely continuous part of the strain Eu0 is defined for points away
from the fracture surface Ju0(t) and the process zone for the limit evolution can be viewed as
being confined to the evolving fracture surface Ju0(t). Theorem 5.2 shows that the fracture
set Ju0(t) for the limit evolution u0(t, x) is confined to a set of finite d − 1 dimensional
Hausdorff measure.

We now present an energy inequality for the limit evolution. The sum of energy and work
for the displacement u0 at time t is written

GF
(
u0(t),D

) = ρ

2
‖u0

t (t)‖2
L2(D;Rd )

+ LEFM
(
u0(t),D

) −
∫

D

b(t) · u0(t) dx. (5.9)

The sum of energy and work for the initial data u0, v0 is written

GF(u0,D) = ρ

2
‖v0‖2

L2(D;Rd )
+ LEFM(u0,D) −

∫
D

b(0) · u0 dx. (5.10)
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The energy inequality for the limit evolution u0 is given by,

Theorem 5.3 (Energy Inequality) For almost every t in [0, T ],

GF
(
u0(t),D

) ≤ GF(u0,D) −
∫ t

0

∫
D

bt (τ ) · u0(τ ) dx dτ. (5.11)

We identify conditions for which the limit dynamics for u0 is elastodynamic away from
the process zone.

Theorem 5.4 (Elastodynamics Away from the Process Zone) Fix δ > 0 and consider an
open set D′ ⊂ D for which points x in D′ do not belong to the process zone for every
evolution uεk (t, x) with εk < δ and 0 ≤ t ≤ T , i.e.,

|Sεk (x, y)| =
∣∣∣∣ (u

εk (t, y) − uεk (t, x))

|y − x| · e
∣∣∣∣ < Sc, (5.12)

for every x ∈ D′ and y for which |y − x| < εk . Then the limit evolution u0(t, x) evolves
elastodynamically on D′ and is governed by the balance of linear momentum expressed by
the Navier Lamé equations on the domain [0, T ] × D′ given by

ρu0
t t = divσ + b,on [0, T ] × D′, (5.13)

where the stress tensor σ is given by,

σ = λId Tr
(
Eu0

) + 2μEu0, (5.14)

where Id is the identity on R
d and Tr(Eu0) is the trace of the strain. Here the second deriva-

tive u0
t t is the time derivative in the sense of distributions of u0

t and divσ is the divergence of
the stress tensor σ in the distributional sense.

Remark 5.2 The limiting evolution of the cohesive dynamics model is given by the
displacement—crack set pair u0(t, x), Ju0(t). The Navier Lamé equations describes the dy-
namics of the body away from the evolving fracture path inside the media.

Remark 5.3 The equality λ = μ appearing in Theorem 5.2 is a consequence of the central
force nature of the local cohesive interaction mediated by (1.7). More general non-central
interactions are proposed in Sect. 15 of [60] and in the state based peridynamic formula-
tion [64]. The non-central formulations deliver a larger class of energy-volume-shape change
relations for homogeneous deformations. Future work will address state based formulations
that deliver general anisotropic elastic response for the bulk energy associated with the lim-
iting dynamics.

Remark 5.4 We point out that the cohesive model addressed in this work does not have an
irreversibility constraint and the constitutive law (1.7) applies at all times in the peridynamic
evolution. Because of this the crack set at each time is given by Ju0(t). For rapid monotonic
loading we anticipate that crack growth is increasing for this model, i.e., Ju0(t ′) ⊂ Ju0(t) for
t ′ < t . For cyclic loading this is clearly not the case and the effects of irreversibility (damage)
must be incorporated into in the cohesive model.



Cohesive Dynamics and Brittle Fracture 161

6 Mathematical Underpinnings and Analysis

In this section we provide the proofs of theorems stated in Sects. 2, 4 and 5. The first sub-
section asserts the Lipschitz continuity of ∇PDεk (u) for u in L2

0(D;Rd) and applies the
theory of ODE to deduce existence of the cohesive dynamics, see Sect. 6.1. A Gronwall
inequality is used to bound the cohesive potential energy and kinetic energy uniformly in
time, see Sect. 6.2. Uniformly bounded sequences {uεk }∞

k=1 of cohesive dynamics are shown
to be compact in C([0, T ];L2

0(D;Rd)), see Sect. 6.3. Any limit point u0 for the sequence
uεk is shown to belong to SBD for every 0 ≤ t ≤ T , see Theorem 6.4 of Sect. 6.3. The limit
evolutions u0 are shown to have uniformly bounded elastic energy in the sense of linear
elastic fracture mechanics for 0 ≤ t ≤ T , see Sect. 6.3. In Sect. 6.4 we pass to the limit in
the energy balance equation for cohesive dynamics (2.20) to recover an energy inequality
for the limit flow. The balance of linear momentum satisfied by the limit flow is obtained
on identifying the weak L2 limit of the sequence {∇PDεk (uεk )}∞

k=1 and passing to the limit
in the weak formulation of (2.12), see Sect. 6.5. The small strain expansion of the cohesive
potential energy (1.12) is derived in Sect. 6.6. We then provide the proof of Theorem 4.1
in Sect. 6.7 and conclude with the proofs of Theorem 2.1 in Sect. 6.8 and Theorem 6.4 in
Sect. 6.9.

6.1 Existence of a Cohesive Evolution

The peridynamic equation (1.9) for cohesive dynamics is written as an equivalent first or-
der system. We set yεk = (y

εk

1 , y
εk

2 )T where y
εk

1 = uεk and y
εk

2 = u
εk
t . Set F εk (yεk , t) =

(F
εk

1 (yεk , t),F
εk

2 (yεk , t))T , where

F
εk

1

(
yεk , t

) = y
εk

2 ,

F
εk

2

(
yεk , t

) = −∇PDεk
(
y

εk

1

) + b(t).

The initial value problem for yεk given by the first order system is

d

dt
yεk = F εk

(
yεk , t

)
(6.1)

with LEFM initial conditions yεk (0) = (u0, v0)
T . In what follows we consider the more

general class of initial data (u0, v0) belonging to L2
0(D;Rd) × L2

0(D;Rd).

Theorem 6.1 For 0 ≤ t ≤ T there exists unique solution in C1([0, T ];L2
0(D;Rd)) for the

mesoscopic dynamics described by (6.1) with initial data in L2
0(D;Rd) × L2

0(D;Rd) and
body force b(t, x) in C1([0, T ];L2

0(D;Rd)).

It now follows that for LEFM initial data one has a unique solution uεk of (2.12) in Sect. 2
belonging to C2([0, T ];L2

0(D;Rd)).

Proof of Theorem 6.1 A straight forward calculation shows that for a generic positive con-
stant C independent of S , y − x, and εk ,

sup
S

|∂2
SWεk (S, y − x)| ≤ C

εk|y − x| × J
(|y − x|/εk

)
. (6.2)
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From this it easily follows from Hölder and Minkowski inequalities that ∇PDεk is a Lip-
schitz continuous map from L2

0(D;Rd) into L2
0(D;Rd) and there is a positive constant C

independent of 0 ≤ t ≤ T , such that for any pair of vectors y = (y1, y2)
T , z = (z1, z2)

T in
L2

0(D;Rd) × L2
0(D;Rd)

‖F εk (y, t) − F εk (z, t)‖L2(D;Rd )2 ≤ C

εk

‖y − z‖L2(D;Rd )2 for 0 ≤ t ≤ T . (6.3)

Here for any element w = (w1,w2) of L2
0(D;Rd) × L2

0(D;Rd), ‖w‖2
L2(D;Rd )2 =

‖w1‖2
L2(D;Rd )

+ ‖w2‖2
L2(D;Rd )

. Since (6.3) holds the theory of ODE in Banach space [24]
shows that there exists a unique solution to the initial value problem (6.1) with yεk and ∂ty

εk

belonging to C([0, T ];L2
0(D;Rd)) and Theorem 6.1 is proved. In this context we point out

the recent work of [29] where existence theory for peridynamic evolutions with Lipschitz
continuous pairwise force functions are established. �

6.2 Bounds on Kinetic and Potential Energy for Solutions of PD

In this section we apply Gronwall’s inequality to obtain bounds on the kinetic and elastic
energy for peridynamic flows described by Theorem 2.2. The bounds are used to show that
the solutions of the PD initial value problem are Lipschitz continuous in time with values in
L2

0(D;Rd).
We now prove Theorem 2.2. Multiplying both sides of (2.12) by u

εk
t (t) and integration

together with a straight forward calculation gives

1

2

d

dt

{
2PDεk

(
uεk (t)

) + ρ‖uεk
t (t)‖2

L2(D;Rd )

}

=
∫

D

(∇PDεk
(
uεk (t)

) + ρu
εk
tt (t)

) · uεk
t (t) dx

=
∫

D

u
εk
t (t) · b(t) dx ≤ ‖uεk

t ‖L2(D;Rd )‖b(t)‖L2(D;Rd ). (6.4)

Set

W(t) = 2PDεk
(
uεk (t)

) + ρ‖uεk
t (t)‖2

L2(D;Rd )
+ 1, (6.5)

and applying (6.4) gives

1

2
W ′(t) ≤ ‖uεk

t ‖L2(D;Rd )‖b(t)‖L2(D;Rd ) ≤ 1√
ρ

√
W(t)‖b(t)‖L2(D;Rd ) (6.6)

and

1

2

∫ t

0

W ′(τ )√
W(τ)

dτ ≤ 1√
ρ

∫ t

0
‖b(τ)‖L2(D;Rd ) dτ. (6.7)

Hence

√
W(t) − √

W(0) ≤ 1√
ρ

∫ t

0
‖b(τ)‖L2(D;Rd ) dτ (6.8)
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and

2PDεk
(
uεk (t)

) + ρ‖uεk
t (t)‖2

L2(D;Rd )
≤

(
1√
ρ

∫ t

0
‖b(τ)‖L2(D;Rd ) dτ + √

W(0)

)2

− 1.

(6.9)

We now apply Theorem 2.1 to get the upper bound

PDεk (u0) ≤ LEFM(u0,D) for every εk, k = 1,2, . . . , (6.10)

where LEFM(u0,D) is the elastic potential energy for linear elastic fracture mechanics
given by (2.2) or equivalently (2.5). Theorem 2.2 now follows from (6.9).

Theorem 2.2 implies that PD solutions are Lipschitz continuous in time; this is stated
explicitly in Theorem 2.3 of Sect. 2. To prove Theorem 2.3 we write

‖uεk (t1) − uεk (t2)‖L2(D;Rd ) =
(∫

D

∣∣∣∣
∫ t1

t2

uεk
τ (τ ) dτ

∣∣∣∣
2

dx

) 1
2

=
(∫

D

|t1 − t2|2
∣∣∣∣ 1

|t1 − t2|
∫ t1

t2

uεk
τ (τ ) dτ

∣∣∣∣
2

dx

) 1
2

≤
(∫

D

|t1 − t2|
∫ t1

t2

|uεk
τ (τ )|2 dτ dx

) 1
2

≤
(

|t1 − t2|
∫ t1

t2

‖uεk
τ (τ )‖2

L2(D;Rd )
dτ

)1/2

≤ K|t1 − t2|, (6.11)

where the third to last line follows from Jensen’s inequality, the second to last line from
Fubini’s theorem and the last inequality follows from the upper bound for ‖uεk

t (t)‖2
L2(D;Rd )

given by Theorem 2.2.

6.3 Compactness and Convergence

In this section we prove Theorems 5.1 and 5.2. To proceed with the proof of Theorem 5.1
we require the compactness theorem.

Theorem 6.2 (Compactness) Given a sequence of functions uεk ∈ L2
0(D;Rd), εk =

1/k, k = 1,2, . . . such that

sup
εk

(
PDεk

(
uεk

) + ‖uεk‖L∞(D;Rd )

)
< ∞, (6.12)

then there exists a subsequence uεk
′

and limit point u in L2
0(D;Rd) ∩ L∞(D;Rd) for which

uεk
′ → u in L2

(
D;Rd

)
as εk

′ → 0. (6.13)

In what follows it is convenient to change variables y = x + δξ for |ξ | < 1 and 0 <

δ < α/2 < 1, here the peridynamic neighborhood Hδ(x) transforms to H1(0) = {ξ ∈ R
d;

|ξ | < 1}. The unit vector ξ/|ξ | is denoted by e. To prove Theorem 6.2 we need the following
upper bound given by the following theorem.
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Theorem 6.3 (Upper Bound) For any 0 < δ < α/2 there exist positive constants K̃1 and K̃2

independent of u ∈ L2
0(D;Rd) ∩ L∞(D;Rd) such that

∫
H1(0)

∫
D

|u(x + δξ) − u(x)|2 dx J (|ξ |) dξ ≤ δ
(
K̃1 + K̃2‖u‖2

L∞(D;Rd )

)
PDδ(u).

(6.14)

We establish the upper bound in two steps.

Lemma 6.1 (Coercivity) There exists a positive constant C independent of u ∈ L2
0(D;Rd)

for which

∫
H1(0)

∫
D

|u(x + δξ) − u(x)|2 dx J (|ξ |) dξ

≤ C

∫
H1(0)

∫
D

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx J (|ξ |) dξ . (6.15)

Proof of Lemma 6.1 We prove by contradiction. Suppose for every positive integer N > 0
there is an element uN ∈ L2

0(D;Rd) for which

N

∫
H1(0)

∫
D

∣∣(uN(x + δξ) − uN(x)
) · e∣∣2

dx J (|ξ |) dξ

<

∫
H1(0)

∫
D

∣∣(uN(x + δξ) − uN(x)
)∣∣2

dx J (|ξ |) dξ. (6.16)

The Cauchy Schwartz inequality together with the triangle inequality deliver a constant
K > 0 independent of u in L2

0(D;Rd) for which

∫
H1(0)

∫
D

∣∣(u(x + δξ) − u(x)
)∣∣2

dx J (|ξ |) dξ ≤ K‖u‖2
L2(D;Rd )

. (6.17)

An application of the nonlocal Korn inequality [25, Lemma 6, App. 2] gives the existence
of a constant K > 0 independent of u in L2

0(D;Rd) for which

K‖u‖2
L2(D;Rd )

≤
∫
H1(0)

∫
D

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx J (|ξ |) dξ. (6.18)

Applying the inequalities (6.16), (6.17), and (6.18) we discover that K/N > K for all inte-
gers N > 0 to conclude K = 0 which is a contradiction and Lemma 6.1 is proved. �

Theorem 6.3 now follows from Lemma 6.1 and the upper bound given by

Lemma 6.2 (Upper Bound)

∫
H1(0)

∫
D

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx J (|ξ |) dξ ≤ δ
(
K̃1 + K̃2‖u‖2

L∞(D;Rd )

)
PDδ(u).

(6.19)
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Proof of Lemma 6.2 Consider the concave potential function f described in the intro-
duction, recall f (0) = 0 and given M > 0 set HM = f (M)/M . For 0 < r < M one has
r < H−1

M f (r) and set

Aδξ = {
x ∈ D; ∣∣(u(x + δξ) − u(x)

) · e∣∣2
> δ|ξ |M}

, (6.20)

so
∫

D\Aδξ

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx = δ|ξ |
∫

D\Aδξ

δ|ξ ||S|2 dx

≤ δ|ξ |
HM

∫
D\Aδξ

1

δ|ξ |f
(
δ|ξ |S|2)dx. (6.21)

Now f (r) > f (M) for r > M gives

1

δ|ξ |f (M)Ld(Aδξ ) ≤
∫

Aδξ

1

δ|ξ |f
(
δ|ξ |S|2)dx (6.22)

and

Ld(Aδξ ) ≤ δ|ξ |
f (M)

∫
D

1

δ|ξ |f
(
δ|ξ |S|2)dx. (6.23)

Noting that

∫
Aδξ

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx ≤ 2‖u‖2
L∞(D;Rd )

Ld(Aδξ ) (6.24)

and collecting results, one has

∫
D

∣∣(u(x + δξ) − u(x)
) · e∣∣2

dx ≤ δ|ξ |
(

1

HM

+
2‖u‖2

L∞(D;Rd )

f (M)

)∫
D

1

δ|ξ |f
(
δ|ξ |S|2)dx.

(6.25)

Lemma 6.2 follows on multiplying both sides of (6.25) by J (|ξ |) and integration over H1(0).
Theorem 6.3 follows from Lemmas 6.1 and 6.2. �

Arguing as in as in Lemma 5.4 of [41] we have the monotonicity given by

Lemma 6.3 (Monotonicity) For any integer M , η > 0 and u ∈ L∞(D;Rd) one has

PDMη(u) ≤ PDη(u). (6.26)

Now choose the subsequence εk = 1/2k , i = 1,2, . . . and from Theorem 6.3 and
Lemma 6.3 we have for any 0 < K < k with δ = 2−K , εk = 2−k ,

∫
H1(0)

∫
D

|uεk (x + δξ) − uεk (x)|2 dx J (|ξ |) dξ ≤ δ
(
K̃1 + K̃2‖uεk‖2

L∞(D;Rd )

)
PDεk

(
uεk

)
.

(6.27)
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Applying the hypothesis (6.12) to inequality (6.27) gives a finite constant B independent of
εk and δ for which

∫
H1(0)

∫
D

|uεk (x + δξ) − uεk (x)|2 dx J (|ξ |) dξ ≤ δB, (6.28)

for all εk < δ. One can then apply (6.28) as in [41] (or alternatively apply (6.28) and argu-
ments similar to the proof of the Kolomogorov-Riesz compactness theorem [43]) to show
that the sequence {uεk }∞

k=1 is a totally bounded subset of L2
0(D;Rd) and Theorem 6.2 is

proved.
Now it is shown that the family of evolutions {uεk }∞

k=1 is relatively compact in
C([0, T ];L2

0(D;Rd)). For each t in [0, T ] we apply Theorem 2.2 and Hypothesis 5.1 to
obtain the bound

PDεk
(
uεk (t)

) + ‖uεk (t)‖L∞(D) < C, (6.29)

where C < ∞ and is independent of εk , k = 1,2, . . . , and 0 ≤ t ≤ T . With this bound
we apply Theorem 6.2 to assert that for each t the sequence {uεk (t)}∞

k=1 is relatively com-
pact in L2(D;Rd). From Theorem 2.3 the sequence {uεk }∞

k=1, is seen to be uniformly equi-
continuous in t with respect to the L2(D;Rd) norm and we immediately conclude from
the Ascoli theorem that {uεk }∞

k=1 is relatively compact in C([0, T ];L2(D;Rd)). Therefore
we can pass to a subsequence also denoted by {uεk (t)}∞

k=1 to assert the existence of a limit
evolution u0(t) in C([0, T ];L2(D;Rd)) for which

lim
k→∞

{
sup

t∈[0,T ]
‖uεk (t) − u0(t)‖L2(D;Rd )

}
= 0 (6.30)

and Theorem 5.1 is proved.
We now prove Theorem 5.2. One has that limit points of sequences satisfying (6.12)

enjoy higher regularity and that the LEFM energy for the limit point provides a lower bound
on the sequence of energies.

Theorem 6.4 (Higher Regularity and Lower Bound) Every limit point u0 of a sequence
{uεk }∞

k=1 in L2
0(D;Rd) satisfying (6.12) belongs to SBD∩L∞(D,Rd) and we have the lower

bound

lim inf
εk→0

PDεk
(
uεk

) ≥ LEFM
(
u0,D

)
. (6.31)

We provide the proof of Theorem 6.4 in Sect. 6.9.
Since u0(t) is a cluster point for the sequence {uεk (t)} we apply Theorem 6.4 to discover

that the limit has bounded elastic energy in the sense of fracture mechanics, i.e.,

LEFM
(
u0(t),D

) = PD0
(
u0(t)

) ≤ lim inf
k→∞

PDεk
(
uεk (t)

)
< C (6.32)

and Theorem 5.2 is proved.
We conclude this section by stating the following pointwise convergence of cohesive

energies to the LEFM energy for u ∈ SBD.

Theorem 6.5 (Point Wise Convergence of Peridynamic Energies for Cohesive Dynamics)
Suppose u belongs to L2

0(D;Rd), then

lim
k→∞

PDεk (u) = LEFM(u,D), for every u in SBD ∩ L∞(
D;Rd

)
. (6.33)
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Theorem 6.5 follows immediately from Theorems 2.1 and 6.4. Indeed given u ∈ SBD ∩
L∞(D;Rd) and u ∈ L2

0(D;Rd) we apply Theorem 2.1 and note that the choice uεk = u

satisfies (6.12) and apply Theorem 6.4 to conclude that

LEFM(u,D) ≥ lim sup
εk→0

PDεk (u) ≥ lim inf
εk→0

PDεk (u) ≥ LEFM(u,D). (6.34)

6.4 Energy Inequality for the Limit Flow

In this section we prove Theorem 5.3. We begin by showing that the limit evolution u0(t, x)

has a weak derivative u0
t (t, x) belonging to L2([0, T ] × D;Rd). This is summarized in the

following theorem.

Theorem 6.6 On passage to subsequences if necessary the sequence u
εk
t weakly converges

in L2([0, T ] × D;Rd) to u0
t , where

−
∫ T

0

∫
D

∂tψ · u0 dx dt =
∫ T

0

∫
D

ψ · u0
t dx dt (6.35)

for all compactly supported smooth test functions ψ on [0, T ] × D.

Proof The bound on the kinetic energy given in Theorem 2.2 implies

sup
εk>0

(
sup

0≤t≤T

‖uεk
t ‖L2(D;Rd )

)
< ∞. (6.36)

Therefore the sequence u
εk
t is bounded in L2([0, T ] × D;Rd) and passing to a subsequence

if necessary we conclude that there is a limit function ũ0 for which u
εk
t ⇀ ũ0 weakly in

L2([0, T ]×D;Rd). Observe also that the uniform convergence (6.30) implies that uεk → u0

in L2([0, T ] × D;Rd). On writing the identity

−
∫ T

0

∫
D

∂tψ · uεk dx dt =
∫ T

0

∫
D

ψ · uεk
t dx dt. (6.37)

applying our observations and passing to the limit it is seen that ũ0 = u0
t and the theorem

follows. �

To establish Theorem 5.3 we require the following inequality.

Lemma 6.4 For almost every t in [0, T ] we have

‖u0
t (t)‖L2(D;Rd ) ≤ lim inf

εk→0
‖uεk

t (t)‖L2(D;Rd ). (6.38)

Proof We start with the identity

‖uεk
t ‖2

L2(D;Rd )
− 2

∫
D

u
εk
t · u0

t dx + ‖u0
t ‖2

L2(D;Rd )
= ‖uεk

t − u0
t ‖2

L2(D;Rd )
≥ 0, (6.39)

and for every non-negative bounded measurable function of time ψ(t) defined on [0, T ] we
have

∫ T

0
ψ‖uεk

t − u0
t ‖2

L2(D;Rd )
dt ≥ 0. (6.40)
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Together with the weak convergence given in Theorem 6.6 one easily sees that

lim inf
εk→0

∫ T

0
ψ‖uεk

t ‖2
L2(D;Rd )

dt −
∫ T

0
ψ‖u0

t ‖2
L2(D;Rd )

dt ≥ 0. (6.41)

Applying (6.36) and invoking the Lebesgue dominated convergence theorem we conclude

lim inf
εk→0

∫ T

0
ψ‖uεk

t ‖2
L2(D;Rd )

dt =
∫ T

0
ψ lim inf

εk→0
‖uεk

t ‖2
L2(D;Rd )

dt (6.42)

to recover the inequality given by

∫ T

0
ψ

(
lim inf
εk→0

‖uεk
t ‖2

L2(D;Rd )
− ‖u0

t ‖2
L2(D;Rd )

)
dt ≥ 0. (6.43)

The lemma follows noting that (6.43) holds for every non-negative test function ψ . �

Theorem 5.3 now follows immediately on taking the εk → 0 limit in the peridynamic
energy balance equation (2.20) of Theorem 2.4 and Theorem 6.5, (6.32), and (6.38) of
Lemma 6.4.

6.5 Stationarity Conditions for the Limit Flow

In this section we prove Theorem 5.4. The first subsection establishes Theorem 5.4 using
Theorem 6.7. Theorem 6.7 is proved in the second subsection.

6.5.1 Proof of Theorem 5.4

To proceed we make the change of variables y = x + εξ where ξ belongs to the unit disk
H1(0) centered at the origin and the strain S is of the form

S =
(

u(x + εξ) − u(x)

ε|ξ |
)

· e, (6.44)

where e = ξ/|ξ |. It is convenient for calculation to express the strain through the directional
difference operator Dε|ξ |

e u defined by

Dε|ξ |
e u(x) = u(x + εξ) − u(x)

ε|ξ | and S = Dε|ξ |
e u · e. (6.45)

One also has

D
ε|ξ |
−e u(x) = u(x − εξ) − u(x)

ε|ξ | , (6.46)

and the integration by parts formula for functions u in L2
0(D;Rd), densities φ in L2

0(D;R)

and ψ continuous on H1(0) given by

∫
D

∫
H1(0)

(
Dε|ξ |

e u · e)φ(x)ψ(ξ) dξ dx =
∫

D

∫
H1(0)

(u · e)(Dε|ξ |
−e φ

)
ψ(ξ)dξ dx. (6.47)
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Note further for v in C∞
0 (D;Rd) and φ in C∞

0 (D;R) one has

lim
εk→0

Dεk |ξ |
e v · e = Eve · e and lim

εk→0
Dεk |ξ |

e φ = e · ∇φ, (6.48)

where the convergence is uniform in D.
Taking the first variation of the action integral (2.11) gives the Euler equation in weak

form

ρ

∫ T

0

∫
D

u
εk
t · δt dx dt

− 1

ωd

∫ T

0

∫
D

∫
H1(0)

|ξ |J (|ξ |)f ′(εk|ξ ||Dεk |ξ |
e uεk · e|2)2

(
Dεk |ξ |

e uεk · e)(Dεk |ξ |
e δ · e)dξ dx dt

+
∫ T

0

∫
D

b · δ dx dt = 0, (6.49)

where the test function δ = δ(x, t) = ψ(t)φ(x) is smooth and has compact support in
[0, T ] × D. Next we make the change of function and write Fs(S) = 1

s
f (sS2), F ′

s (S) =
2Sf ′(sS2), and s = εk|ξ | we transform (6.49) into

ρ

∫ T

0

∫
D

u
εk
t · δt dx dt

− 1

ωd

∫ T

0

∫
D

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)Dεk
e δ · e dξ dx dt

+
∫ T

0

∫
D

b · δ dx dt = 0, (6.50)

where

F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e) = f ′(εk|ξ ||Dεk |ξ |
e uεk · e|2)2Dεk |ξ |

e uεk · e. (6.51)

For future reference observe that Fs(r) is convex-concave in r with inflection point rs =
r/

√
s where r is the inflection point of f (r2) = F1(r). One also has the estimates

Fs(r) ≥ 1

s
F1(r) for r ≥ rs, and (6.52)

sup
0≤r<∞

|F ′
s (r)| ≤

2f ′(r2)r√
s

. (6.53)

We send εk → 0 in (6.50) applying the weak convergence Theorem 6.6 to the first term to
obtain

ρ

∫ T

0

∫
D

u0
t · δt dx dt

− lim
εk→0

1

ωd

(∫ T

0

∫
D

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)Dεk
e δ · e dξ dx dt

)

+
∫ T

0

∫
D

b · δ dx dt = 0. (6.54)
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Theorem 5.4 follows once we identify the limit of the second term in (6.54) for smooth
test functions φ(x) with support contained in the set D′ ⊂ D described in the hypothesis of
Theorem 5.4. We state the following convergence theorem.

Theorem 6.7 Given any infinitely differentiable test function φ with compact support in D′,
then

lim
εk→0

1

ωd

∫
D′

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e φ dξ dx =
∫

D′
CEu0 : Eφ dx, (6.55)

where CEu0 : Eφ = ∑d

ijkl=1 CijklEu0
ijEφkl , CEu0 = λId Tr(Eu0) + 2μEu0, and λ and μ are

given by (5.7).

Theorem 6.7 is proved in Sect. 6.5.2. The sequence of integrals on the left hand side of
(6.55) are uniformly bounded in time, i.e.,

sup
εk>0

{
sup

0≤t≤T

∣∣∣∣
∫

D′

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)Dεk
e φ · e dξ dx

∣∣∣∣
}

< ∞; (6.56)

this is demonstrated in (6.75) of Lemma 6.7 in Sect. 6.5.2. Suppose φ(x) has support con-
tained in D′ and applying the Lebesgue bounded convergence theorem together with Theo-
rem 6.7 with δ(t, x) = ψ(t)φ(x) delivers the desired result

lim
εk→0

1

ωd

(∫ T

0

∫
D′

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)ψDεk
e φ · e dξ dx dt

)

=
∫ T

0

∫
D′
CEu0 : Eφ dx dt, (6.57)

and we recover the identity

ρ

∫ T

0

∫
D′

u0
t (t, x) · ψt(t)φ(x) dx dt −

∫ T

0

∫
D

ψ(t)CEu0(t, x) : Eφ(x)dx dt

+
∫ T

0

∫
D′

b(t, x) · ψ(t)φ(x) dx dt = 0 (6.58)

from which Theorem 5.4 follows.

6.5.2 Proof of Theorem 6.7

We decompose the difference D
εk |ξ |
e uεk · e as

Dεk |ξ |
e uεk · e = (

Dεk |ξ |
e uεk · e)− + (

Dεk |ξ |
e uεk · e)+

, (6.59)

where

(
Dεk |ξ |

e uεk (x) · e)− =
{

(D
εk |ξ |
e uεk (x) · e), if |Dεk |ξ |

e uεk (x) · e| < r√
εk |ξ |

0, otherwise,
(6.60)
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where r is the inflection point for the function F1(r) = f (r2). Here (D
εk |ξ |
e uεk ·e)+ is defined

so that (6.59) holds. We prove Theorem 6.7 by using the following two identities described
in the lemmas below.

Lemma 6.5 For any φ in C∞
0 (D;Rd)

lim
εk→0

1

ωd

∫
D

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)Dεk |ξ |
e φ · e dξ dx

− 2 lim
εk→0

1

ωd

∫
D

∫
H1(0)

|ξ |J (|ξ |)f ′(0)
(
Dεk |ξ |

e uεk · e)−
Dεk |ξ |

e φ · e dξ dx = 0. (6.61)

Lemma 6.6 Assume the hypothesis of Theorem 5.4 and define the weighted Lebesgue mea-
sure ν by dν = |ξ |J (|ξ |) dξ dx for any Lebesgue measurable set S ⊂ D′ × H1(0). Passing
to subsequences if necessary {(Dεk |ξ |

e uεk · e)}∞
k=1 converges weakly in L2(D′ × H1(0);ν) to

Eu0e · e, i.e.,

lim
εk→0

1

ωd

∫
D′

∫
H1(0)

(
Dεk |ξ |

e uεk · e)ψ dν = 1

ωd

∫
D′

∫
H1(0)

(
Eu0e · e)ψ dν, (6.62)

for any test function ψ(x, ξ) in L2(D′ ×H1(0);ν).

We now apply the lemmas. Observing that D
εk |ξ |
e φ · e converges strongly in L2(D′ ×

H1(0) : ν) to Eφe · e for test functions φ in C∞
0 (D′;Rd) and from the weak L2(D′ ×

H1(0) : ν) convergence of (D
εk |ξ |
e uεk · e) together with the hypothesis of Theorem 5.4 we

deduce that

lim
εk→0

1

ωd

∫
D′

∫
H1(0)

|ξ |J (|ξ |)f ′(0)
(
Dεk |ξ |

e uεk · e)−(
Dεk |ξ |

e φ · e)dν

= lim
εk→0

1

ωd

∫
D′

∫
H1(0)

|ξ |J (|ξ |)f ′(0)
(
Dεk |ξ |

e uεk · e)(Dεk |ξ |
e φ · e)dν

= 1

ωd

∫
D′

∫
H1(0)

|ξ |J (|ξ |)f ′(0)
(
Eu0e · e)(Eφe · e) dν

= f ′(0)

ωd

d∑
ijkl=1

∫
H1(0)

|ξ |J (|ξ |)eiej ekel dξ

∫
D′

Eu0
ijEφkl dx. (6.63)

Now we show that

f ′(0)

ωd

∫
H1(0)

|ξ |J (|ξ |)eiej ekel dξ = Cijkl = 2μ

(
δikδjl + δilδjk

2

)
+ λδij δkl, (6.64)

where μ and λ are given by (5.7). To see this we write

Γijkl(e) = eiej ekel, (6.65)

and observe that Γ (e) is a totally symmetric tensor valued function defined for e ∈ Sd−1

with the property

Γijkl(Qe) = QimemQjnenQkoeoQlpep = QimQjnQkoQlpΓmnop(e) (6.66)
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for every rotation Q in SOd . Here repeated indices indicate summation. We write

∫
H1(0)

|ξ |J (|ξ |)eiej ekel dξ =
∫ 1

0
|ξ |d|ξ |

∫
Sd−1

Γijkl(e) de (6.67)

to see that for every Q in SOd

QimQjnQkoQlp

∫
Sd−1

Γijkl(e) de =
∫

Sd−1
Γmnop(Qe)de =

∫
Sd−1

Γmnop(e) de. (6.68)

Therefore we conclude that
∫

Sd−1 Γijkl(e) de is an isotropic symmetric 4th order tensor and
of the form

∫
Sd−1

Γijkl(e) de = a

(
δikδjl + δilδjk

2

)
+ bδij δkl . (6.69)

Here we evaluate a by contracting both sides of (6.69) with a trace free matrix and b by
contracting both sides with the d × d identity and calculation delivers (6.64). Theorem 6.7
now follows immediately from (6.63) and (6.61).

To establish Lemmas 6.5 and 6.6 we develop the following estimates for the sequences
(D

εk |ξ |
e uεk · e)− and (D

εk |ξ |
e uεk · e)+. We define the set K+,εk by

K+,εk = {
(x, ξ) ∈ D ×H1(0) : (Dεk |ξ |

e uεk · e)+ �= 0
}
. (6.70)

We have the following string of estimates.

Lemma 6.7 We introduce the generic positive constant 0 < C < ∞ independent of 0 <

εk < 1 and 0 ≤ t ≤ T and state the following inequalities that hold for all 0 < εk < 1 and
0 ≤ t ≤ T and for C∞(D) test functions φ with compact support on D.

∫
K+,εk

|ξ |J (|ξ |) dξ dx < Cεk, (6.71)

∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

((
Dεk |ξ |,+

e uεk · e)+)(
Dεk

e φ · e)dξ dx

∣∣∣∣ < C
√

εk‖Eφ‖L∞(D;Rd×d ),

(6.72)∫
D×H1(0)

|ξ |J (|ξ |)∣∣(Dεk |ξ |
e uεk · e)−∣∣2

dξ dx < C, (6.73)

∫
D×H1(0)

|ξ |J (|ξ |)|Dεk |ξ |
e uεk · e|dξ dx < C, and (6.74)

∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)(Dεk
e φ · e)dξ dx

∣∣∣∣ < C‖Eφ‖L∞(D;Rd×d ). (6.75)

Proof For (x, ξ) ∈ K+,εk we apply (6.52) to get

J (|ξ |) 1

εk

F1(r) = |ξ |J (|ξ |) 1

εk|ξ |F1(r) ≤ |ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk · e) (6.76)
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and in addition since |ξ | ≤ 1 we have

1

εk

F1(r)

∫
K+,εk

|ξ |J (|ξ |) dξ dx ≤ 1

εk

F1(r)

∫
K+,εk

J (|ξ |) dξ dx

≤
∫

K+,εk

|ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk · e)dξ dx

≤ sup
t∈[0,T ]

sup
εk

PDεk
(
uεk

)
, (6.77)

where Theorem 2.2 implies that the right most element of the sequence of inequalities is
bounded and (6.71) follows noting that the inequality (6.77) is equivalent to (6.71). More
generally, since |ξ | ≤ 1 we may argue as above to conclude that

∫
K+,εk

|ξ |pJ (|ξ |) dξ dx < Cεk (6.78)

for 0 ≤ p. We apply (6.53) and (6.78) to find
∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)+)
Dεk

e φ dξ dx

∣∣∣∣

≤ C
2f ′(r2)r√

εk

∫
K+,εk

√|ξ |J (|ξ |) dξ dx‖Eφ‖L∞(D;Rd×d )

≤ √
εkC‖Eφ‖L∞(D;Rd×d ), (6.79)

and (6.72) follows.
A basic calculation shows there exists a positive constant independent of r and s for

which

r2 ≤ CFs(r), for r <
r√
s
, (6.80)

so

|Dεk |ξ |
e uεk · e|2 ≤ CFεk |ξ |

(
Dεk |ξ |

e uεk · e), for |Dεk |ξ |
e uεk · e| < r√

εk|ξ | , (6.81)

and
∫

D×H1(0)

|ξ |J (|ξ |)|(Dεk |ξ |
e uεk · e)−|2 dξ dx

=
∫

D×H1(0)\K+,εk

|ξ |J (|ξ |)|Dεk |ξ |
e uεk · e|2 dξ dx

≤ C

∫
D×H1(0)\K+,εk

|ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk · e)dξ dx

≤ C sup
t∈[0,T ]

sup
εk

PDεk
(
uεk

)
, (6.82)

where Theorem 2.2 implies that the right most element of the sequence of inequalities is
bounded and (6.73) follows.
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To establish (6.74) we apply Hölder’s inequality to find that

∫
D×H1(0)

|ξ |J (|ξ |)|Dεk |ξ |
e uεk · e|dξ dx

=
∫

K+,εk

|ξ |J (|ξ |)|Dεk |ξ |
e uεk · e|dξ dx +

∫
D×H1(0)\K+,εk

|ξ |J (|ξ |)|Dεk |ξ |
e uεk · e|dξ dx

≤ 2‖uεk‖L∞(D;Rd )

εk

∫
K+,εk

|ξ |J (|ξ |) dξ dx +

+ ν
(
D ×H1(0)

) 1
2

(∫
D×H1(0)

|ξ |J (|ξ |)∣∣(Dεk |ξ |
e uεk · e)−∣∣2

dξ dx

) 1
2

, (6.83)

and (6.74) follows from (6.71) and (6.73).
We establish (6.75). This bound follows from the basic features of the potential func-

tion f . We will recall for subsequent use that f is smooth positive, concave and f ′ is a
decreasing function with respect to its argument. So for A fixed and 0 ≤ h ≤ A2r2 we have

|f ′(h) − f ′(0)| ≤ ∣∣f ′(A2r2
) − f ′(0)

∣∣ < 2|f ′(0)|2. (6.84)

The bound (6.75) is now shown to be a consequence of the following upper bound valid for
the parameter 0 < A < 1 given by

∫
D×H1(0)

|ξ |J (|ξ |)∣∣f ′(εk|ξ |∣∣(Dεk |ξ |
e uεk · e)−∣∣2) − f ′(0)

∣∣2
dξ dx

≤ ν
(
D ×H1(0)

) × ∣∣f ′(A2r2
) − f ′(0)

∣∣2 + Cεk

4|f ′(0)|2
A2

. (6.85)

We postpone the proof of (6.85) until after it is used to establish (6.75). Set hεk
=

(D
εk |ξ |
e uεk · e)− to note

F ′
εk |ξ |(hεk

) − 2f ′(0)hεk
= (

f ′(εk|ξ |h2
εk

) − f ′(0)
)
2hεk

. (6.86)

Applying Hölders inequality, (6.72), (6.73), (6.85), and (6.86) gives

∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)(Dεk
e φ dξ · e)dx

∣∣∣∣

≤
∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)+)(
Dεk

e φ · e)dξ dx

∣∣∣∣

+
∣∣∣∣
∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)−)(
Dεk

e φ · e)dξ dx

∣∣∣∣

≤ C
√

εk‖Eφ‖L∞(D;Rd×d ) + 2
∫

D×H1(0)

|ξ |J (|ξ |)f ′(0)
(
Dεk |ξ |

e uεk · e)−(
Dεk |ξ |

e φ · e)dξ dx

+
∫

D×H1(0)

|ξ |J (|ξ |)(F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)−)

− 2f ′(0)
(
Dεk |ξ |

e uεk · e)−)(
Dεk |ξ |

e φ · e)dξ dx
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≤ C

(
f ′(0) + √

εk +
(

ν
(
D ×H1(0)

) × ∣∣f ′(A2r2
) − f (0)

∣∣2

+ εk

4|f ′(0)|2
A2

)1/2)
‖Eφ‖L∞(D;Rd×d ) (6.87)

and (6.75) follows.
We establish the inequality (6.85). Set hεk

= (D
εk |ξ |
e uεk · e)− and for 0 < A < 1 introduce

the set

K
+,εk

A = {
(x, ξ) ∈ D ×H1(0) : A2r2 ≤ εk|ξ ||hεk

|2}. (6.88)

To summarize (x, ξ) ∈ K
+,εk

A implies A2r2 ≤ εk|ξ ||hεk
|2 ≤ r2 and (x, ξ) /∈ K

+,εk

A implies
εk|ξ ||hεk

|2 < A2r2 and |f ′(εk|ξ ||hεk
|2)− f ′(0)| ≤ |f ′(A2r2)− f ′(0)|. Inequality (6.73) im-

plies

C >

∫
K

+,εk
A

|ξ |J (|ξ |)h2
εk

dξ dx ≥ A2r2

εk

∫
K

+,εk
A

J (|ξ |) dξ dx

≥ A2r2

εk

∫
K

+,εk
A

|ξ |J (|ξ |) dξ dx, (6.89)

the last inequality follows since 1 ≥ |ξ | > 0. Hence
∫

K
+,εk
A

|ξ |J (|ξ |) dξ dx ≤ C
εk

A2r2 , (6.90)

and it follows that ∫
K

+,εk
A

|ξ |J (|ξ |)|f ′(εk|ξ ||hεk
|2 − f ′(0)|2 dξ dx

≤ 4|f ′(0)|2
∫

K
+,εk
A

|ξ |J (|ξ |) dξ dx ≤ Cεk

4|f ′(0)|2
A2r2 . (6.91)

Collecting observations gives
∫

D×H1(0)\K+,εk
A

|ξ |J (|ξ |)∣∣f ′(εk|ξ |∣∣(Dεk |ξ |
e uεk · e)−∣∣2) − f ′(0)

∣∣2
dξ dx

≤ ν
(
D ×H1(0)

) × ∣∣f ′(A2r2
) − f ′(0)

∣∣2
, (6.92)

and (6.85) follows. �

We now prove Lemma 6.5. Write

F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e) = F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)+) + F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)−)
, (6.93)

and from (6.72) it follows that

lim
εk→0

∫
D

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk · e)Dεk |ξ |
e φ · e dξ dx

= lim
εk→0

∫
D

∫
H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

((
Dεk |ξ |

e uεk · e)−)(
Dεk |ξ |

e φ · e)dξ dx. (6.94)
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To finish the proof we identify the limit of the right hand side of (6.94). Set hεk
=

(D
εk |ξ |
e uεk · e)− and apply Hólder’s inequality to find

∫
D×H1(0)

|ξ |J (|ξ |)(F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

)(
Dεk |ξ |

e φ · e)dξ dx

≤ C

∫
D×H1(0)

|ξ |J (|ξ |)∣∣F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

∣∣dξ dx‖Eφ‖L∞(D;Rd×d ). (6.95)

We estimate the first factor in (6.95) and apply (6.86), Hölder’s inequality, (6.73), and (6.85)
to obtain ∫

D×H1(0)

|ξ |J (|ξ |)∣∣F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

∣∣dξ dx

≤
∫

D×H1(0)

|ξ |J (|ξ |)∣∣f ′(εk|ξ ||hεk
|2) − 2f ′(0)

∣∣|hεk
|dξ dx

≤ C

(
ν
(
D ×H1(0)

) × ∣∣f ′(A2r2
) − f ′(0)

∣∣2 + εk

4|f ′(0)|2
A2r2

)1/2

. (6.96)

Lemma 6.5 follows on applying the bound (6.96) to (6.95) and passing to the εk zero limit
and noting that the choice of 0 < A < 1 is arbitrary.

We now prove Lemma 6.6. From the hypothesis of Theorem 5.4 we have for φ ∈ C1
0 (D

′)
(
Dεk |ξ |

e uεk · e)−
φ = (

Dεk |ξ |
e uεk · e)φ. (6.97)

We form the test functions φ(x)ψ(ξ), with φ ∈ C1
0 (D

′) and ψ ∈ C(H1(0)). From (6.73) we
may pass to a subsequence to find that (D

εk |ξ |
e uεk · e)− weakly converges to the limit g(x, ξ)

in L2(D′ ×H1(0);ν). With this in mind we write
∫

D′×H1(0)

g(x, ξ)φ(x)ψ(ξ) dν

=
∫

D′×H1(0)

g(x, ξ)φ(x)ψ(ξ)|ξ |J (|ξ |) dξ dx

= lim
εk→0

∫
D′×H1(0)

(
Dεk |ξ |

e uεk (x) · e)−
φ(x)ψ(ξ)|ξ |J (|ξ |) dξ dx

= lim
εk→0

∫
D′×H1(0)

(
Dεk |ξ |

e uεk (x) · e)φ(x)ψ(ξ)|ξ |J (|ξ |) dξ dx

= lim
εk→0

∫
D′×H1(0)

(
uεk (x) · e)(Dεk |ξ |

−e φ(x)
)
ψ(ξ)|ξ |J (|ξ |) dξ dx, (6.98)

where we have integrated by parts using (6.47) in the last line of (6.98). Noting that
D

εk |ξ |
−e φ(x) converges uniformly to −e · ∇φ(x) and from the strong convergence of uεk to u0

in L2, we obtain

= lim
εk→0

∫
D′×H1(0)

(
uεk (x) · e)(Dεk |ξ |

−e φ(x)
)
ψ(ξ)|ξ |J (|ξ |) dξ dx

= −
∫

D′×H1(0)

(
u0(x) · e)(e · ∇φ(x)

)
ψ(ξ)|ξ |J (|ξ |) dξ dx
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= −
∫

D′×H1(0)

(
d∑

j,k=1

u0
j (x)∂xk

φ(x)ej ek

)
ψ(ξ)|ξ |J (|ξ |) dξ dx. (6.99)

Collecting results we have
∫

D′×H1(0)

g(x, ξ)φ(x)ψ(ξ)|ξ |J (|ξ |) dξ dx

= −
∫

D′×H1(0)

(
d∑

j,k=1

u0
j (x)∂xk

φ(x)ej ek

)
ψ(ξ)|ξ |J (|ξ |) dξ dx. (6.100)

Application of Fubini’s theorem gives

∫
H1(0)

(∫
D′

g(x, ξ)φ(x) dx +
∫

D′

d∑
j,k=1

u0
j (x)∂xk

φ(x)ej ek dx

)
ψ(ξ)|ξ |J (|ξ |) dξ = 0

(6.101)

for every test function ψ ∈ C(H1(0)), and we conclude that

∫
D′

g(x, ξ)φ(x) dx = −
∫

D′

d∑
j,k=1

u0
j (x)∂xk

φ(x)ej ek dx, for a.e., ξ ∈ H1(0) (6.102)

for every φ ∈ C1
0 (D

′). Applying the definition of the distributional derivative in the context
of SBD shows that Eu0e · e�D′ = g(x, ξ)Ld�D′ = Eu0e · eLd�D′ for ξ ∈ H1(0), and we
conclude that g(x, ξ) = Eu0(x)e · e on D ×H1(0) a.e. and Lemma 6.6 is proved.

6.6 Cohesive Energy Density for Homogeneous Strain

In this subsection we outline the calculation used to establish the identity (1.12) for the
energy density. When the displacement is linear u(x) = Fx then the associated strain is
given by S = Fe · e. Here it is assumed that S2 � S2

c so |y − x|S2 � |y − x|S2
c and we

expand f (|y − x|S2) in a Taylor series about 0 in the small parameter |y − x|S2 noting that
f (0) = 0 to get

f
(|y − x|S2

) = f ′(0)|y − x|S2 + f ′′(0)

2

(|y − x|S2
)2 + · · · , and

Wε(S, y − x) = 1

ε
J ε

(|y − x|)
(

f ′(0)S2 + f ′′(0)

2

(|y − x|S2
)2 + · · ·

)
. (6.103)

Substitution of (6.103) into (1.2) and the change of variables ξ = (y − x)/ε gives

Wε(S, x) = f ′(0)

ωd

∫
H1(0)

|ξ |J (|ξ |)(Fe · e)2 dξ + O
(
ε|F |4), (6.104)

where H1(0) is the unit ball centered at the origin and ωd is its volume d = 2,3. Observe
next that (Fe · e)2 = ∑

ijklFijFkleiej ekel and the leading order term in (6.104) is given by

∑
ijkl

CijklFijFkl, (6.105)
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where

Cijkl = f ′(0)

ωd

∫
H1(0)

|ξ |J (|ξ |)eiej ekel dξ . (6.106)

The identity (1.12) now follows directly from (6.64).

6.7 Proof of Theorem 4.1

We begin with the proof on the upper bound on the size of the process zone given by Theo-
rem 4.1. Recall the set K+,εk is defined by

K+,εk = {
(x, ξ) ∈ D ×H1(0); |Dεk |ξ |

e uεk · e| > Sc

}
(6.107)

and recall that the potential function f (r2) = F1(r) is increasing to get

J (|ξ |) 1

εk

F1(r) = |ξ |J (|ξ |) 1

εk|ξ |F1(r) ≤ |ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk · e) (6.108)

and we have
∫

K+,εk

1

εk

F1(r)J (|ξ |) dξ dx

≤
∫

K+,εk

|ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk · e)dξ dx ≤ sup
t∈[0,T ]

sup
εk

PDεk
(
uεk

)
. (6.109)

Rearranging factors in (6.109) gives

∫
K+,εk

J (|ξ |) dξ dx ≤ εk

F1(r)

(
sup

t∈[0,T ]
sup
εk

PDεk
(
uεk

))
. (6.110)

Introduce the characteristic function χ+,εk (x, ξ) defined on D × H1(0) taking the value 1
for (x, ξ) in K+,εk and zero otherwise. Observe that

1

m

∫
H1(0)

χ+,εk (x, ξ)J (|ξ |) dξ = P
({

y ∈ Hεk
(x); ∣∣Sεk (y, x)

∣∣ > Sc

})
, (6.111)

so
∫

D

P
({

y ∈ Hεk
(x); ∣∣Sεk (y, x)

∣∣ > Sc

})
dx ≤ εk

mf (r2)

(
sup

t∈[0,T ]
sup
εk

PDεk
(
uεk

))
. (6.112)

For 0 < θ ≤ 1, Tchebyshev’s inequality delivers

Ld
({

x ∈ D; P
({

y ∈ Hεk
(x); ∣∣Sεk (y, x)

∣∣ > Sc

})
> θ

})

≤ εk

θmf (r2)

(
sup

t∈[0,T ]
sup
εk

PDεk
(
uεk

))
, (6.113)

and Theorem 4.1 follows on applying (6.9) and (6.10).
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6.8 Proof of Theorem 2.1

Here and in the following section we apply a slicing decomposition [41] to the energies
PDεk to reduce the analysis to the one dimensional case. The results of the one dimensional
analyses on slices are extended to D using the structure theorem for SBD on slices and
the appropriate integral geometric arguments. The slicing theorem and integralgeometric
measure appropriate for this approach in the context of SBD are given by Theorems 4.5
and 4.10 of [5].

We introduce the unit ball H1(0) = {ζ ∈ R
d : |ξ | ≤ 1}, d = 2,3 and define the d − 1

dimensional subspace Πξ = {y ∈ R
d : y · ξ = 0}. In what follows we change coordinates

and x ∈ D is written as x = y + tξ . We introduce

Dξ
y = {t ∈ R : y + tξ ∈ D},

Dξ = {
y ∈ Πξ : Dξ

y �= ∅}
.

(6.114)

To proceed we set uξ,y = u(y + tξ ) · ξ for t ∈ Dξ
y and the space of special functions of

bounded variation over the set Dξ
y is denoted by SBV(Dξ

y ). The distributional derivative of
uξ,y is the Radon measure denoted by Duξ,y and its total variation on Dξ

y is |Duξ,y |(Dξ
y ),

see [18]. We introduce the following structure theorem for SBD functions on slices [5].

Theorem 6.8 (One Dimensional Restrictions of SBD Functions) Let u ∈ L1(D;Rd) and let
{e1, e2, . . . , ed} be a basis of Rd . Then the following two conditions are equivalent:

1. For every ξ = ei + ej , 1 ≤ i, j ≤ d :
(a) uξ,y ∈ SBV(Dξ

y ) for Hd−1, a.e. y ∈ Dξ ,
(b)

∫
Πξ |Duξ,y |(Dξ

y ) dHd−1 < ∞,
2. u ∈ SBD.

Moreover if u ∈ SBD and ξ ∈ R
d \ {0} the following properties hold

1. For Hd−1 a.e. y ∈ Dξ one has ∂tu
ξ,y(t) = Eu(y + tξ )ξ · ξ for L1 a.e. t ∈ Dξ

y ,
2. Juξ,y = (J ξ

u )ξ
y for Hd−1 a.e. y ∈ Dξ where J ξ

u = {x ∈ Ju : (u+(x) − u−(x)) · ξ �= 0},
3. Hd−1(Ju \ J ξ

u ) = 0 for a.e. ξ ∈ Sd−1.

For any u ∈ L2
0(D;Rd) ∩ SBD we apply Fubini’s theorem and write

PDεk (u) = 1

ωd

∫
H1(0)

Fεk |ξ |(u,D)J (|ξ |)|ξ |dξ, (6.115)

where

Fεk |ξ |(u,D) =
∫

D

Fεk |ξ |
(
Dεk |ξ |

e u · e)dx. (6.116)

Recall here that D
εk |ξ |
e u · e is the strain defined by (6.45) and Fs(r) = 1

s
f (sr2). Introduce

ue,y(t) = u(y + te) · e, then

Dεk |ξ |
e u(x) = ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ | (6.117)
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and on setting x = y + te and changing coordinates in (6.116) we have

Fεk |ξ |(u,D) =
∫

De

Fεk |ξ |
(
ue,y,De

y

)
dy, (6.118)

where the functional defined over one dimensional sections De
y is given by

Fεk |ξ |
(
ue,y,De

y

) =
∫

De
y

Fεk |ξ |
(

ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ |
)

dt. (6.119)

Theorem 6.8 asserts that the one dimensional restrictions ue,y of u ∈ L2
0(D;Rd) ∩ SBD

belong to SBV(De
y) for a.e. y ∈ Πe and let Jue,y denote the jump set of ue,y(t) for t ∈ De

y .
The zero dimensional Hausdorff measure of the jump set H0(Jue,y ) counts the number of
jumps of ue,y(t) on De

y . Define the one dimensional functional F0(u
e,y,De

y) by

F0

(
ue,y,De

y

) =
∫

De
y

f ′(0)
∣∣∂tu

e,y(t)
∣∣2

dt + f∞H0(Jue,y ). (6.120)

The upper bound for one dimensional sections is given by the following theorem.

Theorem 6.9

Fεk |ξ |
(
ue,y,De

y

) ≤ F0

(
ue,y,De

y

)
. (6.121)

Proof If F0(u
e,y,De

y) = ∞ the theorem holds automatically so we will assume that
F0(u

e,y,De
y) < ∞. Let Aεk

= {t ∈ De
y : [t, t + εk|ξ |] ∩ Jue,y �= ∅} and note for Fs(r) =

1
s
f (sr2) that

Fs(r) ≤ min

{
f ′(0)r2,

1

s
f∞

}
. (6.122)

We have

Fεk |ξ |
(
ue,y,De

y

) =
∫

De
y\Aεk

Fεk |ξ |
(

ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ |
)

dt

+
∫

Aεk

Fεk |ξ |
(

ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ |
)

dt (6.123)

and below we provide an upper bound for each term. If t /∈ Aεk
then ue,y is absolutely

continuous in [t, t + εk|ξ |] and by Hölder’s inequality

∣∣ue,y
(
t + εk|ξ |) − ue,y(t)

∣∣2 ≤
∣∣∣∣
∫ εk |ξ |

0
∂tu

e,y(t + τ) dτ

∣∣∣∣
2

≤ εk|ξ |
∫ εk |ξ |

0
|∂tu

e,y(t + τ)|2 dτ. (6.124)
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From (6.122) we see that the first term in (6.123) is bounded above by

∫
De

y\Aεk

f ′(0)

(
ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ |
)2

dt

≤ 1

εk|ξ |
∫

De
y\Aεk

f ′(0)

∫ εk |ξ |

0
|∂tu

e,y(t + τ)|2 dτ

≤
∫

De
y

f ′(0)|∂tu
ey(t)|2 dt. (6.125)

Application of (6.122) to the second term of (6.123) delivers the upper bound

∫
Aεk

Fεk |ξ |
(

ue,y(t + εk|ξ |) − ue,y(t)

εk|ξ |
)

dt ≤ f∞
εk|ξ |L

1(Aεk
) ≤ f∞H0(Jue,y ) (6.126)

and the theorem follows. �

Applying Theorem 6.9 to (6.118) gives the estimate

Fεk |ξ |(u,D) ≤
∫

De

(∫
De

y

f ′(0)|∂tu
e,y(t)|2 dt + f∞H0(Jue,y )

)
dy. (6.127)

We identify the first term on the righthand side of (6.127) using the structure theorem for
SBD. From Theorem 6.8 we have ∂tu

e,y(t) = Eu(y + te)e · e for L1 a.e. t ∈ De
y and Hd−1

y ∈ De and it follows that
∫

De

∫
De

y

f ′(0)|∂tu
e,y(t)|2 dt dy =

∫
D

f ′(0)|Eu(x)e · e|2 dx. (6.128)

To identify the second term we introduce the integralgeometric measure developed in [9].
The non-negative Borel measure λu on D is given by

λu(B) = 1

2ωd−1

∫
Sd−1

λe
u(B)dHd−1(e), ∀ B ∈ B(D), (6.129)

and

λe
u(B) =

∫
De

H0
(
Jue,y ∩ Be

y

)
dHd−1(y), ∀ B ∈ B(D) (6.130)

for every e ∈ Sd−1. We give the following theorem [5] relating integralgeometric measure to
the Hausdorff measure of the jump set for u ∈ SBD.

Theorem 6.10

λu(B) = Hd−1(B ∩ Ju), ∀B ∈ B. (6.131)

Now observe that the second term on the righthand side of (6.127) is given by

f∞
∫

De

H0(Jue,y ) dy = f∞λe
u(D), (6.132)
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and collecting results we write (6.127) as

Fεk |ξ |(u,D) ≤
∫

D

f ′(0)|Eu(x)e · e|2 dx + f∞λe
u(D) (6.133)

and we obtain

PDεk (u) ≤ 1

ωd

∫
H1(0)

∫
D

f ′(0)|Eu(x)e · e|2 dxJ (|ξ |)|ξ |dξ

+ f∞
ωd

∫ 1

0
J (|ξ |)|ξ |d|ξ |

∫
Sd−1

λe
u(D)dHd−1(e). (6.134)

Theorem 2.1 now follows on applying Fubini’s theorem to the first term and (6.64) and
application of Theorem 6.10 to the second term.

6.9 Proof of Theorem 6.4

The higher regularity is established first on the one dimensional sections De
y . Consider a

limit point u0 described in Theorem 6.4 and write ue,y(t) = u0(y + te) · e with t ∈ De
y . We

extend this function by zero for t ∈ R \ De
y . Now we construct piecewise affine approxima-

tions as in [41]. We start by defining a local Griffith free energy for u ∈ L∞(R). Given an
interval [a, b] ⊂ R, set J = |u(b) − u(a)| and define

λ(J, b − a) = (b − a) × min

{
f ′(0)

(
J

b − a

)2

,
f∞

b − a

}
. (6.135)

Pick a ∈ R for which a + q is a Lebesgue point for ue,y for every rational number q and
consider the intervals I z

j = (a + z/j, a + (z + 1)/j) for z ∈ Z and J z
j is the absolute value

of the difference of the function ue,y evaluated at the end points of I z
j . We construct the

piecewise affine interpolations vj (t) on each interval I z
j according to the following energy

minimizing criteria.

1. If

f ′(0)

(
J z

j

1/j

)2

<
f∞
1/j

, (6.136)

then

vj (t) = ue,y(a + z/j) + (t − a − z/j)
ue,y(a + (z + 1)/j) − ue,y(a + z/j)

1/j
. (6.137)

2. Otherwise vj is chosen to be the piecewise constant function which agrees with ue,y at
the endpoints of I z

j and has a single jump discontinuity at the mid point of I z
j .

The interpolants vj satisfy the following properties:

1.

vj ∈ L∞(
De

y

)
, lim

j→∞
vj = ue,y in L1

(
De

y

)
, (6.138)

2.

λ
(
J z

j , I z
j

) = F0
(
vj , I

z
j

) =
∫

Iz
j

f ′(0)|∂tvj |2 dt + f∞H0
(
Jvj

∩ I z
j

)
, (6.139)
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3.

F0

(
vj ,D

e
y

) =
∫

De
y

f ′(0)|∂tvj |2 dt + f∞H0(Jvj
) =

∑
z∈Z

λ
(
J z

j , I z
j

)
. (6.140)

Consider now any sequence {ũk} converging to ue,y in L2(De
y). Application of Lemma 3.5

of [41] delivers the following lower bound:

Lemma 6.8

lim inf
k→∞

Fεk |ξ |
(
ũk,D

e
y

) ≥
∑
z∈Z

λ
(
J z

j , I z
j

) = F0
(
vj ,D

e
y

)
, for all j ∈N. (6.141)

With these preliminaries we now state the following higher regularity property and lower
bound on one dimensional sections.

Theorem 6.11 Suppose ũk → ue,y in L2(De
y) and

sup
k

{
Fεk |ξ |

(
ũk,D

e
y

) + ‖ũk‖L∞(De
y )

}
< ∞. (6.142)

Then ue,y belongs to SBV(De
y) ∩ L∞(De

y) for Hd−1 a.e. y ∈ De and

lim inf
k→∞

Fεk |ξ |
(
ũk,D

e
y

) ≥ F0

(
ue,y,De

y

)
. (6.143)

Proof We have ‖ue,y‖L∞(De
y ) < ∞, lim infj→∞ ‖vj‖L∞(De

y ) < ∞ and Lemma 6.8 together
with (6.142) delivers the inequality

sup
j

F0

(
vj ,D

e
y

)
< ∞. (6.144)

It follows from (6.144) that vj belongs to SBV(De
y) for all j ∈ N, the sequence {|∂tvj |} is

equi-integrable and supj∈NH0(Jvj
) < ∞, so by the SBV compactness theorem there exists

v belonging to SBV(De
y) and a subsequence also denoted by {vj } converging to v in L1(De

y).
Since {vj } also converges to ue,y in L1(De

y) we conclude that v = ue,y and

lim inf
j→∞

F0

(
vj ,D

e
y

) ≥ F0

(
ue,y,De

y

)
(6.145)

follows from the weak convergence of ∂tvj to ∂tu
e,y and lim infj→∞ H0(Jvj

) ≥ H0(Jue,y ). �

Now we recover the higher regularity for u0. Assume the hypothesis of Theorem 6.4 and
for uεk → u0 in L2

0(D;Rd) we have u0 ∈ L∞(D;Rd). The function uεk (y + te) · e is written
uεk,e,y and uεk,e,y → ue,y in L2(De

y) for a.e. y ∈ De , with supk{‖uεk,e.y‖L∞(De
y )<∞}. Then

lim inf
εk→0

PDεk
(
uεk

) = lim inf
εk→0

1

ωd

∫
H1(0)

Fεk |ξ |
(
uεk ,D

)
J (|ξ |)|ξ |dξ

= lim inf
εk→0

1

ωd

∫
H1(0)

∫
De

Fεk |ξ |
(
uεk,e,y ,De

y

)
dyJ (|ξ |)|ξ |dξ
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≥ 1

ωd

∫
H1(0)

∫
De

lim inf
εk→0

Fεk |ξ |
(
uεk,e,y ,De

y

)
dyJ (|ξ |)|ξ |dξ

≥ 1

ωd

∫
H1(0)

∫
De

F0

(
ue,y,De

y

)
dyJ (|ξ |)|ξ |dξ, (6.146)

where the first inequality follows from the Fatou Lemma and the second inequality follows
from Theorem 6.11. Since ‖ue,y‖L∞(De

y ) < C, for Hd−1 a.e. y ∈ De , we have the upper
estimate on the total variation given by

|Due,y |(De
y

) ≤ KF0

(
ue,y,D

)
, (6.147)

where K is a constant independent of y and e. Since lim infεk→0 PDεk (uεk ) < ∞ it follows
from (6.146) and (6.147) that

∫
H1(0)

∫
De

|Due,y |(De
y

)
dyJ (|ξ |)|ξ |dξ < ∞. (6.148)

Therefore we can find a linear independent set of vectors e1, e2, . . . , ed , such that parts 1(a)
and (b) of Theorem 6.8 hold to conclude that u0 ∈ SBD. Last we argue as in Sect. 6.8 to
discover

1

ωd

∫
H1(0)

∫
De

F0

(
ue,y,De

y

)
dyJ (|ξ |)|ξ |dξ = LEFM

(
u0,D

)
, (6.149)

and (6.31) follows from (6.146) and (6.149).

7 Dynamics and Limits of Energies that Γ -Converge to Griffith Fracture
Energies

In this section we first recall the definition of Γ -convergence and collect results to remark
that the nonlocal cohesive energies introduced here Γ -converge to the energies of linear
elastic fracture mechanics. The Γ -convergence follows immediately from the results of the
previous sections.

Consider a sequence of functions {Fj } defined on a metric space M with values in R

together with a function F also defined on M with values in R. In what follows let X be a
subset of M.

Definition 7.1 We say that F is the Γ -limit of the sequence {Fj } with respect to M on X if
the following two properties hold:

1. for every x in X and every sequence {xj } converging to x, we have that

F(x) ≤ lim inf
j→∞

Fj (xj ), (7.1)

2. for every x in X there exists a recovery sequence {xj } converging to x, for which

F(x) = lim
j→∞

Fj (xj ). (7.2)
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Now for u in L∞(D;Rd) ∩ L2
0(D;Rd) define the Griffith fracture energy PD0 by

PD0(u) =
{

LEFM(u,D) if u belongs to SBD
+∞ otherwise,

(7.3)

where LEFM(u,D) is defined in (2.5). The Γ -convergence of cohesive peridynamic ener-
gies to the Griffith fracture energy is given by the following theorem.

Theorem 7.1 PD0 is the Γ -limit of PDεk with respect to L2(D;Rd) convergence on
L∞(D;Rd).

We now illustrate how the approach presented in the earlier sections can be used to ex-
amine limits of dynamics associated with other energies that Γ -converge to the Griffith
fracture energy. As an example we consider the phase field approach based on the Ambrosio-
Tortorelli approximation for dynamic brittle fracture calculations [17]. This model is seen
to be a well posed formulation in the sense that existence of solutions can be shown [45].
To illustrate the ideas we focus on anti-plane shear and the model is described by an out
of plane elastic displacement uε(x, t) and phase field 0 ≤ vε(x, t) ≤ 1 defined for points x

belonging to the domain D ⊂R
2. The potential energy associated with the cracking body is

given by the Ambrosio-Tortorelli potential

P ε
(
uε(t), vε(t)

) = Eε
(
uε(t), vε(t)

) + Hε
(
vε(t)

)
, (7.4)

with

Eε
(
uε(t), vε(t)

) = μ

2

∫
D

aε(t)|∇uε(t)|2 dx (7.5)

and

Hε
(
vε(t)

) = Gc

2

∫
D

(1 − vε(t))2

2ε
+ 2ε|∇vε(t)|2 dx. (7.6)

Here aε(t) = aε(x, t) = (vε(x, t))2 + ηε , with 0 < ηε � ε. In this model the phase field vε ,
provides an approximate description of a freely propagating crack taking the value 1 for
points (x, t) away from the crack and zero on the crack. To formulate the problem we in-
troduce the space H 1

0 (D) defined to be displacements u in H 1(D) with zero Dirichlet data
on ∂D and the set of functions H 1

1 (D) defined to be functions v in H 1(D) for which v = 1
on ∂D. The total energy is given by

F
(
t;uε, ∂tu

ε, vε
) = 1

2

∫
D

|∂tu
ε |2 dx + P ε

(
uε, vε

) −
∫

D

f (t)uε dx. (7.7)

The body force f (x, t) is prescribed and the displacement—phase field pair (uε, vε) is a
solution of the initial boundary value problem [45] given by:

∂2
t t u

ε − div
(
aε(t)∇(

uε − ∂tu
ε
)) = f (t), in D,

uε = 0 and vε = 1, on ∂D,
(7.8)

for t ∈ (0, T ] with initial conditions uε(0) = u0, ∂tu
ε(0) = u1 ∈ H 1

0 (D) and v0 ∈ H 1
1 (D)

with 0 ≤ v0 ≤ 1, a.e. in D. In addition for each t ∈ [0, T ] the pair is required to satisfy the
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crack stability condition

P ε
(
uε(t), vε(t)

) = inf
{
P ε

(
uε(t), v

) : v ∈ H 1
1 (D), v ≤ vε(t)

}
(7.9)

and energy balance

F
(
t;uε, ∂tu

ε, vε
) = F(0;u0, u1, v0) −

∫ t

0

∫
D

aε |∇∂τu
ε |2 dτ −

∫ t

0

∫
D

∂τf uε dx dτ.

(7.10)

In this formulation the pair uε(t), vε(t) provides a regularized model for free crack propaga-
tion. Here the phase field tracks the evolution of the crack with vε = 1 away from the crack
and vε = 0 in the crack set. This model includes a viscous dissipation term ∇∂tu

ε . Here the
viscosity is chosen to match the elasticity and is also given by the value aε .

For a body force f (x, t) in C1([0, T ];L2(D)) it is shown in [45] that there exists at
least one trajectory (uε, vε) ∈ H 2((0, T );L2(D)) ∩ W 1,∞((0, T );H 1

0 (D)) × W 1,∞((0, T );
H 1

1 (D)) satisfying (7.8) in the weak sense, i.e.,
∫

D

∂2
t t u

εϕ dx +
∫

D

(
aε(t)∇(

uε − ∂tu
ε
)) · ∇ϕ dx =

∫
D

f (t)ϕ dx, (7.11)

for all ϕ in H 1
0 (D) for almost every t in (0, T ], with uε(0) = uε

0, ∂tu
ε(0) = uε

1, vε(0) = vε
0 ,

and such that (7.9) and (7.10) are satisfied for all times 0 ≤ t ≤ T . The problem is formulated
in a simplified setting to illustrate the ideas and note that this type of evolution is shown to
exist for evolutions with more general boundary conditions and for displacements in two
and three dimensions, see [45]. For future reference the pair (uε(t), vε(t)) is referred to as a
phase field fracture evolution.

In what follows we pass to the ε → 0 limit in the phase field evolutions to show existence
of a limiting evolution with bounded linear elastic fracture energy. Here the limit evolution
u0(t) is shown to take values in the space of special functions of bounded variation SBV(D).
This space is well known and for antiplane shear problems this space coincides with the
space SBD introduced earlier in Sect. 5. For a treatment of SBV and its relation to fracture
the reader is referred to [3].

Applying the techniques developed in previous sections it is possible to state and prove
the following theorem on the dynamics associated with the phase field evolutions (uε, vε) in
the limit as ε → 0.

Theorem 7.2 (Sharp Interface Limit of Phase Field Fracture Evolutions) Suppose for every
ε > 0 that: (a) the potential energy of the initial data (uε

0, v
ε
0) is uniformly bounded, i.e.,

supε>0{P ε(uε
0, v

ε
0)} < ∞, and that (b) ‖uε(t)‖L∞(D) < C for all 0 < ε and 0 ≤ t ≤ T . Then

on passing to a subsequence if necessary in the phase field fracture evolutions (uε, vε) there
exists an anti-plane displacement field u0(x, t) in SBV(D) for all t ∈ [0, T ] such that u0 ∈
C([0, T ];L2(D)) and

lim
ε→0

max
0≤t≤T

{‖uε(t) − u0(t)‖L2(D)

} = 0 (7.12)

with

GF
(
u0

) = μ

2

∫
D

|∇u0(t)|2 + GcH1(Ju0(t)) < C (7.13)

for 0 ≤ t ≤ T .
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For anti-plane shear deformations the energy GF is a special form of the energy LEFM
introduced in Sect. 5.

The strategy we will use for proving Theorem 7.2 is the same as the one developed in
the proofs of Theorems 5.1 and 5.2. This strategy can be made systematic and applied to
evolutions associated with potential energies that Γ -converge to the Griffith fracture energy.
It consists of four parts:

1. Constructing upper bounds on the kinetic and potential energy of the evolutions that hold
uniformly for 0 ≤ t ≤ T and 0 < ε.

2. Showing compactness of the evolution uε(t) in L2(D) for each time 0 ≤ t ≤ T .
3. Showing limit points of the sequence {uε(t)} belong to SBD(D) for each time 0 ≤ t ≤ T .
4. Γ -convergence of the potential energies to the Griffith energy LEFM (or GF as appro-

priate).

Assume first that Parts 1 through 4 hold for the phase field fracture evolution with po-
tential energies P ε given by (7.4). These are used as follows to prove Theorem 7.2. Part 1
is applied as in (6.11) to show that the sequence of evolutions uε(t) is uniformly Lipschitz
continuous in time with respect to the L2(D) norm, i.e.,

‖uε(t1) − uε(t2)‖L2(D) ≤ K|t1 − t2| (7.14)

for K independent of ε and for any 0 ≤ t1 < t2 ≤ T . Part 2 together with (7.14) and the As-
coli theorem imply the existence of a subsequence and a limit u0(x, t) ∈ C([0, T ];L2(D))

such that the convergence (7.12) holds. Part 3 shows that u0(x, t) belongs to SBV(D)

for every time in [0, T ]. Part 4 together with Part 1 and the lower bound property of
Γ -convergence described by (7.1) shows that (7.13) holds and Theorem 7.2 follows.

We now establish Parts 1 through 4 for the dynamic phase field fracture evolution intro-
duced in [45]. To obtain a uniform bound on the kinetic and potential energy differentiate
both sides of the energy balance (7.10) with respect to time to get

d

dt

(
1

2

∫
D

|∂tu
ε(t)|2 dx + P ε

(
uε(t), vε(t)

)) − d

dt

∫
D

f (t)uε dx (7.15)

= −
∫

D

aε |∇∂tu
ε |2 dx −

∫
D

∂tf uε dx.

Manipulation and application of the identity f ∂tu
ε = ∂t (f uε)− ∂tf uε to (7.15) delivers the

inequality

d

dt

(
1

2

∫
D

|∂tu
ε(t)|2 dx + P ε

(
uε(t), vε(t)

)) ≤
∫

D

f ∂tu
ε dx. (7.16)

Now set

Wε(t) =
(

1

2

∫
D

|∂tu
ε(t)|2 dx + P ε

(
uε(t), vε(t)

)) + 1 (7.17)

and proceed as in Sect. 6.2 to get

(
1

2

∫
D

|∂tu
ε(t)|2 dx + P ε

(
uε(t), vε(t)

)) ≤
(∫ t

0
‖f (τ)‖L2(D) dτ + √

Wε(0)

)2

− 1.

(7.18)
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Part 1 easily follows from (7.18) noting that supε>0{Wε(0)} < ∞ is a consequence of hy-
pothesis (a) of Theorem 7.2. For this example Parts 2 and 3 follow from the uniform bound
of Part 1, hypothesis (b) of Theorem 7.2 and the well known compactness result for the
Ambrosio Tortorelli functional, see for example the remark following Theorem 2.3 of [39].
Part 4 is given by the Ambrosio-Tortorelli Γ -convergence result [4] as expressed in Theo-
rem 2.3 of [39].

8 Conclusions

The cohesive model for dynamic brittle fracture evolution presented in this paper does not
require extra constitutive laws such as a kinetic relation between crack driving force and
crack velocity or a crack branching condition. Instead the evolution of the process zone to-
gether with the fracture set is governed by one equation consistent with Newton’s second
law given by (1.9). This is a characteristic feature of peridynamic models [60, 64]. This
evolution is intrinsic to the formulation and encoded into the nonlocal cohesive constitutive
law. Crack nucleation criteria although not necessary to the formulation follow from the dy-
namics and are recovered here by viewing nucleation as a dynamic instability, this is similar
in spirit to [65] and the work of [28] for phase transitions. Theorem 4.1 explicitly shows
how the size of the process zone is controlled by the radius of the horizon. This analysis
shows that the horizon size ε for cohesive dynamics is a modeling parameter that can be
calibrated according to the size of the process zone obtained from experimental measure-
ments. The process zone is seen to concentrate on a set of zero volume as the length scale of
non-locality characterized by the radius of the horizon ε goes to zero, see Theorem 4.1. In
this limit the dynamics is shown to coincide with the simultaneous evolution of a displace-
ment crack set pair. Here the evolution is elastodynamic for points in space-time away from
the crack set. The shear and Lamé moduli together with the fracture toughness for the limit
evolution are described explicitly by the nonlocal potentials and given by (5.7), and (5.8).

In closing we note that more generally the “time” variable appearing in peridynamics
need not be the physical time, and that a “motion” may be regarded as any type of one-
parameter evolution. In this way the theory need not be connected strictly to the presence of
inertia.
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