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Abstract We prove the local and global in time existence of the classical solutions to two
general classes of the stress-assisted diffusion systems. Our results are applicable in the
context of the non-Euclidean elasticity and liquid crystal elastomers.
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1 Introduction and the Main Results

There are a number of phenomena where inhomogeneous and incompatible pre-strain is
observed in 3-dimensional bodies. Growing leaves, gels subjected to differential swelling,
electrodes in electrochemical cells, edges of torn plastic sheets are but a few examples [22,
38, 39, 46]. It has also been recently suggested that such incompatible pre-strains may be
exploited as means of actuation of micro-mechanical devices [40, 41]. The mathematical
foundations for these theories has lagged behind but has recently been the focus of much
attention. While the static theory involving thin structures such as pre-strained plates and
shells is now reasonably well understood [8, 11, 24, 31, 35], leading to the variationally
reduced models constrained to appropriate types of isometries [8, 12, 35], and requiring
bringing together the differential geometry of surfaces with the theory of elasticity appro-
priately modified [24, 25, 30, 34], the parallel evolutionary PDE model seems to not have
been considered in this context.
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1.1 The Model and the Main Results

In this paper, we are concerned with two systems of coupled PDEs in the description of
stress-assisted diffusion. The first system:{

utt − div(∂F W(φ,∇u)) = 0

φt = �(∂φW(φ,∇u))
(1.1)

consists of a balance of linear momentum in the deformation field u : R3 ×R+ →R
3, and the

diffusion law of the scalar field φ : R3 ×R+ → R representing the inhomogeneity factor in
the elastic energy density W . The field φ may be interpreted as the local swelling/shrinkage
rate in morphogenesis at polymerization, or the localized conformation in liquid crystal
elastomers.

The second system is a quasi-static approximation of (1.1), in which we neglect the
material inertia utt , consistent with the assumption that the diffusion time scale is much
shorter than the time scale of elastic wave propagation:{

−div(∂F W(φ,∇u)) = 0

φs = �(∂φW(φ,∇u)).
(1.2)

In both systems, the deformation u induces the deformation gradient, and the velocity
and velocity gradients, respectively denoted as:

F = ∇u ∈R
3×3, v = ξt ∈R

3, Q = ∇ξt = ∇v = Ft ∈ R
3×3.

We will be concerned with the local in time well-posedness of the classical solutions to (1.1),
and the global well-posedness of (1.2), subject to the (subset of) initial data:

u(0, ·) = u0, ut (0, ·) = u1 in R
3, (1.3)

φ(0, ·) = φ0 in R
3, (1.4)

and the non-interpenetration ansatz:

det∇u > 0 in R
3. (1.5)

The main results of this paper are the following:

Theorem 1.1 Let u0 − id ∈ H 4(R3), u1 ∈ H 3(R3) and φ0 ∈ H 3(R3). Assume that W is as
in Sect. 1.2. Fix T > 0, and assume that the following quantities:

‖u1,∇u0 − Id3, φ0‖2
H 3 + ‖u0 − id‖2

L2 +
∫
R3

W(φ0,∇u0)dx (1.6)

are sufficiently small in comparison with T , and with the constant γ in (1.7). Then there
exists a unique solution (u,φ) of the problem (1.1) (1.3)–(1.5), defined on the time inter-
val [0, T ], and such that:

u − id ∈ L∞(
0, T ;H 4

(
R

3
))

, utt ∈ L∞(
0, T ;H 2

(
R

3
))

,

φ ∈ L∞(
0, T ;H 3

(
R

3
))

and φt ∈ L2
(
0, T ;H 2

(
R

3
))

.
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Theorem 1.2 Let φ0 ∈ H 2(R3) and assume that W is as in Sect. 1.2. Assume that ‖φ0‖H 2

is sufficiently small. Then there exists a unique global in time solution (u,φ) to (1.2) (1.4)
(1.5) such that:

u − id ∈ L∞(
R+;L6

(
R

3
))

, ∇2u ∈ L2
(
R+;H 2

(
R

3
))

,

φ ∈ L∞(
R+;H 2

(
R

3
))

and ∇φ ∈ L2
(
R+;H 2

(
R

3
))

.

The proof of Theorem 1.1 relies on controlling the energy:∫
R3

1

2
|ut |2 + W(φ,∇u)dx,

where the key observation is that the diffusion acts as a dissipative mechanism and drives
the system towards an elastic equilibrium. The hyperbolic character of the first equation
in (1.1) suggests to seek the a-priori bounds on higher norms of u and φ by the standard
energy techniques. A detailed analysis reveals that the special structure of coupling in the
stress-assisted diffusion system indeed allows for cancellation of those terms that otherwise
prevent closing the bounds in each of the two equations in (1.1) alone. These terms are
displayed in formulas (2.6) and (2.8) in the proof of Lemma 2.2. Existence of solutions
in Theorem 1.1 is then shown via Galerkin’s method, where we check that solutions to
all appropriate ε-approximations of the original system (1.1) still enjoy the same a-priori
bounds in Theorem 2.3. This is carried out in Sect. 3, while uniqueness of solutions is
proved in Sect. 4.

The proof of Theorem 1.2, given in Sect. 5, is based on the L2-approach as well. The
system (1.2) is of elliptic-parabolic type, thus there is no loss of regularity with respect to
the initial data (in contrast to (1.1)). The analysis here is simpler than for (1.1) and we are
able to show the global in time existence of small solutions. The toolbox we use for the
proofs of both results is universal for hyperbolic-parabolic and elliptic-parabolic systems.
Similar methods have been applied in [7, 13, 43, 44, 51] to study models of elasticity and
their couplings with flows of complex fluids. A key element in these methods is the basic
conservation law of energy and entropy type.

1.2 The Energy Density W

We now introduce the assumptions on the inhomogeneous elastic energy density W in (1.1).
Namely, the nonnegative scalar field W : R+ ×R

3×3 → R+ is assumed to be C4 in a neigh-
borhood of (0, Id3) and to satisfy, with some constant γ > 0:

W(0, Id) = 0, DW(0, Id) = 0, and:

D2W(0, Id) : (φ̃, F̃ )⊗2 ≥ γ
(|φ̃|2 + |symF̃ |2) for all (φ̃, F̃ ) ∈R×R

3×3.
(1.7)

The two main examples of W that we have in mind, concern non-Euclidean elasticity
and liquid crystal elastomers, where respectively:

W1(φ,F ) = W0

(
FB(φ)

) + 1

2
|φ|2,

W2(φ,F ) = W0

(
B(φ)F

) + 1

2
|φ|2

(1.8)
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are given in terms of the homogeneous energy density W0 : R3×3 → R+ and the smooth
tensor field B : R → R

3×3. In both cases, we assume that B(φ) is symmetric and positive
definite, and that B(0) = Id. Further, the principles of material frame invariance, material
consistency, normalisation, and non-degeneracy impose the following conditions on W0,
valid for all F ∈R

3×3 and all R ∈ SO(3):

(i) W0(RF) = W0(F ).

(ii) W0(F ) → +∞ as detF → 0.

(iii) W0(Id) = 0.

(iv) W0(F ) ≥ c dist2(F,SO(3)).

(1.9)

Examples of W0 satisfying the above conditions are:

W0,1(F ) = ∣∣(FT F
)1/2 − Id

∣∣2 + | log detF |q ,

W0,2(F ) = ∣∣(FT F
)1/2 − Id

∣∣2 +
∣∣∣∣ 1

detF
− 1

∣∣∣∣
q

for detF > 0,

where q > 1 and W0,i is intended to be +∞ if detF ≤ 0 [42]. Another case-study example,
satisfying (i), (iii) but not (iv) is: W0(F ) = |FT F − Id|2.

We have the following observation, which we will prove in the Appendix:

Proposition 1.3 For W0 which is C2 in a neighborhood of SO(3) and B which is C2 in
a neighborhood of 0, assume (1.9) and assume that B(0) = Id. Then W1 and W2 in (1.8)
satisfy (1.7).

1.3 Background and Relation to Some Previous Works

To put our results in a broader context, consider a general referential domain Ω which is
an open, smooth and simply connected subset of R3. Let G : Ω̄ → R

3×3 be a given smooth
Riemann metric on Ω and denote its unique positive definite symmetric square root by
B = √

G. The “incompatible elastic energy” of a deformation u of Ω is then given by:

E(u,Ω) =
∫

Ω

W0

(∇u(x)B(x)−1
)

dx ∀u ∈ W 1,2
(
Ω,R3

)
, (1.10)

where the elastic energy density W0 is as in (1.9). It has been proved in [35] that:

inf
u∈W1,2(Ω,R3)

E(u,Ω) = 0 ⇐⇒ Riem(G) ≡ 0 in Ω,

i.e., when the Riemann curvature tensor of G vanishes identically in Ω and when (equiva-
lently) the infimum above is achieved through a smooth isometric immersion u of G.

Note that, at the formal level, the Euler-Lagrange equations of (1.10) are precisely the
first equation in the system (1.2). The dynamical viscoelasticity has been the subject of
many studies in the last decades (see for example [3–6, 9, 10, 45] and references therein),
where results on existence, asymptotics and stability have been obtained for a large class of
models. For the coupled systems of stress-assisted diffusion of the type (1.1) or (1.2), we
found a substantial body of literature in the Applied Mechanics community [17–19, 49, 50],
deriving these equations from basic principles of continuum mechanics and irreversible ther-
modynamics. For example, the system derived in [19] is quite close to (1.2) from the view
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point of theory of PDEs; in as much as the structures of nonlinearities in both systems are
almost the same. Derivation from the first principles aside, it seems that the analytical study
of the Cauchy problem, particularly in long temporal ranges, has not been yet carried out.
The closest investigation in this direction has been proposed in [20] concerning existence of
solutions for models of nonlinear thermoelasticity, and in [51] where the authors examine
well-posedness of further models of thermoviscoelasticity. We refer here to [33, 47] as well.

Systems of the type (1.1), (1.2) are also similar to some PDEs appearing naturally in
the Biomechanics literature on growth. In [16, 48] (see also the references therein) the au-
thors consider morphoelasticity as a continuous dynamical process and include the effect of
growth and remodelling within the framework of nonlinear elasticity under the assumption
that the elastic tensor (∇u)B−1 is diagonal. They also perform a numerical analysis of the
stability of a fixed point for growth, assuming its constancy. The review article [21] fea-
tures the interplay between growth patterns and mechanical stresses from different points of
view, in particular assuming the multiplicative decomposition of the deformation gradient
as in the argument of the density W0 in (1.10), or the resulting additive decomposition in
the displacement gradient at the linearised level. The paper [27] reviews the thermodynam-
ics developed for multicomponent multiphase stressed crystalline solids, at the equilibria in
which the solid is inhomogeneous both in stress and composition.

It is worth mentioning that in the context of thin films when Ω = Ωh = U ×(− h
2 , h

2 ) with
some U ⊂R

2, there is a large body of literature relating the magnitude of curvatures of G to
the scaling of infE(·,Ωh) in terms of the film’s thickness h, and subsequently deriving the
residual 2-dimensional energies using the variational techniques. In the Euclidean case of
G = Id3, where the residual energies are driven by presence of applied forces f h ∼ hα , three
distinct limiting theories have been obtained [14] for 1

h
E(·,Ωh) ∼ hβ with β > 2 (equiva-

lently α > 2). Namely: β ∈ (2,4) corresponded to the linearized Kirchhoff model (nonlinear
bending energy), β = 4 to the classical von-Kármán model, and β > 4 to the linear elastic-
ity. For β = 0 the membrane energy has been derived in the seminal papers [28, 29], while
the case β = 2 was considered in [15]. In the paper [36] a higher order (infinite) hierarchy
of scalings and of the resulting elastic theories of shells, where the reference configuration
is a thin curved film, has been derived by an asymptotic calculus.

In the context of the non-Euclidean energy (1.10), it has been shown in [8] that the
scaling: inf 1

h
E(·,Ωh) ∼ h2 only occurs when the metric G2×2 on the mid-plate U can be

isometrically immersed in R
3 with the regularity W 2,2 and when, at the same time, the

three appropriate Riemann curvatures of G do not vanish identically; the relevant resid-
ual theory, obtained through Γ -convergence, yielded then a Kirchhoff-like residual energy.
Further, in [37] the authors proved that the only outstanding nontrivial residual theory is a
von Kàrmàn-like energy, valid when: inf 1

h
E(·,Ωh) ∼ h4. This scale separation, contrary to

[14, 36], is due to the fact that while the magnitude of external forces is adjustable at will,
it seems not to be the case for the interior mechanism of a given metric G which does not
depend on h. In fact, it is the curvature tensor of G which induces the nontrivial stresses
in the thin film and it has only six independent components, namely the six sectional cur-
vatures created out of the three principal directions, which further fall into two categories:
including or excluding the thin direction variable. The simultaneous vanishing of curvatures
in each of these categories correspond to the two scenarios at hand in terms of the scaling of
the residual energy.

Other types of residual energies pertaining to different contexts and scalings, have been
studied and derived by the authors in [11, 12, 22, 24, 25, 30–32, 34, 38]. The analysis in
the present paper can be seen as a prerequisite to the future considerations of dimension
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reduction for dynamical problems in nonlinear elasticity with prestrain, in the spirit of [1, 2]
where dynamics of thin plates without incompatibility was treated.

1.4 Notation

Throughout the paper we use the following notation. In (1.1) the operator div stands for
the spacial divergence of an appropriate field. We use the convention that the divergence
of a matrix field is taken row-wise. We use the matrix norm |F | = (tr(F T F ))1/2, which is
induced by the inner product: 〈F1 : F2〉 = tr(F T

1 F2).
The derivatives of W are denoted by DW , D2W etc., while their action on the appropriate

variations (φ̃, F̃ ) ∈ R×R
3×3 is denoted by: DW(φ,∇u) : (φ̃, F̃ ), D2W(φ,∇u) : (φ̃, F̃ )⊗2

etc., often abbreviating to DW : (φ̃, F̃ ) and (D2W) : (φ̃, F̃ )⊗2 when no confusion arises.
The partial derivative of W with respect to its second argument is denoted by ∂F W ∈

R
3×3. The derivative in the direction of the variation F̃ ∈R

3×3 is then 〈(∂F W) : F̃ 〉 ∈ R. By
(∂k

F W) : (F̃1 ⊗ F̃2 . . . ⊗ F̃k−1) ∈ R
3×3 we denote the linear map acting on F ∈ R

3×3 as the
kth derivative of W in the direction of F̃1, F̃2 . . . F̃k−1,F . Hence, differentiating in F gives:(

∂k
F W

) : (F̃1 ⊗ . . . F̃k) = 〈((
∂k

F W
) : (F̃1 ⊗ . . . F̃k−1)

) : F̃k

〉 ∈ R.

Finally, C,c > 0 stand for universal constants, independent of the variable quantities at hand.

2 The Crucial A Priori Estimate

Lemma 2.1 Every solution (u,φ) to (1.1), with regularity prescribed in Theorem 1.1, sat-
isfies:

d

dt

∫
R3

1

2
|ut |2 + W(φ,∇u)dx +

∫ ∣∣∇(−�)−1φt

∣∣2
dx = 0. (2.1)

Proof Testing the first equation in (1.1) by ut and integrating by parts gives:

d

dt

∫
R3

1

2
|ut |2 + W(φ,∇u)dx

=
∫

〈ut , utt 〉 + ∂φW(φ,∇u)φt + 〈
∂F W(φ,∇u) : ∇ut

〉
dx

=
∫ 〈

ut ,div
(
∂F W(φ,∇u)

)〉 + 〈
∂F W(φ,∇u) : ∇ut

〉 + ∂φW(φ,∇u)φt dx

=
∫
R3

∂φW(φ,∇u)φt dx.

Define ψ = (−�)−1φ and integrate the second equation in (1.1) against ψt :∫
R3

|∇ψt |2 dx =
∫

φtψt dx =
∫

ψt�
(
∂φW(φ,∇u)

)
dx = −

∫
R3

∂φW(φ,∇u)φt dx.

Summing the above two equalities yields (2.1) and achieves the proof. �

For every i, j, k ∈ {1,2,3} we now define the correction terms:

Rijk = (
∂φ∂2

F W
) : (∇uxi ,xj

⊗ ∇uxk
+ ∇uxi ,xk

⊗ ∇uxj
+ ∇uxj ,xk

⊗ ∇uxi
)
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+ (
∂2

φ∂F ∂φW
) : (∇uxi ,xj

φxk
+ ∇uxi ,xk

φxj
+ ∇uxj ,xk

φxi

+ ∇uxi
φxj ,xk

+ ∇uxj
φxi ,xk

+ ∇uxk
φxi ,xj

)

+ (
∂φ∂3

F W
) : ∇uxi

⊗ ∇uxj
⊗ ∇uxk

+ (
∂2

φ∂2
F W

) : (∇uxi
⊗ ∇uxj

φxk
+ ∇uxi

⊗ ∇uxk
φxj

+ ∇uxj
⊗ ∇uxk

φx1)

+ (
∂3

φ∂F W
) : (∇uxi

φxj
φxk

+ ∇uxj
φxi

φxk
+ ∇uxk

φxi
φxj

)

+ (
∂4

φW
)
φxi

φxj
φxk

+ (
∂3

φW
)
(φxi ,xj

φxk
+ φxj ,xk

φxi
+ φxi ,xk

φxj
). (2.2)

Lemma 2.2 Let (u,φ) be a solution to (1.1), with regularity prescribed in Theorem 1.1. For
t > 0, define the two quantities:

E(t) =
∫
R3

|ut |2 + ∣∣∇3ut

∣∣2 + 2W(φ,∇u)

+
∑

i,j,k=1..3

D2W(φ,∇u) : (φxi ,xj ,xk
,∇uxi ,xj ,xk

)⊗2 + 2
∑

i,j,k=1..3

Rijkφxi ,xj ,xk
dx,

Z(t) = ‖ut‖2
H 3(R3)

+ ‖∇u − Id‖2
H 3(R3)

+ ‖φ‖2
H 3(R3)

.

Then:

d

dt
E ≤ C

(
Z4 +Z3/2

)
. (2.3)

Proof 1. We differentiate the first equation in (1.1) in a spacial direction xi ∈ {x1, x2, x3}:

uxi ,tt − div
(
∂2

F W(φ,∇u) : ∇uxi

) = div
(
∂F ∂φW(φ,∇u)φxi

)
.

We now differentiate the above twice more in the directions xi, xj ∈ {x1, x2, x3}:

uxi ,xj ,xk,tt − div
(
∂2

F W(φ,∇u) : ∇uxi ,xj ,xk

) = div
(
∂F ∂φW(φ,∇u)φxi ,xj ,xk

) +R1. (2.4)

The error term R1 above has the following form, where we suppress the distinction between
different xi, xj , xk , retaining hence only the structure of different terms:

R1 = div
(
3
(
∂3

F W
) : ∇ux ⊗ ∇uxx + 3

(
∂2

F ∂φW
) : (∇uxxφx + ∇uxφxx)

+ 3
(
∂F ∂2

φW
)
φxφxx + (

∂4
F W

) : (∇ux)
⊗3 + 3

(
∂3

F ∂φW
) : (∇ux)

⊗2φx

+ 3
(
∂2

F ∂2
φW

) : ∇ux(φx)
2 + (

∂F ∂3
φW

)
(φx)

3
)
. (2.5)

Above and in what follows, we also write (∂3
F W) instead of ∂3

F W(φ,∇u), and (∂2
F ∂φW)

instead of ∂2
F ∂φW(φ,∇u), etc. Integrating (2.4) by parts against uxi ,xj ,xk,t we get:

d

dt

∫
R3

1

2
(uxi ,xj ,xk,t )

2 + φxi ,xj ,xk

〈
(∂F ∂φW) : ∇uxi ,xj ,xk

〉

+ 1

2

(
∂2

F W
) : ∇uxi ,xj ,xk

⊗ ∇uxi ,xj ,xk
dx
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=
∫
R3

φxi ,xj ,xk,t

〈
(∂F ∂φW) : ∇uxi ,xj ,xk

〉
dx

+
∫
R3

φxi ,xj ,xk

〈
(∂t∂F ∂φW) : ∇uxi ,xj ,xk

〉
dx

+ 1

2

∫
R3

(
∂t∂

2
F ∂φW

) : ∇uxi ,xj ,xk
⊗ ∇uxi ,xj ,xk

dx +
∫
R3

R1uxi ,xj ,xk,t dx. (2.6)

2. Differentiate now the second equation in (1.1) in xi ∈ {x1, x2, x3}:
φxi ,t = �

(〈
∂φ∂F W(φ,∇u) : ∇uxi

〉 + ∂2
φW(φ,∇u)φxi

)
.

As before, differentiate twice more in xi, xj ∈ {x1, x2, x3}, to obtain:

φxi ,xj ,xk,t = �
(
(∂φ∂F W) : ∇uxi ,xj ,xk

+ (
∂2

φW
)
φxi ,xj ,xk

+Rijk

)
, (2.7)

where R is given in (2.2). Testing (2.7) against (−�)−1φxi ,xj ,xk,t = ψxi,xj ,xk,t , we get:

−
∫
R3

|∇ψxi,xj ,xk ,t |2 dx

=
∫
R3

φxi ,xj ,xk,t

〈
(∂F ∂φW) : ∇uxi ,xj ,xk

〉
dx

+ d

dt

∫
R3

1

2

(
∂2

φW
)
(φxi ,xj ,xk

)2 dx

− 1

2

∫
R3

(
∂t

(
∂2

φW
))

(φxi ,xj ,xk
)2 dx +

∫
R3

Rijkφxi ,xj ,xk,t dx. (2.8)

Note now that the first terms in the right hand side of both (2.6) and (2.8), namely the terms
displayed in boxes, are the same. Consequently, subtracting (2.8) from (2.6), we get:∫

R3
|∇ψxi ,xj ,xk,t |2 dx

+ 1

2

d

dt

∫
R3

(uxi ,xj ,xk,t )
2 + D2W(φ,∇u) : (φxi ,xj ,xk

,∇uxi ,xj ,xk
)⊗2 dx

+
∫
R3

Rijkφxi ,xj ,xk,t dx

=
∫
R3

φxi ,xj ,xk

〈
(∂t∂F ∂φW) : ∇uxi ,xj ,xk

〉
dx

+ 1

2

∫
R3

(
∂t∂

2
F ∂φW

) : ∇uxi ,xj ,xk
⊗ ∇uxi ,xj ,xk

dx

+ 1

2

∫
R3

(
∂t

(
∂2

φW
))

(φxi ,xj ,xk
)2 dx +

∫
R3

R1uxi ,xj ,xk,t dx. (2.9)

3. We will now estimate terms in the right hand side of (2.9) and prove that:∫
R3

|φxi ,xj ,xk
||∂t∂F ∂φW ||∇uxi ,xj ,xk

|dx +
∫
R3

∣∣∂t∂
2
F ∂φW

∣∣|∇uxi ,xj ,xk
|2 dx



Stress-Assisted Diffusion 27

+
∫
R3

∣∣∂t

(
∂2

φW
)∣∣|φxi ,xj ,xk

|2 dx ≤ C
(
Z3/2 + ‖∇ψt‖H 3(R3)Z

)
(2.10)

and: ∣∣∣∣
∫
R3

R1uxi ,xj ,xk,t dx

∣∣∣∣ ≤ C
(
Z3/2 +Z2 +Z5/2

) + C‖∇ψt‖H 3(R3)

(
Z3/2 +Z2

)
. (2.11)

For the first term in (2.10), we note that by the Sobolev embedding C0,1/2(R3) ↪→ H 2(R3)

one easily gets: ∫
R3

|φxi ,xj ,xk
||∂t∂F ∂φW ||∇uxi ,xj ,xk

|

≤ ∥∥(
∂2

F ∂φW
) : ∇ut + (

∂F ∂2
φW

)
φt

∥∥
L∞

∥∥∇3φ
∥∥

L2

∥∥∇4u
∥∥

L2

≤ C
(‖∇ut‖L∞ + ‖φt‖L∞

)∥∥∇3φ
∥∥

L2

∥∥∇4u
∥∥

L2

≤ C
(‖∇ut‖H 2 + ‖�ψt‖H 2

)∥∥∇3φ
∥∥

L2

∥∥∇4u
∥∥

L2

≤ C
(
Z3/2 + ‖∇ψt‖H 3(R3)Z

)
.

Similarly, the other two terms in (2.10) are bounded by:

C
(‖∇ut‖L∞ + ‖φt‖L∞

)(∥∥∇4u
∥∥2

L2 + ∥∥∇3φ
∥∥2

L2

)
,

which implies the same estimate as before.
Regarding (2.11), the first term in

∫
R3 R1uxi ,xj ,xk,t dx, is bounded by:

∫
R3

∣∣div
((

∂3
F W

) : ∇ux ⊗ ∇uxx

)∣∣∣∣∇3ut

∣∣dx ≤ C
((‖∇ut‖L∞ + ‖φt‖L∞

)‖∇2u‖L∞
∥∥∇3u

∥∥
L2

+ ∥∥∇3u
∥∥2

L4 + ∥∥∇2u
∥∥

L∞
∥∥∇4u

∥∥
L∞

)∥∥∇3ut

∥∥
L2

≤ C
(
Z3/2 +Z2 + ‖∇ψt‖H 3(R3)Z3/2

)
,

because of the Sobolev embedding W 1,2(R3) ↪→ Lp(R3) valid for any p ∈ [2,6]. Also:∫
R3

∣∣div
((

∂4
F W

) : (∇ux)
⊗3

)∣∣∣∣∇3ut

∣∣dx ≤ C
((‖∇ut‖L∞ + ‖φt‖L∞

)∥∥∇2u
∥∥3

L6

+ ∥∥∇2u
∥∥2

L∞
∥∥∇3u

∥∥
L2

)∥∥∇3ut

∥∥
L2

≤ C
(
Z5/2 +Z2 + ‖∇ψt‖H 3(R3)Z2

)
.

Other terms in R1 induce the same estimate as above. This establishes (2.11).
4. We now consider the last term in the right hand side of (2.9):∫

R3
Rijkφxi ,xj ,xk,t dx =

(
d

dt

∫
R3

Rijkφxi ,xj ,xk
dx

)
−

∫
R3

(Rijk)tφxi ,xj ,xk
dx. (2.12)

We now prove that:∣∣∣∣
∫
R3

(Rijk)tφxi ,xj ,xk
dx

∣∣∣∣ ≤ C
(
Z3/2 +Z5/2

) + C‖∇ψt‖H 3(R3)

(
Z3/2 +Z2

)
. (2.13)
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First, using the notational convention as in (2.5), R can be replaced by:

R2 = 3
(
∂φ∂2

F W
) : ∇ux ⊗ ∇uxx + 3

(
∂2

φ∂F ∂φW
) : (∇uxxφx + ∇uxφxx)

+ (
∂φ∂3

F W
) : (∇ux)

⊗3 + 3
(
∂2

φ∂2
F W

) : (∇ux)
⊗2φx

+ 3
(
∂F ∂3

φW
) : ∇ux(φx)

2 + (
∂4

φW
)
(φx)

3 + 3
(
∂3

φW
)
φxφxx. (2.14)

The first term in (2.14) can be estimated as before, using embedding and interpolation theo-
rems: ∫

R3

∣∣((∂φ∂2
F W

) : ∇ux ⊗ ∇uxx

)
t

∣∣∣∣∇3φ
∣∣dx

≤ C
((‖∇ut‖L∞ + ‖φt‖L∞

)∥∥∇2u
∥∥

L∞
∥∥∇3u

∥∥
L2

+ ∥∥∇2ut

∥∥
L4

∥∥∇3u
∥∥

L4 + ∥∥∇2u
∥∥

L∞
∥∥∇3ut

∥∥
L2

)∥∥∇3φ
∥∥

L2

≤ C
(
Z3/2 +Z2 + ‖∇ψt‖H 3(R3)Z3/2

)
,

while the third term in R2 is estimated by:∫
R3

∣∣((∂φ∂3
F W

) : (∇ux)
⊗3

)
t

∣∣∣∣∇3φ
∣∣dx

≤ C
((‖∇ut‖L∞ + ‖φt‖L∞

)∥∥∇2u
∥∥3

L6 + ∥∥∇2u
∥∥2

L∞
∥∥∇3ut

∥∥
L2

)∥∥∇3φ
∥∥

L2

≤ C
(
Z5/2 +Z2 + ‖∇ψt‖H 3(R3)Z2

)
.

Other terms in R2 induce the same estimate as above. This establishes (2.13).
5. Summing now (2.9) over all triples xi, xj , xk , adding (2.1), and taking into account

(2.12), (2.10), (2.11) and (2.13), we obtain:

d

dt
E + (

2‖∇ψt‖2
L2 + ∥∥∇4ψt

∥∥2

L2

) ≤ C
(
Z5/2 +Z3/2

) + C‖∇ψt‖W3
2 (R3)

(
Z2 +Z

)
≤ ε‖∇ψt‖2

H 3(R3)
+ C

(
Z4 +Z3/2

)
in view of Young’s inequality. Consequently, (2.3) follows and the proof is complete. �

We now deduce the main a-priori estimate of this section:

Theorem 2.3 Under the assumptions of Theorem 1.1, any solution on the time interval
[0, T ] to (1.1) (1.3)–(1.4) satisfies:

sup
t≤T

Z(t) ≤ C
(
E(0) + T 2E0(0) + ‖u0 − id‖2

L2

)
, (2.15)

where: E0(0) = ∫
R3 |u1|2 + 2W(φ0,∇u0)dx, and C is a universal constant.

Proof Assume that the quantities in (1.6) are sufficiently small. In particular, we require
that Z(0) � 1 and that Z is sufficiently small on an interval [0, t0], where we also choose
an appropriate t0 � T . Lemma 2.2 implies: E ′(t) ≤ CZ3/2(t), which is equivalent to:

E(t) ≤ C

∫ t

0
Z3/2(s)ds + E(0). (2.16)
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Further, by (2.1) it follows that:

sup
t

‖ut‖2
L2 ≤ E0(0). (2.17)

Since:

∀t ≤ t0
∥∥u(t) − id

∥∥2

L2 = 2
∫ t

0

∫
R3

〈u − id, ut 〉dx + ‖u0 − id‖2
L2

≤ 2T
(

sup
s≤t

‖ut‖L2

)(
sup
s≤t

‖u − id|L2

)
+ ‖u0 − id‖2

L2 , (2.18)

we easily obtain in view of (2.17):

sup
t≤t0

∥∥u(t) − id
∥∥2

L2 ≤ 4t2
0 sup

t≤t0

∥∥ut (t)
∥∥2

L2 + 2‖u0 − id‖2
L2

≤ 4t2
0E0(0) + 2‖u0 − id‖2

L2 . (2.19)

Further, we observe that thanks to (1.7), to Korn’s inequality and to Poincaré’s inequality,
there exist constants c,C > 0 so that:

cZ(t) ≤
∫
R3

|ut |2 + ∣∣∇3ut

∣∣2 + 2W(φ,∇u)

+
∑

i,j,k=1..3

D2W(φ,∇u) : (φxi ,xj ,xk
,∇uxi ,xj ,xk

)⊗2 dx +
∫
R3

|u − id|2 dx ≤ CZ(t),

as well as:∣∣∣∣
∫
R3

∑
i,j,k=1..3

Rijkφxi ,xj ,xk
dx

∣∣∣∣ ≤ C‖R‖L2

∥∥∇3φ
∥∥

L2 ≤ CZ3/2(t)Z1/2(t) = CZ2(t),

where we estimated each term in (2.2) by the Cauchy-Schwarz inequality and noted the
appropriate Sobolev embedding. Consequently, we arrive at:

∀t ≤ t0 E(t) + ‖u − id‖2
L2(t) ≥ cZ(t) − CZ2(t) ≥ cZ(t), (2.20)

provided that Z � 1 is sufficiently small on the time interval we consider. In view of (2.16),
(2.20) and (2.19), we now get:

∀t ≤ t0 Z(t) ≤ C

(∫ t

0
Z3/2(s)ds + E(0) + t2

0E0(0) + ‖u0 − id‖2
L2

)
. (2.21)

Calling Z̄ = supt∈[0,t0] Z(t), we have:

Z̄ ≤ (
Ct0Z̄1/2

)
Z̄ + C

(
E(0) + t2

0E0(0) + ‖u0 − id‖2
L2

)
, (2.22)

which combined with the requirement: CT Z̄1/2 ≤ 1
2 yields:

Z(t0) ≤ Z̄ ≤ C
(
E(0) + t2

0E0(0) + ‖u0 − id‖2
L2

)
. (2.23)

The above clearly implies the Theorem in view of the smallness of initial data in (1.6). �
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3 Proof of Theorem 1.1: Existence of Solutions to (1.1)

In this section we construct approximate solutions to the Cauchy problem (1.1) (1.3)–(1.4),
which satisfy the same a-priori bounds as in Sect. 2. Given ε > 0, consider the regularized
problem: {

utt − div(∂F W(φ,∇u)) − ε�u = 0

φt = �(∂φW(φ,∇u))
(3.1)

with the same initial data as in (1.3)–(1.4).

Lemma 3.1 Assume that all quantities in (1.6) are sufficiently small. Then, there exists
Tε > 0 and a solution (uε,φε) of (3.1) (1.3)–(1.4) on R

3 × [0, Tε), such that:

uε − id ∈ L∞(
0, T ;H 4

(
R

3
))

, uε
tt ∈ L∞(

0, T ;H 2
(
R

3
))

,

φε ∈ L∞(
0, T ;H 3

(
R

3
))

and φε
t ∈ L2

(
0, T ;H 2

(
R

3
))

.
(3.2)

Proof 1. Since ε > 0 is fixed, we drop the superscript ε in order to lighten the notation in the
next two steps. We proceed by the Galerkin method. Choose an orthonormal base {wk}∞

k=1
in the space H 4(R3,R3) equipped with the scalar product:

〈w, w̃〉H 4 = 〈w, w̃〉L2 + 〈∇4w : ∇4w̃
〉
L2 . (3.3)

Similarly, let {vk}∞
k=1 be an orthonormal basis in H 3(R3) equipped with:

〈v, ṽ〉H 3 = 〈v, ṽ〉L2 + 〈∇3v : ∇3ṽ
〉
L2 . (3.4)

Denote: WN = span{w1, . . . ,wN } and V N = span{v1, . . . , vN }.
We now introduce the auxiliary scalar products:

〈w, w̃〉W = 〈w, w̃〉L2 + 〈∇3w : ∇3w̃
〉
L2 ∀w, w̃ ∈ H 4

(
R

3,R3
)
,

〈v, ṽ〉V = 〈
v, (−�)−1ṽ

〉
L2 + 〈∇3v : (−�)−1∇3ṽ

〉
L2 ∀v, ṽ ∈ H 3

(
R

3,R
)
.

(3.5)

Clearly, these products are not equivalent to (3.3), (3.4), however their properties will al-
low for using the energy estimates of the proof of Lemma 2.2 to prove the regularity of
approximate solutions (uN,φN) which we define below.

Let (uN,φN) ∈ WN × V N be the solution to:⎧⎪⎪⎨
⎪⎪⎩

〈
uN

tt − div ∂F W
(
φN,∇uN

) − ε�uN,wl
〉
W

= 0,〈
φN

t − �∂φW
(
φN,∇uN

)
, vl

〉
V

= 0, ∀l : 1 . . .N

uN(0, ·) = PWN (u0),
(
uN

)
t
(0, ·) = PWN (u1), φN(0, ·) = PV N (φ0).

(3.6)

By P we denote here the orthogonal projections on appropriate subspaces. The classical
theory of systems of ODEs guarantees existence of solutions to (3.6) on some time interval
[0, TN). We now prove that these time intervals may be taken uniform for all sequences
{uN,φN }.

2. Since uN
t ∈ WN and φN

t ∈ V N , (3.6) implies:〈
uN

tt − div ∂F W
(
φN,∇uN

) − ε�uN,uN
t

〉
W

= 0,〈
φN

t − �∂φW
(
φN,∇uN

)
, φN

t

〉
V

= 0.
(3.7)
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Note that the first equation in (3.7) is equivalent to:〈
uN

tt − div ∂F W
(
φN,∇uN

) − ε�uN,uN
t

〉
L2

+
∑

i,j,k=1..3

〈
uN

xi ,xj ,xk,tt − div
(
∂2

F W
(
φN,∇uN

) : ∇uN
xi ,xj ,xk

) − ε�uN
xi ,xj ,xk

, uN
xi ,xj ,xk,t

〉
L2

=
∑

i,j,k=1..3

〈
div

(
∂F ∂φW

(
φN,∇uN

)
φxi ,xj ,xk

)
, uN

xi ,xj ,xk,t

〉
L2 + 〈

RN
1 : ∇3uN

t

〉
,

where by RN
1 we denote the error terms induced by the functions uN,φN as in (2.4), (2.5).

Likewise, the second equation in (3.7) becomes:〈
φN

t − �∂φW
(
φN,∇uN

)
, (−�)−1φN

t

〉
L2

+
∑

i,j,k=1..3

〈
φN

xi ,xj ,xk,t − �
((

∂φ∂F WN
) : ∇uN

xi ,xj ,xk
− (

∂2
φWN

)
φN

xi ,xj ,xk

)
,

(−�)−1φN
xi ,xj ,xk ,t

〉
L2

=
∑

i,j,k=1..3

〈
�RN

ijk, (−�)−1φN
xi ,xj ,xk,t

〉
L2 ,

where we used the identity (2.7) and the notation (2.2), with the superscript N indicating that
they concern uN and φN .

Let E[uN,φN ](t) be as in Lemma 2.2 with (u,φ) replaced by (uN,φN), and define:

Eε

[
uN,φN

]
(t) = E

[
uN,φN

]
(t) + ε

〈
(−�)uN,uN

〉
V
, (3.8)

so that:

Eε

[
φN,uN

]
(t) =

∫
R3

∣∣uN
t

∣∣2 + ∣∣∇3uN
t

∣∣2 + 2W
(
φN,∇uN

) + ε
∣∣∇uN

∣∣2

+
∑

i,j,k=1..3

D2W
(
φN,∇un

) : (φN
xi ,xj ,xk

,∇uN
xi ,xj ,xk

)⊗2 + ε
∣∣∇uN

xi ,xj ,xk

∣∣2

+ 2
∑

i,j,k=1..3

RN
ijkφ

N
xi ,xj ,xk

dx.

Following the proof of Lemmas 2.1 and 2.2, we find the counterpart of the inequality (2.3):

Eε

[
uN,φN

]
(t) ≤ C

∫ t

0
Z3/2

[
uN,φN

]
(s)ds + Eε(0), (3.9)

where the constant C is independent from ε, and where:

Z
[
uN,φN

]
(t) = ∥∥uN

t

∥∥2

H 3(R3)
+ ∥∥∇uN − Id

∥∥2

H 3(R3)
+ ∥∥φN

∥∥2

H 3(R3)
.

Note that in order to obtain (3.9) we use only the equivalent formulations of (3.7) above,
hence indeed all the steps from the proof of Lemma 2.2 are valid with universal constants.
Since the initial data in (3.6) consists of projections of the original data, their norms are
uniformly controlled as well.
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3. We now consider the equivalence of Eε with Z . Since for small Z one has:∫
RN

ijkφ
N
xi ,xj ,xk

dx ≤ CZ3/2
[
uN,φN

]
,

we easily see that:

Eε

[
uN,φN

] ≤ CZ
[
uN,φN

]
. (3.10)

On the other hand, in view of (3.8):

Eε

[
uN,φN

] ≥ cε

(
Z − CεZ3/2

) ≥ cεZ
[
uN,φN

]
, (3.11)

where by cε,Cε we denote positive constants independent of N but depending on ε. By (3.9)
we now arrive at:

Z
[
uN,φN

]
(t) ≤ Cε

∫ t

0
Z3/2

[
uN,φN

]
(s)ds + CεEε(0).

Consequently, for t0,ε sufficiently small, we have:

sup
t≤t0,ε

Z
[
uN,φN

]
(t) ≤ CεEε(0).

The above estimates, in particular (3.10) and (3.11) imply the uniform in N boundedness
of the following quantities, on their common interval of existence [0, Tε]:

uN − id ∈ L∞(
0, Tε;H 4

(
R

3
))

, uN
t ∈ L∞(

0, Tε;H 3
(
R

3
))

,

φN ∈ L∞(
0, Tε;H 3

(
R

3
))

, φN
t ∈ L2

(
0, Tε;H 2

(
R

3
))

,
(3.12)

yielding the weak-∗ convergence in L∞ as N → ∞ (up to a subsequence), of the quantities:
uN − id, uN

t , φN , φN
t to the limiting quantities: uε − id, uε

t , φε , φε
t . Additionally, passing if

necessary to a further subsequence and invoking a diagonal argument, we may also assure
that:

∇uN → ∇uε and φN → φε point-wise in R
3.

The Sobolev compact embedding: H 1(0, Tε;H 2(B(R))) ↪→ Cα((0, Tε) × B(R)), valid on
any ball B(R) ⊂ R

3, justifies now that φε ∈ Cα((0, Tε) × B(R)). Thus, in particular:

(∂φW, ∂F W)
(
φN,∇uN

) → (∂φW, ∂F W)
(
φε,∇uε

)
as N → ∞. (3.13)

It follows that (φε, uε) is a distributional solution to (3.1) (1.3)–(1.4). By (3.12) we obtain
the desired regularity, completing the proof of Lemma 3.1. �

Proof of Theorem 1.1 (Existence part) Let φε,uε be as in Lemma 3.1. We first observe that
a common interval of existence of (φε, uε) can be taken as [0, T ] with T prescribed by
Theorem 1.1. This follows through repeating the estimates in Sect. 2, dealing with estimates
of the first and the third order separately, and noting that the ε-term appears exclusively in Eε

with a “good” sign. Consequently:

sup
t≤t0

Z
[
uε,φε

] ≤ C(t0, initial data), (3.14)
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and we see that indeed the solutions φε,uε can be extended over appropriate [0, T ] with the
quantities in (3.2) enjoying common bounds, independent of ε.

The same argument as in the last part of the proof of Lemma 3.1 implies now that the
weak-∗ limit (up to a subsequence) of (φε, uε) yield the desired regular solution (φ,u) to
the original problem (1.1) (1.3)–(1.4). Condition (1.5) is automatically satisfied because of
the smallness of initial data. �

4 Proof of Theorem 1.1: Uniqueness of solutions to (1.1)

Let (φ,u) and (φ̄, ū) be two solutions to (1.1) with the same initial data. Define:

(δφ) = φ − φ̄, (δu) = u − ū,

and observe that:

∂F W(φ,∇u) − ∂F W(φ̄,∇ū)

= ∂2
F W(φ̄,∇ū) : ∇(δu) + ∂φ∂F W(φ̄,∇φ̄)(δφ) + D2∂F W(φ̃,∇ũ) : ((δφ),∇(δu)

)⊗2
,

∂φW(φ,∇u) − ∂φW(φ̄,∇ū)

= ∂2
φW(φ̄,∇ū)(δφ) + ∂φ∂F W(φ̄,∇ū) : ∇(δu) + D2∂φW(φ̃,∇ũ) : ((δφ),∇(δu)

)⊗2
,

(4.1)

where φ̃ and ũ are suitable linear combinations of φ, φ̄ and u, ū, given by the application
of the Taylor formula. Subtracting equations (1.1) for (φ,u) and (φ̄, ū) and using (4.1), it
follows that:

(δu)tt − div
(
∂2

F W(φ̄,∇ū) : ∇(δu) + ∂φ∂F W(φ̄,∇ū)(δφ)
)

= div
(
D2∂F W(φ̃,∇ũ) : ((δφ),∇(δu)

)⊗2)
,

(δφ)t − �
(
∂2

φW(φ̄,∇ū)(δφ) + ∂φ∂F W(φ̄,∇ū) : ∇(δu)
)

= �
(
D2∂φW(φ̃,∇ũ) : ((δφ),∇(δu)

)⊗2)
.

We now test the first equation above by (δu)t , while the second equation by (−�)−1(δφ)t ,
to obtain:

1

2

∫
R3

|δut |2 + ∂2
F W(φ̄,∇ū) : (∇(δu)

)⊗2
dx +

∫
R3

∂φ∂F W(φ̄,∇ū) : (δφ)∇(δu)t dx

=
∫
R3

D2∂F W(φ̃,∇ũ) : (((δφ),∇(δu)
)⊗2 ⊗ ∇(δu)t

)
dx,

∫
R3

∣∣∇(δφ)t

∣∣2
dx +

∫
R3

(
∂2

φW(φ̄,∇ū)(δφ) + ∂φ∂F W(φ̄,∇ū) : ∇(δu)
)
(δφ)t dx

=
∫
R3

D2∂φW(φ̃,∇ũ) : ((δφ),∇(δu)
)⊗2

(δφ)t dx.

(4.2)

Consequently:

1

2

d

dt

∫
R3

∂2
φW(φ̄,∇ū)(δφ)2 dx +

∫
R3

∂φ∂F W(φ̄,∇ū) : (δφt )∇(δu)dx
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+
∫
R3

∣∣∇(δφ)t

∣∣2
dx

=
∫
R3

D2∂φW(φ̃,∇ũ) : ((δφ),∇(δu)
)⊗2

(δφ)t dx

+
∫
R3

∂t

(
∂2

φW(φ̄,∇ū)
)
(δφ)2 dx. (4.3)

Adding (4.2) and (4.3), we arrive at:

d

dt

1

2

∫
R3

∣∣(δu)t

∣∣2 + ∂2
F W(φ̄,∇ū) : (∇(δu)

)⊗2 + ∂2
φW(φ̄,∇ū)(δφ)2

+ 2∂φ∂F W(φ̄,∇ū) : (δφ)∇(δu)dx

≤ C
∥∥(δφ)t , φt , φ̄t

∥∥
L∞(R3)

(t) · sup
t

∥∥(δφ),∇(δu)
∥∥2

L2(R3)
(t),

which implies that:

sup
t

∫
R3

|δut |2 + D2W(φ̄,∇ū) : ((δφ),∇(δu)
)⊗2

dx

≤ C sup
t

∥∥(δφ),∇(δu)
∥∥2

L2

∫ t

0

∥∥(δφ)t , φt , φ̄t

∥∥
L∞(s)ds. (4.4)

As before, assumptions on W guarantee that the left hand side in (4.4) bounds from above
the quantity: supt ‖(δφ),∇(δu)‖2

L2 . Since the integral quantity above is small for t � 1, it
follows by (4.4) that (δφ) and ∇(δu) are zero.

5 Proof of Theorem 1.2: The Elliptic-Parabolic Problem (1.2)

As in Sect. 3, we first derive an a priori estimate for solutions of (1.2), whose existence will
follow then via Galerkin’s method, in the same manner as for the system (1.1).

Lemma 5.1 Assume that (φ,u) is a sufficiently smooth solution to (1.2) which remains in a
vicinity of (0, id) for all t ≥ 0, in the sense that:

Ξ [φ,∇u − Id] := sup
t≥0

(‖φ‖2
H 2(R3)

+ ‖∇u − Id‖H 2

) + c

∫ ∞

0

∥∥∇φ,∇2u
∥∥2

H 2(R3)
dt � 1.

Then:

sup
t≥0

(∥∥∇u(t) − Id
∥∥2

H 2 + ∥∥u(t) − id
∥∥2

L6

) + Ξ [φ,∇u − Id] ≤ C‖φ0‖2
H 2(R3)

.

Proof 1. Observe first the following elementary fact:∥∥∇2u(t)
∥∥

H 1(R3)
≤ C

∥∥∇φ(t)
∥∥

H 1(R3)
. (5.1)

To see (5.1), consider the first equation in (1.2):

∂2
F W(φ,∇u) : ∇uxi

= −∂φ∂F W(φ,∇u)φxi
, i = 1 . . .3. (5.2)
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Condition (1.7) and Korn’s inequality imply that the system (5.2) is elliptic, hence its solu-
tions (normalised so that ∇u − Id ∈ L6(R3)) obey:∥∥∇2u

∥∥
Lp(R3)

≤ C‖∇φ‖Lp(R3), p = 2,4.

Differentiating (5.2) with respect to x leads further to:

∥∥∇3u
∥∥

L2 ≤ C
(∥∥∇2φ

∥∥
L2 + ∥∥∇φ,∇2u

∥∥2

L4

)
≤ C

(∥∥∇2φ
∥∥

L2 + ‖∇φ‖2
L4

) ≤ C
(∥∥∇2φ

∥∥
L2 + ‖∇φ‖2

H 1

)
,

proving (5.1) in view of the assumption in the Lemma.
We also observe the resulting control of pointwise smallness of φ and (∇u − Id), by the

Sobolev embedding:

sup
t≥0

‖φ,∇u − Id‖L∞ ≤ C sup
t≥0

‖φ,∇u − Id‖H 2 ≤ CΞ 1/2 � 1. (5.3)

2. Testing the first equation in (1.2) by ut and the second one by ψt = (−�)−1φt , we
obtain the energy estimate, as in Lemma 2.1:

d

dt

∫
R3

W(φ,∇u)dx +
∫
R3

∣∣∇(−�)−1φt

∣∣2
dx = 0.

To derive the second energy estimate we proceed slightly differently. Differentiating (1.2)
in a spatial direction xi ∈ {x1, x2, x3}, we get:

div
(
∂2

F W(φ,∇u) : ∇uxi
+ ∂F ∂φW(φ,∇u)φxi

) = 0,

φxi ,t = �
(
∂φ∂F W(φ,∇u) : ∇uxi

+ ∂2
φW(φ,∇u)φxi

)
.

(5.4)

Now, testing the first equation above by uxi
, testing the second one by ψxi

= (−�)−1φxi
,

and summing up the results, yields:

1

2

d

dt

∫
R3

∣∣∇(−�)−1φxi

∣∣2
dx +

∫
R3

D2W(φ,∇u) : (φxi
,∇uxi

)⊗2 dx = 0. (5.5)

Consequently, thanks to (1.7), the strict convexity of W implies:

1

2

d

dt

∫
R3

∣∣∇2ψ
∣∣2 + γ

2

∫
R3

(∣∣∇φ
∣∣2 +

3∑
i=1

∣∣(sym∇uxi
)
∣∣2

)
≤ 0.

Using Korn’s inequality and integrating in time we see that:

sup
t>0

∫
R3

φ2 dx + c

∫ ∞

0

∫
R3

(|∇φ|2 + ∣∣∇2u
∣∣2)

dx dt ≤ C‖φ0‖2
L2(R3)

. (5.6)

3. We now differentiate (5.4) in a spatial direction xj ∈ {x1, x2, x3}, getting:

div
(
∂2

F W(φ,∇u) : ∇uxi ,xj
+ ∂φ∂F W(φ,∇u)φxi ,xj

) = divR1,

φxi ,xj ,t − �
(
∂2

φW(φ,∇u)φxi ,xj
+ ∂φ∂F W(φ,∇u) : ∇uxi ,xj

) = �R2,
(5.7)
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where the error terms R1 and R1 have the following structure (we suppress the distinction
between different xi, xj ):

R1,R2 ∼ D3W(φ,∇u) : ((∇ux)
⊗2 + (∇ux)φx + (φx)

2
)
. (5.8)

Integrating (5.7) by parts against uxi ,xj
and (−�)−1φxi ,xj

, respectively, it follows that:

d

dt

∫
R3

|∇ψxi ,xj
|2 dx + c

∫
R3

D2W(φ,∇u) : (φxi ,xj
,∇uxi ,xj

)⊗2 dx

≤ C

∫
R3

∣∣∇2u
∣∣4 + |∇φ|4 dx, (5.9)

because of (5.8) and:∣∣∣∣
∫
R3

(divR1)uxi ,xj
dx

∣∣∣∣ +
∣∣∣∣
∫
R3

(�R2)(−�)−1φxi ,xj
dx

∣∣∣∣
≤ ε‖∇uxi ,xj

, φxi ,xj
‖2

L2(R3)
+ C‖R1,R2‖2

L2(R3)
.

Differentiating (5.7) further, we obtain:

div
(
∂2

F W(φ,∇u) : ∇uxi ,xj ,xk
+ ∂φ∂F W(φ,∇u)φxi ,xj ,xk

) = divR3,

φxi ,xj ,xk,t − �
(
∂2

φW(φ,∇u)φxi ,xj ,xk
+ ∂φ∂F W(φ,∇u) : ∇uxi ,xj ,xk

) = �R4,

where, as before:

R3,R4 ∼ D3W(φ,∇u) : (∇uxx ⊗ ∇ux + ∇uxxφx + ∇uxφxx + φxφxx)

+ D4W(φ,∇u) : ((∇ux)
⊗3 + (∇ux)

⊗2φx + ∇ux(φx)
2 + ∇ux(φx)

2 + (φx)
2
)
.

Testing by uxi ,xj ,xk
and ψxi,xj ,xk

, we find:

d

dt

∫
R3

|∇ψxi ,xj ,xk
|2 dx + c

∫
R3

D2W(φ,∇u) : (φxi ,xj ,xk
,∇uxi ,xj ,xk

)⊗2 dx

≤ C

∫
R3

∣∣∇3u
∣∣4 + ∣∣∇2u

∣∣4 + |∇φ|4 + ∣∣∇2φ
∣∣4+∣∣∇2u

∣∣6 + |∇φ|6 dx. (5.10)

Summing (5.5), (5.9), (5.10), integrating the result in time in the same manner as in (5.6),
and recalling (5.1), we obtain:

Ξ [φ,∇u − Id] ≤ C

∫ ∞

0

∫
R3

∣∣∇2u
∣∣4 + |∇φ|4 + ∣∣∇2u

∣∣6 + |∇φ|6

+ ∣∣∇3u
∣∣4 + ∣∣∇2u

∣∣4 + ∣∣∇2φ
∣∣4

dx dt + C‖φ0‖2
H 2(R3)

≤ C

∫ ∞

0

∫
R3

|∇φ|4 + |∇φ|6 + ∣∣∇2φ
∣∣4

dx dt + C‖φ0‖2
H 2(R3)

. (5.11)

We further have:∫ ∞

0

∫
R3

|∇φ|4 + |∇φ|6 + ∣∣∇2φ
∣∣4

dx dt
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≤ C sup
t≥0

(‖∇φ‖2
L∞ + ‖∇φ‖4

L∞ + ∥∥∇2φ
∥∥2

L∞
)∫ ∞

0
‖∇φ‖2

H 1(R3)
dt ≤ C

(
Ξ 2 + Ξ 3

)

Consequently, (5.11) becomes: Ξ ≤ C(Ξ 2 +Ξ 3)+C‖φ0‖2
H 2 . By the assumed smallness of

Ξ [φ,∇u − Id], we see that:

Ξ ≤ 2C‖φ0‖2
H 2 . (5.12)

4. We now conclude the proof of the a-priori bound. Test (5.2) by (u − id) to get:

∫
R3

∂2
F W(φ,∇u) : (∇u − Id)⊗2 dx

≤ C

∫
R3

|φ||∇u − Id| + |u − id|(|∇u − Id| + |φ|)(|∇φ| + ∣∣∇2u
∣∣)dx

≤ C‖φ‖2
L2 + (

ε + CΞ 1/2
)‖∇u − Id‖2

L2

Indeed, by (5.3) and (5.1):

∫
R3

|u − id|(|∇u − Id| + |φ|)(|∇φ| + ∣∣∇2u
∣∣)dx

≤ C‖u − id‖L6‖∇u − Id‖L2

∥∥∇φ,∇2φ
∥∥

L3 + C‖u − id‖L6‖φ‖L2

∥∥∇φ,∇2φ
∥∥

L3

≤ C‖∇u − Id‖2
L2Ξ

1/2 + C‖φ‖2
L2 + CΞ‖∇u − id‖2

L2

Thus, we obtain the bound on ‖∇u − Id‖L2 , and subsequently on ‖u − id‖L6 . �

A proof of Theorem 1.2 Given (φ̄, ū), consider the following problem which is the lineariza-
tion of (1.2) at (0, id):

div
(
∂2

F W(0, Id)(∇u − Id) + ∂φ∂F W(0, Id)φ
) = divA,

φt − �
(
∂2

φW(0, Id)φ + ∂φ∂F W(0, Id)(∇u − Id)
) = �B,

(5.13)

where:

A = ∂2
F W(0, Id)(∇ū − Id) + ∂φ∂F W(0, Id)φ̄ − ∂F W(φ̄,∇ū),

B = ∂φW(φ̄,∇ū) − ∂2
φW(0, Id)φ̄ + ∂φ∂F W(0, Id)(∇ū − Id).

(5.14)

Let T be its solution operator, so that T [φ̄, ū] = (φ,u). We will prove that T has a fixed
point in the space X, where:

X = {
(φ,u); φ ∈ L∞(

R+;H 2
(
R

3
))

, ∇(∇u − Id) ∈ L∞(
R+;H 1

(
R

3
))

,

∇φ ∈ L2
(
R+;H 2

(
R

3
))

, ∇(∇u − Id) ∈ L2
(
R+;H 2

(
R

3
))}

.

Note first that the well-posedness of the system (5.13) follows by the Galerkin method in
exactly the same manner as in Sect. 3, under the regularity of the right hand side:

A ∈ L∞(
R+;H 2

(
R

3
)) ∩ L2

(
R+;H 3

(
R

3
))

, B ∈ L2
(
R+;H 3

(
R

3
))
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Approximative spaces are constructed for φ ∈ H 3(R3) and for u − id such that ∇u − Id ∈
H 3(R3). We leave this construction to the reader and note that it is simpler than the one for
the system (1.1). As in the proof of Lemma 5.1, solutions to (5.13) then satisfy:

sup
t≥0

∫
R3

φ2 dx +
∑

i

∫ ∞

0

∫
R3

D2W(0, Id) : (φxi
,∇uxi

)⊗2 dx dt

≤ C‖∇A,∇B‖2
L2(R+;L2(R3))

+ C‖φ0‖2
L2 ,

which is obtained by testing with uxi
and (−�)−1φxi

. Similarly, the second and third deriva-
tives bounds eventually yield:

sup
t≥0

‖φ‖2
H 2(R3)

+ ∥∥∇φ,∇(∇u − Id)
∥∥2

L2(R+;H 2(R3))

≤ C‖∇A,∇B‖2
L2(R+;H 2(R3))

+ C‖φ0‖2
H 2(R3))

, (5.15)

while:

sup
t≥0

‖∇u − Id‖2
H 2(R3)

≤ C‖A‖2
L∞(R+;H 2(R3))

.

Directly from (5.14) we observe that:

‖A‖L∞(R+;H 2(R3))∩L2(R+;H 3(R3)) ≤ C Ξ [φ̄,∇ū − Id]
‖B‖L2(R+;H 3(R3)) ≤ C Ξ [φ̄,∇ū − Id]

provided the quantity Ξ is small. Then, by (5.15):

Ξ [φ,∇u − Id] ≤ CΞ [φ̄,∇ū − Id]2 + C0‖φ0‖2
H 2(R3)

.

Based on the considerations from the part about the a priori bound we observe that:

Ξ [φ,∇u − Id] ≤ 2C0‖φ0‖2
H 2(R3)

,

provided that Ξ is sufficiently small. Hence the operator T maps a ball B ⊂ X with a suffi-
ciently small radius, into itself. Observe further that T is a contraction over B, whose fixed
point yields the unique solution to the system (1.2). Theorem 1.2 is proved. �
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Appendix: Proof of Proposition 1.3

The first condition in (1.7) is obvious. A direct calculation shows that:

DW1(φ,F ) : (φ̃, F̃ ) = φφ̃ + 〈
DW0

(
FB(φ)

) : φ̃FB ′(φ)
〉 + 〈

DW0

(
FB(φ)

) : F̃B(φ)
〉
,

which implies the second condition in (1.7). Further:

D2W1(0, Id) : (φ̃, F̃ )⊗2 = |φ̃|2 + D2W0(Id) : (φ̃B ′(0)
)⊗2
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+ 2D2W0(Id) : (B̃ ′(0) ⊗ F̃
) + D2W0(Id) : F̃⊗2

= |φ̃|2 + D2W0(Id) : (F̃ + φ̃B ′(0)
)⊗2

≥ |φ̃|2 + c
∣∣sym F̃ + φ̃B ′(0)

∣∣2
,

where we concluded from (1.9) that DW0(Id) = 0 and that D2W0(Id) is positive definite on
symmetric matrices. We also note that: D2W2(0, Id) = D2W1(0, Id). To conclude the proof,
it is hence enough to show that:

|φ̃|2 + ∣∣sym F̃ + φ̃B ′(0)|2 ≥ c
(|φ̃∣∣2 + |sym F̃ |2), (6.1)

for all φ̃ and F̃ . Expanding the square in the left hand side, dividing by |φ̃| and collecting
terms, this is equivalent to:

(
1 − c + ∣∣B ′(0)

∣∣2) + (1 − c)

∣∣∣∣sym

(
1

φ̃
F̃

)∣∣∣∣
2

+ 2

〈
sym

(
1

φ̃
F̃

)
: B ′(0)

〉
≥ 0,

which becomes:

1 − c − c

1 − c

∣∣B ′(0)
∣∣2 +

∣∣∣∣√1 − c sym

(
1

φ̃
F̃

)
+ 1√

1 − c
B ′(0)

∣∣∣∣
2

≥ 0.

The above inequality follows from: 1 − c − c
1−c

|B ′(0)|2 > 0, which is true whenever c > 0
is sufficiently small.
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