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Abstract We extend the peridynamic model to inherit irreversible damage. The governing
equation is both nonlocal in time and in space and yields an abstract differential equation of
Volterra type. We present conditions under which unique global solutions exist.
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1 Modeling Damage in Peridynamics

According to Newton’s law, the peridynamic equation of motion reads

yt t (x, t) =
∫

Ω∩B(x;δ)
f
(
x̂ − x,y(x̂, t) − y(x, t)

)
dx̂ + b(x, t), (x, t) ∈ Ω × (0, T ), (1.1)

where y : Ω × [0, T ] → R
d , d ∈ N, denotes the deformation of an elastic body, which in

the reference configuration takes the volume Ω ⊂ R
d . The function b : Ω × [0, T ] → R

d

is an external force density, and the integral term represents the stress. The integrand f :
B(0; δ) × R

d → R
d is called pairwise force function and depends on the material under

investigation. Here, B(x; r) denotes the open ball with radius r > 0 centered in x ∈ R
d , and

the parameter δ > 0 is called peridynamic horizon. The pairwise force function describes the
interaction of two neighbored particles x̂,x ∈ Ω for which the vector x̂ − x is called bond.
For more information on peridynamics, we refer to [1, 6] and the references cited therein.
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Fig. 1 The function Θε : R → R

used for modeling irreversible
damage.

In [6], damage is modeled via the bondstretch

s
(
x̂ − x,y(x̂, t) − y(x, t)

) = |y(x̂, t) − y(x, t)| − |x̂ − x|
|x̂ − x| , (1.2)

where | · | denotes the Euclidean norm. If the bondstretch exceeds a critical stretch s0 > 0
for some time t0 ∈ [0, T ] then the bond breaks and as a result there is no interaction (i.e., no
force) between the particles x̂,x ∈ Ω of the bond for any t > t0. Lots of these broken bonds
may lead to cracks which can be traced as spatial discontinuities in the deformation. In order
to model bond breaking, in [6] it is suggested to multiply the pairwise force function in (1.1)
by a factor, which is one if there holds s(x̂ − x,y(x̂, τ ) − y(x, τ )) ≤ s0 for all τ ≤ t and
zero if there was some time t0 with s(x̂ − x,y(x̂, t0) − y(x, t0)) > s0. However, no explicit
form of this factor is given. Observe that an incorporation of this multiplier in (1.1) changes
the character of (1.1) completely since then, additionally to the nonlocality in space, there
will also be a nonlocality in time. In [2], existence of local and global classical solutions to
the initial-value problem for (1.1) is proven. In this note, we give extensions of some of the
results of [2] inheriting the ability of bond breaking.

The multiplier described above can explicitly be formulated with

(Hy)(x̂,x, t) = Θ

(∫ t

0
max

{
0, s

(
x̂ − x,y(x̂, τ ) − y(x, τ )

) − s0

}
dτ

)
, (1.3)

where the function Θ : R → R is given by Θ(r) = 1 if r ≤ 0 and Θ(r) = 0 otherwise. Due
to the discontinuity of Θ , the mapping y �→ Hy cannot be continuous and in particular not
Lipschitz continuous. The Lipschitz continuity property, however, will be needed to apply
the techniques used in [2] in order to show existence and uniqueness of solutions. Therefore,
we replace (1.3) by

(Hεy)(x̂,x, t) = Θε

(∫ t

0
max

{
0, s

(
x̂ − x,y(x̂, τ ) − y(x, τ )

) − s0
}

dτ

)
(1.4)

for fixed ε > 0. Here, Θε :R→R is given by (see also Fig. 1)

Θε(r) =

⎧⎪⎨
⎪⎩

1 r ≤ 0,

1 − r
ε

0 < r < ε,

0 r ≥ ε.

Observe that Hεy is monotonically decreasing in time. Thus the damage is indeed irre-
versible.

The parameter ε > 0 in (1.4) does not necessarily need to be seen as a regularization
parameter, which has to be sent to zero at the end. Instead, it can be seen as a material
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parameter. When the bondstretch exceeds the critical stretch s0, the bond loses strength even
though it does not break immediately. Hence, in order to break, there is either the possibility
that the critical stretch is exceeded strongly, or it may break after exceeding the critical
stretch softly over a certain period of time. In particular, this time period might be split into
many short disjoint time intervals. Therefore, the effect of cycle fatigue is included into this
notion of modeling damage. In that case, ε may also take large values.

In this paper, we prove global-in-time existence and uniqueness of solutions to the non-
linear peridynamic equation of motion for a class of pairwise force functions f multiplied by
Hε as given above. The assumptions on f we suppose are natural in the sense that we only
require minimal measurability and (Lipschitz) continuity properties allowing us to interpret
the underlying equation as an abstract ordinary differential equation of Volterra type. In a
classical local theory, these assumptions correspond to the situation that the stress-strain re-
lation is described by a (Lipschitz) continuous function. Our notion of solution may include
spatially discontinuous deformations. Moreover, Theorem 2.2 can be interpreted as a regu-
larity result: If there is no discontinuity in the initial deformation then, under suitable further
assumptions, the deformation stays continuous.

The multiplication by Hε allows us to take into account the time history in such a way
that, although irreversible damage is incorporated, Lipschitz continuity is preserved. Here
we model irreversible damage by comparing the bondstretch corresponding to the solution
with a prescribed bondstretch. As already described above, the parameter ε can be seen as a
regularization parameter as well as a parameter that describes a continuous transition from
the undamaged to the damaged situation.

We would like to emphasize that nonlinear peridynamics in combination with fracture has
been studied very recently in [5]. However, even though the effect of bonds losing strength
is considered, no irreversible bond breaking is implemented in the formulation of [5].

2 Global Existence and Uniqueness

In what follows, we rely on the standard notation for function spaces. As usual, we iden-
tify the deformation y : Ω × [0, T ] → R

d with the abstract function y : [0, T ] → X by
[y(t)](x) = y(x, t), where X is a suitable function space of mappings of Ω into R

d . Then,
for initial data y0,v0 ∈ X, the peridynamic initial-value problem reads

y′′(t) = (Ky)(t) + b(t), t ∈ (0, T ), y(0) = y0, y′(0) = v0, (2.1)

where K : C([0, T ];X) → C([0, T ];X) is given by

[
(Ky)(t)

]
(x) =

∫
Ω∩B(x;δ)

f
(
x̂ − x,y(x̂, t) − y(x, t)

)
(Hεy)(x̂,x, t)dx̂. (2.2)

Note that K is a Volterra operator in the sense of [4, Definition 1.1 on p. 163], i.e., for
t ∈ [0, T ], from v(τ ) = w(τ ) for all τ ∈ [0, t] it follows (Kv)(t) = (Kw)(t). For more
information about Volterra operators in this generalized sense and corresponding existence
theorems, we refer to [4].

As mentioned above, Lipschitz continuity of K is an essential ingredient of the existence
proof. Indeed, Hε is Lipschitz continuous, which is shown in the following lemma.

Lemma 2.1 Let Hε be given by (1.4) for ε > 0 with s given by (1.2). Then for v ∈
C([0, T ];L∞(Ω)d) the mapping

(x̂,x) �→ (Hεv)(x̂,x, t) : Ω × Ω →R
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is measurable for every t ∈ [0, T ], and the mapping

t �→ (Hεv)(x̂,x, t) : [0, T ] →R

is continuous for almost all (x̂,x) ∈ Ω × Ω . Moreover, for almost all (x̂,x) ∈ Ω × Ω and
all t ∈ [0, T ] the mapping

v �→ (Hεv)(x̂,x, t) : C([0, T ];L∞(Ω)d
) →R

is Lipschitz continuous.

Proof The measurability is obvious. Concerning the continuity in time, for t̂ , t ∈ [0, T ],
x̂,x ∈ Ω , x̂ �= x, there holds

∣∣(Hεv)(x̂,x, t̂) − (Hεv)(x̂,x, t)
∣∣

≤ 1

ε

∫ max{t̂ ,t}

min{t̂ ,t}

∣∣s(x̂ − x,v(x̂, τ ) − v(x, τ )
) − s0

∣∣dτ

≤ 1

ε

∫ max{t̂ ,t}

min{t̂ ,t}

( |v(x̂, τ ) − v(x, τ )|
|x̂ − x| + 1 + s0

)
dτ,

which implies

∣∣(Hεv)(x̂,x, t̂) − (Hεv)(x̂,x, t)
∣∣ ≤ |t̂ − t |

ε

(
1 + s0 + 2‖v‖C([0,T ];L∞(Ω)d )

|x̂ − x|
)

. (2.3)

In order to show the Lipschitz continuity asserted, we observe that for a, b ∈ R there holds
|max{0, a} − max{0, b}| ≤ |a − b|, and for ξ , ζ̂ , ζ ∈ R

d , ξ �= 0, there holds

∣∣s(ξ , ζ̂ ) − s(ξ , ζ )
∣∣ ≤ |ζ̂ − ζ |

|ξ | .

Hence, for v,w ∈ C([0, T ];L∞(Ω)d), we find

∣∣(Hεv)(x̂,x, t) − (Hεw)(x̂,x, t)
∣∣ ≤ 2t

ε|x̂ − x| ‖v − w‖C([0,T ];L∞(Ω)d ). (2.4)

Note that the moduli of continuity strongly depend on ε, x̂ and x. �

Theorem 2.1 Let the pairwise force function f : B(0; δ) × R
d → R

d be measurable in its
first argument and continuous in its second. Suppose there exists λ such that the mapping
ξ �→ λ(ξ)/|ξ | is in L1(B(0; δ)) and that there exists � ∈ L1(B(0; δ)) such that for all ζ̂ , ζ ∈
R

d and almost all ξ ∈ R
d , |ξ | < δ, there holds

∣∣f(ξ , ζ̂ ) − f(ξ , ζ )
∣∣ ≤ �(ξ)|ζ̂ − ζ |, ∣∣f(ξ , ζ )

∣∣ ≤ λ(ξ). (2.5)

Then, for y0,v0 ∈ L∞(Ω)d and b ∈ L1(0, T ;L∞(Ω)d), the initial-value problem (2.1)
with Hε given by (1.4) for ε > 0 and s given by (1.2) possesses a unique solution
y ∈ C1([0, T ];L∞(Ω)d) with y′′ ∈ L1(0, T ;L∞(Ω)d). If b ∈ C([0, T ];L∞(Ω)d) then y ∈
C2([0, T ];L∞(Ω)d).
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Proof We show that under the above assumptions on the pairwise force function, and by
Lemma 2.1, the Volterra operator K : C([0, T ];L∞(Ω)d) → C([0, T ];L∞(Ω)d) is well-
defined and Lipschitz continuous.

On the one hand, we have for all t ∈ [0, T ] that ‖(Kv)(t)‖L∞(Ω)d ≤ ‖λ‖L1(B(0;δ)). On the
other hand, for t̂ , t ∈ [0, T ], there holds

∣∣[(Kv)(t̂)
]
(x) − [

(Kv)(t)
]
(x)

∣∣
≤

∫
Ω∩B(x;δ)

∣∣f(x̂ − x,v(x̂, t̂) − v(x, t̂)
) − f

(
x̂ − x,v(x̂, t) − v(x, t)

)∣∣dx̂

+
∫

Ω∩B(x;δ)
λ(x̂ − x)

∣∣(Hεv)(x̂,x, t̂) − (Hεv)(x̂,x, t)
∣∣dx̂,

and therefore, with (2.3),
∥∥(Kv)(t̂) − (Kv)(t)

∥∥
L∞(Ω)d

≤ 2‖�‖L1(B(0;δ))
∥∥v(t̂) − v(t)

∥∥
L∞(Ω)d

+ |t̂ − t |
ε

(
(1 + s0)‖λ‖L1(B(0;δ)) + 2‖v‖C([0,T ];L∞(Ω)d )

∫
B(0;δ)

λ(ξ)

|ξ | dξ

)
.

Due to the integrability condition assumed on λ, we deduce that the Volterra operator K :
C([0, T ];L∞(Ω)d) → C([0, T ];L∞(Ω)d) is well-defined and bounded.

To show Lipschitz continuity, we observe for v,w ∈ C([0, T ];L∞(Ω)d) and t ∈ [0, T ],
x ∈ Ω , that

∣∣[(Kv)(t)
]
(x) − [

(Kw)(t)
]
(x)

∣∣
≤

∫
Ω∩B(x;δ)

∣∣f(x̂ − x,v(x̂, t) − v(x, t)
) − f

(
x̂ − x,w(x̂, t) − w(x, t)

)∣∣dx̂

+
∫

Ω∩B(x;δ)
λ(x̂ − x)

∣∣(Hεv)(x̂,x, t) − (Hεw)(x̂,x, t)
∣∣dx̂,

and therefore, by (2.4),

‖Kv − Kw‖C([0,T ];L∞(Ω)d ) ≤ 2‖�‖L1(B(0;δ))‖v − w‖C([0,T ];L∞(Ω)d )

+ 2T

ε
‖v − w‖C([0,T ];L∞(Ω)d )

∫
B(0;δ)

λ(ξ)

|ξ | dξ .

Hence, there exists L > 0 such that

‖Kv − Kw‖C([0,T ];L∞(Ω)d ) ≤ L‖v − w‖C([0,T ];L∞(Ω)d ).

Note that since K : C([0, T ];L∞(Ω)d) → C([0, T ];L∞(Ω)d) is a Volterra operator in the
sense of [4], there holds in particular for all t ∈ [0, T ]

‖Kv − Kw‖C([0,t];L∞(Ω)d ) ≤ L‖v − w‖C([0,t];L∞(Ω)d ), (2.6)

see [4, Lemma 1.4 on p. 163]. This allows us to apply Banach’s fixed-point principle to
v = Sv, where the fixed-point mapping S : C([0, T ];L∞(Ω)d) → C([0, T ];L∞(Ω)d) is
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given by

(Sv)(t) = y0 + tv0 +
∫ t

0
(t − s)

(
(Kv)(s) + b(s)

)
ds.

Indeed, S is a contraction on C([0, T ];L∞(Ω)d) with respect to the equivalent norm

|||v|||C([0,T ];L∞(Ω)d ) := max
0≤t≤T

e−2LT t
∥∥v(t)

∥∥
L∞(Ω)d

since by (2.6) there holds for t ∈ [0, T ]
∥∥(Sv)(t) − (Sw)(t)

∥∥
L∞(Ω)d

≤
∫ t

0
(t − s)

∥∥(Kv)(s) − (Kw)(s)
∥∥

L∞(Ω)d
ds

≤ LT

∫ t

0
‖v − w‖C([0,s];L∞(Ω)d ) ds

≤ LT

∫ t

0
max
0≤τ≤s

{∥∥v(τ ) − w(τ )
∥∥e−2LT τ

}
e2LT s ds

≤ e2LT t − 1

2
|||v − w|||C([0,T ];L∞(Ω)d ),

and hence |||Sv − Sw|||C([0,T ];L∞(Ω)d ) ≤ 1
2 |||v − w|||C([0,T ];L∞(Ω)d ). The fixed-point problem is

equivalent to (2.1). Thus existence and uniqueness of the solution follows. The regularity of
y is immediate. �

Of course, the Lipschitz and growth condition (2.5) on the pairwise force function are
quite restrictive, although they allow for a weak singularity in ξ if d ≥ 2.

The choice of the function space X = L∞(Ω)d provides the opportunity for the deforma-
tion to experience spatial discontinuities. Therefore, the globally existing classical solution
may suffer from a strong type of damage that results in cracks. However, if the initial val-
ues are taken as elements of the function space X = C(Ω)d , then, even though bonds are
allowed to break irreversibly, there exists a global classical solution taking values in the
space of continuous functions, i.e., no cracks will occur. In order to show this, we need the
following estimate for the mapping x �→ (Hεv)(x̂,x, t) if v ∈ C([0, T ];C(Ω)d).

Lemma 2.2 Let Hε be given by (1.4) for ε > 0 with s given by (1.2) and let v ∈
C([0, T ];C(Ω)d). Then for x, x̂ ∈ Ω , t ∈ [0, T ], there holds for all h ∈R

d with x + h ∈ Ω

∣∣(Hεv)(x̂,x + h, t) − (Hεv)(x̂,x, t)
∣∣

≤ 2t

ε

|h|
|x̂ − x − h||x̂ − x| ‖v‖C([0,T ];C(Ω)d )

+ 1

ε

1

|x̂ − x|
∫ t

0

∣∣v(x + h, τ ) − v(x, τ )
∣∣dτ.

Proof We find
∣∣(Hεv)(x̂,x + h, t) − (Hεv)(x̂,x, t)

∣∣

≤ 1

ε

∫ t

0

∣∣s(x̂ − x − h,v(x̂, τ ) − v(x + h, τ )
) − s

(
x̂ − x,v(x̂, τ ) − v(x, τ )

)∣∣dτ.
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Moreover, since for ξ̂ , ξ , ζ̂ , ζ ∈R
d , ξ̂ , ξ �= 0, there holds

∣∣s(ξ̂ , ζ̂ ) − s(ξ , ζ )
∣∣ ≤ |ζ | |ξ̂ − ξ |

|ξ̂ ||ξ | + |ζ̂ − ζ |
|ξ̂ | ,

the claim follows. �

Theorem 2.2 Let the pairwise force function f : B(0; δ) × R
d → R

d be as in Theorem 2.1
with Hε given by (1.4) for ε > 0 and s given by (1.2). Additionally, we assume that ξ �→
λ(ξ)/(|ξ ||ξ + h|) is in L1(B(0; δ)) for all h ∈R

d with |h| ≤ h0, for a fixed h0 > 0. Then, for
each y0,v0 ∈ C(Ω)d and b ∈ L1(0, T ;C(Ω)d), the initial-value problem (2.1) possesses a
unique solution y ∈ C1([0, T ];C(Ω)d) with y′′ ∈ L1(0, T ;C(Ω)d). If b ∈ C([0, T ];C(Ω)d)

then y ∈ C2([0, T ];C(Ω)d).

Proof Due to the bound ‖Kv‖C([0,T ];C(Ω)d ) ≤ ‖λ‖L1(B(0;δ)), it remains to show continuity of
x �→ [(Kv)(t)](x) to conclude that the operator is well-defined. In order to shorten notation,
we denote Ω ∩ B(x; δ) by H(x). For x,x + h ∈ Ω , we find

∣∣[(Kv)(t)
]
(x + h) − [

(Kv)(t)
]
(x)

∣∣ ≤ I1 + I2 + I3 + I4

with

I1 =
∫
H(x+h)∩H(x)

∣∣f(x̂ − x − h,v(x̂, t) − v(x + h, t)
)

− f
(
x̂ − x,v(x̂, t) − v(x, t)

)∣∣dx̂,

I2 =
∫
H(x+h)∩H(x)

λ(x̂ − x)
∣∣(Hεv)(x̂,x + h, t) − (Hεv)(x̂,x, t)

∣∣dx̂,

I3 =
∫
H(x+h)\H(x)

λ(x̂ − x − h)dx̂,

I4 =
∫
H(x)\H(x+h)

λ(x̂ − x)dx̂.

For the first integral I1, there holds

I1 ≤
∫
H(x+h)∩H(x)

∣∣f(x̂ − x − h,v(x̂, t) − v(x + h, t)
)

− f
(
x̂ − x − h,v(x̂, t) − v(x, t)

)∣∣dx̂

+
∫
H(x+h)∩H(x)

∣∣f(x̂ − x − h,v(x̂, t) − v(x, t)
)

− f
(
x̂ − x,v(x̂, t) − v(x, t)

)∣∣dx̂

= I1,1 + I1,2.

With the transformation ξ = x̂ − x − h, we find
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I1,1 =
∫
H(0)∩H(−h)

∣∣f(ξ ,v(ξ + x + h, t) − v(x + h, t)
)

− f
(
ξ ,v(ξ + x + h, t) − v(x, t)

)∣∣dξ .

Here, the integrand converges pointwise almost everywhere due to the continuity of the
pairwise force function in its second argument and since v is continuous. Moreover, the
pairwise force function is bounded by λ in view of (2.5). Therefore, by Lebesgue’s theorem
on dominated convergence, it follows I1,1 → 0 for h → 0. For I1,2, we observe convergence
to zero since, in particular, the pairwise force function is continuous with respect to the L1-
mean. Regarding I2, with Lemma 2.2 there holds

I2 ≤ 2t

ε
|h|‖v‖C([0,T ];C(Ω)d )

∫
H(x+h)∩H(x)

λ(x̂ − x)

|x̂ − x − h||x̂ − x| dx̂

+ 1

ε

∫
H(x+h)∩H(x)

λ(x̂ − x)

|x̂ − x| dx̂
∫ t

0

∣∣v(x + h, τ ) − v(x, τ )
∣∣dτ,

which yields continuity. Note that the integrals on the right-hand side exist due to our as-
sumptions on λ. Finally, for the remaining integrals I3 and I4, we find

I3 =
∫
H(0)\H(−h)

λ(ξ)dξ → 0 for h → 0

as well as

I4 =
∫
H(0)\H(h)

λ(ξ)dξ → 0 for h → 0.

Therefore, K : C([0, T ];C(Ω)d) → C([0, T ];C(Ω)d) is well-defined. The Lipschitz conti-
nuity of K follows as before. Hence, with the same fixed-point operator as used in the proof
of Theorem 2.1 but as a mapping of C([0, T ];C(Ω)d) into itself, the claim follows with
Banach’s fixed-point principle. The regularity of y follows immediately. �

Observe that no continuity with respect to the first argument of the pairwise force func-
tion was assumed. Hence, in that sense, this result generalizes the results in [2].

Note that incorporating irreversible bond breaking into the setting of weak solutions in
peridynamics (see [3]) is a question of ongoing research.
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