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Abstract Wave propagation in heterogeneous solids has been an interest of researchers
due to industrial applications. Some of the heterogeneous materials can exhibit power law
scaling in material behavior which can be characterized by the fractal dimension of the mi-
crostructure. In this study, wave propagation in heterogeneous media with self-similar struc-
ture is investigated via fractional calculus along with space-time discontinuous Galerkin
method. One and two dimensional problems are studied to demonstrate the capability of
the proposed model in modeling heterogeneous media. The results show that the proposed
model is a good candidate for modeling the mechanical behavior of disordered materials.
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1 Introduction

Mechanical behavior of heterogeneous (disordered) materials has been an interest of re-
searchers. Microstructure plays a critical role in mechanical behavior of materials which
exhibits power law scaling such as colloidal aggregates, porous materials and two phase
materials with inclusions [23, 30, 45, 54]. Continuum theories have been developed in order
to account for the effects of heterogeneities (voids, grains, material phases) on material be-
havior such as micropolar and microstretch theories [20]. Homogenization techniques such
as effective medium theories or multiscale methods have also been widely used in modeling
the effect of microstructure on macroscopic material behavior [35]. Both effective medium
theories and multiscale methods are originally developed for boundary value problems and
can be applied successfully to a limited number of problems where the problem is static
or quasi-static and material behavior is linear elastic with periodic topological structure or
dynamic problems in which length scale of the microstructure is much smaller than the
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wavelength [36]. Dynamic homogenization of heterogeneous materials by using effective
medium theory, in which the length scale of the microstructure is comparable to the corre-
sponding wavelength, is an active research area due to its use in metamaterial design [53]
and limited to problems with linear or weakly nonlinear material behavior.

There has been growing interest in using fractional calculus in modeling complex me-
dia [9, 14, 50]. History of fractional derivatives and therefore calculus goes back to 17th
century and depends on a question asked by L’Hopital to Leibniz [46]. Fractional calcu-
lus has found many applications in electromagnetics, mechanics of materials and particle
physics [31, 46, 51]. Fractional integral is a generalization of n fold integration and frac-
tional derivative is inverse operator of the fractional integral on a function [34, 38, 46].
Even though the definition of fractional integral is unique, fractional derivative has differ-
ent definitions. Riemann-Liouville, Caputo and Marchaud fractional derivatives are non-
local fractional derivatives or integro-differential operators on a function [34, 38, 46].
Local fractional derivatives are also proposed and have been used [5, 28, 39, 50]. The
type of problem and method of solution determines the choice of the fractional deriva-
tive [8, 46]. Fractional integro-differential equations are solved either by using Fourier and
Laplace transforms [34, 38, 46] or by using different numerical methods including finite
elements [1, 22, 48] and fractional finite differences [15, 55].

Fractional derivatives and fractional integrals are used in three different types of prob-
lems. The first type of problems are problems in which the field variables do not have a
derivative in the classical sense such as random processes and problems with singulari-
ties [11, 46]. The second type of problems are problems that have some retarded effects
such as problems with memory effect [31, 42, 44]. The third type of problems are problems
with a discrete or disordered domain where the topology of the domain has a significant role
on the problem [9, 39]. Topological disorder of the domain is measured by fractal dimen-
sion of the domain [8, 9, 32] namely box counting dimension in the case of quasi-fractals
and Hausdorff dimension for fractals. Relation between an open fractal set and fractional
integral and derivative has been recently shown [42, 43].

Disordered, quasi-fractal (self-similar structures within certain length scales) structures
have been seen in nature [32]. There has been a growing interest in understanding size and
scale effects on the mechanical behavior of material at the macro scale [7], force transmis-
sion mechanism and structural behavior of hierarchical, biomimetic and biological mate-
rials [18, 21]. Such media exhibits quasi-fractal structure [39] and fractional calculus is a
good candidate for the homogenization of disordered and self similar media. Fractional cal-
culus has been used in solid mechanics for modeling viscoelastic and hereditarily elastic
material behavior. The reader can consult to Refs. [31, 44] for an extensive review of the
subject and references therein. Use of fractional calculus on a fractal set in solid mechanics
is first presented in [9] where the Kolwankar-Gangal derivative [28] is suggested as a frac-
tional derivative and the virtual work principle is proposed for a finite element solution. The
elastic potential for fractal media is proposed in [10] and scaling properties of kinematic and
equilibrium equations are investigated with examples given on the Cantor set. Balance laws
for thermoelastic fractal media are presented in [39] based on the local fractional derivative
proposed in [50]. The Jacobian between the fractal media and Euclidean space is calculated
using the modified Riemann-Liouville fractional derivative [26] in [14]. In addition, bal-
ance equations for equivalent continuum media, geometric and kinematic compatibility and
equilibrium equations around a shock front are presented. Recently, a continuum mechanics
model based on the Riesz potential [38, 46] is proposed in [16], where the mapping of field
variables to Euclidean space is done via the Riesz potential. In addition to modeling fractal
media, inelastic models and nonlocal elastic models are proposed or reformulated in various
studies [11, 13, 29, 33, 40, 47].
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It has been known that a material point in a linear elastic body gets information from
either side of the point with left and right running characteristics [17] which makes the
symmetry properties of the operators used in modeling the problem important [33]. Lo-
cal fractional derivatives, which are used in modeling continuum problems [39, 50], are
based on one sided fractional derivatives and do not have the symmetry property. Riesz-
Feller fractional derivatives are symmetric integro-differential operators [46]. In this study,
wave propagation in heterogeneous material with self-similar structure is investigated via
fractional calculus along with the discontinuous Galerkin method, considering that each el-
ement has a quasi-fractal structure. Riesz-Feller fractional derivatives and their local counter
parts are used. A suddenly loaded 1D bar and a suddenly loaded plate under plane strain
conditions are studied assuming that the material is elastic. An outline of the paper is as fol-
lows: In Sect. 2, some fundamentals of fractional calculus are given. Equilibrium equations
for fractal media are given in Sect. 3. Homogenization of fractal media and a finite element
formulation is given in Sect. 4. Results of numerical calculations are presented in Sect. 5.
Conclusions are drawn in Sect. 6.

2 Fractional Calculus

In this section some of the properties of fractional integrals and derivatives are revisited. For
details the reader can consult to [34, 38, 46].

Let us define an interval A= [a, b] ⊆ R. f is a locally integrable function [24] such that
f (x) ∈R and x ∈A. The left and right fractional integral of f is defined as

aI
α
x f (x) = 1

Γ (α)

∫ x

a

f (y)

(x − y)1−α
dy, (1)

xI
α
b f (x) = 1

Γ (α)

∫ b

x

f (y)

(y − x)1−α
dy. (2)

In Eqs. (1) and (2), α is the order of the fractional integral and α > 0. Thus in this
study we restrict ourselves to 0 < α ≤ 1. Γ is Euler’s Gamma function which is defined as
Γ (z) = ∫ 1

0 (logx)−z−1dx, ∀z ∈ C. Left and right Riemann-Liouville fractional derivatives
are defined as aD

α
x = aI

−α
x and xD

α
b = xI

−α
b and written as follows

aD
α
x f (x) = d

dx

(
aI

1−α
x f (x)

)
, (3)

xD
α
b f (x) = − d

dx

(
xI

1−α
b f (x)

)
. (4)

The Riemann-Liouville fractional derivative can be applied to locally non-differentiable
functions such as functions with singularities. On the other hand, the Riemann-Liouville
fractional derivative of f is not zero when f (x) = C and C is a constant [36, 40, 48]. In
physical systems, when field variable is constant, its derivative is zero. Therefore, the Caputo
derivative has been used in physical systems in order to calculate the fractional derivative of
a field variable, similar to that in viscoelasticity [33]. Caputo derivatives are defined as

aD̃
α
x f (x) = aI

1−α
x f (1)(x), (5)

xD̃
α
b f (x) = −xI

1−α
b f (1)(x). (6)
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One can see from the definitions of Caputo derivatives, that the function f must have
a first derivative in the interval [a, b] for 0 < α ≤ 1. In order to calculate the fractional
derivative of a non-differentiable field variable in a physical system, the modified Riemann-
Liouville derivative is proposed in [26] which is called the Jumarie derivative. Left and right
Jumarie derivatives are defined as

j
aD

α
x f (x) = aD

α
x

(
f (x) − f (a)

)
, (7)

j
xD

α
b f (x) = xD

α
b

(
f (x) − f (b)

)
. (8)

Jumarie derivatives are equivalent to Caputo derivatives when the function f is differen-
tiable and equivalent to the Riemann-Liouville derivatives when f (a) = f (b) = 0 and the
derivative of a constant is zero.

The left fractional derivative and right fractional derivative of a function are not equal.
The Riesz fractional integral and derivative [46] has been used to circumvent this prob-
lem, which is more appropriate for defining the physics of a problem in spatial coordinates.
Thus in a linear elastic material, a point in the material gets information carried by both
left and right running characteristics [17]. Therefore the Riesz-Feller fractional integral and
derivative [46] are used based on Jumarie’s modified Riemann-Liouville derivative. The
Riesz-Feller integral and derivative are the conjugate of the Riesz integral and derivative,
respectively [24]. In addition, the Riesz fractional integral and derivative exhibit singular
behavior in the limiting case as α limits to one [24]. The Riesz-Feller fractional integral and
derivative, based on the Jumarie derivative, can be written as

aR
α
b f (x) = 1

2 sin( π
2 α)

(
aI

α
x f (x) − xI

α
b f (x)

)
, (9)

r
aD

α
b f (x) = 1

2 sin( π
2 α)

(
j
aD

α
x f (x) − j

xD
α
b f (x)

)
. (10)

The Riesz-Feller fractional derivative, based on the Jumarie fractional derivative, com-
bines the advantages of the Riemann-Liouville and the Caputo fractional derivatives, such
as when function f (x) is constant the Riesz-Feller fractional derivative based on the Ju-
marie fractional derivative of the function is zero. It can be applied to non-differentiable
functions. Moreover, the Riesz derivative is singular as α → 1 whereas the Riesz-Feller
fractional derivative is continuous with respect to α. In addition, the Kolwankar-Gangal
derivative gives the strength of a singularity which has an order of α. This property of the
Kolwankar-Gangal derivative is used in modeling of the localization of strain in [9]. The
Riemann-Liouville derivative, and therefore the Riesz-Feller derivative, is the derivative of
a function on a fractal set with Hausdorff dimension α [42, 43]. It is shown in [42, 43] that
the relation between the fractional derivative and the derivative of a function f (x) is given
as ∂αf (x)

∂xα = C(L,α) r
aD

α
b f (x) where L is the characteristic length and ∂α(·)

∂xα is the differen-
tial operator in fractal space. The Riesz-Feller derivative of f (x) = x is shown in Fig. 1 for
different values of α.

Local fractional derivatives have also been used either as an approximation of nonlocal
fractional derivatives [6] or in relation to fractional finite differences [28]. In this study,
we focus on local fractional derivatives which are approximations of nonlocal fractional
derivatives. The basic idea arises from replacing the Lebesgue measure with the Lebesgue-
Stieltjes measure,

dnx → d�(x). (11)
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Fig. 1 Riesz-Feller derivative of
a linear function f (x) = x, where
x ∈ [0,1]

Fig. 2 Coordinate
transformation

In Eq. (11), n is the number of topological dimensions and � is a distribution. In the case
that � is continuous, one can write

d�(x) = c(β, x)dnx, (12)

where β is the Hausdorff dimension of the fractional space and n > β > n − 1. c(β, x) is
the Jacobian, which is analogous to the density of states [6].

Assuming that coordinate transformation from the fractional space to the Euclid space
is a parallelepiped (Fig. 2), one can write the differential volume element in the fractional
media as follows

dΩα = (dx1)
α1(dx2)

α2(dx3)
α3

= c3(β,x)dΩ3

= c1(α1, x1)c1(α2, x2)c1(α3, x3)dx1dx2dx3. (13)

In Eq. (13), dΩα is the differential volume element in fractional space. dΩ3 is the dif-
ferential volume element in 3 dimensional Euclid space and (dxi)

αi is the differential line
element in x

αi

i . αi is the dimension of the fractional space in the direction of xi . The reader
can consult Ref. [8] for a detailed discussion on differential forms.
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Let us consider a differentiable function f (xi). Following [6, 39, 50], we obtain the local
fractional derivative for the Riesz-Feller potential as follows

rl
a D

αi

b f (xi) = 1

c1(αi, xi)

∂f (xi)

∂xi

, (14)

where

c1(αi, xi) =
(

(b − xi)
1−αi + (xi − a)1−αi

2 sin ( π
2 αi)Γ (2 − αi)

)−1

. (15)

3 Equilibrium Equations

Let us review equilibrium equations for a linear elastic body occupying a space Ω ⊂ R
3.

The boundary of Ω is denoted by ∂Ω . ∂ΩD and ∂ΩN denote the subregions of ∂Ω , and the
displacement vector and traction are specified such that

∂Ω = ∂ΩN ∪ ∂ΩD and ∂ΩN ∩ ∂ΩD = ∅. (16)

The equilibrium equation for elastodynamics can be written as follows

ρü = ∇ · σ + b in Ω. (17)

In Eq. (17), ρ is the density, σ is the Cauchy stress tensor, b represents the body forces per
unit mass, u is the displacement and overdot represents derivation with respect to time.

The boundary conditions are as follows

σ · n = t̄ in ∂ΩN,

u = ū in ∂ΩD,
(18)

where t̄ and ū are the specified traction and displacement, respectively.
For a linear elastic material, the stress tensor is given as

σ = C : ε, (19)

where

ε = 1

2

(∇u + ∇uT)
, (20)

where C is the stiffness tensor and ε is the strain tensor.
The dynamical equations for elastic and thermoelastic materials on a fractal media are

given in [9, 16, 39] and, also, recently in [5], by using local fractional derivatives. Follow-
ing the studies done by using local fractional derivatives, one can write the equations for a
quasi-fractal media with nonlocal fractional derivatives without loss of generality. Thus it
is straight forward to prove their validity with nonlocal fractional derivatives by using the
Gauss divergence theorem for fractional calculus [3, 52], which is given in Eq. (21). A de-
tailed derivation of Eq. (21) is given in Appendix A for the nonlocal fractional derivatives.
The reader can consult Refs. [39] and [5] for the case of local fractional derivatives.
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Let us consider a body occupying a space Ωα such that Ωα ⊂ Ω in R
3 and β ∈ R

+ is
the Hausdorff dimension or box counting dimension of Ωα . ∂Ωα

D and ∂Ωα
N denote the non-

overlapping boundary regions of Ωα , where, respectively, the displacement and traction are
given.

In this study, we consider an isotropic fractal media where α1 = α2 = α3 = α. Therefore
β = 3α. The dynamical equation for elastodynamics on a fractal media can be written as
follows

ρü = ∇α · σ + b in Ωα. (21)

In Eq. (21) ∇α = ( ∂α

∂xα
1
, ∂α

∂xα
2
, ∂α

∂xα
3
) is the nabla operator either with local fractional deriva-

tive components which are defined in Eq. (14) or with nonlocal fractional derivative com-
ponents which are defined in Eq. (10). One must note that Eq. (21) is a integro-differential
equation defined in fractal space. The fractional divergence of the Cauchy stress σ arises as
an effect of the heterogeneous structure in Euclid space Ω on the fractal space Ωα . In addi-
tion, material properties, such as density, are the properties of the bulk material. Boundary
conditions are given as follows

σ · n = t̄ in ∂Ωα
N,

u = ū in ∂Ωα
D.

(22)

Similar to the linear elastic material, the stress and strain tensor can be defined as

σ = C : ε, (23)

ε = 1

2

(∇αu + ∇αuT)
. (24)

In Eq. (24), ε is the strain tensor in Euclid space. Proof of the validity of Eq. (24) can be
done by using a geometric interpretation of strain in classical continuum [19] and is given in
Appendix B. One must mention that both the Riesz derivative and the Riesz-Feller derivative
do not admit the derivation of a metric tensor. Thus both the right Riemann-Liouville and
the Jumarie derivative do not have a natural distribution function �(x, ν), and this results in
j
xD

μ

b �(x, ν) �= δν
μ and xD

μ

b �(x, ν) �= δν
μ [8]. Therefore it is not possible to define a metric

tensor either for the Riesz derivative or for the Riesz-Feller derivative, which is done for left
fractional derivatives in [8, 12, 27].

Fractional calculus has been seen as a natural candidate in describing continuum proper-
ties of fractal media due its non-integer order. The relation between the fractional derivative
and integral of a function and the derivative and integral of function on a Cantor set is shown
by [43] by using Laplace transform in the asymptotic limit of p → ∞ where p is the Laplace
parameter. The order of approximation is L2α where L is the characteristic length. It is also
shown that derivative of a function on a Cantor bar is equivalent to the fractional derivative
of a function multiplied by a constant C. This constant is a function of the Hausdorff dimen-
sion of the Cantor bar and characteristic length of it is such that C ∝ 1/L1−α , which makes
the strain on a Cantor bar dimensionless as is the case in classical continuum mechanics [19].
In this study, we assume that C = 1 regardless of the Hausdorff or box counting dimension
and the characteristic length in order to make a comparison between the nonlocal fractional
derivative and it’s local approximation. It is observed from Eq. (24) that in a fractional space
which is the case when C = 1, the strain has a dimension of L1−α similar to that of the strain
in a fractal media [9]. Even though they posses mathematically identical results, the fractal
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Fig. 3 Homogenization of
self-similar structure

Fig. 4 Coarse grained element

strain defined in [9] differs from the definition given in this study. In this study the structure
is composed of discrete set of material points and the deformation localizes at all material
points as a result of the discrete structure. In [9], localization in strain occurs as a result of
loading or the material property and the structure is continuous.

When the bulk material is linear elastic and isotropic, the dynamical equation can be
written as follows

ρü = (λ + μ)∇α∇α · u + μ∇α · ∇αu (25)

where λ and μ are the Lamè parameters.

4 Coarse Graining and Finite Element Formulation

Let x,y ∈ Ω0 and let ϕ be a contraction mapping from Ω0 to Ω . If |ϕ(x) − ϕ(y)| = c|x − y|
where 0 < c < 1, then the structure is self-similar (Fig. 3). From a topological point of view
the structure repeats itself at lower scales.

Different than the previous studies in the literature, where the whole structure is fractal
or quasi fractal [9, 39], each element is quasi-fractal with upper cut off (Fig. 4) in this study.
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This introduces the element size as a parameter for modeling the structure. This is obtained
by replacing the derivatives of the base functions with fractional derivatives of the base
functions in the finite element formulation.

The discontinuous Galerkin method [2], in which the continuity of the displacement is
weakly enforced, is used in this study for modeling problems. Weak enforcement of the
continuity of displacements allows us to capture discontinuities at the element interfaces
as a result of non-vanishing inter-element terms which arise from integration by parts. The
integration by parts rule in fractional calculus contains integral terms in the boundary inte-
grals [37] which makes the numerical implementation complicated. Thus [26] approximated
the fractional differential of a continuous function f (x) in the generalized Taylor series ex-
pansion with a fractional order differential as dαf = Γ (α + 1)df + O(h2α), where h is a
small number. For 0 < α < 0.5, the error due to the truncated terms in the approximation of
fractional differential increases. Therefore we limit our analysis to 0.5 ≤ α ≤ 1.0. In addi-
tion, this approximation of fractional differential allows one to write the integration by parts
rule similar to that of classical calculus for the nonlocal case [26], which is given in Eq. (26)

∫ b

a

f (α)(x)g(x)(dx)α = Γ (α + 1)f (x)g(x)|ba −
∫ b

a

f (x)g(α)(x)(dx)α. (26)

The integration by parts rule for the local fractional derivative is the same as in classical
calculus with the exception of the coefficients which arise from the mapping of fractional
space onto Euclid space; these will not be given here.

Before presenting the discontinuous Galerkin formulation, let us give some definitions.
Let Ph(Ω

α) be a regular partition of the domain Ωα , such that Ph(Ω
α) is generated by

dividing Ωα in to Ne number of Ωα
e subdomains. Γ α

int defines the interelement boundaries.
Γ α

D and Γ α
N define the Dirichlet and Neumann boundaries. A Greek superscript α shows that

it is a fractal surface or volume. Let In = (tn, tn+1) be a time interval for the integer n. Then
each space-time slab is defined as S = Ωα × In.

Let us define a broken space of basis functions Vn, in which u(x, t) and v(x, t) are
smooth and continuous vector functions for every Se = Ωα

e × In. Similarly, a broken space
of weighting functions Wn is defined for each n, in which wu(x, t) and wv(x, t) are smooth
and continuous vector functions for every Se = Ωα

e × In. Elements of Vn and Wn are vector
functions different from zero in Se , and zero elsewhere. The weak formulation of space-time
discontinuous Galerkin form can be written as follows

∫
In

∫
Ωα

e

wvρv̇dΩα
e dt +

∫
In

A(u,wv)dt −
∫

In

L(wv)dt

+
∫

In

A(u̇,wu)dt −
∫

In

A(v,wu)dt

+
∫

Ωα
e

wv

(
t+n

)
ρ
(
v
(
t+n

) − v
(
t−n

))
dΩα

e

+ A
(
u
(
t+n

)
,wu

(
t+n

)) − A
(
u
(
t−n

)
,wu

(
t+n

))

= A
(
u
(
0+)

,wu

(
0+)) +

∫
Ωα

e

wv

(
0+)

ρ
(
v
(
0+))

dΩα
e . (27)

In Eq. (27), A(·, ·) and L(·) are the bilinear and linear operators respectively and are
given in Appendix C. Details of the numerical implementation can be found in Appendix D.
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5 Numerical Experiments

In this section, two different problems are studied in order to determine the wave propa-
gation characteristics in heterogeneous media with self similar structure. Numerical results
obtained with different box counting measures, different element sizes, local and nonlo-
cal fractional derivatives are compared with numerical results obtained for a homogeneous
material. A 1D bar connected to a rigid wall is studied in order to expose the dispersion
properties of the proposed model. A 2D suddenly loaded plate at its center is studied in
order to determine the wave propagation characteristics for multi-dimensional problems.

5.1 1D Bar Connected to a Rigid Wall

In this example, a suddenly end loaded 1D bar connected to a rigid wall under tension is
studied. The geometry of the problem is shown in Fig. 5. Linear basis functions are used.
Young’s modulus E is 1 N/m2 and the density ρ is 1.0 kg/m3. Element sizes are chosen
as �x = 0.5 m, �x = 0.25 m and �x = 0.125 m with corresponding time steps �t =
0.04 s, �t = 0.02 s and �t = 0.01 s. In order to eliminate the effect of the fixed end on
the monitoring points, length of the bar is taken as L = 40 m. Two monitoring points are
chosen in order to determine the dispersion diagram and phase velocity. The first monitoring
point is 2 m away from the loaded end and the second one is 6 m away from the loaded end.
Dispersion diagrams and phase velocities are calculated by assuming that the waves are
planar by using the Fourier transform of the stress values at the monitoring points.

The dispersion curve and phase velocity is shown in Fig. 6 for �x = 0.5. It is seen from
the figure that the dispersion curves are almost linear for a wide number of wave numbers.
When the wave number is close to 6, deviation from linearity is seen in the solutions with
fractal dimensions α = 0.8 to α = 1. Thus α = 1 is theoretically non-dispersive for a linear
elastic material. Therefore, the phase velocities corresponding to frequencies higher than the
wave number k = 6 1/m are not presented. In the case of α = 1, the phase velocity tends
to increase after f = 0.6 Hz, but is expected to be constant for all frequencies. Similar be-
havior is observed for the phase velocity of fractal media. In addition, results with nonlocal
derivatives give smaller values of phase velocity and have the same characteristics with re-
sults obtained by using local fractional derivatives. When α = 0.9, the phase velocity tends
to increase after f = 0.5 Hz in the case of local fractional derivatives, whereas the phase
velocity tends to decrease when nonlocal derivatives are used.

In Fig. 7, the dispersion curves and phase velocities are shown for �x = 0.25. The dis-
persion curves are almost linear similar to the case �x = 0.5. As the box counting dimen-
sion decreases, slopes of dispersion curves become closer. It is seen from the curve that the
phase velocity is higher in the nonlocal case than in the local case when α = 0.9. Contrar-
ily, higher values of the phase velocity are observed in the local case when compared to the

Fig. 5 Bar connected to a rigid wall and loading history
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Fig. 6 Dispersion curves and phase velocity for �x = 0.5; —: local fractional derivative, - - -: nonlocal
fractional derivative

Fig. 7 Dispersion curves and phase velocity for �x = 0.25; —: local fractional derivative, - - -: nonlocal
fractional derivative

nonlocal case for lower values of α. In addition, the phase velocity increases with increasing
frequency for all values of α.

Dispersion curves and phase velocities are given in Fig. 8 for �x = 0.125. The dispersion
curves are linear for both the nonlocal and the local cases for all box counting dimensions.
The phase velocity is almost constant for a wide range of frequencies for all cases and
decreases with decreasing box counting dimension. Similar to the previous element sizes,
the phase velocity is higher in the local case than in the nonlocal case, apart from α = 0.9.

In Fig. 9 a space-time plot of stress is shown for �x = 0.125 as a representative case.
It is observed that the pulse shape changes with the box counting dimension. The peak
stress increases from 0.6 when α = 0.9 to 0.75 when α = 0.5 in both computations with
nonlocal and local fractional derivatives. As the stress wave propagates, the peak stress
decreases and the pulse gets wider. This effect becomes significant with decreasing box
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Fig. 8 Dispersion curves and phase velocity for �x = 0.125; —: local fractional derivative, - - -: nonlocal
fractional derivative

counting dimension and decreasing �x. The decrease in peak stress is smaller than 8 %. In
addition, it is observed that the results obtained with nonlocal fractional derivatives are very
close to the results with local fractional derivatives.

5.2 Suddenly Loaded Plate

In this example, a plate suddenly loaded in a central zone is studied under plane strain con-
ditions. The geometry of the problem is shown in Fig. 10. Bilinear basis functions are used.
Young’s modulus E is 70 GPa, Poisson’s ratio ν is 0.33 and the density ρ is 2700 kg/m3.
Element sizes are chosen as �x = 1.25 mm, �x = 0.625 mm and �x = 0.3125 mm with a
time step �t = 0.25 µs. The half-length and width of the plate are taken as L = 0.1 m and
W = 0.02 m ant the loading zone is characterized by a = 0.005 m (Fig. 10).

The effective stress values at point x = 60.0 mm, y = 10.0 mm are shown for different
element sizes in Fig. 11. It is seen that as the order of the fractional derivative decreases,
effective stress values decrease and time lag increases. The transient part of the effective
stress exhibits a similar behavior for all α. As the flexural waves develop, difference between
the local and nonlocal fractional derivatives increases. In addition, it is also observed that
the effective stress decreases with a decrease of the element size.

The maximum effective stress and the time (tmax.) where maximum effective stress
(σ max.

eff. ) is observed at point x = 20.0 mm and y = 10.0 mm is shown in a semi-logarithmic
graph in Fig. 12. The maximum effective stress value decreases with a decrease of the
order of the fractional derivative. A scaling behavior is observed from the figure with
α = as log(σ max.

eff. ) as as varies between 3.07 and 5.64. The difference between the local and
the nonlocal cases is negligible. On the other hand, tmax. increases with increasing α. A sim-
ilar scaling behavior is also observed between α and tmax.. A relation between α and tmax.

can be written as α = as log(tmax.) where the coefficient as varies between 3.62 and 6.85.
The directions and magnitude of the Poynting vector, which is defined as power flow per

unit area and is given as p = −σ · v [4], is shown at the center line of the plate for two
different points in Fig. 13 for the element size �x = 1.25 mm. It is seen that the power flow
happens in the direction of thickness on the symmetry axis. The direction of the Poynting
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Fig. 10 Suddenly loaded plate from its center and loading history

Fig. 11 Comparison of effective stress values at x = 60.0 mm, y = 10.0 mm; —: local fractional derivative,
- - -: nonlocal fractional derivative

vector shows a ±35◦ scatter around the symmetry axis in the results for the case of local
derivatives. In addition, the maximum value of magnitude of the Poynting vector is seen
when α = 0.9. In the results for the case of nonlocal derivatives, the direction of the power
flow gets narrower and exhibits a ±30◦ scatter around the y axis of the plate. The magni-
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Fig. 12 Maximum effective stress and time it is determined at point x = 20.0 mm, y = 10.0 mm

tudes of the Poynting vectors are higher in the results for the case of nonlocal derivatives as
compared to the results for the case of local derivatives. There is no preferred direction of
the power flow observed at the point x = 40.0 mm, y = 10 mm for both cases of local and
the nonlocal derivatives. The Poynting vector exhibits distinct bands for each order of the
fractional derivative in results for the case of local derivatives. Similar to the results in the
case of local derivatives, the results obtained for the case of nonlocal derivatives does not
have any preferred direction. The transition between the magnitude of the Poynting vectors
is not distinct and bands are entwined in the results for the case of nonlocal derivatives. The
magnitudes of the Poynting vectors are higher in the nonlocal case as compared to results
for the case of local fractional derivatives.

The direction of the Poynting vector and its magnitude is shown in Fig. 14 for �x =
0.625 mm. Similar to the results obtained with the element size �x = 1.25 mm, the Poynt-
ing vectors on symmetry axis have direction through the thickness of the plate both in the
results for the cases of local and nonlocal derivatives. The scattering angle of the direction
of the Poynting vectors about the symmetry axis decreases with a decrease of the order of
the fractional derivative, and in addition with the magnitude of the Poynting vector, for both
of the cases of local and nonlocal fractional derivatives. The scatter angle is approximately
±30◦ in the local derivative case and ±25◦ in the case of nonlocal derivatives. The results
in the case of nonlocal derivatives have higher magnitudes as compared to results for the
case of local derivatives. Moreover, the results with the nonlocal derivatives exhibit lower
scattering angle on the symmetry axis as compared to results obtained with the local frac-
tional derivatives. At point x = 40 mm, y = 10 mm, there is no preferred direction of the
Poynting vector observed for both results with the local and the nonlocal fractional deriva-
tives. The magnitude of the Poynting vector is higher in the results for the case of nonlocal
derivatives. In Fig. 15, the direction and magnitude of the Poynting vector is presented for
�x = 0.3125 mm. Similar behavior with larger element sizes is observed. The scattering of
the direction of propagation decreases to ±20◦ in the results with local derivatives and ±15◦
in the results with nonlocal derivatives. The magnitude of the Poynting vectors differs with
the change of order of the fractional derivative in the results with local derivatives. On the
other hand, entwining in the magnitude of the Poynting vectors is seen in the results with
the nonlocal derivatives.
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Fig. 13 Directions and magnitudes of Poynting vectors at different instances, (�x = 1.25 mm)

The longitudinal and Rayleigh wave speeds are compared in a semi-logarithmic graph in
Fig. 16. The longitudinal wave speed is predicted via time of flight on the symmetry axis of
the plate. Scaling behavior is observed both for the cases of local and nonlocal derivatives,
with α = as log(cl/c

1
l ), where c1

l is the longitudinal wave speed for α = 1 and is calculated as
6198.0 m/s for the material used in this study. It is observed that the longitudinal wave speed
decreases with decreasing α and element size. The predicted value of as varies between 3.38
and 5.43. The difference between the results in the cases of local and nonlocal derivative is
small. A similar behavior is observed for the Rayleigh wave speed. The Rayleigh wave
speed for the homogeneous media is predicted to be c1

R = 2857 m/s. The slope of the semi-
logarithmic graph is predicted to vary between 4.27 and 5.74.

Snapshots of the effective stress distributions are shown in Fig. 17 for �x = 0.635, for
two different instances as a representative case. Even though it is not presented here, the
results obtained for the case of local fractional derivatives are very close to those for the case
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Fig. 14 Directions and magnitudes of Poynting vectors, (�x = 0.625 mm)

of nonlocal fractional derivatives. Wave fronts obtained from computations with different
box counting dimensions exhibit similar behavior except in the case of slow propagation. In
addition, the effective stress values decrease with a decrease of the box counting dimension.

6 Conclusion

In this study, wave propagation in heterogeneous material with self similar microstructure,
such as porous materials [30], is studied by using fractional calculus. Due to the lack of
an analytical solution and the absence of experimental results, the results presented in this
study do not include validation.

A one dimensional bar suddenly loaded at its free end is studied and the dispersion rela-
tion and phase velocity is presented for different box counting dimensions and element sizes.
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Fig. 15 Directions and magnitudes of Poynting vectors, (�x = 0.3125 mm)

It is observed that as the box counting dimension decreases, the phase velocity decreases as
seen in porous materials with increasing porosity [41]. It is known that the porosity is in-
versely proportional to the fractal dimension in porous materials [49]. In addition, we found
that the dispersion curve is almost linear and exhibits a weakly dispersive character for all
box counting dimensions within the range of our analysis. The difference between the re-
sults obtained in the cases of local derivatives and nonlocal derivatives is negligible for one
dimensional problems.

A two dimensional suddenly loaded plate under the assumption of plane strain condi-
tions is studied in order to demonstrate the multi-dimensional behavior of the proposed
model. It is observed that the amplitude of the maximum effective stress decreases with a
decrease of the box counting dimension, which seems to mimic elastic wave scattering in
porous materials. In addition, as the stress wave propagates in the plate and as the flexu-



Wave Propagation in Heterogeneous Media. . . 19

Fig. 16 Longitudinal and Rayleigh wave speeds

Fig. 17 Effective stresses for �x = 0.625 mm obtained with nonlocal fractional derivatives

ral waves dominate the problem, the difference in the results between the material models
with local and nonlocal fractional derivatives becomes significant. One can conclude that
the local fractional derivative can be used as an approximation to nonlocal counterparts for
transient problems. On the other hand, the difference in the results may be significant when
studying the dynamic behavior of material for harmonic problems or in the prediction of
failure such as crack propagation. Similar to the wave speeds in the one dimensional case,
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both the Rayleigh and the longitudinal wave speeds decrease with decreasing box counting
dimension and exhibit a power law scaling. Such scaling is also seen in the maximum effec-
tive stresses. It is observed that the difference in the wave speeds between the two material
models with local and nonlocal derivatives is negligible. In addition, this difference may be
significant and has an effect on the Poynting vector which shows the direction and magni-
tude of the power flow per unit area, as is seen from the comparison of the Poynting vectors.
Difference in the Poynting vectors may cause misprediction of the location of the maximum
effective stress, which is used as a criteria for most of the failure models.

As a summary, the one dimensional and two dimensional results show that the model
which is based on local fractional derivatives can be used as an approximation to the model
based on nonlocal fractional derivatives only for a limited number of cases. One can con-
clude that the model presented in this study is a good candidate for modeling the dynamic
mechanical of the behavior of heterogeneous structures. Experimental studies are needed in
order to validate the relations we have reported between the wave speeds, fractal dimension
and topology.
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Appendix A: Derivation of Equilibrium Equation for Fractal Media

Let us consider a body occupying a space Ωα embedded in Euclid space such that Ωα ⊂ Ω

and α ∈ R
+ is the Hausdorff dimension or box counting dimension of the quasi-fractal

space Ωα . Sα denotes the closed boundary of Ωα and n is the unit outward normal vector
to Sα . The conservation of linear momentum can be written as

∫
ρüdΩα = ∫

σ · ndSα + ∫
bdΩα. (28)

The first term on the right side of Eq. (28) can be written as follows by using the Gauss
divergence theorem for fractional vector operators given in [3]

∫
σ · ndSα =

∫
∇α · σdΩα. (29)

Assuming that dependent variables are continuous in Ωα and shrinking Ωα to a point,
similar to what is done in classical continuum mechanics [19], one can write the differential
form of the equilibrium equation for fractal media as

ρü = ∇α · σ + b. (30)

Appendix B: Derivation of Strain Tensor

Here, the strain tensor is derived for small deformations. We assume that the deformation is
2 dimensional for simplicity; extending it to 3 dimensions is straightforward.
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B.1 Extensional Strain

Let u(x) be the displacement field, where u = {u1, u2} and x = {x1, x2}. xα = {xα
1 , xα

2 } are
the coordinates in fractal space. Let us consider the differential element occupied by the
volume Ωα .

Using Lemma 3.1 in [25], the strain in the x1 direction can be written as

ε11 = ∂u1

∂x1
= lim

�x1→0

�u1

�x1
= lim

�x1→0

�αu1

(�x1)α

(�x1)
α−1

Γ (1 + α)
= C(L,α)

∂u1

∂xα
1

. (31)

In Eq. (31) coefficient C(L,α) is the constant which relates the fractional derivative to the
fractal media [43].

B.2 Shear Strain

The shear strain is the sum of the angles between the edges of the differential element and
the coordinate axis. For small deformations the relation between the fractional derivatives
and the shear strain can be written as

ε12 = ∂u1

∂x2
+ ∂u2

∂x1
= C(L,α)

(
∂αu1

∂xα
2

+ ∂αu2

∂xα
1

)
. (32)

Appendix C: Bilinear and Linear Operators for the Discontinuous
Galerkin Method

Linear operator and bilinear operators for the discontinuous Galerkin method with local and
nonlocal fractional derivatives can be written, respectively, as

L(w) =
∑

Ωα
e ∈Ph

∫
Ωα

e

wρbdΩα
e +

∫
Γ α

D

∇αw · n ūdΓ α
D +

∫
ΓN

wt̄dΓN, (33)

AL(u,w) =
∑

Ωα
e ∈Ph

{∫
Ωα

e

∇αw · σdΩα
e

}
−

∫
Γ α

int

c3(α,x)[w]〈σ 〉 · n dΓ α
int

+
∫

Γ α
int

〈
σ
(∇αw

)〉 · n[u]dΓ α
int −

∫
Γ α

D

wσ · n dΓ α
D +

∫
Γ α

D

σ
(∇αw

) · n udΓ α
D

+ μ
γμ

h

∫
Γ α

int

[w] · [u]dΓ α
int +

∫
Γ α

int

[
λ

γ α
λ

h
w

]
· n[u] · ndΓ α

int

+
∫

Γ α
D

μ
γμ

h
w · udΓ α

D +
∫

Γ α
D

λ
γλ

h
w · n u · ndΓ α

D, (34)

ANL(u,w) =
∑

Ωe∈Ph

{∫
Ωα

e

∇αw · σdΩα
e

}
−

∫
Γ α

int

Γ 2(α + 1)[w]〈σ 〉 · n dΓ α
int

+
∫

Γ α
int

〈
σ
(∇αw

)〉 · n[u]dΓ α
int −

∫
Γ α

D

wσ · n dΓ α
D +

∫
Γ α

D

σ
(∇αw

) · n udΓ α
D
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+ μ
γμ

h

∫
Γ α

int

[w] · [u]dΓ α
int +

∫
Γ α

int

[
λ

γ α
λ

h
w

]
· n[u] · ndΓ α

int

+
∫

Γ α
D

μ
γμ

h
w · udΓ α

D +
∫

Γ α
D

λ
γλ

h
w · n u · ndΓ α

D . (35)

Note that these last two equations define bilinear operators for the models based on local
and nonlocal fractional derivatives, respectively. h is a parameter given by

h =
{

2(
length(Γ )

area(Ωe)
+ length(Γ )

area(Ωnb)
)−1 for Γ ⊂ Γe ∩ Γnb

area(Ωe)

length(Γe)
for Γ ⊂ Γe ∩ ∂Ω.

(36)

In Eqs. (34) and (35), γμ and γλ are penalty parameters and w is a weight function.
Difference and averaging operators are defined as follows

[φ] = (φnb − φe), (37)

〈φ〉 = (φnb + φe)/2. (38)

Appendix D: Numerical Implementation

Numerical implementation of Eq. (27) is done by first discretizing the momentum equation
in space by using the bilinear and linear operators which are given in Eqs. (33), (34) and (35).
Then the resulting systems of ordinary differential equations are solved by using the time
discontinuous Galerkin method.

D.3 Space Discretization

Let uh(t,x) be the approximate solution for u(t,X), where uh(t,x) = ∑
i uh

i (t)Ni and sum-
mation is carried out over the nodes of elements and Ni is the base function. The bilinear
operator can be written as follows after evaluating the integrals

A
(
uh(t,x),w

) =
N∑

e=1

(
Keuh

e − Fe
(
uh

e

) − Fnb
(
uh

nb

))
. (39)

In the above equation, Ke is the element stiffness matrix. Fe and Fnb arises from the surface
integrals along the element boundaries and can be regarded as force vectors acting on the
surface of the element due to the internal and external displacements. For notational conve-
nience, the superscript h is dropped for the following equations. The fractional derivatives
of the base functions are evaluated analytically.

Body forces and boundary integrals subject to boundary conditions can be written as

N∑
e=1

Fb =
∑
Ωe

∫
Ωα

e

wρbdΩα
e + λ

∑
Γe∈ΓD

∫
Γe

∇αw · n ūdΓ α
e +

∑
Γe∈ΓN

∫
Γe

wt̄dΓ α
e . (40)

Then one can write the semi-discrete balance equation as follows

N∑
e=1

(
Meüe + Keue − Fe(ue) − Fnb(unb) − Fext

) = 0. (41)
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In the above equations Me is the element mass matrix and Fext = Fb +Fnb. The semi-discrete
balance equation can be written in the more compact form

N∑
e=1

(Meüe + K̃eue − Fext) = 0, (42)

where K̃e is the modified element stiffness matrix which is defined as K̃e = Ke + ∂Fe
∂ue

.
Equation (42) can be solved element by element by using the block Gauss-Seidel method

along with the time integration method.

D.4 Time Integration

The time discontinuous Galerkin method (TDG) is used for the time integration. In the
application of TDG, a double field formulation is used. The double field formulation consist
combining the velocity and equation of motion in the form

∫
I

wt

([
K̃ 0
0 M

][
u̇
v̇

]
+

[
0 −K̃
K̃ 0

][
u
v

])
dt + wt

(
t+n

)[
K̃ 0
0 M

][
u(t+n )

v(t+n )

]

− wt

(
t+n

)[
K̃ 0
0 M

][
u(t−n )

v(t−n )

]

=
∫

I

wt

[
0
F

]
dt. (43)

In the above equations the subscripts of the vectors and matrices are dropped for the
sake of simplicity. Thus, in the following section no subscript will be used to show the
element-wise values. In Eq. (43) wt is the weight function in time. We use 1st order La-
grange polynomials a base function. After evaluating the integrals in Eq. (43), we reach the
following linear equation system

⎡
⎢⎢⎢⎢⎣

1
2 K̃ 1

2 K̃ −1
3 dtK̃ 1

6 dtK̃
−1
2 K̃ 1

2 K̃ −1
6 dtK̃ −1

3 dtK̃
1
3 dtK̃ 1

6 dtK̃ 1
2 M 1

2 M
1
6 dtK̃ 1

3 dtK̃ −1
2 M 1

2 M

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u+
n

u−
n+1

v+
n

v−
n+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

K̃u−
n

0
Fn + Mv−

n

Fn+1

⎤
⎥⎥⎦ . (44)

Equation (44) is solved for each element sequentially as is done in the block Gauss-Seidel
method in order to decrease the computational cost.
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