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Abstract We investigate a family of isotropic volumetric-isochoric decoupled strain ener-
gies

F �→WeH(F ) := ̂WeH(U) :=
{ μ

k
ek‖devn logU‖2 + κ

2̂k
e
̂k[tr(logU)]2 if detF > 0,

+∞ if detF ≤ 0,

based on the Hencky-logarithmic (true, natural) strain tensor logU , where μ > 0 is the
infinitesimal shear modulus, κ = 2μ+3λ

3 > 0 is the infinitesimal bulk modulus with λ the
first Lamé constant, k,̂k are additional dimensionless material parameters, F = ∇ϕ is the
gradient of deformation, U = √

FT F is the right stretch tensor and devn logU = logU −
1
n

tr(logU) ·1 is the n-dimensional deviatoric part of the strain tensor logU . For small elastic
strains, WeH approximates the classical quadratic Hencky strain energy

F �→WH(F ) := ̂WH(U) := μ‖devn logU‖2 + κ

2

[

tr(logU)
]2

,

which is not everywhere rank-one convex. In plane elastostatics, i.e., n = 2, we prove the
everywhere rank-one convexity of the proposed family WeH, for k ≥ 1

4 and̂k ≥ 1
8 . Moreover,
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we show that the corresponding Cauchy (true)-stress-true-strain relation is invertible for
n = 2,3 and we show the monotonicity of the Cauchy (true) stress tensor as a function of
the true strain tensor in a domain of bounded distortions. We also prove that the rank-one
convexity of the energies belonging to the family WeH is not preserved in dimension n= 3
and that the energies

F �→ μ

k
ek‖ logU‖2

, F �→ μ

k
e

k
μ

(

μ‖devn logU‖2+ κ
2 [tr(logU)]2

)

, F ∈GL+(n), n ∈N, n≥ 2

are also not rank-one convex.
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1 Introduction

1.1 Logarithmic Strain and Geodesically Motivated Invariants

We introduce a modification of the well-known isotropic quadratic Hencky strain energy

WH(F )= ̂WH(U)= μ‖devn logU‖2 + κ

2

[

tr(logU)
]2

,

where μ > 0 is the infinitesimal shear (distortional) modulus, κ = 2μ+3λ

3 > 0 is the bulk

modulus with λ the first Lamé constant, F = ∇ϕ is the deformation gradient, U =√
FT F

is the right Biot stretch tensor, logU is the referential (Lagrangian) logarithmic strain ten-
sor, ‖ .‖ is the Frobenius tensor norm, and devn X = X − 1

n
tr(X) · 1 is the n-dimensional

deviatoric part of a second order tensor X∈R
n×n (see Sect. 2 for other notations).

It was recently discovered [170, 171] (see also [32, 132]) that the Hencky strain energy
enjoys a surprising property, which singles it out among all other isotropic strain energy
functions. Indeed, the Hencky energy measures the geodesic distance of the deformation
gradient F ∈GL+(n) to the special orthogonal group SO(n), i.e.,

dist2
geod

(

F,SO(n)
)= μ‖devn logU‖2 + κ

2

[

tr(logU)
]2 =WH(F ),

dist2
geod

(

F,SO(n)
)= 0 if and only if ϕ(x)= ̂Qx +̂b

for some fixed ̂Q ∈ SO(3),̂b ∈R
3,

(1.1)

where the Lie-group GL+(n) is viewed as a Riemannian manifold endowed with a certain
left-invariant metric which is also right O(n)-invariant1 (isotropic). The use of the quadratic

1Although every such Riemannian metric is uniquely characterized by three coefficients, the geodesic dis-
tance to SO(n) in fact depends on only two of them, corresponding to the two material parameters μ and κ .
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Hencky strain energy in nonlinear elasticity theory can therefore be motivated by purely
geometric reasoning.

In contrast, for the case of the simple Euclidean distance on R
n×n we note that

dist2euclid

(

F,SO(n)
) (def):= inf

R∈SO(n)

‖F −R‖2 = inf
R∈SO(n)

∥

∥R
T
F − 1

∥

∥

2 = ‖U − 1‖2, (1.2)

which yields the Biot-stretch measure U − 1 without any possibility of weighting the de-
viatoric and volumetric contributions independently [174]. On the other hand, the additive
volumetric-isochoric split

̂WH(U)= μ‖devn logU‖2 + κ

2

[

tr(logU)
]2 = μ

∥

∥

∥

∥

log
U

detU 1/n

∥

∥

∥

∥

2

︸ ︷︷ ︸

̂W iso
H

(

U

detU1/n

)

+ κ

2
[log detU ]2

︸ ︷︷ ︸

̂Wvol
H (detU)

(1.3)

of ̂WH into an isochoric term ˜W iso
H depending only on U

detU1/n , i.e., on the isochoric part of
U , and a volumetric term ˜W vol

H depending only on detU is characterized by means of the
same geodesic distance as well: it can be shown that [170, 171, 177]

K2
1 := dist2

geod

(

(detF)1/n · 1,SO(n)
)

= dist2
geod,R+·1

(

(detF)1/n · 1,1
)= ∣

∣tr(logU)
∣

∣

2 = ˜W vol
H (detU),

K2
2 := dist2

geod

(

F

(detF)1/n
,SO(n)

)

= dist2
geod,SL(n)

(

F

(detF)1/n
,SO(n)

)

= ‖devn logU‖2 = ˜W iso
H

(

U

detU 1/n

)

,

where dist2
geod,R+·1 and dist2

geod,SL(n) are the canonical left invariant geodesic distances on the
Lie-group SL(n) and on the multiplicative group R+ · 1, respectively. This result strongly
suggests that the two quantities K2

1 = ‖devn logU‖2 and K2
2 = [tr(logU)]2 should be con-

sidered separately as fundamental measures of elastic deformations, which motivates a fam-
ily of elastic energy functions stated in terms of these two quantities alone [151]. It is clear,
however, that it is not the strain measure logU itself which has any importance in this re-
gard,2 but the fundamentally motivated scalar geodesic invariants K2

1 , K2
2 . They restrict the

form of the constitutive law. The mechanical and physical significance of the logarithmic
strain tensor is further discussed in [169].

Moreover, in 2D, the purely isochoric term dist2
geod

(

F

detF 1/2 ,SL(2)
)

penalyzes the depar-
ture from conformal (shape preserving) mappings, i.e., the absolute minimizer in dimension
n= 2 is a deformation φ with ∇φ satisfying

log∇φT ∇φ = α(x, y) · 12, α(x, y) ∈R ⇔ ∇φT∇φ = eα(x,y)·12 , α(x, y) ∈R

∇φ ∈ R+ · SO(2)
︸ ︷︷ ︸

the special conformal group CSO(2)

⇔ φ :R2 →R
2 is holomorphic.

2Truesdell writes [251]: “It is important to realize that since each of the several material tensors [the strain

tensors like U − 1, 1− U−1, logU , U − U−1] is an isotropic function of any one of the others, an exact
description of strain in terms of any one is equivalent to a description in terms of any other; only when an
approximation is to be made may the choice of a particular measure become important.”
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Since K2
1 , K2

2 have this inherently fundamental differential geometric motivation, we
propose to investigate a new constitutive framework for ideal isotropic elasticity. Then it is
natural to consider the most primitive possible strain energy form satisfying:

(i) The elastic energy W can be written as a function of the geodesic invariants

W = ˜W
(

K2
1 ,K2

2

)

, where K2
1 := ‖devn logU‖2 and K2

2 :=
[

tr(logU)
]2;

(ii) The energy is strictly increasing as a function of K2
1 ,K2

2 ;
(iii) The energy is strictly convex as a function of logU (Hill’s inequality);
(iv) Preferably, the energy should be a rank-one convex (polyconvex, quasiconvex) func-

tion;
(v) The energy should satisfy a coercivity condition.

We observe that (iv) necessitates that W should grow at least exponentially (see [222]).

1.2 Scope of Investigation

Many elastic materials show a completely different response regarding shape changing de-
formations and purely volumetric deformations. Therefore, in concordance with our just
stated requirements, we investigate in this paper a family of isotropic exponentiated Hencky-
logarithmic strain type energies in which both contributions coming from dilatations and
distortions are a priori additively separated3 [78]

WeH(F ) := ̂WeH(U) :=
{ μ

k
ekK2

2 + κ

2̂k
e
̂kK2

1 if detF > 0,

+∞ if detF ≤ 0,

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μ

k
ek‖devn logU‖2 + κ

2̂k
e
̂k(tr(logU))2

︸ ︷︷ ︸

volumetric-isochoric split

if detF > 0,

+∞ if detF ≤ 0,

(1.4)

=
{ μ

k
e

k‖ log U

detU1/n
‖2 + κ

2̂k
e
̂k(log detU)2

if detF > 0,

+∞ if detF ≤ 0,

where U =∑n

i=1 λiNi ⊗ Ni , logU =∑n

i=1 logλi(Ni ⊗ Ni) = limr→0
1
r
(Ur − 1), λi and

Ni are the eigenvalues and eigenvectors of U , respectively. The immediate importance of
the family (1.4) of free-energy functions is seen by looking at small (but not infinitesimally
small) elastic strains. Then the exponentiated Hencky energy WeH(·) reduces to first order
to the quadratic Hencky energy based on the logarithmic strain tensor logU

WH(F ) := ̂WH(U) := μ‖devn logU‖2 + κ

2

[

tr(logU)
]2 +

(

μ

k
+ κ

2̂k

)

︸ ︷︷ ︸

const.

,

τH :=DlogV
˜WH(V )= 2μdev3 logV + κ tr(logV ) · 1,

τH = detV · σH,

(1.5)

3Such an assumption is especially suitable for only slightly compressible materials or under small elastic
strains [98].
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where V =√FFT is the left stretch tensor, ˜WH(V )= ̂WH(U), σH is the Cauchy stress tensor
in the current configuration and τH is the Kirchhoff stress tensor. The Hencky energy WH has
been introduced by Heinrich Hencky [243] starting from 1928 [24, 100–103, 186, 222, 238,
256] (see [169] for a recent English translation of Hencky’s German original papers) and
has since then acquired a unique status in finite strain elastostatics [1, 5, 6] and especially
in finite strain elasto-plasticity.4 Hencky himself used this constitutive law to study finite
elastic deformations of rubber in some simple cases [100–104]. The modern applications
seem to begin with the study of finite elastic and elasto-plastic bending of a long plate-
strip (plane strain) in the cases of incompressible and compressible deformations [36–38,
60, 61]. The formulation based on the Hencky strain energy provides the greatest possible
extent of elastic determinacy [169, page 19]: the Kirchhoff-stress response does not depend
on a specific reference state or previously applied coaxial deformations. A similar property
was postulated for an idealized law of elasticity by Murnaghan [161, 162], who argued that
the dependence of the stress response on a specific position of zero strain was tantamount to
an action at a distance and should therefore be avoided.

The first axiomatic study on the nonlinear stress-strain function involving a logarithmic
strain tensor is, however, due to the famous geologist George Ferdinand Becker [27, 145] in
1893. Using a principle of superposition for the principal forces in the reference configura-
tion he concludes with a stress-strain law in the form

TBiot(U)= 2μdev3 logU + κ tr(logU) · 1, (1.6)

where TBiot(U) = RT · S1(F ) = U · S2(C) is the (symmetric in case of isotropy) Biot-
stress tensor, F = RU is the right polar decomposition, S2 is the symmetric second Piola-
Kirchhoff stress tensor and C = FT F , see [176] for detailed explanations. Even earlier, in
1880, Imbert [117] in his doctoral thesis considered the uniaxial tension of vulcanized rub-
ber bands and obtained as a best fit a constitutive law5 [117, page 53], which in modern
notations reads

〈TBiot.e1, e1〉 =E〈logU.e1, e1〉, (1.7)

for recoverable (fully elastic extensional) stretches λ ∈ [1, e). Three years later, in 1893,
Hartig [95] (see also [28]) used the same constitutive law for tension and compression data
of rubber.

In [164] Nadai introduced the name “natural strain” tensor for the logarithmic strain
tensor logU and motivated application of this concept in metal forming processes6 in met-
allurgy. The strain measure (natural strain) then has been extensively used over the years to

4In Hencky’s first paper [99], the constitutive law σH = 2μdev3 logV + κ tr(logV ) · 1 is proposed, which is
Cauchy-elastic, tensorially correct, but not hyperelastic. This has been corrected by Hencky in later papers.
Incidentally, Becker’s law (1.6) is also Cauchy-elastic, tensorially correct, but hyperelastic only for ν = 0 [33,
46] (see also [176, 265]).
5Note that (1.7) is the uniaxial specification of (1.6), and (1.6) is closely resembling (1.5)2. A small cal-
culation [176] shows τBecker = V · τH, where τ is the corresponding Kirchhoff stress τ = (detF) · σ =
DlogV W(logV ) and V is the left stretch tensor. Moreover ‖τBecker − τH‖≤ ‖V − 1‖ · ‖τH‖. Hence, for
small elastic strains ‖V −1‖� 1, Becker’s law coincides with Hencky’s model to first order in the nonlinear
strain measure V − 1.
6In the German metal forming literature the logarithmic strain is also called “Umformgrad”. In [138,

page 17] Ludwik uses the “effective specific elongation” α = ∫ �
�0

d�
�
= ln �

�0
. It can be motivated by con-

sidering the summation over the infinitesimal increase in length as referred to the current length, i.e.,

ln �
�0
= limN→∞

∑N−1
i=0

�i+1−�i
�i

[94, 261]. The scalar Hencky-type measure ‖dev3 logU‖ is sometimes
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report experimental true-stress-true-strain data. More recently, in [98] a modified Hencky
energy is proposed which is motivated by in depth molecular dynamics simulations for a
metallic glass.7 Hill [107, 108] (see also [53, 149, 150]) has discussed the advantage of the
logarithmic strain measure8 in setting up a class of constitutive inequalities, based on a fam-
ily of measures of finite strain and their corresponding conjugate stresses, for both elastic
and elasto-plastic solids. Hill showed that only one member of this class admits incompress-
ibility, namely that corresponding to logarithmic strain. The special Hill’s-inequality (which
we will call KSTS-M+ for reasons which become clear later) asserts in the hyperelastic case
that the strain energy should be a convex function of logarithmic strain [179] and Hill argued
that this inequality is the most suitable for compressible solids. Šilhavý [226] remarks that
Hill’s inequality is, up to date, not found to be in conflict with experimental facts.

The Hencky strain tensor appears also in much more diverse fields, such as image reg-
istration [188, 189] and relativistic elastomechanics [126]. Extensions to the anisotropic
hyperelastic response based on the Hencky-logarithmic strain were investigated, e.g., in [66,
67, 90].

Let us now summarize some well-known unique features of the quadratic Hencky strain
energy WH based exclusively on the natural strain tensor logU :

⊕1 The two isotropic Lamé constants (μ,λ) � (μ, κ) (or (E, ν)), the shear modulus, the
bulk modulus and the second Lamé constant, are determined in the infinitesimal strain
regime, but the model based on the energy WH(F ) can well describe the nonlinear de-
formation response for moderate principal stretches λi ∈ (0.7,1.4) (see [5, 6, 34]). Of
course, for a particular material, one may always get agreement with (a finite num-
ber of) experiments to any desired accuracy for another constitutive law with more
adjustable parameters, e.g., Ogden’s strain energy [182].

⊕2 The Hencky model outperforms other well known nonlinear elasticity models with
equally few constitutive parameters, like Neo-Hooke or Mooney-Rivlin type elastic
materials [48, 158, 182, 200] in the above-mentioned strain range.

⊕3 The geometrically nonlinear Poynting effect (a cylindrical bar of steel, copper, rub-
ber or brass lengthens in torsion proportional to the square of the twist) is correctly
described [6, 23, 28, 41, 62, 63, 187].

⊕4 WH has the correct behavior for extreme strains in the sense that W(Fe) →∞ as
detFe → 0 and, likewise, W(Fe)→∞ as detFe →∞.

⊕5 The Hencky strain tensor logU puts extension and contraction on the same footing, its
principal values vary from −∞ to ∞, whereas those of C = FT F or B = FFT vary
from 0 to ∞ and those of C − 1 vary from −1 to ∞.

used as “equivalent strain” in order to represent the degree of plastic deformation [184, 185]. Its use for
severe shearing has been questioned in [224]. In our opinion the problematic issue is not the logarithmic
measure itself, but its degenerate (sublinear) growth behavior for large strains. The opposing views may be
reconciled by using e‖dev3 logU‖ as “exponentiated equivalent strain” measure.
7I.e., an amorphous metal which is very nearly isotropic with superior elastic deformability up to 1–2 %
distortional strain, but which shows no ductility, in contrast to polycrystalline metals which typically show
elastic strains up only to 0.1–0.2 %. Recently, Murphy [163] (see also [266]) has postulated a linear Cauchy
stress-strain relation for some strain measure and gets as well WH as a preferred solution. His corresponding
“strain measure” E is then E := 1

detV · logV , so that σ = 2μE + λ tr(E) · 1, which is Hencky’s relation in
disguise. However, V �→E(V ) is not invertible, thus E does not really qualify as a strain measure.
8Tarantola noted [245, page 15] that “Cauchy originally defined the strain as E = 1

2 (C − 1), but many lines
of thought suggest that this was just a guess, that, in reality is just the first order approximation to the more
proper definition E = log

√
C = 1

2 (C−1)− 1
4 (C−1)2+ . . . , i.e., in reality, E = logU = (U −1)− 1

2 (U −
1)2 + . . .”.
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Fig. 1 The generic infinitesimal
strain nonlinearity and
second-order behavior in
agreement with Bell’s
observation [28, 123]: decreasing
elasticity modulus in tension,
increasing modulus in
compression

⊕6 The Hencky strain defines a strictly monotone primary matrix function [121, 176, 178],
i.e.,

〈logU1 − logU2,U1 −U2〉> 0 ∀U1,U2 ∈ PSym(3),U1 �=U2, (1.8)

even for non-coaxial arguments U1,U2.
⊕7 Tension and compression are treated equivalently: WH(F )=WH(F−1), i.e., invariance

w.r.t. the Lagrangian or Eulerian description. Both the incompressible and compress-
ible versions of J2-finite strain deformation theory [116] usually assume identical true-
stress-true-strain relations in tension and compression.

⊕8 The linear and second-order behavior of WH is in agreement with Bell’s experimen-
tal observations [28], i.e., in general, under small strain conditions the instantaneous
elastic modulus E decreases for tension and increases in the case of compression (cf.
Fig. 1).

⊕9 True strain for equivalent amounts of deformation in tension and compression is equal
except for the sign: logV =− logV −1.

⊕10 The Eulerian strain tensor logV (and the Lagrangian strain tensor logU ) is additive
for coaxial stretches, i.e., log(V1V2)= logV1 + logV2 for V1V2 = V2V1. This implies
the superposition principle for the Kirchhoff stress τH for coaxial strains [27, 176].

⊕11 For incompressibility (rubber for instance [104, 114, 115]), only one parameter, the
shear (distortional) modulus μ= E

3 , suffices, where E = μ(2μ+3λ)

λ+μ
is Young’s modulus.

⊕12 The Hencky strain tensor logU has the advantage that it additively separates dilatation
from pure distortion [52, 196–199]; there is an exact volumetric-isochoric decoupling
by the properties of the logarithmic strain tensor:

log
U

detU 1/n
= log

[

U · (detU)−1/n
]= logU + log

[

(detU)−1/n · 1]

= logU − 1

n
(log detU) · 1= logU − 1

n
tr(logU) · 1= devn logU.

Among all finite strain measures from the Seth-Hill family [109, 223], only the spher-
ical and deviatoric parts of the Hencky strain quadratic energy can additively separate
the volumetric and the isochoric deformation [7, 114, 209].

⊕13 The volumetric expression [tr(logU)]2 = (log detU)2 has been motivated indepen-
dently in [161, 192, 244] and found to be superior in describing the pressure-volume
equation of state (EOS) for geomaterials under extreme pressure (see Sect. 3.5).

⊕14 The incompressibility condition detF = 1 is the simple statement tr(logU)= 0.
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Fig. 2 Nominal stress obtained
from the exponentiated Hencky
energy WeH and the classical
Hencky energy WH for uniaxial
deformation. Loss of
monotonicity beyond e for WH

⊕15 For the Hencky energy WH, uniaxial tension leads to uniaxial lateral contraction and
a planar pure Cauchy shear stress produces biaxial pure shear strain [256], simi-
lar as in linear elasticity (see Fig. 2 and also Sect. 4), i.e., planar pure shear stress

σ =
( σ11 σ12 0

σ12 σ22 0
0 0 0

)

, tr(σ ) = 0 corresponds to isochoric planar stretch V =
( V11 V12 0

V12 V22 0
0 0 1

)

,

detV = 1. For Poisson’s number ν = 1/2 exact incompressibility follows and for ν = 0
there is no lateral contraction in uniaxial tension, exactly as in linear elasticity [256].

⊕16 The Hencky energy WH has constant nonlinear Poisson’s ratio ν̂ =− (logV )22
(logV )11

= ν as in

linear elasticity and λ2 = λ−ν
1 in uniaxial extension [256].

⊕17 If Ψ (exp (S)) :=W(S), then for isotropic response DSW(S)=DΨ (exp (S)) · exp (S)

(see [130, 210, 256, 257]). Thus, 2S2(C) = DCΨ (C) = DlogCW(logC) · C−1, while
DC[logC].H = C−1 · H is not true in general. Therefore τ = DlogV W(logV ), σ =

1
detV ·τ = 1

detV ·DlogV W(logV ), see Appendix A.2. Using this formula, the algorithmic
tangent D2

F [W(F)].(H,H) for the isotropic Hencky energy in finite element simula-
tions can be analyzed with knowledge of only the first Fréchet-derivative DC[logC].H
(see [119]).

⊕18 The Kirchhoff stress τ is conjugate to the strain measure logV [112, 113, 133, 178,
208, 214, 215, 257], where V = √

FFT is the left stretch tensor, i.e., 〈τ, d
dt logV 〉 =

detV · 〈σ,D〉 is equal to the power per unit volume element in the reference configu-
ration. Here, D is the strain rate tensor D = symL= sym(ḞF−1).

⊕19 Contrary to the arbitrary number of possible strain tensors in the Lagrangian setting,
there is only one strain rate tensor D in the Eulerian setting. In the one dimensional
case,9 the logarithmic strain tensor logV is equal to the integrated strain rate. More
generally,10 d

dt [logV (t)] =D(t) for any coaxial stretch family V (t).
⊕20 The logarithmic strain possesses certain intrinsic, far-reaching properties that also sug-

gest its favored position among all possible strain measures: the Eulerian logarithmic
strain logV is the unique strain measure whose corotational rate (associated with the
so-called logarithmic spin) is the strain rate tensor D. In other words, the strain rate
tensor is the co-rotational rate of the Hencky strain tensor associated with the loga-
rithmic spin tensor. Such a result has been introduced by Reinhardt and Dubey [195]
as D-rate and by Xiao et al. [262, 265] as log-rate (see also [179, 261, 264]). This is
consistent with Truesdell’s rate type concept of hypoelasticity based on a unique loga-

9In the one dimensional case ϕ(x1, t)= (ϕ1(x1, t), x2, x3)T ⇒ F =∇ϕ = diag(ϕ1,x1 ,1,1) ⇒ D =
sym(ḞF−1)= diag(

ϕ̇1,x1
ϕ1,x1

,0,0) and
∫ t

0
ϕ̇1,x1
ϕ1,x1

ds = log |ϕ1,x1 | +C ∼= logU .

10Computing the rates d
dt logU is more complicated because, in addition to the principal strains being a

function of time, the principal directions also change in time [69, 93, 112, 120].
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rithmic strain rate [93, 147, 263]. We need to emphasize that, contrary to hyperelastic
models, hypo-elastic models [146, 160] ignore the potential character of the energy.
Otherwise they are simply the hyperelastic models rewritten in a suitable incremental
form. In case of the logarithmic rate, the hypo-elastic model integrates exactly to the
hyperelastic quadratic Hencky model.

⊕21 The quadratic Hencky energy WH satisfies the Baker-Ericksen (BE) inequalities every-
where, see Sect. 2.1 later in this paper.

⊕22 The Cauchy stress σ = σ(logV ) induces an invertible true-stress-true-strain relation
up to detF ≤ e [256, 257].

⊕23 The Kirchhoff stress τ = τ(logV ) is invertible.
⊕24 The quadratic Hencky energy WH satisfies Hill’s inequality (KSTS-M+) everywhere,

i.e., the corresponding Kirchhoff stress τH = (detF) · σ =DlogV WH(logV ) is a mono-
tone function of the logarithmic strain tensor logV and WH is a convex function of
logV .

⊕25 The Kirchhoff stress τH has the symmetry property τH(V −1) = −τH(V ). In fact, this
relation is true whenever the energy satisfies the tension-compression symmetry.

⊕26 Since logB = logV 2 = 2 logV , there is no need to compute the polar decomposition
[119, 175] in order to evaluate logV .

⊕27 There is a representation of ‖dev3 logV ‖2 and [tr(logV )]2 in terms of principal in-
variants of V available [69, 77]: logV = α01+ α1V + α2V

2 = β01+ β1V + β−1V
−1,

αh = αh(i1, i2, i3), βr = βr(i1, i2, i3), ih = ih(V ), h = 1,2,3, r = −1,0,1. Moreover,
it is always possible to express the strain energy terms via its representation in prin-
cipal stretches from which we may infer, via Cardano’s formula, a representation in
terms of the principal invariants of B , i.e., WH = ˜WH(i1(B), i2(B), i3(B)) [262]. Oth-
erwise, calculation of logV needs diagonalization and determination of the principal
axes. Then

logV =QT

⎛

⎝

logλ1 0 0
0 logλ2 0
0 0 logλ3

⎞

⎠Q for V =QT

⎛

⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠Q

and Q ∈ SO(3).

⊕28 There are efficient methods for the explicit evaluation of the derivatives of the logarithm
of an arbitrary tensor [2, 120].

⊕29 The use of the logarithmic strain tensor logU leads to simple additive structures in
algorithmic computational elasto-plasticity theory [3, 190, 203, 210, 235, 259].

For these reasons the quadratic Hencky model is used in theoretical investigations and in
physical applications [8, 39, 40, 77, 83, 86–88, 148, 191]. We observe also a renewed interest
in this class of isotropic slightly compressible hyperelastic solids originally proposed by
Hencky [98, 100–103]. The strain energy WH is also often used in commercial FEM-codes.

However, the quadratic Hencky energy has some serious shortcomings:

�1 Beyond detF ≤ e, the Hencky energy WH leads to no globally invertible Cauchy stress-
logarithmic strain relation and the possibility for multiple symmetric homogeneous bi-
furcations may arise [121, page 48], see also [252, page 185], [157].

�2 The Cauchy stress tensor is degenerate in the sense that σH �+∞ for V →+∞ and
there are Cauchy stress distributions which cannot be reached by the constitutive law,
i.e., V �→ σ(V ) is not surjective.
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�3 The energy WH does not satisfy the pressure-compression (PC) inequality (this is related
to the non-convexity of detF �→ (log detF)2 for detF > e).

�4 One may not guarantee real wave speeds over the entire deformation range [39,
116, 165]. Therefore, WH is not quasiconvex (weakly lower semicontinuous) and not
Legendre-Hadamard (LH)-elliptic (rank-one convex).

�5 The tension-extension (TE) inequalities (separate convexity) are not satisfied (see
Proposition 5.9).

�6 The quadratic Hencky energy WH is not coercive, i.e., an estimate of the type

WH(F )≥ C1‖F‖q −C2, q ≥ 1, C1,C2 > 0

is not possible, since WH growths only sublinearly.
�7 The true-stress-stretch invertibility (TSS-I) does not hold true everywhere.

These points being more or less well-known, it is clear that there cannot exist a general
mathematical well-posedness result for the quadratic Hencky model WH. Of course, in the
vicinity of the stress free reference configuration, an existence proof for small loads based
on the implicit function theorem will always be possible [48]. All in all, however, the status
of Hencky’s quadratic energy, despite its many attractive features, is thus put into doubt.

For sufficiently regular energies, Legendre-Hadamard ellipticity on GL+(3) (LH-
ellipticity, also known as rank-one-convexity)11 [167, 182, 229–231, 233] is tantamount
to

〈

DF S1(F ).(ξ ⊗ η), ξ ⊗ η
〉=D2

F W(F)(ξ ⊗ η, ξ ⊗ η) > 0,

∀ξ, η ∈R
3 \ {0}, ∀F ∈GL+(3). (1.10)

This condition stems from the study of wave propagation12 or hyperbolicity of the dynamic
problem and it is just what is needed for a good existence and uniqueness theory for linear
elastostatics and elastodynamics (see [71, 79, 182, 237]). The failure of ellipticity [144, 234]
may be related to the emergence of discontinuous deformation gradients [72, 127, 258].
Strict rank-one convexity in the solution of the boundary value problem is also necessary
for the smoothness of weak solutions. While strong ellipticity apparently holds over wide
ranges, including buckling, and is physically rather compelling, it is not necessarily universal
[140, page 20] (see also [225]). However, from a numerical point of view in finite element
simulations, loss of ellipticity manifests itself by a pathological dependence of the computed
results on the size and distortion of the finite elements and should therefore be avoided.

Concerning our new formulation, it is clear that, up to moderate strains, for principal
stretches λi ∈ (0.7,1.4), our exponentiated Hencky formulation (1.4) is de facto as good

11Since GL+(3) is an open subset of R3×3, in accordance with [15, page 352] we say that W is rank-one
convex on GL+(3) if it is convex on all closed line segments in GL+(3) with end points differing by a matrix
of rank one, i.e.,

W
(

F + (1− θ)ξ ⊗ η
)≤ θW(F)+ (1− θ)W(F + ξ ⊗ η), (1.9)

for all F ∈ GL+(3), θ ∈ [0,1], and for all ξ , η ∈ R
3, with F + tξ ⊗ η ∈ GL+(3) for all t ∈ [0,1]. In other

words, the energy function W is rank-one convex on GL+(3) if and only if the function t �→W(F + tξ ⊗ η)

is convex ∀ξ, η ∈R
3, on all closed line segments in the set {t : F + tξ ⊗ η ∈GL+(3)}.

12The condition D2
F

W(F)(ξ ⊗ ξ, ξ ⊗ ξ) > 0∀ξ ∈R
3 \ {0}, i.e., the convexity of t �→W(F + tξ ⊗ ξ) for all

ξ ∈R
3 with F + tξ ⊗ ξ ∈GL+(3) for all t ∈ [0,1], is a necessary condition for the existence of at least one

longitudinal acceleration wave [4, 213, 270].
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Fig. 3 WH(F ) is not rank-one
convex

Fig. 4 WeH(F ) is rank-one
convex

as the quadratic Hencky model WH and in the large strain region it will improve several
important features from a mathematical point of view.13

Having identified K2
2 = ‖devn logU‖2 and K2

1 = [tr(logU)]2 as the basic input variables
for a nonlinear elasticity formulation, this investigation started by numerically checking the
ellipticity conditions for e‖ logU‖2

in the two-dimensional case.14 In one space dimension it
is readily observed that t �→ (log t)2 is not convex, but t �→ e(log t)2

is convex (see Figs. 3
and 4). A similar effect appears for the Hencky energy (1.5): WH is not LH-elliptic [30, 39,
232] (it is of the type given by Fig. 3), but we show that our energy WeH(U) is LH-elliptic
in the two dimensional case (it is of the type given by Fig. 4).

In this paper, then, we prove that the functions WeH(F ) := μ

k
ek‖devn logU‖2 + κ

2̂k
e
̂k(tr(logU))2

from the family of energies defined in (1.4) have the following attractive properties beyond
those of WH:15

13The domain where the Hencky energy WH is rank-one convex is included in the domain for which the

eigenvalues λ1, λ2, λ3 of U satisfy λ2
1 ≤ e2λ2λ3, λ2

2 ≤ e2λ3λ1, λ2
3 ≤ e2λ1λ2 (see Corollary 5.10). Moreover,

this domain is included in the domain defined by ‖dev3 logU‖2 ≤ 4
3 . Numerical computations reveal that

the exponentiated Hencky energy is rank-one convex in a domain for which ‖dev3 logU‖2 ≤ a with a > 4
3

(see Sect. 6.3).
14In this paper we also show that for planar elastostatics F �→ e‖ logU‖2

is not rank-one convex, a surprising
observation which is difficult to obtain, since ellipticity is lost for extremely large principal stretches only.
15The idea of considering the exponential function in modelling of nonlinear elasticity is not entirely new.

In fact W(F) = μ
2k
[ek(I1−3) − 1], where I1 = tr(FFT ), is a Fung-type model which is often used in the

biomechanics literature to describe the nonlinearly elastic response of biological tissues [25, 85]. In the
limit limk→0

μ
2k
[ek(I1−3) − 1] = μ

2 (I1 − 3), we recover the Neo-Hookean energy for elastic incompressible

materials. Another Fung-type energy [25, 85] is W(F)= μ
2k
[ek‖C−1‖2 − 1].
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Fig. 5 Qualitative picture of nominal stress response of WeH for uniaxial elongation, for different values of

k, typical S-shape entropic elasticity response. We remark that for k < 1
8 the function d

dλ
[μ
k
ek log2 λ] is not

everywhere monotone increasing. The value of k determines the shape of the strain-hardening and strain-soft-
ening response, with larger k implying strong strain-hardening. Specific values of k only change the response
for large elastic strains | logλ|> 0.1. Classical Hencky’s response is retrieved for k → 0. Invertibility of the
Cauchy stress-stretch response needs k > 1

8 . In the uniaxial case it is intuitively plausible that there should
be a bijective constitutive relationship between stress and strain that defines the mechanical properties of

an idealized elastic body. For large stretch values λ the function d
dλ
[μ
k
ek log2 λ] is monotone increasing for

all k > 0. The influence of k on the response is easily understood and we have negligible effect of k under
pressure

⊕1 For nonlinear incompressible material (like rubber) the new energy μ

k
ek‖dev3 logU‖2

has
only two independent constants, which furthermore have a clear physical meaning, the
infinitesimal shear modulus μ > 0 and the distortional strain-stiffening parameter k > 0
(see Figs. 5 and 6). For nonlinear (slightly) compressible material, in addition, there
is the infinitesimal bulk modulus κ > 0 and also the volumetric stiffening parameter
̂k > 0.

⊕2 The Cauchy stress tensor satisfies σeH →+∞ for V →+∞.
⊕3 We have: limk,̂k→0 σeH = σH, limk,̂k→0 τeH = τH.
⊕4 At very large stretch ratios the model exhibits the strain stiffening behavior common to

many elastomers.
⊕5 They satisfy the BE-inequalities.
⊕6 They satisfy the PC-inequalities.
⊕7 They satisfy the TE-inequalities in the planar case if k ≥ 1

4 .
⊕8 They satisfy the TE-inequalities in the three dimensional case if k ≥ 3

16 .
⊕9 They are rank one convex (LH-elliptic) in the planar case if k ≥ 1

4 , in the entire defor-
mation range.

⊕10 The corresponding Kirchhoff stress τeH has the property: τeH(V −1)=−τeH(V ).
⊕11 The true-stress-true-strain invertibility (TSTS-I) holds true everywhere.
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Fig. 6 Uniaxial Kirchhoff stress
tensor as a function of
logarithmic strain for the
classical Hencky model WH and
our exponentiated family WeH

⊕12 The true-stress-stretch invertibility (TSS-I) holds true everywhere.
⊕13 The true-stress-true-strain monotonicity (TSTS-M) is satisfied for bounded distortions.
⊕14 Hill’s inequality (KSTS-M+) is satisfied, in the entire deformation range and τeH is

invertible.
⊕15 Planar pure Cauchy shear stress produces biaxial pure shear strain and ν = 1

2 corre-
sponds to exact incompressibility.

⊕16 For n= 3 among the family WeH there exists a special (k = 2
3
̂k) three parameter subset

such that uniaxial tension leads to no lateral contraction if and only if the Poisson’s
ratio ν = 0, as in linear elasticity.

⊕17 There is no number k > 0 such that WeH is rank one convex everywhere in the three
dimensional case, but there is a built-in failure criterion active on extreme distortional
strains: our conjecture is that the energy is rank-one convex in the cone-like elastic
domain E+(W iso

eH ,LH,U,27)= {U ∈ PSym(3)|‖dev3 logU‖2 ≤ 27}.
These results completely settle the status of the quadratic Hencky energy as a useful

approximation in plane elasto-statics and lead to new perspectives for the three-dimensional
idealized isotropic setting.

The contents of this paper in the order of their appearance are: (i) a further short dis-
cussion of the existing literature; (ii) notation; (iii) introduction of general constitutive re-
quirements in idealized nonlinear elasticity; (iv) the invertible true-stress-true-strain relation;
(v) rank-one convexity in the two-dimensional case; (vi) domains of rank-one convexity in
the three-dimensional case; (vii) summary; (viii) extensive list of references; (ix) appendix.

1.3 Previous Work in the Spirit of Our Investigation

Rougée [207, pages 131, 302] (see also [82, 206] and later extensions by Fiala [73–76])
identifies Hencky’s logarithmic strain measure 2 logU = logC as having (as its Frobenius
tensor norm) the length of a geodesic joining two metric states: he endows the set of positive
definite matrices PSym(3) (which is not a Lie-group w.r.t. matrix multiplication) with a
Riemannian structure (see also [31, 155, 156]). In this case, geodesics joining the identity 1
with any metric tensor C = FT F are simply one-parameter groups t �→ exp(t logC). This
interpretation is fundamentally different from ours given in [170–172] and hinted at in the
introduction.

Criscione et al. [52] proposed a new invariant basis for the natural strain logU , which
leads to a representation for the Cauchy stress σ as the sum of three response terms
that are mutually orthogonal (see also [183]). In fact, Criscione et al. [52, 260] (see also
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[65]) consider energies WCrisc(K1,K2,K3) based on the Hencky-logarithmic strain, where
(K1,K2,K3) is a set of invariants for the isotropic case:16

⎧

⎪

⎪

⎨

⎪

⎪

⎩

“the amount-of-dilatation”: K1 = tr(logU)= log detU = log detV = log detF,

“the magnitude-of-distortion”: K2 = ‖dev3 logU‖ = ‖dev3 logV ‖,
“the mode-of-distortion”: K3 = 3

√
6 det

(

dev3 logU

‖dev3 logU‖
)

.

(1.11)

As it turns out, any isotropic energy can also be represented as a function WCrisc =
WCrisc(K1,K2,K3) of Criscione’s invariants (see [51, 52, 111]). In this paper, we use ex-
clusively |K1|2 (which we may call accordingly the “magnitude-of-dilatation”) and the
magnitude-of-distortion K2

2 , but with our different geometric motivation.
In [222] some necessary conditions for the LH-ellipticity versus exponential-growth are

discussed for energies depending on the Hencky strain logU . In fact, Sendova and Walton
[222] have considered the energy W to be a function of K2 = ‖dev3 logU‖ and proved that
W has to grow at least exponentially as a function of K2. They note, however, that “con-
structing conditions that are both necessary and sufficient for strong ellipticity to hold for all
deformations still seem[s to be] a daunting task”. In [209] Sansour has discussed the multi-
plicative decomposition of the deformation gradient into its volumetric and isochoric parts
and its implications in the case of anisotropy. Sansour’s statement for isotropy is already
contained in the paper by Richter [196, page 209]. This decomposition problem was studied
later in the papers [7, 114]. Gearing and Anand [89] (see also [68, 98]) recently proposed an
energy of the form17

WAnand(logU)= μ(log detU) · ‖dev3 logU‖2 + h(log detU), (1.12)

where detU �→ h(log(detU)) is highly non-convex. The energy WAnand(logU) couples vol-
umetric and distortional response and is based on molecular dynamics simulations. The
molecular dynamics simulation18 is not in contradiction with an increasing generalized shear
modulus μ as detU → 0, see [97, 98].

The Baker-Ericksen (BE) inequalities express the requirement that the greater princi-
pal Cauchy stress should occur in the direction of the greater principle stretch, while the
tension-extension (TE) inequalities demand that each principal stress is a strictly increas-
ing function of the corresponding principal stretch. The BE-inequalities and TE-inequalities
arise in connection with propagation of waves in principal direction of strain [253]. The
strong ellipticity condition for hyperelastic materials [267] was studied in [10, 110, 127,
213, 258], but the complete study seems to be presented first in Ogden’s Ph.D.-thesis [180].
For an incompressible hyperelastic material corresponding conditions were given in [212].
A family of universal solutions in plane elastostatics for the quadratic Hencky model is
obtained in [9].

A stronger constitutive requirement than rank-one convexity is Ball’s-polyconvexity con-
dition [14, 15]. A free energy function W(F) is called polyconvex if and only if it is ex-
pressible in the form W(F)= P (F,CofF,detF), P :R19 → R, where P (·, ·, ·) is convex.

16Richter in 1949 [197] already considers the following complete set of isotropic invariants: K1 =
tr(logU),K2

2 = tr((dev3 logU)2) and tr((dev3 logU)3), see also [139]. A similar list of invariants was used
by Lurie [139, page 189]: K1, K2 and ˜K3 = arcsin(K3).
17The energy (1.12) does not satisfy the tension-compression symmetry.
18The numerical results given by Hennan and Anand [98] correspond to the large volumetric strain range
0.75≤ detF ≤ 1.16 (−0.3≤ log detF ≤ 0.15) but small shear strain range ‖dev3 logV ‖ ≤ 0.035.
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Polyconvexity implies weak lower semicontinuity, quasiconvexity and rank-one convexity.
Quasiconvexity of the energy function W at F means that

∫

Ω

W(F +∇ϑ)dx ≥
∫

Ω

W(F)dx =W(F) · |Ω|,

for every bounded open set Ω ⊂R
3 (1.13)

holds for all ϑ ∈ C∞
0 (Ω) such that det(F +∇ϑ) > 0. It implies that the homogeneous so-

lution ϕ(x)= F . x, x ∈R
3 is always a global energy minimizer subject to its own Dirichlet

boundary conditions.
In fact, polyconvexity is the cornerstone notion for a proof of the existence of minimiz-

ers by the direct methods of the calculus of variations for energy functions satisfying no
polynomial growth conditions. This is typically the case in nonlinear elasticity since one
has the natural requirement W(F) →∞ as detF → 0. Polyconvexity is best understood
for isotropic energy functions, but it is not restricted to isotropic response. It was a long
standing open question how to extend the notion of polyconvexity in a meaningful way to
anisotropic materials [17]. The answer has been provided in a series of papers [18, 19, 70,
96, 144, 166, 216–220]. For isotropic strain energies, the polyconvexity condition in the
case of space dimension 2 was conclusively discussed by Rosakis [205] and Šilhavý [227],
while the case of arbitrary space dimension was studied by Mielke [152], by Dacorogna and
Marcellini [57], Dacorogna and Koshigoe [56] and Dacorogna and Marechal [58].

1.4 Notation

For a, b ∈ R
n we let 〈a, b〉Rn denote the scalar product on R

n with associated vector
norm ‖a‖2

Rn = 〈a, a〉Rn . We denote by R
n×n the set of real n × n second order ten-

sors, written with capital letters. The standard Euclidean scalar product on R
n×n is given

by 〈X,Y 〉Rn×n = tr (XY T ), and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉Rn×n .
In the following we do not adopt any summation convention and we omit the subscript
R

n×n in writing the Frobenius tensor norm. The identity tensor on R
n×n will be de-

noted by 1, so that tr (X) = 〈X,1〉. We let Sym(n) and PSym(n) denote the symmet-
ric and positive definite symmetric tensors respectively. We adopt the usual abbrevia-
tions of Lie-group theory, i.e., GL(n) := {X ∈ R

n×n|detX �= 0} denotes the general linear
group, SL(n) := {X ∈ GL(n)|detX = 1},O(n) := {X ∈ GL(n)|XT X = 1},SO(n) := {X ∈
GL(n,R)|XT X = 1,detX = 1}, GL+(n) := {X ∈ R

n×n|detX > 0} is the group of invert-
ible matrices with positive determinant, so(3) := {X ∈ R

3×3|XT = −X} is the Lie-algebra
of skew symmetric tensors and sl(3) := {X ∈ R

3×3| tr(X) = 0} is the Lie-algebra of trace-
less tensors. Here and in the following the superscript T is used to denote transposition,
and CofA = (detA)A−T is the cofactor of A ∈ GL(n). The set of positive real numbers is
denoted by R+ := (0,∞), while R+: = R+ ∪ {∞}. For all vectors ξ, η ∈ R

3 we have the
(dyadic) tensor product (ξ ⊗ η)ij = ξiηj .

Let us consider W(F) to be the strain energy function of an elastic material in which
F is the gradient of a deformation from a reference configuration to a configuration in the
Euclidean 3-space; W(F) is measured per unit volume of the reference configuration. The
domain of W(·) is GL+(n). We denote by C = FT F the right Cauchy-Green strain ten-
sor, by B = FFT the left Cauchy-Green (or Finger) strain tensor, by U the right stretch
tensor, i.e., the unique element of PSym(n) for which U 2 = C and by V the left stretch
tensor, i.e., the unique element of PSym(n) for which V 2 = B . Here, we are only concerned
with rotationally symmetric functions (objective and isotropic), i.e., W(F)=W(QT

1 FQ2)
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∀F = RU = V R ∈ GL+(n),Q1,Q2,R ∈ SO(n). We define J = detF and we denote by
S1 = DF [W(F)] the first Piola-Kirchhoff stress tensor, by S2 = F−1S1 = 2DC[W(C)] the
second Piola-Kirchhoff stress tensor, by σ = 1

J
S1F

T the Cauchy stress tensor, and by
τ = J ·σ the Kirchhoff stress tensor. In this paper, the scalar product will be always denoted
by 〈, 〉, while “·” will denote the multiplication with scalars or the multiplication of matrices.
We will also use “.” to denote by DF [W(F)].H the Fréchet derivative of the function W(F)

of a tensor F applied to the tensor-valued increment H and to denote by D2
F [W(F)].(H,H)

the bilinear form induced by the second Fréchet derivative of the function W(F) of a tensor
F applied to (H,H).

2 Constitutive Requirements in Idealized Nonlinear Elasticity

2.1 The Baker-Ericksen Inequalities

An “ellipticity criterion” much weaker than the LH-ellipticity criterion (1.10) are the so
called Baker-Ericksen (BE) inequalities. The Baker-Ericksen inequalities are arguably an
absolutely necessary requirement for reasonable material behavior. Baker and Ericksen [13]
considered a unit cube of isotropic elastic material to undergo a pure homogeneous defor-
mation with principal directions parallel to the edges of the cube. They showed that the
BE-inequalities are necessary and sufficient for the greater principal Cauchy stress to oc-
cur in the direction of the greater principal stretch. For an isotropic material, Rivlin [201]
supposed that the unit cube considered by Baker and Ericksen is further subjected to a super-
posed infinitesimal simple shear with direction of shear parallel to an edge of the deformed
cube and plane parallel to one of its faces. Rivlin [201] proved that the BE-inequalities are
necessary and sufficient conditions for the incremental shear modulus to be positive. The
order relation for Cauchy stresses requested by the cube problem considered by Baker and
Ericksen then follows.

Let ̂W :GL+(3)→R be a function that can be written as a function of the singular values
of U via ̂W(U)= g(λ1, λ2, λ3). Then the BE-inequalities express the requirement that [13,
65, 80, 140, 260]:

(σi − σj )(λi − λj )≥ 0, (2.1)

where σi = 1
λ1λ2λ3

λi
∂g

∂λi
= 1

λj λk

∂g

∂λi
, i �= j �= k �= i, are the principal Cauchy stresses. Usually,

in the literature, the BE-inequalities mean that the above inequalities are strict. In this paper,
we prefer to denote these strict inequalities as BE+-inequalities. The BE-inequalities are
equivalent (see [140, page 17]) to

λi
∂g

∂λi
− λj

∂g

∂λj

λi − λj

≥ 0, for all λi, λj ∈R
+, λi �= λj . (2.2)

We may also view the BE-inequalities as Cauchy true-stress-order-condition (TS-OC).

2.2 Relation of Baker-Ericksen Inequalities to Other Constitutive Requirements

Marzano has shown [143] that the BE-inequalities are necessary and sufficient conditions for
a simple extension (a deformation in which two, but not three, principal stretches are equal)
to correspond to simple tension. In [153] it was proved that for a homogeneous isotropic
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hyperelastic material subject to a pure Cauchy shear stress (a state of pure shear: tr(σ )= 0
[178]) of the form

σ =
⎛

⎝

0 s 0
s 0 0
0 0 0

⎞

⎠ (2.3)

the BE-inequalities are satisfied if and only if the corresponding left Cauchy-Green strain
tensor B = FFT has the representation19

B =
⎛

⎝

B11 B12 0
B12 B22 0
0 0 B33

⎞

⎠ , (2.4)

where B11 +B12 > B33 > B11 −B12 > 0.
In general, there are many different possible ways of expressing the physically plausible

requirement (the Drucker postulate) that stresses should increase with increasing stretch or
strain20 [250, 255]:

• TE-inequalities (tension-extension-inequalities): each principal Cauchy stress is a strictly
increasing function of the corresponding principal stretch, i.e., ∂σi

∂λi
> 0, i = 1,2,3. Since

σi = 1
λj λk

∂g

∂λi
, i �= j �= k �= i, we obtain ∂σi

∂λi
= 1

λj λk

∂2g

∂λ2
i

and the TE-inequalities are equiva-

lent to the separate convexity (SC) of the function g, namely ∂2g

∂λ2
i

> 0, i = 1,2,3.

• OF-inequalities21 (ordered-force-inequalities [253]): the greater principal force Ti =
σiλjλk = ∂g

∂λi
, i �= j �= k �= i, which is associated with the greater principal stretch is such

that

(Ti − Tj )(λi − λj )≥ 0. (2.5)

19Since tr(σ )= 0 one might rather expect the stronger statement B =
(B11 B12 0

B12 B22 0
0 0 1

)

, i.e., B33 = 1, as well as

detB = 1. However, this is not true in general for isotropic energies, e.g., it is not satisfied for Neo-Hooke or
Mooney-Rivlin type materials.
20In the literature, all these concepts are defined using strict inequalities for λi �= λj , i �= j . In this paper
these common cases will be denoted by TE+, OF+ , E+ and PC+ , respectively.
21These inequalities appear also, but not as strict inequalities, in the following theorem:

Theorem 2.1 ([16, Theorem 6.5]) Let W : GL+(n) → R be an objective-isotropic function of class C2

with the representation in terms of the singular values of U via W(F) = ̂W(U) = g(λ1, λ2, . . . , λn). Let
F ∈ GL+(n) be given with the n-tuple of singular values λ1, λ2, . . . , λn . Then D2W(F)[H,H ] ≥ 0 for
every H ∈R

n×n if and only if the following conditions hold simultaneously:

(i)
∑n

i,j=1
∂2g

∂λi∂λj
aiaj ≥ 0 for every (a1, a2, . . . , an) ∈R

n (convexity of g);

(ii) for every i �= j,

∂g
∂λi

− ∂g
∂λj

λi − λj
≥ 0

︸ ︷︷ ︸

“OF-inequality”

if λi �= λj ,
∂2g

∂λ2
i

− ∂2g
∂λi∂λj

≥ 0 if λi = λj .

(iii) ∂g
∂λi

+ ∂g
∂λj

≥ 0 for every i �= j .

Hence, if the function F �→W(F) is convex in F ∈GL+(n), then the OF-inequalities hold true. However,
the convexity of F �→W(F) is physically not acceptable, since it precludes buckling.



160 P. Neff et al.

The physical meaning of the OF-inequalities is the following: if a block of isotropic ma-
terial is supposed to be in equilibrium subject to pairs of equal and oppositely directed
normal forces acting upon its faces, then the greater stretch will occur in the direction of
the greater force. The OF-inequalities are therefore similar to the BE-inequalities, only
that principal forces instead of principal stresses are concerned [253, page 158]. We ob-
serve that

RTBiot(U)RT = τ(V )V −1 = Jσ(V )V −1, (2.6)

where F = RU = V R, FRT = V, V T = RFT = V . Hence, the Biot stress tensor
TBiot is symmetric [253, page 144] and represents “the principal forces acting in the
reference system”. Therefore, we may also denote the OF-inequalities as Biot stress-
order-condition (BS-OC). Using nearly incompressible materials like rubber, Ball [14]
has described a reasonable situation for which the BE-inequalities are valid, while the
OF-condition is violated. This fact was previously proved by Sidoroff [225, page 380].

• Convexity type conditions. The convexity of W as function of F means D2
F W(F).

(H,H) > 0, for all H �= 0, and implies the monotonicity of the Piola-Kirchhoff stress

〈

S1(F +H)− S1(H),H
〉

> 0, ∀H �= 0. (2.7)

This condition yields unqualified uniqueness of boundary value problems, it excludes
therefore buckling and is unphysical [107]. For diagonal deformation gradients, the above
convexity condition implies the monotonicity of the Biot stress tensor as a function of
stretch (BSS-M+).

• GCN-inequality (Generalized-Coleman-Noll-inequality) [140, page 18]: The GCN-
inequality requires that if Λ �= 1 is a positive-definite symmetric matrix (a pure stretch),
then the first Piola-Kirchhoff stress S1(F ) satisfies

〈

S1(ΛF)− S1(F ),ΛF − F
〉

> 0. (2.8)

For homogeneous isotropic hyperelastic materials, the GCN-inequality implies strict con-
vexity of g(λ1, λ2, λ3) in all variables, implying convexity of the strain energy in U [14,
140], which is known to be unreasonable [107, 108]. Moreover, the GCN-inequality im-
plies the OF-condition which according to Sidoroff [225, page 380] is inadmissible for
compressible materials. In order to circumvent the problems of the GCN-inequality, Sido-
roff [225] proposed the condition

W(F)= ĝ(logλ1, logλ2, logλ3), where ĝ should be strictly convex. (2.9)

This is nothing else than Hill’s condition, i.e., our KSTS-M+.
• E-TSS-inequalities (“empirical”-inequalities): using the general representation of the

Cauchy stress tensor for isotropic materials

σ = σ(B)= β01+ β1B + β−1B
−1, (2.10)

where β0, β1, β−1 are functions depending on the principal invariants of B , I1(B)= tr(B),
I2(B)= tr(CofB), I3(B)= detB , the E-TSS-inequalities require

E-TSS: β0 ≤ 0, β1 > 0, β−1 ≤ 0, (2.11)



The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity161

while the strengthened E+-TSS-inequalities require

E+-TSS: β0 ≤ 0, β1 > 0, β−1 < 0. (2.12)

Some experimental data seem to support these inequalities in certain bounded deforma-
tion ranges [21, 22]. However, no theoretical motivation has been found for the empiri-
cal inequalities [26]. The connection of the E-TSS-inequalities with the Poynting effect
is discussed in [154]. Batra [22] (see also [21]) proved that the E-TSS-inequalities are
sufficient conditions for the simple extension to correspond to simple tension. Batra’s re-
sult has been improved later by Marzano [143], who proved that the BE-inequalities are
necessary and sufficient to have the equivalence between simple extension and simple
tension. The BE-inequalities are weaker than the E-TSS-inequalities, because for β0 ≤ 0
the BE-inequalities imply [143] only that

β1 > 0. (2.13)

Assuming that β−1 < 0, Johnson and Hoger [122] have shown that one may uniquely
write

B =ψ01+ψ1σ +ψ2σ
2, (2.14)

where ψi = ψi(β0(I1(B), I2(B), I3(B)),β1(I1(B), I2(B), I3(B)),β−1(I1(B), I2(B),

I3(B)), i = 0,1,2. This means that E+-TSS implies invertibility of the Cauchy stress-
stretch relation if β0, β1, β−1 do not depend on B .

Nothing can be said about the validity of the third inequality from (2.12), beyond their
logical relation to the BE and OF inequalities, which may be abbreviated as follows [255]:

E-TSS ⇒ BE and OF.

While the OF and BE inequalities are equivalent in the linearized theory, in general
[254, 255]

OF � BE and BE � OF.

Hence, the empirical inequalities imply the OF-inequality. Since the OF-condition is not
a valid assumption in general (see above), the E-TSS-inequalities in general cannot be a
valid assumption either. Rivlin [201] pointed out that the OF-conditions do not, in general,
provide an appropriate restriction on the strain-energy function for an isotropic elastic
material. Hence, OF is in general an independent statement and Rivlin [201] proved that
it is unacceptable.

• E-BSS-inequalities: in view of the general representation of the Biot stress tensor for
isotropic materials

TBiot = β01+ β1U + β−1U
−1, (2.15)

the E-BSS-inequalities require

β0 ≤ 0, β1 > 0, β−1 ≤ 0, (2.16)

while the E+-BSS-inequalities require

β0 ≤ 0, β1 > 0, β−1 < 0. (2.17)
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• IFS (invertible-force-stretch relation): the invertibility of the map (λ1, λ2, λ3) �→
Ti(λ1, λ2, λ3), where Ti are the principal forces [131, 254, 255]. We remark that if the
GCN-inequality holds, then g(λ1, λ2, λ2) is strictly convex and IFS follows. IFS expresses
the invertibility of the Biot stress tensor TBiot(U) [202], since, up to a superposed rotation,
the Biot stress tensor defines the principal forces acting in the reference system [253, page
144] (see also [254]), see (2.6). Rivlin contested this condition since for Neo-Hookean
incompressible materials different triples of (λ1, λ2, λ3) may correspond to the same TBiot

stress tensor [202].
• PC-inequality (pressure-compression-inequality): the condition that the volume of a com-

pressible isotropic material should be decreased by uniform pressure but increased by
uniform tension is expressed by requiring the hydrostatic tension σ = σ1 = σ2 = σ3 to be
a strictly increasing function of the stretch λ= λ1 = λ2 = λ3, i.e., ∂σ

∂λ
≥ 0.

• TSTS-M+ (Jog and Patil’s true-stress-true-strain monotonicity [121]): the monotonicity
of the Cauchy stress tensor as a function of logB or logV (see Remark 4.1), i.e.,

〈

σ(logB1)− σ(logB2), logB1 − logB2
〉

> 0, ∀B1,B2 ∈ PSym+(3),B1 �= B2. (2.18)

• TSTS-I (true-stress-true-strain-invertibility): the map logB �→ σ(logB) is invertible (see
Sects. 3 and 4).

• TSS-M+ (true-stress-stretch-monotonicity): the monotonicity of the Cauchy stress tensor
as a function of B or V , i.e.,

〈

σ(B1)− σ(B2),B1 −B2

〉

> 0, ∀B1,B2 ∈ PSym+(3),B1 �= B2. (2.19)

• TSS-I (true-stress-stretch-invertibility): the map B �→ σ(B) is invertible [45]. Since log :
PSym(n)→ Sym(n) is invertible, TSTS-I and TSS-I are clearly equivalent. However, in
order to be more precise we keep both definitions. Truesdell and Moon relate TSS-I with
“semi-invertibility” [252]. There, they also implicitly show that the E-TSS-inequalities are
not in general sufficient for TSS-I. Johnson and Hoger [122] have shown that E+-TSS-
inequalities together with constant coefficients are sufficient for TSS-I (see also [64]).
Taking a compressible Neo-Hooke model in the form

W iso
NH (F )= μ

2

〈

B

detB1/3
− 1,1

〉

+ κh(detF), (2.20)

which additively separates the isochoric and volumetric contributions it can be shown
[91] that B �→ σ(B) is invertible. Here h : R+ → R must be a strictly convex function
satisfying limJ→0 h′(J ) = −∞ and limJ→∞ h′(J ) = ∞. For instance, suitable convex
functions are h : R+ → R, h(t) = elog2 t and h(t) = t2 − 2log t . Therefore, TSS-I merits
further investigation (see the discussion of IFS).

• KSTS-M+ (Hill’s Kirchhoff-stress-true-strain-monotonicity [107]): the monotonicity of
the Kirchhoff stress tensor as a function of logV , i.e.,

〈

τ(logV1)− τ(logV2), logV1 − logV2

〉

> 0, ∀V1,V2 ∈ PSym+(3),V1 �= V2. (2.21)

In [179] Ogden has proved that the later called Odgen’s energy does not satisfy the KSTS-
M+ inequality, but it may satisfy KSTS-M+ under some restrictions on deformations
confirmed by experiments.

• KSTS-I (Kirchhoff stress-true-strain-invertibility): the map logV �→ τ(logV ) is invert-
ible.
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• KSS-M+ (Kirchhoff stress-stretch monotonicity): the monotonicity of the Kirchhoff
stress tensor as a function of V , i.e.,

〈

τ(V1)− τ(V2),V1 − V2

〉

> 0, ∀V1,V2 ∈ PSym+(3),V1 �= V2. (2.22)

• KSS-I (Kirchhoff stress-stretch-invertibility): the map V �→ τ(V ) is invertible.
• BSTS-M+ (Biot stress-true strain monotonicity): the monotonicity of the Biot stress ten-

sor TBiot(U)=RT S1(F ) as a function of logB , i.e.,

〈

TBiot(logU1)− TBiot(logU2), logU1 − logU2

〉

> 0, ∀U1,U2 ∈ PSym+(3),U1 �=U2.

(2.23)

• BSTS-I (Biot stress-true strain-invertibility): the map logU �→ TBiot(logU) is invertible.
• BSS-M+ (Biot stress-stretch-monotonicity): the monotonicity of the Biot stress tensor

[131] TBiot(U)=RT S1(U) as a function of U , i.e.,

〈

TBiot(U1)− TBiot(U2),U1 −U2

〉

> 0, ∀U1,U2 ∈ PSym+(3),U1 �=U2. (2.24)

Krawietz [131] has shown that BSS-M+ implies the generalized Colleman-Noll (GCN)
inequality. The GCN-inequality in turn is known to be not acceptable from physical
grounds [15]. Therefore BSS-M+ is not an admissible requirement in general. However,
Ogden [182, page 361] remarks that “there is a good physical reason for supposing that
the inequality [(2.24)] holds for real elastic materials, at least for some bounded domain
which encloses the stress free origin U = 1”.

• BSS-I (Biot stress-stretch-invertibility): the map U �→ TBiot(U) is invertible. In [181],
Ogden suggested that TBiot should be invertible in the domain of elastic response. How-
ever, BSS-I is in fact equivalent to Truesdell’s notion IFS and to BSTS-I. This seems to
have been overlooked in the literature [181, 182, 201]. In a forthcoming paper we will
show that BSS-I excludes bifurcations in Rivlin’s cube problem which is not necessarily
a problematic feature.

In the following XSTS-M+, XSTS-I, XSS-M+, XSS-I, E-XSS, E+-XSS have the ob-
vious meaning once the stress tensor X is defined. It is easy to see that BE and TE are
necessary for rank-one convexity (see Theorem 5.1), i.e.,

LH-ellipticity ⇒ BE and TE.

Moreover, because the constitutive inequalities are indifferent to superposed rotations,
we have

BSTS-M+ ⇒ BSTS-I ⇔ BSS-I ⇔ IFS.

In Fig. 7, we give a diagram showing the relation between some of the introduced con-
stitutive requirements.

The KSTS-M+ condition does not exclude loss of rank-one convexity (consider, e.g., the
quadratic Hencky energy) but it is also in principle not in conflict with rank-one convexity.
In order to prove this fact we consider a special Ciarlet-Geymonat energy (linear Poisson’s
ratio ν = 0)

Wν=0
CG (F )= μ

2

[‖F‖2 − 2 log(detF)− 3
]

. (2.25)
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Fig. 7 Relations between some constitutive requirements in idealized isotropic compressible nonlinear elas-
ticity. Whether TSTS-M+ implies KSTS-M+ is not clear

This uni-constant compressible Neo-Hooke energy was considered in [134] and it has been
speculated that it has some advantageous properties [92, 134]. The energy Wν=0

CG is LH-
elliptic (it is even polyconvex). In the following we show that the energy Wν=0

CG satisfies the
KSTS-M+ condition. First of all let us remark that

Wν=0
CG (F )= μ

2

[∥

∥elogU
∥

∥

2 − 2 tr(logU)− 3
]= μ

2

[∥

∥eS
∥

∥

2 − 2 tr(S)− 3
]

,

where S = logU ∈ Sym(3),

and further

Wν=0
CG (F )= g1(μ1,μ2,μ3)= μ

2

[

e2μ1 + e2μ2 + e2μ3 − 2(μ1 +μ2 +μ3)− 3
]

, (2.26)

where μ1,μ2,μ3 are the eigenvalues of S = logU . The function g1 being convex and non-
decreasing in each variable μi , using the Davis-Lewis theorem [35, 59, 135–137] we have
that Wν=0

CG is convex in S = logU . Thus, the energy Wν=0
CG satisfies the KSTS-M+ condition

everywhere. Moreover, the BSS-M+ condition is also satisfied, since

Wν=0
CG (F )= μ

2

[‖U‖2 − 2 log(detU)− 3
]

(2.27)
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is convex22 in U [134]. On the other hand, the Mooney-Rivlin variant of the energy
Wν=0

CG (F ),

WCGMR(F )= α1‖F‖2 + α2‖CofF‖2 − log(detF)+ e(log detF)2 − 3α1 − 3α2 − 1 (2.28)

is not convex considered as a function of logU . We give the following conjecture:

Conjecture 2.2 The energy WeH does not satisfy the E+-TSS-inequalities.

However, we will show in this paper that:

Remark 2.3 The energy WeH satisfies the TSS-I condition (see Sect. 3).

2.3 Baker-Ericksen Inequalities and Schur Convexity

The BE-inequalities related to the function g can be reformulated in terms of Schur-
convexity. The connection between Schur-convexity and the Baker-Ericksen inequalities has
been clearly pointed out by Šilhavý in [226, page 310] and in full explicitness in [231, pages
421, 429]. For our purpose here and in order to see the relation between Schur-convexity
and BE-inequalities it is sufficient to know the following characterizations of Schur-convex
functions (further information on Schur-convexity can be found in [141]):

Proposition 2.4 ([141, page 84]) Let I be an open interval in R and let � : I n → R be
continuously differentiable. Then � is Schur convex if and only if � is symmetric and (xi −
xj )(

∂�
∂xi
− ∂�

∂xj
)≥ 0 for all i �= j .

Proposition 2.5 ([141, page 97]) Let I be an open interval in R and let � : I n → R. If the
function � is symmetric and convex in each pair of arguments, the other arguments being
fixed, then � is Schur-convex.

This notion relates to the BE-inequalities as follows:

Proposition 2.6 ([42, Remark 5.1]) Schur-convexity of the function

� :R3
+ →R, �(x, y, z)= g

(

ex, ey, ez
)

(2.29)

is equivalent to the fulfillment of the Baker-Ericksen inequalities in terms of the function g.

This characterization makes the following theorem quickly conceivable.

Theorem 2.7 Convex isotropic functions of logU always satisfy the BE-inequalities.

Proof Convex (isotropic) functions of logU lead to

g(λ1, λ2, λ3)= �(logλ1, logλ2, logλ3), (2.30)

22Similarly, as shown in [134] the energy C �→ μ
4 [‖C‖2 − 2 log(detC) − 3] is convex in C and indeed

polyconvex. The convexity in C has been used by Fung [85] to invert the second Piola-Kirchhoff stress tensor
S2 = 2DC [W(C)].
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where � is a convex function. To see this, we apply Proposition 2.6: An energy function
given by g satisfies BE if and only if the function � : R3+ → R, �(x, y, z)= g(ex, ey, ez) is
Schur-convex, hence it is sufficient to show that � is convex in each pair of arguments and
symmetric. Convexity follows from

g
(

ex, ey, ez
)= �

(

log ex, log ey, log ez
)= �(x, y, z)

and convexity of �, while the symmetry is obtained from the isotropy of W . From the Schur-
convexity of � it follows that the functions g satisfies the Baker-Ericksen-inequalities. �

Remark 2.8 (Optimality of logarithmic strain and Baker-Ericksen inequalities) Theorem 2.7
shows that (Schur-)convex dependence on the logarithmic strain tensor somehow is the ideal
form for BE. Isotropic functions W of logU satisfy the BE-inequalities if and only if � from
(2.29) is Schur-convex.

In the following remark we gather a few simple convexity properties, some of which can be
derived with the results of this section:

Remark 2.9

(i) e‖devn logU‖2
, e‖ logU‖2

, ‖devn logU‖2, ‖ logU‖2 are all convex functions of logU , i.e.,
satisfy Hill’s inequality (KSTS-M).

(ii) e‖ logU‖2
satisfies BE, because ‖ · ‖2 is convex and hence so is e‖·‖2

.
(iii) e‖devn logU‖2

satisfies the Baker-Ericksen inequalities in any dimension because
‖devn ·‖2 is convex and t �→ et is monotone increasing and convex.

(iv) e‖devn logU‖2
, e‖ logU‖2

are SC (separately convex) in λi, i = 1,2,3 (direct calculations)
but not convex in (λ1, λ2, λ3). Therefore, e‖devn logU‖2

, e‖ logU‖2
is not convex in U and

the energy terms do not satisfy BSS-M+.
(v) ‖devn logU‖2, ‖ logU‖2 are not SC (separately convex) [226] in λi, i = 1,2,3 (they

do not satisfy the TE-inequalities) and therefore are not rank-one convex [39, 165].
(vi) Wν=0

Becker(U) = 2μ〈U, logU − 1〉 (the maximum entropy function) [176] does not sat-
isfy the BE-inequalities but satisfies the TE-inequalities. The formulation of Becker
[27] is hyperelastic for Poisson’s ratio ν = 0 (exclusively), which is the case for the
modelling of cork. Moreover, since T Becker

Biot (U)=DUWν=0
Becker(U)= 2μ logU and since

log is monotone, it follows 〈T Becker
Biot (U1)−T Becker

Biot (U2),U1−U2〉> 0 which is BSS-M+
for ν = 0. Hence, it is clear that IFS (BSS-I) hold. Moreover, T Becker

Biot satisfies BSS-I for
arbitrary −1 < ν ≤ 1

2 .

3 The Invertible True-Stress-True-Strain Relation

We consider the exponentiated Hencky energy

WeH(logV ) := μ

k
ek‖dev3 logV ‖2 + κ

2̂k
e
̂k[tr(logV )]2 . (3.1)

Here, we first show that the corresponding true-stress-true-strain relation

σeH : Sym(3)→ Sym(3), σeH = σeH(logV )



The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity167

is invertible for the exponentiated energy WeH. Then we prove that a pure planar Cauchy
shear stress σ produces a biaxial shear strain for general Hencky type energies. The invert-
ibility of the true-stress-true-strain relation, i.e., of the map logV �→ σ(logV ), is denoted
by TSTS-I as introduced previously. In the older literature, the requirement of an invertible
stress-strain relation is tacitly assumed to always hold generally, even for nonlinear materials
response [196].

The Kirchhoff stress tensor corresponding to (3.1) is given [182] by

DlogV WeH(logV )= τeH = (detF) · σeH = elog detV · σeH = etr(logV ) · σeH, (3.2)

where σeH is the Cauchy stress tensor. Hence, the Kirchhoff stress τeH has the expression

τeH = 2μek‖dev3 logV ‖2 · dev3 logV + κe
̂k[tr(logV )]2 tr(logV ) · 1, (3.3)

while the Cauchy stress tensor is

σeH = e− tr(logV ) · τeH = 2μek‖dev3 logV ‖2−tr(logV ) · dev3 logV

+ κe
̂k[tr(logV )]2−tr(logV ) tr(logV ) · 1. (3.4)

Moreover, by orthogonal projection onto the Lie-algebra sl(3) and R · 1, respectively, we
find

dev3 σeH = 2μek‖dev3 logV ‖2−tr(logV ) · dev3 logV,

tr(σeH)= 3κe
̂k[tr(logV )]2−tr(logV ) tr(logV ).

(3.5)

Let us use the notation x := tr(logV ). In this notation, from (3.5), we have

tr(σeH)

3κ
= e

̂kx2−xx. (3.6)

The function x �→ e
̂kx2−xx, x ∈R, is strictly monotone if̂k > 1

8 . Thus, in this case, Eq. (3.6)
has a unique solution x = tr(logV ) as a function of tr(σeH). We substitute the solution x of
Eq. (3.6) in Eq. (3.5)1, to obtain

ex · dev3 σeH

μ
= 2ek‖dev3 logV ‖2 · dev3 logV, (3.7)

and further

k
ex · dev3 σeH

μ
=Ddev3 logV ek‖dev3 logV ‖2

. (3.8)

Using the substitution Y = dev3 logV we have

k
ex · dev3 σeH

μ
=DY ek‖Y‖2

. (3.9)

Because Y �→ ek‖Y‖2
, Y ∈ Sym(3) is uniformly convex with respect to Y , it follows that

D2
Y ek‖Y‖2

(H,H) > 0, for all Y ∈ Sym(3), and for all H ∈ Sym(3). Hence, the function Y �→
DY e‖Y‖2

is a strictly monotone tensor function. Therefore, Eq. (3.9) has a unique solution
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Y = dev3 logV as a function of dev3 σeH and x = tr(logV ). Hence, given the Cauchy stress
σeH, we can always uniquely find tr(logV ) and dev3 logV , i.e., logV , such that (3.4) is
satisfied. Therefore TSTS-I is true in the three-dimensional case. Simple changes of the
computations show that TSTS-I is also true in the two-dimensional case.

Whether well known elastic strain energies like compressible Neo-Hooke, Mooney-
Rivlin or Ogden type energies [48] give rise to an overall invertible Cauchy-stress-stretch
relation σ = σ(B) is not clear. This is connected to possible homogeneous bifurcations, e.g.,
in a hydrostatic loading problem [47, 125].

Let us consider, in the following, three particular cases for our energy WeH : pure Cauchy
shear stress, uniaxial tension and simple shear.

3.1 Pure Cauchy Shear Stress

In this subsection we consider the case of pure Cauchy shear stress, i.e.,

σeH =
⎛

⎝

0 s 0
s 0 0
0 0 0

⎞

⎠ , 0= tr(σeH)= tr(τeH). (3.10)

We aim to find the corresponding form of the stretch tensor V . From (3.3), by considering the
trace on both sides, it follows that in the case of pure shear stress, we must have tr(logV )=
0 ⇔ detV = 1. We need to remark that the conclusion that pure Cauchy shear stresses
lead to an incompressible response is not verified, e.g., for Neo-Hooke, Mooney-Rivlin or
Ogden-type materials. In our case, however, it remains to solve

2μek‖dev3 logV ‖2
dev3 logV =

⎛

⎝

0 s 0
s 0 0
0 0 0

⎞

⎠

⇔ 2μek‖ logV ‖2
logV =

⎛

⎝

0 s 0
s 0 0
0 0 0

⎞

⎠ . (3.11)

Inspired by Vallée’s result in [256], a solution of Eq. (3.11) can be found in the form of pure
biaxial stretch23

V =
⎛

⎝

cosh γ

2 sinh γ

2 0
sinh γ

2 cosh γ

2 0
0 0 1

⎞

⎠ . (3.12)

Corresponding to this ansatz for V , we have

logV =
⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠ , detV = 1, (3.13)

and Eq. (3.11) becomes

σeH =
⎛

⎝

0 s 0
s 0 0
0 0 0

⎞

⎠= 2μek
γ 2

2

⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠ . (3.14)

23This is suggested by the formula presented in [29, page 736]: eα·̂A = ( coshα sinhα

sinhα coshα

)

for ̂A= ( 0 α

α 0

)

.
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For all s ∈R we always have a solution γ = γ (s) of the above equation, because γ �→ ek
γ 2

2
γ

2
is monotone increasing. Thus, we recover completely the classical statement that in linear
elasticity, pure shear stresses (3.10) produces pure biaxial shear strains (3.18), i.e.,

σ = 2με = 2μ

⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠

︸ ︷︷ ︸

“pure infinitesimal shear stress”

⇔ ε =
⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠

︸ ︷︷ ︸

“pure infinitesimal shear strain”

, tr(ε)= 0
︸ ︷︷ ︸

“linearized incompressibility”

, (3.15)

where ε = sym∇u. For the finite strain case, this equivalence seems to be true only for
Hencky type energies [256].

3.2 Uniaxial Cauchy Tension

Next we consider the case of uniaxial tension

σeH =
⎛

⎝

s 0 0
0 0 0
0 0 0

⎞

⎠ . (3.16)

From (3.4), by projection on the Lie-algebras sl(n) and R · 1, we have

2μek‖dev3 logV ‖2−tr(logV ) dev3 logV = dev3 σeH =
⎛

⎝

2
3 s 0 0
0 − 1

3 s 0
0 0 − 1

3 s

⎞

⎠ ,

3κe
̂k[tr(logV )]2−tr(logV ) tr(logV )= tr(σeH)= s.

(3.17)

This means that a suitable ansatz for V is similar to that considered by Vallée [256]

V =
⎛

⎜

⎝

ea+ 1
3 x 0 0

0 e−
1
2 a+ 1

3 x 0

0 0 e−
1
2 a+ 1

3 x

⎞

⎟

⎠= e
1
3 x

⎛

⎜

⎝

ea 0 0

0 e−
1
2 a 0

0 0 e−
1
2 a

⎞

⎟

⎠ . (3.18)

It is easy to compute that, corresponding to this ansatz for V , we have

detV = ex, logV =
⎛

⎝

a + 1
3 x 0 0

0 − 1
2a + 1

3 x 0
0 0 − 1

2a + 1
3 x

⎞

⎠ ,

tr(logV )= x, dev3 logV =
⎛

⎝

a 0 0
0 − 1

2a 0
0 0 − 1

2a

⎞

⎠ ,

‖dev3 logV ‖2 = 3

2
a2

(3.19)
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and Eq. (3.17) becomes

3μek 3
2 a2−xa = s, 3κe

̂kx2−xx = s. (3.20)

In terms of Poisson’s ratio ν∈ (−1, 1
2 ) and Young’s modulus E > 0, we have

ek 3
2 a2−x 3

2
a = 1+ ν

E
s, e

̂kx2−xx = 1− 2ν

E
s. (3.21)

For all s ∈ R we always have a solution x = x(s) of the second equation and the function
s �→ x(s) is monotone strictly increasing if κ > 0 and sgn[x(s)] = sgn[s]. Having x(s) from
(3.21)2, we then find the unique solution a(s) of (3.21)1. Moreover, for μ > 0 the function
s �→ a(s) is also monotone strictly increasing and sgn[a(s)] = sgn[s].

Therefore, the ansatz

logV =
⎛

⎝

a + 1
3x 0 0

0 − 1
2a + 1

3x 0
0 0 − 1

2a + 1
3x

⎞

⎠ (3.22)

corresponds to

σeH =
⎛

⎝

s 0 0
0 0 0
0 0 0

⎞

⎠= 3

2
ek 3

2 a2−x E

1+ ν

⎛

⎝

a 0 0
0 0 0
0 0 0

⎞

⎠ . (3.23)

In the limit case ν = 1
2 (linear incompressibility), we observe that (3.21)2 implies x = 0.

Therefore

logV |ν= 1
2
=

⎛

⎝

γ 0 0
0 − 1

2γ 0
0 0 − 1

2 γ

⎞

⎠ , detV |ν= 1
2
= 1

︸ ︷︷ ︸

ν= 1
2 : exact incompressibility

, ek 3
2 γ 2

γ = 1

E
s (3.24)

and this corresponds to

σeH|ν= 1
2
=

⎛

⎝

s 0 0
0 0 0
0 0 0

⎞

⎠=Eek 3
2 γ 2

⎛

⎝

γ 0 0
0 0 0
0 0 0

⎞

⎠ . (3.25)

On the other hand, σeH = 0 (s = 0) is equivalent with logV = 0 (x = 0, a = 0).
In the case ν = 0, the nonlinear system (3.21) becomes

ek 3
2 a2−x 3

2
a = 1

E
s, e

̂kx2−xx = 1

E
s, (3.26)

which implies ek 3
2 a2

a = e
̂kx2 2

3 x. Using the substitution x = 3
2 y, we have ek 3

2 a2
a = e

̂k 9
4 y2

y.
We choose the dimensionless material parameters k,̂k such that 3̂k = 2k and we further
deduce that x = 3

2a. Thus, with the substitution γ = 3
2a, we deduce

logV |ν=0 =
⎛

⎝

γ 0 0
0 0 0
0 0 0

⎞

⎠ , ek 2
3 γ 2−γ γ = 1

E
s, (3.27)
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which corresponds to

σeH|ν=0 =
⎛

⎝

s 0 0
0 0 0
0 0 0

⎞

⎠=Eek 2
3 γ 2−γ

⎛

⎝

γ 0 0
0 0 0
0 0 0

⎞

⎠ . (3.28)

Moreover, if there is no lateral contraction in uniaxial tension in the case ν = 0, then from
(3.18) we deduce that we must have x = 3

2a. On the other hand, for ν = 0, if x = 3
2 a, then

using (3.26) we obtain that 3̂k = 2k must hold necessarily.
Thus, we have shown that uniaxial tension produces extension/contraction, as in linear

elasticity, since for linear elasticity, using the inverted law ε = 1+ν
E

σ − ν
E

tr(σ ) · 1, we have

σ = 2με+ λ tr(ε) · 1=E

⎛

⎝

γ 0 0
0 0 0
0 0 0

⎞

⎠

︸ ︷︷ ︸

“uniaxial tension”

⇔ ε =
⎛

⎝

γ 0 0
0 −νγ 0
0 0 −νγ

⎞

⎠

︸ ︷︷ ︸

“extension/lateral contraction”

, (3.29)

where ε = sym∇u. In the limit case ν = 1
2 , we have tr(ε) = 0, while for ν = 0 there is no

lateral contraction in uniaxial tension as in (3.28). In linear elasticity, the Poisson’s ratio is
defined by ν =− ε22

ε11
[193], where the transverse strain ε22 and the longitudinal strain ε11 are

computed in uniaxial extension.

Remark 3.1 (WeH with no lateral contraction for ν = 0) The above formula (3.28) is true
if and only if the distortional stiffening parameter k and the volumetric strain stiffening
parameter ̂k are such that 3̂k = 2k. In this case ν = 0 implies no lateral contraction for the
exponentiated Hencky energy (3 parameter energy: ν,E, k)

W
�
eH(logV ) := μ

k
ek‖dev3 logV ‖2 + 3κ

4k
e

2
3 k(tr(logV ))2

= 1

2k

{

E

1+ ν
ek‖dev3 logV ‖2 + E

2(1− 2ν)
e

2
3 k[tr(logV )]2

}

.

3.3 On the Nonlinear Poisson’s Ratio

We define the nonlinear Poisson’s ratio as negative ratio of the lateral contraction and axial
extension measured in the logarithmic strain, i.e., according to (3.19)

ν̂(s)=− (logV )22

(logV )11
=

1
2a − 1

3x

a + 1
3 x

. (3.30)

The nonlinear Poisson’s ratio [193] is a purely kinematical quantity which can be measured
in the simple tension test. In [84, page 75] it is defined as ν̂(s)=− λ2−1

λ1−1 . The (linear) Pois-

son’s ratio24 ν = − ε22
ε11

[193] for many materials is positive and not strain sensitive until

24In terms of the Young’s modulus and the shear modulus ν is given by ν = E
2μ

− 1, while in terms of the

Young’s modulus and the bulk modulus κ it is given by ν = 1
2 − E

6κ
.
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nonelastic effects intervene [124, 239]. In view of our definition, we have

a

(

1

2
− ν̂

)

= x

3
(1+ ν̂). (3.31)

Since sgn[a(s)] = sgn[s] = sgn[x(s)] we deduce that ν̂ ∈ (− 1
2 ,1), which is in concordance

with the definition from linear elasticity. From (3.31) we have a = 2
3

1+ν̂
1−2̂ν

x. Moreover, the
system (3.21) becomes

e
k 2

3 ( 1+ν̂
1−2̂ν

)2x2−x

x = 1− 2̂ν

1+ ν̂

1+ ν

E
s, e

̂kx2−xx = 1− 2ν

E
s. (3.32)

This system is also equivalent to

[

k
2

3

(

1+ ν̂

1− 2̂ν

)2

−̂k

]

x2 = log

(

1− 2̂ν

1+ ν̂

1+ ν

1− 2ν

)

, e
̂kx2−xx = 1− 2ν

E
s. (3.33)

In the following we consider the case of the three parameter energy W
�
eH, i.e., the case

k 2
3 =̂k. In this case we obtain the system

ν̂(2− ν̂)

(1− 2̂ν)2
x2 = 1

2k
log

(

1− 2̂ν

1+ ν̂

1+ ν

1− 2ν

)

, e
̂kx2−xx = 1− 2ν

E
s. (3.34)

From the above equations we deduce that

ν̂ > 0 ⇔ 1+ ν

1− 2ν
>

1+ ν̂

1− 2̂ν
⇔ ν > ν̂.

Hence, ν̂ > 0 implies ν > 0. On the other hand, if we assume that there is ν > 0 such that
ν̂ < 0, then we obtain

1+ ν

1− 2ν
<

1+ ν̂

1− 2̂ν
. (3.35)

But ν > 0 implies 1+ν
1−2ν

> 1, while ν̂ < 0 implies 1+ν̂
1−2̂ν

< 1. This is in clear contradiction
with (3.35). Therefore ν̂ > 0 ⇔ ν > 0. If ν̂ = 0, then from (3.34) it results that we have
to have ν = 0 and x is determined only by e

̂kx2−xx = s
E

(see the discussion from Sect. 3.2
about the particular case ν = 0).

If ν̂ �= 0, then, since ν̂ ∈ (− 1
2 ,1), we deduce that ν̂ is given as solution of the following

equation if s > 0:

√

√

√

√

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

̂k
(

1+ν̂
1−2̂ν

)2 −̂k
e

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

(

1+ν̂
1−2̂ν

)2
−1

−
√

√

√

√

√

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

̂k

(

1+ν̂
1−2̂ν

)2
−̂k = (1− 2ν)

s

E
, (3.36)

while for s < 0, ν̂ is solution of the equation:

√

√

√

√

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

̂k
(

1+ν̂
1−2̂ν

)2 −̂k
e

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

(

1+ν̂
1−2̂ν

)2
−1

+
√

√

√

√

√

log
(

1−2̂ν
1+ν̂

1+ν
1−2ν

)

̂k

(

1+ν̂
1−2̂ν

)2
−̂k =−(1− 2ν)

s

E
, (3.37)
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Fig. 8 The nonlinear Poisson’s ratio ν̂ for ̂k = 1
6 and for the following values of the (linear) Poisson’s ratio:

ν = 0, ν = 1
3 and ν = 1

2 . For ν = 0 and ν = 1
2 the nonlinear Poisson’s ratio is equal to the (linear) Poisson’s

ratio, while for ν ∈ (

0, 1
2

)

the nonlinear Poisson ratio ν̂
(

s
E

)=− (logV )22
(logV )11

approximates the (linear) Poisson’s

ratio only in a small neighborhood of s
E
= 0. The graphic of the map s

E
�→ ν̂

(

s
E

)

is tangent to the line
ν̂(0)= ν, decreases and it is smaller than ν for non-infinitesimal values of the load parameter s. Moreover,
the nonlinear Poisson’s ratio ν̂ remains positive whenever ν = ν̂(0) is positive and ν̂ ∈ (−1, 1

2

)

Fig. 9 The variation of the nonlinear Poisson’s ratio ν̂ for ̂k = 1
6 and negative (linear) Poisson ratio (e.g.,

auxetic materials). For ν =−1 the nonlinear Poisson’s ratio is equal to the (linear) Poisson’s ratio, while for
ν ∈ (−1,0) the nonlinear Poisson’s ratio approximates the (linear) Poisson’s ratio only in a small neighbor-
hood of s

E
= 0. For negative (linear) Poisson’s ratio the map s

E
�→ ν̂

(

s
E

)

is tangent to the line ν̂(0) = ν,
increases and it is bigger than ν for non-infinitesimal values of the load parameter s. Moreover, the nonlinear
Poisson’s ratio ν̂ remains negative whenever ν = ν̂(0) is negative

with x given by the independent equation e
̂kx2−xx = (1− 2ν) s

E
. In Figs. 8 and 9 we give the

representation of the nonlinear Poisson’s ratio ν̂ as function of s
E

, corresponding to different
values of the (linear) Poisson’s ratio. We also represent (see Fig. 10) the influence of the
parameter ̂k on the nonlinear Poisson’s ratio ν̂.

We notice three particular cases. If ν =−1, then it follows from (3.21)1 that a = 0 and
further from (3.30) that ν̂ =−1. If ν = 1

2 , then (3.21)2 leads to x = 0, while (3.30) implies
ν̂ = 1

2 . Moreover, if ν = 0, then (3.21) shows x = 3
2 a. Therefore, from (3.30) we obtain

ν̂ = 0.
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Fig. 10 Influence of the
parameter ̂k on the nonlinear
Poisson’s ratio ν̂. For ̂k < 1

8 the
map s

E
�→ ν̂

(

s
E

)

is not

well-defined. For k ≥ 1
8 the map

s
E
�→ ν̂

(

s
E

)

is bijective

3.4 Cauchy Stress in Simple Shear for WH and WeH

Consider a simple glide deformation of the form

F =
⎛

⎝

1 γ 0
0 1 0
0 0 1

⎞

⎠ (3.38)

with γ > 0. Then the polar decomposition of F = R ·U = V ·R into the right Biot stretch
tensor U =√FT F of the deformation and the orthogonal polar factor R is given by

U = 1
√

γ 2 + 4

⎛

⎝

2 γ 0
γ γ 2 + 2 0
0 0

√

γ 2 + 4

⎞

⎠ , R = 1
√

γ 2 + 4

⎛

⎝

2 γ 0
−γ 2 0
0 0

√

γ 2 + 4

⎞

⎠ . (3.39)

Further, U can be orthogonally diagonalized to

U =Q

⎛

⎝

1 0 0
0 1

2 (
√

γ 2 + 4+ γ ) 0
0 0 1

2 (
√

γ 2 + 4− γ )

⎞

⎠QT =Q

⎛

⎝

1 0 0
0 λ1 0
0 0 1

λ1

⎞

⎠QT , (3.40)

where

Q=
⎛

⎝

2 −2 0
√

γ 2 + 4+ γ
√

γ 2 + 4− γ 0
0 0 1

⎞

⎠ (3.41)

and λ1 = 1
2 (
√

γ 2 + 4+ γ ) denotes the first eigenvalue of U . Hence, the principal logarithm
of U is

logU =Q

⎛

⎝

1 0 0
0 logλ1 0
0 0 − logλ1

⎞

⎠QT = 1
√

γ 2 + 4

⎛

⎝

−γ logλ1 2 logλ1 0
2 logλ1 γ logλ1 0

0 0 0

⎞

⎠ , (3.42)
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while the principal logarithm of V is given by

logV =R · logU ·R−1 = 1
√

γ 2 + 4
R ·

⎛

⎝

−γ logλ1 2 logλ1 0
2 logλ1 γ logλ1 0

0 0 0

⎞

⎠ ·R−1

= 1

(γ 2 + 4)
√

γ 2 + 4

⎛

⎝

2 γ 0
−γ 2 0
0 0

√

γ 2 + 4

⎞

⎠ ·
⎛

⎝

−γ logλ1 2 logλ1 0
2 logλ1 γ logλ1 0

0 0 0

⎞

⎠

·
⎛

⎝

2 −γ 0
γ 2 0
0 0

√

γ 2 + 4

⎞

⎠

= 1
√

γ 2 + 4

⎛

⎝

0 logλ1 0
logλ1 0 0

0 0 0

⎞

⎠ ·
⎛

⎝

2 −γ 0
γ 2 0
0 0

√

γ 2 + 4

⎞

⎠

= logλ1
√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠ . (3.43)

3.4.1 Cauchy Stress in Simple Shear for WH

The Kirchhoff stress tensor τH corresponding to the Hencky energy WH is given by

τH(logV )= 2μdev3 logV + κ tr(logV ) · 1. (3.44)

Hence, in the case of simple shear, we have

τH = 2μ
logλ1

√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠ . (3.45)

Moreover, since detF = 1 and σ = 1
detF τ , we obtain

σH = 2μ
logλ1

√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠= 2μ
log[ 1

2 (
√

γ 2 + 4+ γ )]
√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠ . (3.46)

In particular, the simple shear stress [σH]12 corresponding to the amount of shear is given by

[σH]12 = 4μ
log

[

1
2 (
√

γ 2 + 4+ γ )
]

√

γ 2 + 4
= 2

E

1+ ν

log
[

1
2 (
√

γ 2 + 4+ γ )
]

√

γ 2 + 4
. (3.47)

The quadratic Hencky energy looses ellipticity in simple shear, see Sect. 5.3.

3.4.2 Cauchy Stress in Simple Shear for WeH

In view of (3.3), the Kirchhoff stress tensor τeH is given by

τeH(logV )= 2μek‖dev3 logV ‖2 · dev3 logV + κek̂[tr(logV )]2 tr(logV ) · 1. (3.48)
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Fig. 11 The shear stress σ12 corresponding to the amount of shear γ for the energies WeH,WH, the
Neo-Hooke energy WNH, the Mooney-Rivlin energy WMR and the infinitesimal case corresponding to rub-
ber: μ= E

2(1+ν)
= 0.39 M N/m2 (according to Treloar’s data [248]). For the exponentiated energy WeH we

have chosen 3
16 < k = 0.243. The squares (�) represent the experimental data for the simple shear defor-

mation of vulcanized rubber, measured in 1944 by L.R.G. Treloar [247] and in 1975 by L.R.G. Treloar and
D.F. Jones [123] (see also [248, 249]) and provided by courtesy of R. Ogden, in the form of tab-separated
ASCII-files (see [246])

Since for simple shear detF = 1 and tr(logV )= 0, we deduce

σeH(logV )= 2μe2k log2 λ1 · logλ1
√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠ (3.49)

= 2μe
2k log2

[

1
2

(√
γ 2+4+γ

)]

· log
[

1
2 (
√

γ 2 + 4+ γ )
]

√

γ 2 + 4

⎛

⎝

γ 2 0
2 −γ 0
0 0 0

⎞

⎠ . (3.50)

For the exponentiated energy WeH the simple shear stress [σeH]12 corresponding to the
amount of shear γ is given by

[σeH]12 = 2
E

1+ ν
e

2k log2
[

1
2

(√
γ 2+4+γ

)]

· log
[

1
2 (
√

γ 2 + 4+ γ )
]

√

γ 2 + 4
. (3.51)

The response of some rubbers is (more or less) linear under simple shear loading con-
ditions (this is the raison d’être of the Mooney-Rivlin model [158], where [σMR]12 =
2(C1 +C2)γ = E

2(1+ν)
γ ). Let us therefore compare (Fig. 11) the simple shear stress σ12 cor-

responding to the amount of shear for the energies WeH,WH, for the Mooney-Rivlin energy
(MR) and for the Neo-Hooke energy (NH).

Later in this paper we will implicitly show that WeH remains rank-one convex in simple
shear. Rubber becomes harder to deform at large strains, probably because of limited chain
extendability. Many rubber materials are normally subjected to fairly small deformation,
rarely exceeding 25 %, in tension/compression or 75 % in simple shear.

3.4.3 Cauchy Stress in Simple Shear in the Infinitesimal Case

It is well known that in the infinitesimal case the Cauchy stress tensor is given by

σlin = 2μdev3 ε+ κ tr(ε) · 1, (3.52)
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where ε = sym∇u is the linearized strain tensor of the deformation ϕ(x) = x + u(x) with
the displacement u :Ω ⊂ R

3 → R
3. In the infinitesimal case, simple shear corresponds to

the pure shear strain

ε =
⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠ . (3.53)

The Cauchy stress tensor in simple shear is given by

σlin = 2μ

⎛

⎝

0 γ

2 0
γ

2 0 0
0 0 0

⎞

⎠ ⇒ [σlin]12 = μγ = E

2(1+ ν)
γ. (3.54)

3.5 Response of Rubber Under Large Pressure. Equation of State

Rubber, if considered as a linear, isotropic solid very nearly satisfies ν = 0.5 (i.e., for small
loads, rubber responds practically incompressible). However, rubber under large pressure al-
lows for an appreciable volume change [28]. This can be seen by experimentally determined
equations of states (EOS), relating the mean stress (the pressure) 1

3 tr(σ ) to the relative vol-
ume change detF . For the exponentiated Hencky energy this relation is given by

1

3
tr(σeH)= d

dt

[

κ

2̂k
e
̂k(log t)2

]∣

∣

∣

∣

t=detF

=
(

κe
̂k(log detF)2 log detF

detF

)

, (3.55)

while for the quadratic Hencky energy we have

1

3
tr(σH)= d

dt

[

κ

2
(log t)2

]∣

∣

∣

∣

t=detF

=
(

κ
log detF

detF

)

. (3.56)

We have found that the analytical expression of the pressure 1
3 tr(σ ) is in concordance

with the classical Bridgman’s compression data for natural rubber as reported in [28, page
497, Fig. 4.47] with κ = 2.5 · 109 Pa= 2.5 · 109 GPa (see Figs. 12, 13). Tabor [242] showed
that the bulk modulus of rubber is of the order 1 GPa and found the value of the bulk modulus
κ to be about 2 GPa. Recently, Zimmermann and Stommel [268] determined experimentally
that κ is of the order κ = 2.5 GPa, which can be found in the literature as well (see, e.g.,
[115]).

From Fig. 13, certain threshold values seem unreachable by compression, unless an infi-
nite amount of energy is spent. However, this impression is misleading: stresses and energy
remain finite for any stretch V ∈ PSym(3). Therefore, in our model the assumption of lim-
ited chain extensibility is not needed.

In Fig. 14 we represent the pressure 1
3 tr(σ ) as function of detF in the neighborhood

of the identity F = 1 and we compare the analytical results obtained for the exponentiated
volumetric Hencky energy κ

2̂k
e
̂k(log detF)2

witĥk = 22 with the analytical form corresponding
to the volumetric quadratic Hencky energy κ

2 (log detF)2, as well with Bell’s experimental
data [28]. In the neighborhood of the identity F = 1, the quadratic Hencky energy gives also
good results, while in large compression the values obtained using the quadratic Hencky
energy are not in agreement with the experimental data (see Figs. 12, 13). Moreover, the
EOS relation corresponding to the quadratic Hencky is not invertible for detF > e and it is
not able to predict the response for 1

3 tr(σ ) > 1
e

[256].
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Fig. 12 The pressure 1
3 tr(σ ) as

function of detF : Bridgman’s
experimental data [28] in
compression (�), analytical form
corresponding to the
exponentiated volumetric Hencky

energy κ

2̂k
e
̂k(log detF)2

with
̂k = 22 (continuous line) and the
analytical form corresponding to
the volumetric quadratic Hencky
energy κ

2 (log detF)2 (dashed
line). The dotted line represents
the tangent to these curves. The
value of the bulk modulus of
rubber is chosen to be
κ = 2.5 GPa. We point out that in
the experimental data reported in
[28, page 487] the magnitude of
the pressure 1

3 tr(σ ) is expressed

in kg
cm2 (see Fig. 4.47 from [28,

page 487]) which means in fact

9.81 · 104 kg
m s2 = 9.81 · 104 Pa

Fig. 13 The pressure 1
3 tr(σ ) as

function of detF . The pressure
does not have a singularity in
(0,∞), even if it seems that there
is a singularity at detF = 0.67,
meaning that this model would
preclude compression beyond
detF = 0.67. Moreover the
mean stress (the pressure)
corresponding to WeH is
invertible as function of the
volume change. The considered
values and the legend are the
same as in Fig. 12
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Fig. 14 The pressure 1
3 tr(σ ) as

function of detF in the
neighborhood of identity F = 1.
The considered values and the
legend are the same as in Fig. 12

4 Monotonicity of the Cauchy Stress Tensor σ as a Function of logB

Motivated by [121] we consider a novel constitutive requirement for an isotropic material,
namely that the Cauchy stress tensor σ should be a monotone tensor function of logB ,
B = V 2, i.e.,

TSTS-M:
〈

σ(logB1)− σ(logB2), logB1 − logB2

〉≥ 0, ∀B1,B2 ∈ PSym+(3). (4.1)

We will refer to (4.1) as true-stress-true-strain monotonicity (TSTS-M), and to

TSTS-M+: 〈

σ(logB1)− σ(logB2), logB1 − logB2

〉

> 0,

∀B1,B2 ∈ PSym+(3),B1 �= B2, (4.2)

as strict true-stress-true-strain monotonicity (TSTS-M+). In a forthcoming paper [142] (see
also [178]), it is shown that

〈logB1 − logB2,B1 −B2〉> 0, ∀B1,B2 ∈ PSym+(3),B1 �= B2. (4.3)

Recall that Hill’s monotonicity condition (KSTS-M) is monotonicity of the Kirchhoff
stress tensor in terms of the logarithmic strain tensor, i.e.,

KSTS-M:
〈

τ(logB1)− τ(logB2), logB1 − logB2

〉≥ 0, ∀B1,B2 ∈ PSym+(3), (4.4)

where τ is the Kirchhoff stress tensor. The strict Hill’s monotonicity condition is denoted
by KSTS-M+. Also, Hill has shown that convexity of the quadratic Hencky energy WH in
terms of logB implies the BE-inequalities.

In the linear theory of elasticity, σ(ε) = 2μdev3 ε + κ tr(ε) · 1, ε = sym∇u, and the
TSTS-M+ condition implies, after linearization, 〈σ(ε1)−σ(ε2), ε1− ε2〉> 0 for all ε1, ε2 ∈
Sym(3), ε1 �= ε2, and it is satisfied if and only if μ,κ > 0. Therefore, in the linear set-
ting, TSTS-M+ is already stronger than rank-one convexity which only implies μ > 0,
2μ+ λ > 0.
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The TSTS-M+ condition caught our attention because of its possible relevance for the
stability of nonlinear isotropic elastic bodies. Initially, its relation to loss of stability or loss
of rank-one convexity was left unclear. Jog and Patil [121] have given a family of energies,
including Neo-Hooke and Mooney-Rivlin energies, which does not satisfy TSTS-M+. In
this work we show (for the first time) that there exist free energies (namely WeH) which
do not satisfy TSTS-M+ throughout but which are rank-one convex, while we also provide
examples (namely F �→ μ

k
ek‖ logV ‖2

, k ≥ 3
8 ) which satisfy TSTS-M+ but which are not rank-

one convex. In [121, page 671] it is conjectured that the TSTS-M+ condition is stronger
than polyconvexity, which, however, is not true since TSTS-M+ is not even stronger than
rank-one convexity. The TSTS-M+ condition implies that the Cauchy stress is an invertible
function of the left stretch tensor (TSS-I); a property which could become important in FEM-
computations based on the least squares finite element method [43, 44, 221, 240, 241].

For isotropic materials, TSTS-M+ (and TSS-I) leads to a unique stress free reference
(natural) configuration, up to a rigid deformation, i.e., σ = 0 implies B = 1 (or, equivalently,
logB = 0), since taking B2 = 1 in (4.2) we deduce at once

〈

σ(logB1), logB1

〉

> 0, ∀B1 ∈ PSym+(3),B1 �= 1 ⇒ σ(logB1) �= 0. (4.5)

We note the simple implications

TSTS-M+ ⇒
{

TSTS-M
TSTS-I ⇔ TSS-I.

The TSTS-M+ and KSTS-M+ condition are frame-indifferent in the following sense:
superposing one time dependent rigid rotation field Q(t) ∈ SO(3), we have

F1 �→ F ∗
1 =Q(t)F1, F2 �→ F ∗

2 =Q(t)F2, (4.6)

B1 = F1F
T
1 �→ B∗

1 =Q(t)B1Q
T (t), B2 = F2F

T
2 �→ B∗

2 =Q(t)B2Q
T (t),

logB1 �→ logB∗
1 =Q(t)(logB1)Q

T (t), logB2 �→ logB∗
2 =Q(t)(logB2)Q

T (t),

and the identity

〈

σ
(

logB∗
1

)− σ
(

logB∗
2

)

, logB∗
1 − logB∗

2

〉= 〈

σ(logB1)− σ(logB2), logB1 − logB2

〉

,

holds, due to the isotropy of the formulation.
In Sect. 3 we have shown that

τ =DlogV W(logV )= (detV ) · σ = etr(logV ) · σ, (4.7)

where σ is the Cauchy stress and τ the Kirchhoff stress corresponding to the energy F �→
W(logV ).

Remark 4.1 Sufficient for TSTS-M+ is Jog and Patil’s [121] constitutive requirement that

Z :=DlogV σ (logV ) (4.8)

is a positive definite fourth order tensor.
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Proof Let us remark that for all B1,B2 ∈ PSym+(3) and 0 ≤ t ≤ 1, we have 2 logV1 =
logB1,2 logV2 = logB2 and t (logV1 − logV2) + logV2 ∈ Sym(3), where V 2

1 = B1,
V 2

2 = B2. Moreover, we have

〈

σ(logB1)− σ(logB2), logB1 − logB2

〉= 2
〈

σ(2 logV1)− σ(2 logV2), logV1 − logV2

〉

= 2

〈[∫ 1

0

d

dt
σ
(

2t (logV1 − logV2)+ 2 logV2

)

dt

]

, logV1 − logV2

〉

(4.9)

= 4
∫ 1

0

〈[

DlogV σ
(

2t (logV1 − logV2)+ 2 logV2

)

.(logV1 − logV2)
]

, logV1 − logV2

〉

dt.

Using that the integrand is non-negative, due to the assumption that Z=DlogV σ (logV ) is
positive definite, the TSTS-M+ condition follows. �

With the substitution X = logV , the monotonicity of σ as a function of X ∈ Sym(3)

means

〈

σ(X+H)− σ(X),H
〉≥ 0 ∀X,H ∈ Sym(3), (4.10)

and sufficient for monotonicity of σ is (proof as in Remark 4.1)

〈

DXσ(X).H,H
〉≥ 0 ∀X,H ∈ Sym(3). (4.11)

Remark 4.2 Since e‖ logU‖2
is uniformly convex in logU , KSTS-M+ is satisfied everywhere.

4.1 TSTS-M+ for the Energy F �→ μ
k ek‖ logV ‖2 + λ

2̂k
e
̂k[tr(logV )]2

Proposition 4.3 The Cauchy stress tensor σ corresponding to the energy F �→ μ

k
ek‖ logV ‖2

satisfies TSTS-M for k ≥ 3
8 and TSTS-M+ for k > 3

8 .

Proof In order to show this, let us remark that for the energy F �→ μ

k
ek‖ logV ‖2

we have

τ̃ (logV )= 2μek‖ logV ‖2 · logV, σ̃ (logV )= 2μek‖ logV ‖2−tr(logV ) · logV. (4.12)

We compute

〈

DXσ̃ (X).H,H
〉=2μek‖X‖2−tr(X)

[

2k〈X,H 〉 − tr(H)
]〈X,H 〉 + 2μek‖X‖2−tr(X)‖H‖2

=2μek‖X‖2−tr(X)
{

2k〈X,H 〉2 − tr(H)〈X,H 〉 + ‖H‖2
}

. (4.13)

If tr(H)〈X,H 〉< 0, then obviously 〈DXσ̃ (X).H,H 〉> 0. Otherwise, for k ≥ 3
8 it follows

〈

DXσ̃ (X).H,H
〉≥ 2μek‖X‖2−tr(X)

{

2k〈X,H 〉2 − 2

√

2k

3
tr(H)〈X,H 〉 + ‖H‖2

}

= 2μek‖X‖2−tr(X)

〈

H −
√

2k

3
〈X,H 〉 · 1,H −

√

2k

3
〈X,H 〉 · 1

〉
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= 2μek‖X‖2−tr(X)

∥

∥

∥

∥

H −
√

2k

3
〈X,H 〉 · 1

∥

∥

∥

∥

2

≥ 0. (4.14)

Moreover, for k > 3
8 we have 〈DXσ̃ (X).H,H 〉> 0 and the proof is complete. �

Corollary 4.4 The Cauchy stress tensor corresponding to the energy F �→ μ

k
ek‖ logV ‖2 +

λ

2̂k
e
̂k[tr(logV )]2 satisfies TSTS-M for k ≥ 3

8 ,̂k ≥ 1
8 and μ,λ > 0 and TSTS-M+ for k > 3

8 ,̂k ≥ 1
8

(or k ≥ 3
8 , ̂k > 1

8 ) and μ,λ > 0.

Proof From direct calculations we have

〈

DXe
̂k[tr(X)]2−tr(X) tr(X) · 1.H,H

〉

= e
̂k[tr(X)]2−tr(X)

{

2̂k
[

tr(X)
]2 − tr(X)+ 1

}[

tr(H)
]2

. (4.15)

Thus, if ̂k ≥ 1
8 , then

〈

DXe
̂k[tr(X)]2−tr(X) tr(X) · 1.H,H

〉≥ e
̂k[tr(X)]2−tr(X)

(

1

2
tr(X)− 1

)2
[

tr(H)
]2 ≥ 0. (4.16)

The above inequality is strict for ̂k > 1
8 . The rest of the proof follows from the previous

theorem. �

Since, however, we prove in Sect. 5.8 that F �→ e‖ logV ‖2
is not LH-elliptic, we note that

in general

TSTS-M+
� LH-ellipticity,

answering a conjecture arising in [121]. It is also clear that

LH-ellipticity � TSTS-M or TSTS-I,

as already implied by some examples from the development in [121]. As a preliminary
conclusion on the status of the TSTS-M-condition we can note that TSTS-M is an additional
plausible criterion, basically independent of other conditions. It is compatible, in principle,
with rank-one convexity, but does not imply it. It can be speculated that TSTS-M+ should
hold for some domain of bounded distortions.

The same remarks hold for the KSTS-M+ condition, i.e., the notion is frame-indifferent
and

KSTS-M+ ⇒ KSS-I, KSTS-M+
� LH, LH � KSTS-M+.

4.2 TSTS-M+ for the Family of Energies WeH

Let us consider our exponentiated Hencky energy with volumetric-isochoric decoupled for-
mat

WeH(logV ) := μ

k
ek‖dev3 logV ‖2 + κ

2̂k
e
̂k[tr(logV )]2 . (4.17)
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Proposition 4.5 The TSTS-M+ condition (4.11) is not everywhere satisfied for the energy
function WeH defined by (4.17) for n= 2,3.

Proof In Sect. 3 we have shown that

τeH(logV )= 2μek‖dev3 logV ‖2 · dev3 logV + κe
̂k[tr(logV )]2 tr(logV ) · 1, (4.18)

σeH(logV )= 2μek‖dev3 logV ‖2−tr(logV ) · dev3 logV + κe
̂k[tr(logV )]2−tr(logV ) tr(logV ) · 1.

We compute

〈

DXσeH(X).H,H
〉

= 2μek‖dev3 X‖2−tr(X)
[

2k〈dev3 X,H 〉 − tr(H)
]〈dev3 X,H 〉

+ 2μek‖dev3 X‖2−tr(X)‖dev3 H‖2

+ κe
̂k[tr(X)]2−tr(X)

[

2̂k tr(X) tr(H)− tr(H)
]

tr(X) tr(H)+ κe
̂k[tr(X)]2−tr(X)

[

tr(H)
]2

= 2μek‖dev3 X‖2−tr(X)
{

2k〈dev3 X,H 〉2 − tr(H)〈dev3 X,H 〉 + ‖dev3 H‖2
}

+ κe
̂k[tr(X)]2−tr(X)

{

2̂k
[

tr(X)
]2 − tr(X)+ 1

} · [tr(H)
]2

. (4.19)

For ̂k > 1
8 , it is easy to see that

{

2̂k
[

tr(X)
]2 − tr(X)+ 1

}

> 0, for all X ∈ Sym(3). (4.20)

On the other hand, the first summand in (4.19)

〈

DX

[

ek‖dev3 X‖2−tr(X) · dev3 X
]

.H,H
〉

= 2k〈dev3 X,H 〉2 − tr(H)〈dev3 X,H 〉 + ‖dev3 H‖2 (4.21)

is not positive for all H ∈ Sym(3). For instance, we may choose

H0 = dev3 X+ a · 1, a ∈R+, (4.22)

and we obtain

2k〈dev3 X,H0〉2 − tr(H0)〈dev3 X,H0〉 + ‖dev3 H0‖2

= 2k‖dev3 X‖4 − 3a‖dev3 X‖2 + ‖dev3 X‖2, (4.23)

which is negative for large values of a (in the two-dimensional case we may consider H0 =
dev2 X + a · 1, a ∈ R+). Hence, the TSTS-M condition is not satisfied for the energy
F �→ ek‖dev3 logV ‖2

alone.
The next question is if one may control the negative part in (4.21) by adding the volu-

metric function F �→ e
̂k(tr(logV )2

. The answer is negative as we may see in the following. Let
us consider the matrices

X1 =
⎛

⎝

0 t 0
t 0 0
0 0 0

⎞

⎠ ∈ Sym(3), H1 =
⎛

⎝

q/3 1 0
1 q/3 0
0 0 q/3

⎞

⎠ ∈ Sym(3), (4.24)
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where, for large values of t > 0, q is chosen such that

8kt2 + 4

t
< q <

2μ

κ
e2kt2

t. (4.25)

For the considered matrices, we deduce

‖dev3 X1‖2 = 2t2, tr(X1)= 0, ‖dev3 H1‖2 = 2,

tr(H1)= q, 〈dev3 X1,H1〉 = 2t,
(4.26)

and
〈

DXσeH(X1).H1,H1

〉=2μe2kt2{
8kt2 − 2qt + 4

}+ κq2

=2μe2kt2{
8kt2 − qt + 4

}+ q
{−2μe2kt2 + κq

}

< 0. (4.27)

In the two-dimensional case, as counter-example we may consider the matrices

X1 =
(

0 t

t 0

)

∈ Sym(2), H1 =
(

q/2 1
1 q/2

)

∈ Sym(2), (4.28)

where, for large values of t > 0, q satisfies (4.25). Therefore, the monotonicity condition is
not satisfied and the proof is complete. �

However, the energy WeH satisfies the TSTS-M+ condition by restricting it to some “elas-
tic domain” in stretch space (a cone in PSym(3)) of bounded distortions

E+
(

WeH,TSTS-M+,V ,
2

3
σ̃ 2

y

)

:=
{

Y ∈ PSym(3)| ‖dev3 logY‖2 ≤ 2

3
σ̃ 2

y

}

⊂ PSym(3),

(4.29)

which is equivalent to restrict the energy W eH(logV )=WeH(V ) to the “elastic domain” in
strain space

E
(

WeH,TSTS-M+, logV,
2

3
σ̃ 2

y

)

:=
{

X ∈ Sym(3)| ‖dev3 X‖2 ≤ 2

3
σ̃ 2

y

}

⊂ Sym(3),

(4.30)

where σ̃ y is a dimensionless quantity related to the so called yield stress σ y, whose dimen-
sion is [MPa], i.e., a critical value of shear stress, below which a plastic or viscoplastic
material behaves like an elastic solid; above this value, a plastic material deforms and a
viscoplastic material flows. This assumption is in complete concordance with the Huber-
von-Mises-Hencky distortional strain energy hypothesis [105].

We also need to introduce the elastic domain in the Kirchhoff-stress space

E
(

WeH,TSTS-M+, τeH,
2

3
σ 2

y

)

:=
{

τ ∈ Sym(3)| ‖dev3 τ‖2 ≤ 2

3
σ 2

y

}

⊂ Sym(3). (4.31)

Proposition 4.6 (TSTS-M+ is satisfied for the energy function WeH for bounded distortions)
If the material parameters μ,κ > 0,̂k > 1

8 and σ̃ y ∈R are such that

0 < σ̃ 2
y ≤

6

e

κ

μ

8̂k− 1

8̂k
, (4.32)
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holds true, then there exists k > 0 such that

∀X ∈ E
(WeH,TSTS-M+,

logV,
2

3
σ̃ 2

y

)

, ∀H ∈ Sym(3): 〈

DXσeH(X).H,H
〉

> 0, (4.33)

i.e., the TSTS-M+ inequality is satisfied in E(WeH,TSTS-M+, logV, 2
3 σ̃ 2

y) (or equivalently,
the TSTS-M+ inequality is satisfied in E+(WeH,TSTS-M+,V , 2

3 σ̃ 2
y)).

Proof Let us rewrite Eq. (4.19) as

〈

DXσeH(X).H,H
〉= ek‖dev3 X‖2−tr(X)

{

4μk〈dev3 X,H 〉2 − 2μ tr(H)〈dev3 X,H 〉
+ κe

̂k[tr(X)]2−k‖dev3 X‖2{
2̂k

[

tr(X)
]2 − tr(X)+ 1

}[

tr(H)
]2}

+ 2μek‖dev3 X‖2−tr(X)‖dev3 H‖2. (4.34)

If ̂k > 1
8 , then 2̂k[tr(X)]2 − tr(X)+ 1 > 0 for all X ∈ Sym(3). Hence, for

4μk〈dev3 X,H 〉2 − 2μ tr(H)〈dev3 X,H 〉
+ κe

̂k[tr(X)]2−k‖dev3 X‖2{
2̂k

[

tr(X)
]2 − tr(X)+ 1

}[

tr(H)
]2

> 0

to hold for all X,H ∈ Sym(3), it is sufficient to have

4μ2 − 16μkκe
̂k[tr(X)]2−k‖dev3 X‖2{

2̂k
[

tr(X)
]2 − tr(X)+ 1

}

< 0

for all X ∈ Sym(3). (4.35)

Because μ,κ > 0, for matrices X ∈ Sym(3) which belong to the “elastic domain”
E(WeH,TSTS-M+, logV, 2

3 σ̃ 2
y) defined by (4.30) the above inequality is satisfied if

μ

4κ
< ke

̂k[tr(X)]2−k 2
3 σ̃ 2

y
{

2̂k
[

tr(X)
]2 − tr(X)+ 1

}

. (4.36)

On the other hand, for ̂k > 1
8 , we find

inf
X∈Sym(3)

{

2̂k
[

tr(X)
]2 − tr(X)+ 1

}= 8̂k− 1

8̂k
> 0. (4.37)

Taking infX∈Sym(3) of the right hand side of (4.36), we obtain that if there exist̂k > 1
8 and

k > 0 such that

ek 2
3 σ̃ 2

y

k

μ

4κ
≤ 8̂k− 1

8̂k
< 1 (4.38)

holds, then the inequality (4.36) follows. The question is whether there are always numbers
k > 0 satisfying the above inequality. We have

inf
k>0

{

ek 2
3 σ̃ 2

y

k

}

= inf
k>0

{

ek 2
3 σ̃ 2

y

k 2
3 σ̃ 2

y

2

3
σ̃ 2

y

}

= inf
r>0

{

er

r

}

2

3
σ̃ 2

y =
2

3
eσ̃ 2

y, lim
k→∞

ek 2
3 σ̃ 2

y

k
=∞. (4.39)
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In view of (4.39) and using the continuity of the function t �→ e
t 2

3 σ̃2
y

t
, we conclude: if the

material parameters μ,κ > 0, ̂k > 1
8 and σ̃ y ∈R are chosen such that

0 <
2

3
eσ̃ 2

y ≤
4κ

μ

8̂k− 1

8̂k
, (4.40)

then we may find a constant k > 0 which satisfies

2

3
eσ̃ 2

y
μ

4κ
= inf

k>0

{

ek 2
3 σ̃ 2

y

k

}

≤ ek 2
3 σ̃ 2

y

k

μ

4κ
≤ 8̂k− 1

8̂k
. (4.41)

Using (4.37) we obtain that there is a constant k > 0 such that (4.38) is satisfied. Hence,
there is a constant k > 0 such that (4.35) holds true, which in view of (4.34) implies (4.33)
and the proof is complete. �

We remark that Proposition 4.6 is unspecific about the values for k > 0. Written in terms
of Poisson’s ratio25 −1 < ν ≤ 1

2 , the extra constitutive assumption (4.32) becomes

0 < σ̃ 2
y ≤

4

e

1+ ν

1− 2ν

8̂k− 1

8̂k
⇔ ̂k ≥ 1

8− σ̃ 2
y

e
2

>
1

8
. (4.42)

Heinrich Hencky [99] offered a physical interpretation of the von Mises criterion sug-
gesting that yielding begins when the elastic energy of distortion reaches a critical value
[106] (see also [49, 50, 81]). For this, the von Mises criterion is also known as the maximum
distortional strain energy criterion. This stems from the relation between the second devia-
toric stress invariant J2 and the elastic strain energy of distortion WD = J2

2μ
, with the elastic

shear modulus μ= E
2(1+ν)

, Young’s modulus E and Poisson’s ratio ν.
In the following we express the constitutive assumption (4.40) in terms of the yield stress

σ y and the Kirchhoff stress tensor τeH.

Proposition 4.7 (WeH satisfies TSTS-M+ for bounded distortions) There exist ̂k > 1
8 and

k > 0, such that for all σ y ∈R for which

0 < σ 2
y ≤

3μκ

e

8̂k− 1
̂k

e
k κ

eμ
8̂k−1
̂k , (4.43)

holds true, the TSTS-M+ inequality is satisfied for all V ∈ PSym(3) (for all logV ∈ Sym(3))
for which τeH(logV ) ∈ E(WeH,TSTS-M+, τeH, 2

3σ 2
y).

Proof Let us remark that any X ∈ Sym(3) for which τeH(X) lies in the set E(WeH,TSTS-M+,

τeH, 2
3σ 2

y) satisfies

∥

∥2μek‖dev3 X‖2 · dev3 X
∥

∥≤
√

2

3
σ y.

Hence, ‖dev3 X‖ek‖dev3 X‖2 ≤
√

2
3

σ y
2μ

. If the yield limit σ y is chosen such that (4.43) is

satisfied, then there is σ̃ y > 0 such that 0 < σ y ≤ 2μσ̃ ye
k 2

3 σ̃ 2
y , and σ̃ 2

y ≤ 6κ
eμ

8̂k−1
8̂k

. Hence,

25We use that κ = 2μ(1+ν)
3(1−2ν)

, ν = 3κ−2μ
2(3κ+μ)

.
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0 <

√

2
3

σ y
2μ
≤

√

2
3 σ̃ ye

k 2
3 σ̃ 2

y , which implies ‖dev3 X‖ek‖dev3 X‖2 ≤
√

2
3 σ̃ ye

k 2
3 σ̃ 2

y . In view of the

monotonicity of t �→ tekt2
, we deduce

‖dev3 X‖ ≤
√

2

3
σ̃ y, (4.44)

and X ∈ E(WeH,TSTS-M+, logV, 2
3 σ̃ 2

y). Since we have assumed that σ̃ 2
y and ̂k > 1

8 satisfy
(4.32), then Proposition 4.6 ensures the existence of k > 0 such that the TSTS-M+ inequality
is satisfied and the proof is complete. �

Remark 4.8

(i) In terms of Young’s modulus E and Poisson’s ratio ν the condition imposed on the yield
limit σ y by Proposition 4.7 is

0 < σ 2
y ≤

1

2e

E2

(1+ ν)(1− 2ν)

8̂k− 1
̂k

e
k 2

3e
1+ν
1−2ν

8̂k−1
̂k . (4.45)

(ii) In the incompressible limit κ →∞, it follows that WeH satisfies TSTS-M+ everywhere
since then E(WeH,TSTS-M+, τeH, 2

3σ 2
y)= Sym(3) and TSTS-M+ ⇔ KSTS-M+.

4.3 TSTS-M+ for Three-Parameter Energies W
�
eH

In this subsection we consider the set of energies of the family WeH for which ̂k = 2
3k.

Proposition 4.9 (The exponentiated 3-parameter energy WeH satisfies TSTS-M+ for

bounded distortions) Let σ̃ y > 0 be such that σ̃ 2
ye

1
8 σ̃ 2

y+1 ≤ 6κ
μ

holds true. Then there exists

k > 3
16 such that for all σ y satisfying 0 < σ y ≤ 2μσ̃ ye

k 2
3 σ̃ 2

y , the exponentiated 3-parameter
energy

W
�
eH(logV ) := μ

k
ek‖dev3 logV ‖2 + 3κ

4k
e

2
3 k(tr(logV ))2

, (4.46)

satisfies TSTS-M+ for all V ∈ PSym(3) for which τeH(logV ) ∈ E(WeH,TSTS-M+, τeH, 2
3σ 2

y).

Proof Similar as in the proof of Proposition 4.7, we deduce that τeH(X) ∈ E(WeH,TSTS-M+,

τeH, 2
3σ 2

y) implies

‖dev3 X‖ek‖dev3 X‖2 ≤
√

2

3

σ y

2μ
. (4.47)

On the other hand, in view of (4.34)–(4.40), in order to have 〈DXσeH(X).H,H 〉 > 0
for X ∈ Sym(3) which belong also to the “elastic domain” E(WeH,TSTS-M+, logV, 2

3 σ̃ 2
y)

defined by (4.30), we already know that it is sufficient to prove that there are k > 0 and
̂k > 1

8 which satisfy (4.38), that is

ek 2
3 σ̃ 2

y

k

μ

4κ
≤ 8̂k− 1

8̂k
< 1. (4.48)
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For the 3-parameter energy we have 2k = 3̂k. Hence, in this case we have to prove that there
is k > 3

16 such that

ek 2
3 σ̃ 2

y

k

μ

4κ
≤ 16k− 3

16k
. (4.49)

Let us rewrite (4.49) in the form

ek 2
3 σ̃ 2

y

16k− 3
≤ κ

4μ
⇔ e(k 2

3− 1
8 )σ̃ 2

y

(k 2
3 − 1

8 )σ̃ 2
y

1

24
σ̃ 2

ye
1
8 σ̃ 2

y ≤ κ

4μ
. (4.50)

We have

inf
k> 3

16

{

e(k 2
3− 1

8 )σ̃ 2
y

(k 2
3 − 1

8 )σ̃ 2
y

}

= e, lim
k→∞

e(k 2
3− 1

8 )σ̃ 2
y

(k 2
3 − 1

8 )σ̃ 2
y

=∞. (4.51)

In view of (4.51) and using the continuity of the function t �→ e
(t 2

3− 1
8 )σ̃2

y

(t 2
3− 1

8 )σ̃ 2
y

, we conclude: if the

material parameters μ,κ > 0 and σ̃ y ∈R are chosen such that

0 < σ̃ 2
ye

1
8 σ̃ 2

y+1 ≤ 6κ

μ
, (4.52)

then we may find a constant k > 3
16 which satisfies (4.49). If the yield limit σ y is chosen

such that

0 <

√

2

3

σ y

2μ
≤

√

2

3
σ̃ ye

k 2
3 σ̃ 2

y , (4.53)

then in view of the monotonicity t �→ tekt2
, by (4.47) and (4.53) we have that ‖dev3 X‖ ≤

√

2
3 σ̃ y, which means that X ∈ E(WeH,TSTS-M+, logV, 2

3 σ̃ 2
y). Since σ̃ y satisfies (4.52), it

follows that there is k > 3
16 satisfying (4.49). For the 3-parameter energy (2k = 3̂k), in view

of (4.34)–(4.40), if (4.49) is satisfied, then it follows that the TSTS-M+ inequality is satisfied
and the proof is complete. �

Remark 4.10

(i) In terms of Young’s modulus and Poisson’s ratio, the condition imposed on the yield
limit σ y by Proposition 4.9 may be written in the form

0 < σ y ≤ E

1+ ν
σ̃ ye

k 2
3 σ̃ 2

y , where σ̃ 2
ye

1
8 σ̃ 2

y+1 ≤ 4(1+ ν)

1− 2ν
. (4.54)

(ii) For illustrating purposes let us consider the case of ν = 1/3 and an extremely large
domain of roughly 10 % distortional strain, i.e., ‖dev3 logU‖ ≤ 0.1. To this specifi-

cation corresponds σ̃ y =
√

3
2 0.1, which is in concordance with the values considered

for the yield stress σ̃ y =
√

3
2 0.1 (‖dev3 logU‖ ≤ 0.1), since 3

2 0.01e
1
8

3
2 0.01+1 � 0.041.

Moreover, the required inequality (4.50), e0.01·k
16k−3 ≤ 1+ν

6(1−2ν)
is satisfied if the parameter k

belongs to the interval [0.29,919] ⊂ [ 3
16 ,919].

(iii) We will encounter k > 3
16 also later on with regard to rank-one convexity conditions

for WeH.
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4.4 TSTS-M+ for the Quadratic Hencky Energy

For comparison, we also consider the quadratic Hencky energy

̂WH(U) := μ‖devn logU‖2 + κ

2

[

tr(logU)
]2

. (4.55)

We recall that the corresponding Kirchhoff and the Cauchy stress tensors are given by

τH =DlogV
˜WH(V )= 2μdev3 logV + κ tr(logV ) · 1,

σH =
[

2μdev3 logV + κ tr(logV ) · 1]e− tr(logV ).
(4.56)

The monotonicity inequality (4.11) becomes

〈

DXσH(X).H,H
〉= {

2μ‖dev3 H‖2 + κ
[

tr(H)
]2 − 2μ tr(H)〈dev3 X,dev3 H 〉

− κ tr(X)
[

tr(H)
]2}

e− tr(X) ≥ 0.

If X = 1 we have

〈

DXσH(1).H,H
〉= [

2μ‖dev3 H‖2 − 2κ
[

tr(H)
]2]

e−3, (4.57)

which is negative for all H such that ‖dev3 H‖2 < [tr(H)]2. Jog and Patil [121, page 676]
have proved that the quadratic Hencky energy satisfies the TSTS-M+ conditions only for
those deformations for which detV < e. This bound coincides, incidentally, with the loss of
ellipticity for WeH in a uniaxial setting.

4.5 TSTS-M+ for the Energy F �→ μea‖dev3 logV ‖2+ â
2 (tr(logV ))2

At the end of this subsection we consider the energy

W(logV ) := μea‖dev3 logV ‖2+ â
2 (tr(logV ))2

(4.58)

with the corresponding Kirchhoff and Cauchy stress, respectively

τ̂ (logV )= μea‖dev3 logV ‖2+ â
2 tr(logV )2{

2a dev3 logV + â tr(logV ) · 1},
σ̂ (logV )= μea‖dev3 logV ‖2+ â

2 tr(logV )2−tr(logV )
{

2a dev3 logV + â tr(logV ) · 1},
(4.59)

and we try to determine a, â such that this energy satisfies the TSTS-M condition.
The monotonicity inequality (4.11) becomes

〈

DXσ̂ (X).H,H
〉

= μea‖dev3 X‖2+ â
2 tr(X)2−tr(X)

{[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]2

− tr(H)
[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]}

+μea‖dev3 X‖2+ â
2 tr(X)2−tr(X)

{

2a‖dev3 H‖2 + â
[

tr(H)
]2}

= μea‖dev3 X‖2+ â
2 tr(X)2−tr(X)

{[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]2
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− tr(H)
[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]+ 2a‖dev3 H‖2 + â

[

tr(H)
]2}

. (4.60)

Using the inequality of means, xy < α
2 x2 + 1

2α
y2, α > 0, we deduce

[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]2 − tr(H)

[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]+ â

[

tr(H)
]2

≥
(

1− α

2

)

[

2a〈dev3 X,H 〉 + â tr(X) tr(H)
]2 +

(

â − 1

2α

)

[

tr(H)
]2 ∀α > 0. (4.61)

Hence, choosing the dimensionless parameters â, α > 0 such that

1

4
< â,

1

2̂a
< α < 2, (4.62)

we have

〈

DXσ̂ (X).H,H
〉≥ 0 ∀X,H ∈ Sym(3). (4.63)

Therefore, if â > 1
4 , then the energy F �→ μea‖dev3 logV ‖2+ â

2 tr(logV )2
satisfies the TSTS-M

condition. For instance, if we choose â = κ
μ

, the condition â > 1
4 is equivalent to

1

4
<

κ

μ
⇔ 1 <

8(1+ ν)

3(1− 2ν)
⇔ − 5

14
< ν. (4.64)

If we choose â = κ
4μ

, the condition â > 1
4 is equivalent to26

μ < κ ⇔ 1 <
2(1+ ν)

3(1− 2ν)
⇔ 1

8
< ν <

1

2
. (4.65)

In conclusion, we observe that we do not need to consider a restricted domain for the energy
(4.58) in order to enforce the TSTS-M+ condition.

5 Rank-One Convexity

5.1 Criteria for Rank-One Convexity

In this subsection we recall some criteria for rank-one-convexity that we will use throughout
the rest of this paper. Knowles and Sternberg [128, 129] (see also [11, 12, 127]) have given
the following result:

Theorem 5.1 (Knowles and Sternberg [226, page 318]) Let W : GL+(n) → R be an
objective-isotropic function of class C2 with the representation in terms of the singular val-
ues of U via W(F) = ̂W(U) = g(λ1, λ2, . . . , λn), where g ∈ C2(Rn+,R). Let F ∈ GL+(n)

be given with an n-tuple of singular values λ1, λ2, . . . , λn. If D2W(F)[a⊗ b, a⊗ b] ≥ 0 for
every a, b ∈R

n (i.e., F �→W(F) is rank-one convex), the following conditions hold:

(i) ∂2g

∂λ2
i

≥ 0 for every i = 1,2, . . . , n , i.e., separate convexity (SC) and the TE-inequalities

hold;

26In [159] it is claimed that the classical elasticity formulation is applicable only for 1
5 < ν < 1

2 .
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(ii) for every i �= j ,

λi
∂g

∂λi
− λj

∂g

∂λj

λi − λj

≥ 0

︸ ︷︷ ︸

“BE-inequalities”

if λi �= λj , and
∂2g

∂λ2
i

− ∂2g

∂λi∂λj

+ ∂g

∂λi

1

λi

≥ 0 if λi = λj ,

√

∂2g

∂λ2
i

∂2g

∂λ2
j

+ ∂2g

∂λi∂λj

+
∂g

∂λi
− ∂g

∂λj

λi − λj

≥ 0 if λi �= λj , (5.1)

√

∂2g

∂λ2
i

∂2g

∂λ2
j

− ∂2g

∂λi∂λj

+
∂g

∂λi
+ ∂g

∂λj

λi + λj

≥ 0.

If n= 2, then conditions (i) and (ii) are also sufficient.

From the above theorem we can easily see that LH-ellipticity implies the BE-inequalities
and TE-inequalities. Necessary and sufficient conditions for LH-ellipticity in the three-
dimensional case are given in [204, 236] and more recently by Dacorogna [54], also for
compressible materials.

Theorem 5.2 (Dacorogna [54, page 5]) Let W : GL+(3) → R be an objective-isotropic
function of class C2 with the representation in terms of the singular values of U via W(F)=
̂W(U)= g(λ1, λ2, λ3), where g ∈ C2(R3+,R) and g is symmetric. Then F �→W(F) is rank
one convex if and only if the following four sets of conditions hold for every λ1, λ2, λ3 ∈R+

(i) ∂2g

∂λ2
i

≥ 0 for every i = 1,2,3 , i.e., separate convexity (SC) and the TE-inequalities hold;

(ii) for every i �= j ,

λi
∂g

∂λi
− λj

∂g

∂λj

λi − λj

≥ 0

︸ ︷︷ ︸

“BE-inequalities”

if λi �= λj , and

√

∂2g

∂λ2
i

∂2g

∂λ2
j

+mε
ij ≥ 0, and either

mε
12

√

∂2g

∂λ2
3

+mε
13

√

∂2g

∂λ2
2

+mε
23

√

∂2g

∂λ2
1

+
√

∂2g

∂λ2
1

∂2g

∂λ2
2

∂2g

∂λ2
3

≥ 0 or

detMε ≥ 0,

(5.2)

where Mε = (mε
ij ) is symmetric and

mε
ij =

⎧

⎪

⎨

⎪

⎩

∂2g

∂λ2
i

if i = j or if i < j and λi = λj ,

εiεj
∂2g

∂λi∂λj
+

∂g
∂λi

−εi εj
∂g
∂λj

λi−εi εj λj
if i < j and λi �= λj or εiεj �= 1,

(5.3)

for any choice of εi ∈ {±1}.

The last one is taken from Buliga [42]:

Theorem 5.3 (Buliga [42, page 1538]) A twice continuously differentiable function W :
GL+(n) → R that can be written as a function of the singular values of U via W(F) =
̂W(U)= g(λ1, λ2, . . . , λn) is rank-one-convex if and only if
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(i) the function (λ1, λ2, . . . , λn) �→ g(eλ1 , eλ2 , . . . , eλn) is Schur-convex and
(ii) for all a = (a1, a2, . . . , an) ∈R

n, (λ1, λ2, . . . , λn) ∈R
n+

∑

i,j

Hij (λ1, λ2, . . . , λn)aiaj +Gij (λ1, λ2, . . . , λn)|ai ||aj | ≥ 0, (5.4)

where

Gij (λ1, λ2, . . . , λn)=
λi

∂g

∂λi
(λ1, λ2, . . . , λn)− λj

∂g

∂λj
(λ1, λ2, . . . , λn)

λ2
i − λ2

j

for i �= j, Gii(λ1, λ2, . . . , λn)= 0,

Hij (λ1, λ2, . . . , λn))=Hij (λ1, λ2, . . . , λn)+
(

D2g(λ1, λ2, . . . , λn)
)

ij
,

H ij (λ1, λ2, . . . , λn)=
λj

∂g

∂λi
(λ1, λ2, . . . , λn)− λi

∂g

∂λj
(λ1, λ2, . . . , λn)

λ2
i − λ2

j

for i �= j, Hii(λ1, λ2, . . . , λn)= 0.

(5.5)

Šilhavý [228] has previously given a similar result in terms of the copositivity of some
matrices (see also [54]).

5.2 The LH-Condition for Incompressible Media

In this subsection we consider the case of incompressible materials, i.e., we consider
objective-isotropic energies W : SL(3) → R. The restrictions imposed by rank-one con-
vexity are less strict in this case. The rank-one convexity for such a function W means that
W still has to satisfy

D2W(F)(ξ ⊗ η, ξ ⊗ η) > 0, (5.6)

(similar to the LH-ellipticity condition), but now only for all vectors ξ, η �= 0 with the addi-
tional property that

det(F + ξ ⊗ η)= 1.

Remark 5.4 For F,H ∈R
3×3 we have

det(F +H)= detF + 〈CofF,H 〉 + 〈F,CofH 〉 + detH. (5.7)

Proof Let us first consider that detH �= 0 and detF �= 0. We recall the formal expansion of
the determinant

det(1+H)= 1+ trH + tr(CofH)+ detH. (5.8)

We have

det(F +H)= det
((

1+HF−1
)

F
)= det

(

1+HF−1
)

det(F )

= det(F )
(

det(1)+ tr
(

HF−1
)+ tr

(

Cof
(

HF−1
))+ det

(

HF−1
))
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= det(F )+ det(F )
〈

HF−1,1
〉+ det(F )

〈

det
(

HF−1
)(

HF−1
)−T

,1
〉

+ det(F )det(H)det
(

F−1
)

= det(F )+ det(F )
〈

HF−1,1
〉+ det(F )det(H)det

(

F−1
)〈

1,FH−1
〉+ det(H)

= det(F )+ det(F )
〈

HF−1,1
〉+ det(H)

〈

F,H−T
〉+ det(H)

= det(F )+ 〈H,CofF 〉 + 〈

F,Cof(H)
〉+ det(H). (5.9)

By continuity this result holds as well for non-invertible matrices F,H ∈R
3×3. �

Thus, for F ∈R
3×3

det(F + ξ ⊗ η)= detF + 〈CofF, ξ ⊗ η〉 + 〈

F,Cof[ξ ⊗ η]
︸ ︷︷ ︸

=0

〉+ det[ξ ⊗ η]
︸ ︷︷ ︸

=0

= detF
[

1+ 〈

F−T , ξ ⊗ η
〉]= detF

[

1+ tr
(

F−1ξ ⊗ η
)]

, (5.10)

since rank(ξ ⊗ η)= 1. Hence, it follows that ξ, η �= 0 have to satisfy

detF · tr(F−1ξ ⊗ η
)= detF · 〈F−1ξ, η

〉= 0 ⇔ 〈

F−1ξ, η
〉= 0. (5.11)

Necessary conditions for LH-ellipticity of incompressible, isotropic hyperelastic solids were
obtained by Sawyers and Rivlin [211, 213], while necessary and sufficient conditions were
established by Zubov and Rudev [269, 270].

Theorem 5.5 (Zubov’s LH-ellipticity criterion for incompressible materials [270, page
437]) Let W : SL(3) → R be an objective-isotropic function of class C2 with the repre-
sentation in terms of the singular values of U via W(F) = ̂W(U) = g(λ1, λ2, λ3), where
g ∈ C2(R3+,R) and g is symmetric. Then F �→W(F) is rank one convex on SL(3) if and
only if the following nine inequalities hold for every λ1, λ2, λ3 ∈R+, λ1λ2λ3 = 1:

(i) for every i �= j and for any arbitrary permutation (i, j, k) of the numbers 1,2,3

αk :=
λi

∂g

∂λi
− λj

∂g

∂λj

λi − λj

> 0

︸ ︷︷ ︸

“BE-inequalities”

if λi �= λj ; (5.12)

(ii) δk := βiλ
2
i + βjλ

2
j + 2γ−

k λiλj > 0, where (i, j, k) is any arbitrary permutation of the
numbers 1,2,3, and

βi := ∂2g

∂λ2
i

, γ±
k =± ∂2g

∂λi∂λj

+
∂g

∂λi
∓ ∂g

∂λj

λi ∓ λj

; (5.13)

(iii) εk +
√

δiδj > 0, where εk := βkλ
2
k + γ+

k λiλj + γ−
i λkλj + γ−

j λkλi and (i, j, k) is any
arbitrary permutation of the numbers 1,2,3. �

5.3 The Quadratic Hencky Energy WH is not Rank-One Convex

In this subsection we re-examine a counter-example first considered by Neff [165] in order
to prove that the quadratic Hencky energy function WH defined by (1.5) is not rank-one
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convex even when restricted to SL(3). A domain where WH is LH-elliptic has been given in
[39] under some strong conditions upon the constitutive coefficients, i.e., μ,λ > 0. The first
proof of the non-ellipticity of a related energy expression ‖dev3 logU‖N , 0 < N ≤ 1 seems
to be due to Hutchinson et al. [116].

Proposition 5.6 The function W : SL(3)→R, W(F)= ‖dev3 logU‖2 is not LH-elliptic.

Proof The proof of this remark is adapted from [165]. We consider the function h :R→R,

h(t)=W
(

1+ t (η⊗ ξ)
)

. (5.14)

We choose the vectors η, ξ ∈R
3 so that (i.e., the family of simple shears)

η=
⎛

⎝

1
0
0

⎞

⎠ , ξ =
⎛

⎝

0
1
0

⎞

⎠ , η⊗ ξ =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ . (5.15)

Hence

(

1+ t (η⊗ ξ)
)T (

1+ t (η⊗ ξ)
)=

⎛

⎝

1 t 0
t 1+ t2 0
0 0 1

⎞

⎠ , (5.16)

and from

det

⎛

⎝

1− λ t 0
t 1+ t2 − λ 0
0 0 1− λ

⎞

⎠= (1− λ)
[

λ2 − λ
(

2+ t2
)+ 1

]

the eigenvalues of the matrix (1+ y(η⊗ ξ))T (1+ y(η⊗ ξ)) can be seen to be

λ1 = 1, λ2 = 1

2

(

2+ t2 + t
√

4+ t2
)

, λ3 = 1

2

(

2+ t2 − t
√

4+ t2
)

. (5.17)

The matrix U is positive definite and symmetric and therefore can be assumed diagonal, to
obtain

‖dev3 logU‖2 = 1

3

(

log2 λ1

λ2
+ log2 λ2

λ3
+ log2 λ3

λ1

)

. (5.18)

An analogous expression for ‖devn logU‖2 can be given in any dimension n ∈ N, see Ap-
pendix A.1. In terms of the eigenvalues, the function h is given by

h(t)= 1

3

(

log2 λ1

λ2
+ log2 λ2

λ3
+ log2 λ3

λ1

)

. (5.19)

Since λ1λ2λ3 = 1, see (5.17), it follows 0 = log(λ1λ2λ3) = logλ2 + logλ3, logλ2 =
− logλ3. Thus, h(t) = 2 log2 λ2 = 2[log(2+ t2 + t

√
4+ t2)− log 2]2. This function is not

convex in t (see Fig. 15), as can be easily deduced. Let us remark that 1 ∈ SL(3) and also
(1+ t (η⊗ ξ)) ∈ SL(3). Therefore, the function W is not rank-one convex in SL(3). Hence,
W is not elliptic in SL(3). �

A direct consequence of the previous proposition is
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Fig. 15 The graphical
representation of h :R→R,
h(t)= 2 log2 λ2(t)=
2[log(2+t2+t

√

4+ t2)−log 2]2

Remark 5.7 (Three-dimensional case) The function W : SL(3) → R, W(F) =
μ‖dev3 logU‖2 + κ

2 (tr(logU))2, for any μ,κ > 0, is not LH-elliptic.

Proof The counterexample is the one as in the proof of the previous remark because corre-
sponding to this counterexample we have κ

2 (tr(logU))2 = log(λ1λ2λ3)= log 1= 0. �

Remark 5.8 (Two-dimensional case) The function W : SL(2) → R, W(F) =
μ‖dev2 logU‖2 + κ

2 (tr(logU))2, for any μ,κ > 0, is not LH-elliptic.

Proof The proof is similar to the proof in the 3D case. The vectors η, ξ ∈R
2 are now

η=
(

1
0

)

, ξ =
(

0
1

)

. �

Proposition 5.9 The energy W : SL(3) → R, W(F) = ‖dev3 logU‖2 satisfies the TE-
inequalities (SC) only for those U such that the eigenvalues μ1,μ2,μ3 of dev3 logU are
smaller than 2

3 .

Proof The corresponding function g : R3+ → R for the isotropic energy W : SL(3) → R,
W(F)= ‖dev3 logU‖2 is

g(λ1, λ2, λ3) := 1

3

[

log2 λ1

λ2
+ log2 λ2

λ3
+ log2 λ3

λ1

]

. (5.20)

Hence, we have to check where the function g is separately convex. We deduce

∂2g

∂λ2
1

= 2

λ2
1

(

2− log
λ1

λ2
+ log

λ3

λ1

)

= 6

λ2
1

(

2

3
− 2

3
logλ1 + 1

3
logλ2 + 1

3
logλ3

)

,

∂2g

∂λ2
2

= 2

λ2
2

(

2− log
λ2

λ3
+ log

λ1

λ2

)

= 6

λ2
2

(

2

3
− 2

3
logλ2 + 1

3
logλ3 + 1

3
logλ1

)

, (5.21)

∂2g

∂λ2
3

= 2

λ2
3

(

2− log
λ3

λ1
+ log

λ2

λ3

)

= 6

λ2
3

(

2

3
− 2

3
logλ3 + 1

3
logλ1 + 1

3
logλ2

)

.



196 P. Neff et al.

On the other hand, the eigenvalues μ1,μ2,μ3 of dev3 logU are

μ1 = 2

3
logλ1 − 1

3
logλ2 − 1

3
logλ3,

μ2 =− 1

3
logλ1 + 2

3
logλ2 − 1

3
logλ3, (5.22)

μ3 =− 1

3
logλ1 − 1

3
logλ2 + 2

3
logλ3,

and the proof is complete. �

We can obtain a similar condition in terms of the eigenvalues of U instead of those of
dev3 logU :

Corollary 5.10 The energy W : SL(3) → R, W(F) = ‖dev3 logU‖2 satisfies the TE-
inequalities only for those U such that the eigenvalues λ1, λ2, λ3 of U satisfy

λ2
1 ≤ e2λ2λ3, λ2

2 ≤ e2λ3λ1, λ2
3 ≤ e2λ1λ2. (5.23)

Proof From (5.21) we find that g(λ1, λ2, λ3)= 1
3 [log2 λ1

λ2
+ log2 λ2

λ3
+ log2 λ3

λ1
] is separately

convex if and only if

2− log
λ2

1

λ2λ3
≥ 0, 2− log

λ2
2

λ1λ3
≥ 0, 2− log

λ2
3

λ1λ2
≥ 0, (5.24)

which are equivalent to the inequalities (5.23). �

5.4 Convexity of the Volumetric Response F �→ e
̂k(log detF)m

In the family of energies (1.4) which we consider, the volumetric response is modeled by
a term of the form F �→ e

̂k(log detF)m . In deriving convexity conditions, we first examine the
conditions under which the more general form detF �→ h(log detF) is convex in detF ,
which is clearly sufficient for LH-ellipticity (details can be found in Appendix A.3, see also
[55, page 213] and [134]). Hence, we ask for the second derivative of t �→ h(log t) to be
positive:

d2

dt2
h(log t)= d

dt

[

h′(log t)
1

t

]

= h′′(log t)
1

t2
− h′(log t)

1

t2
≥ 0. (5.25)

Obviously, this is the case if and only if h′′(log t)≥ h′(log t) for all t > 0 and hence, if and
only if for all ξ ∈ R h′′(ξ) ≥ h′(ξ). Thus, t �→ h(log t) is convex if and only if h grows at
least exponentially (see also Appendix A.3). This result is in concordance with the necessary
conditions derived in the paper of Sendova and Walton [222].

Fix m ∈N. We want to find ̂k such that h(ξ)= e
̂kξm

matches this criterion, i.e.,

̂k2m2ξ 2m−2e
̂kξm +̂km(m− 1)ξm−2e

̂kξm ≥̂kmξm−1e
̂kξm

, (5.26)

which is equivalent to ̂kmξm − ξ + (m− 1)≥ 0. We compute the minimum of this expres-

sion. To this aim we solve the equation ̂km2ξm−1 − 1= 0 and we obtain ξ =̂k−
1

m−1 m− 2
m−1 .
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Therefore

min
ξ∈R

{

̂kmξm − ξ + (m− 1)
}=̂km̂k−

m
m−1 m− 2m

m−1 −̂k−
1

m−1 m− 2
m−1 + (m− 1)

=̂k−
1

m−1 m−m+1
m−1 (1−m)+ (m− 1). (5.27)

This minimum is nonnegative if and only if−̂k− 1
m−1 m−m+1

m−1 +1≥ 0. Thuŝk has to be chosen
such that ̂k ≥m−(m+1). In conclusion:

Lemma 5.11 Let m ∈N. Then the function t �→ e
̂k(log(t))m is convex if and only if̂k ≥ 1

m(m+1) .

This implies our next result:

Proposition 5.12 The function

detF �→ e
̂k(log detF)m, F ∈GL+(n)

is convex in detF for ̂k ≥ 1
m(m+1) . (More explicitly, for m = 2 this means ̂k ≥ 1

8 , in case of

m= 3 convexity holds for ̂k ≥ 1
81 .)

In view of Proposition A.2 (see also [55, page 213]), we have

Corollary 5.13 The function

F �→ e
̂k(log detF)m, F ∈GL+(n)

is rank-one convex in F for̂k ≥ 1
m(m+1) . (More explicitly, for m= 2 this meanŝk ≥ 1

8 , in case

of m= 3 rank-one convexity holds for ̂k ≥ 1
81 .)

5.5 Rank-One Convexity of the Isochoric Exponentiated Hencky Energy in Plane
Elastostatics

In this subsection we consider a variant of the exponentiated Hencky energy in plane strain,
with isochoric part

W iso
eH (F )= ek‖dev2 logU‖2 = e

k‖ log U

detU1/2 ‖2

. (5.28)

Let us first recall that for small strains the exponentiated Hencky energy turns into the
well-known quadratic Hencky energy:

WeH(F )−
(

μ

k
+ κ

2̂k

)

= μ

k
ek‖devn logU‖2 + κ

2̂k
e
̂k[tr(logU)]2

︸ ︷︷ ︸

fully nonlinear elasticity

−
(

μ

k
+ κ

2̂k

)

= μ‖devn logU‖2 + κ

2

[

(log detU)
]2

︸ ︷︷ ︸

materially linear, geometrically nonlinear elasticity

+h.o.t.

= WH(F )
︸ ︷︷ ︸

quadratic Hencky energy

+h.o.t.
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= μ‖devn sym∇u‖2 + κ

2

[

tr(sym∇u)
]2

︸ ︷︷ ︸

linear elasticity

+h.o.t., (5.29)

where u : Rn → R
n is the displacement and F = ∇ϕ = 1 + ∇u is the gradient of the

deformation ϕ : Rn → R
n and h.o.t. denotes higher order terms of ‖devn logU‖2 and

κ
2 [(log detU)]2.

Remark 5.14

(i) If F �→ W(F) is rank-one convex in GL+(n) and if Z : R+ → R is a convex and
monotone non-decreasing function, then the composition function F �→ (Z ◦W)(F)

is also rank-one convex in GL+(n). This follows from the fact that if t �→ h(t), t ∈ R,
h(t)=W(F + t (η⊗ ξ)) is convex, then t �→Z(h(t)), t ∈R, is also convex.

(ii) If F �→W(F) is quasi-convex in GL+(n) and if Z : R+ → R a convex and monotone
non-decreasing function, then the function F �→ (Z ◦W)(F) is also quasi-convex in
GL+(n). To prove this fact, let us recall that quasiconvexity of the energy function W at
F means that 1

|Ω|
∫

Ω
W(F+∇ϑ)dx ≥W(F), holds, for every bounded open set Ω ⊂

R
n and for all ϑ ∈ C∞

0 (Ω) such that det(F +∇ϑ) > 0. Using the monotonicity of Z

we deduce Z( 1
|Ω|

∫

Ω
W(F + ∇ϑ)dx) ≥ Z(W(F)). Hence, using the convexity and

Jensen’s inequality, we obtain 1
|Ω|

∫

Ω
Z(W(F +∇ϑ))dx ≥ Z(W(F)).

(iii) If F �→ W(F) is polyconvex in GL+(3) and if Z : R+ → R is a convex and mono-
tone non-decreasing function, then the function F �→ (Z ◦ W)(F) is also polycon-
vex in GL+(3). A free energy function W(F) is called polyconvex if and only
if it is expressible in the form W(F) = P (F,CofF,detF), P : R19 → R, where
P (·, ·, ·) is convex. If P is convex, then Z ◦ P is also convex. In this case, we have
Z(W(F))= (Z ◦P )(F,CofF,detF), which means that F �→ (Z ◦W)(F) is polycon-
vex in GL+(3).

An example of a convex and monotone non-decreasing function Z : R+ → R is the ex-
ponential function Z(ξ)= eξ .

We prove in this subsection that although F �→ ‖dev2 logU‖2 is not rank-one convex,
the function F �→ ek‖dev2 logU‖2

, k > 1
4 is indeed rank-one convex.

Lemma 5.15 Let F ∈GL+(2) with singular values λ1, λ2. Then

W(F)= ek‖dev2 logU‖2 = e
k‖ log U

detU1/2 ‖2 = g(λ1, λ2),

where g :R2
+ →R, g(λ1, λ2) := e

k
2 (log

λ1
λ2

)2
. (5.30)

Proof The matrix U is positive definite and symmetric and therefore can be assumed diag-
onal, and we obtain

‖dev2 logU‖2 =
∥

∥

∥

∥

logU − 1

2
(logλ1 + logλ2)1

∥

∥

∥

∥

2

=
∥

∥

∥

∥

(

1
2 logλ1 − 1

2 logλ2 0
0 1

2 logλ2 − 1
2 logλ1

)∥

∥

∥

∥

2
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= 1

4

[

2(logλ1 − logλ2)
2
]= 1

2

(

log
λ1

λ2

)2

.

With this, the proof is complete. �

In this subsection we apply Theorem 5.1 in order to prove that the function F �→
ek‖dev2 logU‖2

is LH-elliptic. Thus, according to Lemma 5.15, we have to prove that the func-
tion

g :R2
+ →R, g(λ1, λ2) := e

k
2 (log

λ1
λ2

)2

satisfies all the necessary and sufficient conditions established by Knowles and Sternberg’s
Theorem 5.1. The first condition from Theorem 5.1 requests separate convexity in each
variable λ1, λ2.

Lemma 5.16 The function g is separately convex in each variable λ1, λ2, i.e., ∂2g

∂λ2
1
≥ 0,

∂2g

∂λ2
2
≥ 0, if and only if k ≥ 1

4 .

Proof We need to compute

∂g

∂λ1
= k log λ1

λ2
e

k
2 log2 λ1

λ2

λ1
,

∂g

∂λ2
=−k log λ1

λ2
e

k
2 log2 λ1

λ2

λ2
,

∂2g

∂λ2
1

= ke
k
2 log2 λ1

λ2

λ2
1

(

k log2 λ1

λ2
− log

λ1

λ2
+ 1

)

, (5.31)

∂2g

∂λ2
2

= ke
k
2 log2 λ1

λ2

λ2
2

(

k log2 λ1

λ2
+ log

λ1

λ2
+ 1

)

.

We introduce the function r :R→R given by r(t)= kt2 − t + 1. It is clear that if k ≥ 1
4 ,

then r(t)= kt2− t+1≥ ( 1
2 t−1)2≥ 0 for all t ∈R. Moreover, if r(t)≥ 0 for all t ∈R, then

k ≥ 1
4 =maxt∈(0,∞){ t−1

t2 }. Thus, r(t)≥ 0 for all t ∈ R if and only if k ≥ 1
4 . In consequence,

we deduce

∂2g

∂λ2
1

(λ1, λ2)= ke
k
2 log2 λ1

λ2
1

λ2
1

r

(

log

(

λ1

λ2

))

≥ 0 if and only if k ≥ 1

4
. (5.32)

Analogously, we have ∂2g

∂λ2
2
(λ1, λ2)≥ 0 if and only if k ≥ 1

4 . �

Lemma 5.17 The function g satisfies the BE-inequalities.

Proof For the function g defined by (5.30), the BE-inequalities become

λ1
∂g

∂λ1
− λ2

∂g

∂λ2

λ1 − λ2
= 2k log λ1

λ2
e

k
2 log2 λ1

λ2

λ1 − λ2
≥ 0 if λ1 �= λ2, (5.33)

which is always true. Indeed, this fact also follows directly from Theorem 2.7 because g is
convex as a function of logU (see Remark 2.9). �



200 P. Neff et al.

Let us also compute

∂2g

∂λ1∂λ2
=−ke

k
2 log2 λ1

λ2

λ1λ2

(

k log2 λ1

λ2
+ 1

)

. (5.34)

The next set of inequalities from Knowles and Sternberg’s criterion requires that the follow-
ing quantities

∂2g

∂λ2
1

− ∂2g

∂λ1∂λ2
+ 1

λ1

∂g

∂λ1
= k(λ1 + λ2)e

k
2 log2 λ1

λ2 (k log2 λ1
λ2
+ 1)

λ2
1λ2

,

∂2g

∂λ2
2

− ∂2g

∂λ1∂λ2
+ 1

λ2

∂g

∂λ2
= k(λ1 + λ2)e

k
2 log2 λ1

λ2 (k log2 λ1
λ2
+ 1)

λ1λ
2
2

,

(5.35)

are positive for λ1 = λ2. This condition is always satisfied because λ1, λ2, k > 0.
In order to show that the last two inequalities from Knowles and Sternberg’s Theorem 5.1

are satisfied, we compute

√

∂2g

∂λ2
1

∂2g

∂λ2
2

+ ∂2g

∂λ1∂λ2
+

∂g

∂λ1
− ∂g

∂λ2

λ1 − λ2
= ke

k
2 log2 λ1

λ2

λ1λ2
g̃(λ1, λ2), λ1 �= λ2,

√

∂2g

∂λ2
1

∂2g

∂λ2
2

− ∂2g

∂λ1∂λ2
+

∂g

∂λ1
+ ∂g

∂λ2

λ1 + λ2
= ke

k
2 log2 λ1

λ2

λ1λ2
ĝ(λ1, λ2),

(5.36)

where the functions g̃ :R2+ \ {(x, x);x ∈R}→R, ĝ :R2+ →R are defined by

g̃(λ1, λ2)=
√

(

k log2

(

λ1

λ2

)

+ 1

)2

− log2 λ1

λ2
− k log2 λ1

λ2
− 1+ (λ1 + λ2)

(λ1 − λ2)
log

λ1

λ2
,

ĝ(λ1, λ2)=
√

(

k log2

(

λ1

λ2

)

+ 1

)2

− log2 λ1

λ2
+ k log2 λ1

λ2
+ 1− (λ1 − λ2)

(λ1 + λ2)
log

λ1

λ2
.

(5.37)

Let us remark that the functions g̃ and ĝ can be written in terms of functions of a single
variable only, i.e.,

g̃(λ1, λ2)= r̃

(

λ1

λ2

)

, ĝ(λ1, λ2)= r̂

(

λ1

λ2

)

, (5.38)

where r̃ :R+ \ {1}→R, r̂ :R+ →R are defined by

r̃(t)=
√

(

k log2 t + 1
)2 − log2 t − (

k log2 t + 1
)+ t + 1

t − 1
log t,

r̂(t)=
√

(

k log2 t + 1
)2 − log2 t + (

k log2 t + 1
)− t − 1

t + 1
log t.

(5.39)

Hence, Knowles and Sternberg’s criterion is completely satisfied if and only if

r̃(t)≥0 for all t ∈R+ \ {1} and r̂(t)≥0 for all t ∈R+. (5.40)
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We have to show the following inequality, which is the same as (5.40)1:
√

(

k log2 t + 1
)2 − log2 t+1≥ (

k log2 t + 1
)− t + 1

t − 1
log t+1. (5.41)

In order to transform it equivalently by squaring both sides, first we prove the following
lemma:

Lemma 5.18 The inequality

(

k log2 t + 1
)− t + 1

t − 1
log t+1≥ 0 (5.42)

is satisfied for all t ∈R+ \ {1} if and only if k ≥ 1
6 .

Proof Let us consider the function s̃ : R+ \ {1} → R by s̃(t) := ( 1
6 log2 t + 1)− t+1

t−1 log t .
For the function s̃ we compute

s̃ ′(t)= 1

3(−1+ t)2t
ŝ(t), (5.43)

where ŝ :R+ →R, ŝ(t)= 3(1− t2)+ (1+ 4t + t2) log t .
On the other hand ŝ ′(t)=−5t+ 1

t
+2(t+2) log t+4, ŝ ′′(t)= 4t−1

t2 +2 log t−3, ŝ ′′′(t)=
2(t−1)2

t3 ≥ 0 for all t ∈ R+, ŝ(1) = 0, ŝ ′(1) = 0, ŝ ′′(1) = 0. Thus ŝ ′′(t) ≥ 0 if t ≥ 1 and
ŝ ′′(t) ≤ 0 if 0 <t ≤ 1, which implies further that ŝ ′ is monotone decreasing on (0,1) and
monotone increasing on (1,∞). We deduce ŝ ′(t) ≥ ŝ ′(1) = 0 for all 0 < t ≤ 1 and ŝ ′(t) ≥
ŝ ′(1)= 0 for all t ≥ 1.

Hence, ŝ is monotone increasing in R+, i.e., ŝ(t)≤ ŝ(1)= 0 for all 0 < t < 1 and ŝ(t)≥
ŝ(1) = 0 for all t > 1. In view of (5.43), we have s̃ ′(t) ≤ 0 for all 0 < t < 1 and s̃ ′(t) ≥ 0
for all t > 1. Because limt→1 s̃(t)=−1, the monotonicity of s̃(t) implies s̃(t)= ( 1

6 log2 t +
1)− t+1

t−1 log t ≥ limt0→1 s̃(t0)=−1, for all t ∈R+ \ {1}. For k≥ 1
6 , we have

(

k log2 t + 1
)− t + 1

t − 1
log t ≥

(

1

6
log2 t + 1

)

− t + 1

t − 1
log t ≥−1, (5.44)

for all t ∈R+ \ {1}. On the other hand, if (k log2 t + 1)− t+1
t−1 log t ≥−1 for all t ∈R+ \ {1},

then

k ≥ 1

6
= sup

t∈R+

{

1

log2 t

(

−2+ t + 1

t − 1
log t

)}

, (5.45)

since the function s̃1 : R+ → R, s̃1(t)= log2 t − 6 t+1
t−1 log t + 12 is monotone decreasing on

(0,1], monotone increasing on [1,∞), s̃1(1) = 0, and limt∈R+{ 1
log2 t

(−2+ t+1
t−1 log t)} = 1

6 .

Thus, the inequality (5.42) holds for all t ∈R+ \ {1} if and only if k ≥ 1
6 , �

Lemma 5.19 The inequality r̃(t)≥ 0 is satisfied for all t ∈R+ \ {1} if k ≥ 1
4 .

Proof Let us first remark that, in view of Lemma 5.18, we obtain (k log2 t +1)− t+1
t−1 log t +

1≥ 0 for all k ≥ 1
6 . Hence, the inequality r̃(t)≥ 0 is equivalent to the inequality

√

(

k log2 t + 1
)2 − log2 t + 1≥ (

k log2 t + 1
)− t + 1

t − 1
log t + 1≥ 0, (5.46)
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for t ∈ R+ \ {1}, which can, by squaring and multiplication with (t−1)2

2 , equivalently be
written in the following form:

k(t − 1)
[

1− t + (t + 1) log t
]

log2 t − {[

2
(

1− t2
)+ (

t2 + 1
)

log t
]

log t + (t − 1)2
}

+ (t − 1)2
√

(

k log2 t + 1
)2 − log2 t ≥ 0. (5.47)

Our next step is to prove that s(t) ≤ 0 if t < 1 and s(t) ≥ 0 if t > 1, where s : R+ → R

is defined by s(t)= 1− t + (t + 1) log t . This follows from s ′(t)= 1
t
+ log t , s ′′(t)= t−1

t2 ,
s ′(1)= 1, s(1)= 0. Moreover, if k ≥ 1

4 , we deduce

√

(

k log2 t + 1
)2 − log2 t ≥

√

(

1

4
log2 t + 1

)2

− log2 t =
√

(

1

4
log2 t − 1

)2

=
∣

∣

∣

∣

1

4
log2 t − 1

∣

∣

∣

∣

, (5.48)

and, due to the nonnegativity of (t − 1)s(t),

k(t − 1)
[

1− t + (t + 1) log t
]

log2 t − {[

2
(

1− t2
)+ (

t2 + 1
)

log t
]

log t + (t − 1)2
}

≥ 1

4
(t − 1)

[

1− t + (t + 1) log t
]

log2 t − {[

2
(

1− t2
)+ (

t2 + 1
)

log t
]

log t + (t − 1)2
}

= 1

4

{

8
(

t2 − 1
)

log t + (

t2 − 1
)

log3 t + (−5t2 + 2t − 5
)

log2 t − 4(t − 1)2
}

. (5.49)

Hence, it is sufficient to prove that

(t − 1)2

(

1

4
log2 t − 1

)

+ 1

4

{

8
(

t2 − 1
)

log t + (

t2 − 1
)

log3 t

+ (−5t2 + 2t − 5
)

log2 t − 4(t − 1)2
}

= t2 − 1

4

(

log3 t − 4 log2 t + 8 log t − 8(t − 1)

t + 1

)

≥ 0. (5.50)

Employing the substitution x = log t , we are going to show that

s0(x)= x3 − 4x2 + 8x − 8
ex − 1

ex + 1
= x3 − 4x2 + 8x − 8+ 16

ex + 1

is negative for x < 0 and positive for x > 0.
Firstly, we observe that s0(0) = 0 and limx→∞ s0(x) = ∞. We then compute s ′0(x) =

s1(x)− s2(x), where we denote s1(x) = 3(x − 4
3 )2 + 8

3 , s2(x)= 16 ex

(ex+1)2 . Due to the fact

that y

(1+y)2 ∈ (0,4] for y = ex > 0,

s ′0(x)≥ 3

(

4

3

)2

+ 8

3
− 4= 4 > 0 for x < 0,

so that clearly s0(x) < 0 for x < 0. To deduce s0(x) > 0 for x > 0, we will prove that all
local minima of s0 are located in (1,∞) and that the value of s0 is positive there. Because
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s ′′2 (x) = ex

(1+ex )4 (1 − 4ex + e2x) is negative on (−∞, log(
√

3 + 2)) ⊃ (0,1) and hence s2

is concave and s1 convex on (0,1), s1 and s2 can intersect in at most two points in (0,1).
Thanks to the fact that s1(0) > s2(0) and s1(1) < s2(1), there is only one xm ∈ (0,1), where
s1(xm) = s2(xm) and hence s ′0(xm) = 0. In xm, s0 attains a maximum (s ′0 is positive for
smaller and negative for larger values of x), hence local minima of s must lie in (1,∞). In
any such place x0, from s ′0(x0)= 0 we know 16

ex0+1 = ex0+1
ex0 (3x2

0 − 8x0 + 8) and hence

s0(x0)= x3
0 − 4x2

0 + 8x0 − 8+ (

1+ e−x0
)(

3x2
0 − 8x0 + 8

)

= x2
0 (x0 − 1)+ 3e−x0

((

x0 − 4

3

)2

+ 8

3

)

> 0,

because x0 ≥ 1. In conclusion, s0 is positive on all of (0,∞), and negative in (−∞,0).
Thus, the inequality (5.50) is satisfied. Therefore (5.46) is also satisfied and the proof is

complete. �

Lemma 5.20 If k ≥ 1
4 , then the inequality r̂(t)≥ 0 is satisfied for all t ∈R+.

Proof It is easy to see that for all t ∈R+ \ {1} and if k ≥ 1
4 , we have

(

k log2 t + 1
)− t − 1

t + 1
log t ≥ 1

4
log2 t − t − 1

t + 1
log t + 1.

Let us remark that 1
4ξ 2− t−1

t+1ξ + 1 > 0 for all ξ ∈R, since ( t−1
t+1 )2− 1 < 0 and 1

4 > 0. Hence,

taking ξ = log t ∈R, we have 1
4 log2 t − t−1

t+1 log t + 1 > 0 for all t ∈R+. Therefore,

r̂(t)=
√

(

k log2 t + 1
)2 − log2 t + (

k log2 t + 1
)− t − 1

t + 1
log t > 0 for all t ∈R+,

which completes the proof. �

Collecting Lemmas 5.16, 5.19, 5.20 and Eq. (5.33), we can finally conclude:

Proposition 5.21 If k ≥ 1
4 , then the function F �→ ek‖dev2 logU‖2

is rank-one convex in
GL+(2).

5.6 The Main Rank-One Convexity Statement

In view of the results established in Sects. 5.5 and 5.4 we conclude that:

Theorem 5.22 (Planar rank-one convexity) The functions WeH :Rn×n →R+ from the family
of exponentiated Hencky type energies

WeH(F )=W iso
eH

(

F

detF
1
n

)

+W vol
eH

(

detF
1
n · 1)

=
{ μ

k
ek‖devn logU‖2 + κ

2̂k
e
̂k[(log detU)]2 if detF > 0,

+∞ if detF ≤ 0,
(5.51)

are rank-one convex for the two-dimensional situation n = 2, μ > 0, κ > 0, k ≥ 1
4 and

̂k ≥ 1
8 .
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Conjecture 5.23 (Planar polyconvexity) The functions WeH : Rn×n → R+ from the fam-
ily of exponentiated Hencky type energies defined by (5.51) are polyconvex27 for the two-
dimensional situation n= 2, μ > 0, κ > 0, k ≥ 1

4 and ̂k ≥ 1
8 .

The rank-one convex energy WeH(F ) is applicable to the bending or shear of long strips
and to all cases in which symmetry arguments can be applied to reduce the formulation to a
planar deformation.

5.7 Formulation of the Dynamic Problem in the Planar Case

For the convenience of the reader we state the complete dynamic setting. The dynamic
problem in the planar case consists in finding the solution ϕ :Ω × (0,∞)→ R

2, Ω ⊂ R
2

of the equation of motion

ϕ,tt =DivS1(∇ϕ) in Ω × (0,∞), (5.52)

where the first Piola-Kirchhoff stress tensor S1 = DF [W(F)] corresponding to the energy
WeH(F ) is given by the constitutive equation

S1 =DF

[

W(F)
]= JσF−T = τF−T (5.53)

= [

2μek‖dev2 logU‖2 · dev2 logU + κe
̂k[tr(logU)]2 tr(logU) · 1]F−T in Ω × [0,∞),

with F =∇ϕ, U =√FT F . The above equations are supplemented, in the case of the mixed
problem, by the boundary conditions

ϕ(x, t)= ϕ̂i (x, t) on ΓD × [0,∞),

S1(x, t).n= ŝ1(x, t) on ΓN × [0,∞),
(5.54)

and the initial conditions

ϕ(x,0)= ϕ0(x), ϕ,t (x,0)=ψ0(x) in Ω, (5.55)

where ΓD,ΓN are subsets of the boundary ∂Ω , so that ΓD ∪ Γ N = ∂Ω , ΓD ∩ ΓN = ∅, n is
the unit outward normal to the boundary and ϕ̂i , ŝ1, ϕ0,ψ0 are prescribed fields.

5.8 The Non-deviatoric Planar Case: F �→ e‖ logU‖2

We consider the function W : GL+(2) → R, defined by W(F) := ̂W(U) = e‖ logU‖2
. We

have

e‖ logU‖2 = g(λ1, λ2), (5.56)

where λ1, λ2 are the singular values of U and g :R2+ →R is defined by

g(λ1, λ2)= elog2 λ1+log2 λ2 . (5.57)

27We use the definition of polyconvexity given by Ball [15] (see also [216, 220]). Polyconvexity implies
LH-ellipticity and may lead to an existence theorem based on the direct methods of the calculus of variations,
provided that proper growth conditions are satisfied [18, 20, 96, 167, 168].
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In order to check the rank-one convexity of the function F �→ e‖ logU‖2
, we will use Bu-

liga’s criterion given by Theorem 5.3. As we will need the derivatives of g, we compute:

∂g

∂λ1
= elog2 λ1+log2 λ2

2 logλ1

λ1
,

∂g

∂λ2
= elog2 λ1+log2 λ2

2 logλ2

λ2
,

∂2g

∂λ2
1

= elog2 λ1+log2 λ2

(

4 log2 λ1

λ2
1

+ 2− 2 logλ1

λ2
1

)

,

∂2g

∂λ1∂λ2
= elog2 λ1+log2 λ2

4 logλ1 logλ2

λ1λ2
,

∂2g

∂λ2
2

= elog2 λ1+log2 λ2

(

4 log2 λ2

λ2
2

+ 2− 2 logλ2

λ2
2

)

.

For our function, the matrices G(λ1, λ2) and H(λ1, λ2) from Theorem 5.3 are then

G(λ1, λ2)= 2elog2 λ1+log2 λ2

(

0 logλ1−logλ2
λ1

2−λ2
2

logλ1−logλ2
λ1

2−λ2
2 0

)

,

H(λ1, λ2)= 2elog2 λ1+log2 λ2

⎡

⎢

⎣

⎛

⎜

⎝

0
λ2 logλ1

λ1
− λ1 logλ2

λ2
λ1

2−λ2
2

λ2 logλ1
λ1

− λ1 logλ2
λ2

λ1
2−λ2

2 0

⎞

⎟

⎠

(5.58)

+
⎛

⎝

2 log2 λ1−logλ1+1
λ1

2
2 logλ1 logλ2

λ1λ2
2 logλ1 logλ2

λ1λ2

2 log2 λ2−logλ2+1
λ2

2

⎞

⎠

⎤

⎥

⎦

= 2elog2 λ1+log2 λ2

⎛

⎜

⎝

2 log2 λ1−logλ1+1
λ1

2
2 logλ1 logλ2

λ1λ2
+

λ2 logλ1
λ1

− λ1 logλ2
λ2

λ1
2−λ2

2

2 logλ1 logλ2
λ1λ2

+
λ2 logλ1

λ1
− λ1 logλ2

λ2
λ1

2−λ2
2

2 log2 λ2−logλ2+1
λ2

2

⎞

⎟

⎠ ,

respectively. The first condition of Buliga’s criterion is obviously satisfied because of
the symmetry and convexity and hence Schur-convexity of the function � : R2+ → R,

�(λ1, λ2) := g(eλ1 , eλ2)= eλ2
1+λ2

2 (see Theorem 2.5).
Hence, the energy is rank-one-convex if and only if the following inequality holds true

for all a1, a2 ∈R and for all λ1, λ2 > 0:

H11(λ1, λ2)a
2
1 + 2H12(λ1, λ2)a1a2 +H22(λ1, λ2)a

2
2 + 2G12(λ1, λ2)|a1a2| ≥ 0.

Applied to our function (and upon division by 2elog2 λ1+log2 λ2 > 0) this corresponds to

(

2 log2 λ1 − logλ1 + 1

λ1
2

)

a2
1 +

(

2 log2 λ2 − logλ2 + 1

λ2
2

)

a2
2

+
(

2 logλ1 logλ2

λ1λ2
+

λ2 logλ1
λ1

− λ1 logλ2
λ2

λ1
2 − λ2

2

)

2a1a2

+ logλ1 − logλ2

λ1
2 − λ2

2 |2a1a2| ≥ 0, ∀λ1, λ2 > 0,∀a1, a2 ∈R. (5.59)
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To see that this does not hold true, we set

λ1 = e2, λ2 = e11, a1 =−e15, a2 = e22.

Upon these choices, the inequality turns into

0≤ 2 · 22 − 2+ 1

e4
e30 + 2 · 112 − 11+ 1

e22
e44 −

(

2 · 2 · 11

e13
+ 2e9 − 11e−9

e4 − e22

)

· 2 · e37

+ 2− 11

e4 − e22
2e37

= 7e26 + 111e22 − 88e24 + 4e9 − 22e−9

e18 − 1
e33 + 18

e18 − 1
e33 ≤ 7e26 + 111e22 − 88e24

+ 4e33+9−17 + 18e16

≤ 7e26 + 4e25 + 112e22 − 88e24 = e22
(

7e4 + 4e3 + 112− 88e2
)

<−75e22,

and it is obviously not satisfied.

In view of Theorem 5.3, we conclude that F �→ e‖ logU‖2
is not rank-one convex in 2D.

Of course, this shows that F �→ e‖ logU‖2
is also not rank-one convex in 3D.

Conjecture 5.24 It seems that the function F �→ e‖ logU‖2− α
2 tr(logU)2

is

(i) not separately convex as a function of the principal stretches (which implies it is not
rank-one convex) for α > 1;

(ii) is not rank-one convex for α < 1.

If this conjecture is true, then the function F �→ e‖ logU‖2− α
2 tr(logU)2

is rank-one convex in 2D
if and only if α = 1, i.e., only for the function F �→ e‖dev2 logU‖2

.

Hence, the form of energies (1.4) may not just be an arbitrary choice, but additively split-
ting into isochoric and volumetric parts seems to be the only useful version of an additive
split in plane elasto-statics. The reason to believe that Conjecture 5.24 is true consists in
the fact that for λ1 = en and λ2 = en−3, the last inequality from Knowles and Sternberg’s
Theorem 5.1 seems to be satisfied in the limit n→∞ only if α = 1.

6 Outlook for Three Dimensions

The 3D-case is, as usual, much more involved. In this section we show that a similar cal-
culus as in 2D can be applied in principle. However, while we consider the obvious gener-
alization of the 2D result, the answer is in general negative: the necessary conditions from
Knowles and Sternberg’s Theorem 5.1 or Dacorogna’s Theorem 5.2 are not satisfied for the
energy

̂W(U)= ek‖dev3 logU‖2
. (6.1)
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This implies that this energy is not rank-one convex [165, 194]. We have already shown that

F �→ ‖dev3 logU‖2 is not rank-one convex even in the case of incompressible materials
(see Proposition 5.6 or [165], page 197).

Lemma 6.1 Let F ∈GL+(3) with singular values λ1, λ2, λ3. Then

W(F)= ̂W(U)= g(λ1, λ2, λ3),

where g :R3
+ →R, g(λ1, λ2, λ3) := e

k
3 [log2 λ1

λ2
+log2 λ2

λ3
+log2 λ3

λ1
]
. (6.2)

Proof The proof follows from relation (5.18). �

This lemma remains true in all dimension n ∈N, see Appendix A.1.

6.1 F �→ ek‖dev3 logU‖2
Is not Rank-One Convex

We begin our 3D investigation by proving that

Lemma 6.2 For all k > 0 the function

F �→ ek‖dev3 logU‖2
, F ∈GL+(3) (6.3)

is not rank-one convex.

Proof In the following we prove that two necessary conditions given by Knowles and Stern-
berg’s criterion are not satisfied for the function g defined by (6.2). Our goal is to prove that
there does not exist a number k > 0 such that the inequalities

∂2g

∂λ2
1

≥ 0,
∂2g

∂λ2
2

≥ 0,

√

∂2g

∂λ2
1

∂2g

∂λ2
2

− ∂2g

∂λ2∂λ1
+

∂g

∂λ1
+ ∂g

∂λ2

λ1 + λ2
≥ 0 (6.4)

are simultaneously satisfied. The inequalities (6.4) are equivalent to

2 k
3 e

k
3 (log2 λ1

λ2
+log2 λ3

λ1
+log2 λ2

λ3
)

λ2
1

g1(λ1, λ2, λ3)≥ 0,

2 k
3 e

k
3 (log2 λ1

λ2
+log2 λ3

λ1
+log2 λ2

λ3
)

λ2
2

g2(λ1, λ2, λ3)≥ 0,

2 k
3 e

k
3 (log2 λ1

λ2
+log2 λ3

λ1
+log2 λ2

λ3
)

λ1λ2
g3(λ1, λ2, λ3)≥ 0,

(6.5)

where

g1(λ1, λ2, λ3)= 2
k

3

(

log
λ1

λ2
− log

λ3

λ1

)2

+ log
λ3

λ1
− log

λ1

λ2
+ 2,

g2(λ1, λ2, λ3)= 2
k

3

(

log
λ1

λ2
− log

λ2

λ3

)2

+ log
λ1

λ2
− log

λ2

λ3
+ 2,
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g3(λ1, λ2, λ3)= 2
k

3

(

log
λ3

λ1
log

λ2

λ3
+ 2 log2 λ1

λ2

)

+ 1+ λ2(log λ1
λ2
− log λ3

λ1
)

λ1 + λ2
+ λ1(log λ2

λ3
− log λ1

λ2
)

λ1 + λ2

+2
k

3

√

[(

log
λ1

λ2
− log

λ2

λ3

)2

+ log
λ1

λ2
− log

λ2

λ3
+ 2

][(

log
λ1

λ2
− log

λ3

λ1

)2

− log
λ1

λ2
+ log

λ3

λ1
+ 2

]

.

We compute that, for extremely large principal stretches (λ1, λ2, λ2)= (e11, e7, e−1)

g1
(

e11, e7, e−1
)= 2

(

256
k

3
− 7

)

, g2
(

e11, e7, e−1
)= 2

(

16
k

3
− 1

)

,

g3

(

e11, e7, e−1
)=−128

k

3
+ 12

1+ e4
+ 5+ 2

√

(

16
k

3
− 1

)(

256
k

3
− 7

)

,

(6.6)

and we remark that

g1

(

e11, e7, e−1
)

> 0 ⇔ k

3
>

7

256
and g2

(

e11, e7, e−1
)

> 0 ⇔ k

3
>

1

16
. (6.7)

For k
3 > 1

16 we have −5− 12
1+e4 + 128 k

3 > 0. Hence, g3(e
11, e7, e−1)≥ 0 is equivalent to

4

(

16
k

3
− 1

)(

256
k

3
− 7

)

−
(

−5− 12

1+ e4
+ 128

k

3

)2

≥ 0

⇔ −64
(

e4 − 15
)(

1+ e4
)k

3
+ e8 − 38e4 − 87≥ 0,

which is not satisfied for k
3 > 1

16 . Hence, for 0 < k ≤ 3
16 the function is not separately convex,

while for k
3 > 1

16 one of the condition (6.4)3 given by Knowles and Sternberg’s criterion is
also not satisfied. Thus, the proof is complete. �

However, the function g defined by (6.2) satisfies the Baker-Ericksen (BE) inequalities

λi
∂g

∂λi
− λj

∂g

∂λj

λi − λj

= 2
k

3
e

k
3 (log2 λi

λj
+log2 λr

λi
+log2 λj

λr
)
2 log λi

λj
− log λr

λi
− log

λj

λr

λi − λj

= 2ke
k
3 (log2 λi

λj
+log2 λr

λi
+log2 λj

λr
)

log λi

λj

λi − λj

> 0, (6.8)

for any permutation of i, j, r . Moreover,

∂2g

∂λ2
i

= 2 k
3 e

k
3 (log2 λi

λj
+log2 λr

λi
+log2 λj

λr
)

λ2
i

[

2
k

3

(

log
λr

λi

− log
λi

λj

)2

+ log
λr

λi

− log
λi

λj

+ 2

]

≥ 0

(6.9)

for any permutation of i, j, r and for all k
3 ≥ 1

16 . Thus, g is separately convex for k
3 ≥ 1

16 .
This is not in contradiction to the 2D result where k ≥ 1

4 was needed for separate convexity
since the function g in 2D is not obtained by choosing λ3 = 1 in the 3D expression of the
function g.
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It is easy to see that the condition

∂2g

∂λ2
1

≥ 0,
∂2g

∂λ2
2

≥ 0,

√

∂2g

∂λ2
1

∂2g

∂λ2
2

+mε
12 ≥ 0 (6.10)

from Dacorogna’s criterion (Theorem 5.2) are also not simultaneously satisfied for the val-
ues considered in (6.6). Let us recall that for ε1, ε2 ∈ {±1}

mε
12 = ε1ε2

∂2g

∂λ1∂λ2
+

∂g

∂λ1
− ε1ε2

∂g

∂λ2

λ1 − ε1ε2λ2
if λ1 �= λ2 or ε1ε2 �= 1. (6.11)

We choose ε1 = 1 and ε2 =−1. For these values, the inequalities (6.11) become

∂2g

∂λ2
1

≥ 0,
∂2g

∂λ2
2

≥ 0,

√

∂2g

∂λ2
1

∂2g

∂λ2
2

− ∂2g

∂λ1∂λ2
+

∂g

∂λ1
+ ∂g

∂λ2

λ1 + λ2
≥ 0. (6.12)

We remark that the conditions (6.10) are in fact equivalent to the inequalities (6.4) from
Knowles and Sternberg’s criterion, and they cannot be simultaneously satisfied for the values
defined in (6.6).

Moreover, direct and similar calculations as above give:

Remark 6.3

• The function

g :R3
+ →R, g(λ1, λ2, λ3) := e

k
3

[

log2 λ1
λ2
+log2 λ2

λ3
+log2 λ3

λ1

]

+ κ

2
e
̂k log2(λ1λ2λ3) (6.13)

does not satisfy the inequalities from Knowles and Sternberg’s criterion because it does
not even satisfy Zubov’s criterion for incompressible elastic materials as we prove in the
next subsection.

• While we have shown ellipticity of F �→ ek‖dev2 logU‖2
, we cannot infer (and it does

not hold) that F �→ ek‖dev3 logU‖2
, evaluated and restricted to plane strain deformation

(λ1, λ2,1) is elliptic.

Motivated by the preceding negative development, we were inclined to try other, similar
Hencky type energies as candidates for an overall elliptic formulation. However:

• The function g :R3+ →R, g(λ1, λ2, λ3) := e
k
3 log2 λ1

λ2 +e
k
3 log2 λ2

λ3 +e
k
3 log2 λ3

λ1 does not satisfy
the inequalities from Knowles and Sternberg’s criterion.

• The function g : R3+ → R, g(λ1, λ2, λ3) := μ(e
k
3 log2 λ1

λ2 + e
k
3 log2 λ2

λ3 + e
k
3 log2 λ3

λ1 ) +
κ
2 e

̂k log2(λ1λ2λ3) does not satisfy the inequalities from Knowles and Sternberg’s criterion
because it does not satisfy Zubov’s criterion for incompressible elastic materials.

• The function g :R3+ →R, g(λ1, λ2, λ3) := μ(ek log2 λ1+ek log2 λ2+ek log2 λ3)+ κ
2 e

̂k log2(λ1λ2λ3)

does not satisfy the inequalities from Knowles and Sternberg’s criterion.

6.2 The Ideal Nonlinear Incompressible Elasticity Model

Whereas ek‖dev3 logU‖2
is not rank-one convex on GL+(3), one might hope that perhaps its

restriction to SL(3) might be rank-one convex. In the following, for simplicity, we consider
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only the case k = 1. Thus, a first open problem is if the following energy W :GL+(3)→R+,

W(F)=
{

e‖dev3 logU‖2
if detF = 1,

+∞ if detF �= 1,
(6.14)

is rank-one convex. To this aim, we use Zubov’s Theorem 5.5 to show that this energy is
not even rank-one-convex on SL(3). According to (6.2), we check the conditions of this
theorem for the function defined by (6.2). The answer is negative as can be seen by the
counterexample

λ1 = e4, λ2 = e−4, λ3 = 1, λ1λ2λ3 = 1. (6.15)

For these values we will prove that the condition
√

δ1δ2 + ε3 > 0, (6.16)

from Zubov’s Theorem 5.5 is not satisfied. Let us recall that

β1 = ∂2g

∂λ2
1

, β2 = ∂2g

∂λ2
2

, β3 = ∂2g

∂λ2
3

, γ−
1 =− ∂2g

∂λ2∂λ3
+

∂g

∂λ2
+ ∂g

∂λ3

λ2 + λ3
,

γ−
2 =− ∂2g

∂λ1∂λ3
+

∂g

∂λ1
+ ∂g

∂λ3

λ1 + λ3
, γ+

3 = ∂2g

∂λ1∂λ2
+

∂g

∂λ1
− ∂g

∂λ2

λ1 − λ2
,

δ1 = β2λ
2
2 + β3λ

2
3 + 2γ−

1 λ2λ3, δ2 = β3λ
2
3 + β1λ

2
1 + 2γ−

2 λ3λ1,

ε3 = β3λ
2
3 + γ+

3 λ1λ2 + γ−
1 λ3λ2 + γ−

2 λ3λ1.

In view of (6.2), we have

βi =
2
3 e

1
3

(

log2 λi
λj
+log2 λr

λi
+log2 λj

λr

)

λ2
i

[

2

3

(

log
λr

λi

− log
λi

λj

)2

+ log
λr

λi

− log
λi

λj

+ 2

]

, (6.17)

for any permutation of i, j, r . Moreover, we have

γ−
1 = 2e

1
3

(

log2 λ1
λ2
+log2 λ3

λ1
+log2 λ2

λ3

)

9λ2λ3(λ2 + λ3)

[

log
λ3

λ1

(

2(λ2 + λ3)

(

log
λ1

λ2
− log

λ2

λ3

)

+ 3λ2

)

−
(

2(λ2 + λ3) log
λ2

λ3
+ 3λ3

)(

log
λ1

λ2
− log

λ2

λ3

)

+ 3

(

λ2

(

− log
λ2

λ3

)

+ λ2 + λ3

)]

,

γ−
2 = 2e

1
3

(

log2 λ1
λ2
+log2 λ3

λ1
+log2 λ2

λ3

)

9λ1λ3(λ1 + λ3)

[

log
λ3

λ1

(

3(λ1 − λ3)− 2(λ1 + λ3)

(

log
λ2

λ3
− log

λ3

λ1

))

+ log
λ1

λ2

(

2(λ1 + λ3)

(

log
λ2

λ3
− log

λ3

λ1

)

+ 3λ3

)

(6.18)

+ 3

(

λ1

(

− log
λ2

λ3

)

+ λ1 + λ3

)]

,
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γ+
3 =−2e

1
3

(

log2 λ1
λ2
+log2 λ3

λ1
+log2 λ2

λ3

)

9λ1λ2(λ1 − λ2)

[

− log
λ1

λ2

(

2(λ1 − λ2)

(

log
λ3

λ1
+ log

λ2

λ3

)

+ 3(λ1 + λ2)

)

+ 3

(

λ2 log
λ3

λ1
+ λ1 − λ2

)

+ log
λ2

λ3

(

2(λ1 − λ2) log
λ3

λ1
+ 3λ1

)

+ 2(λ1 − λ2) log2 λ1

λ2

]

.

By direct substitution we deduce

β1

(

e4, e−4,1
)= 172e24

3
, β2

(

e4, e−4,1
)= 220e40

3
, β3

(

e4, e−4,1
)= 4e32

3
,

γ−
1

(

e4, e−4,1
)= 2

3

(

1− 12

1+ 1
e4

)

e36, γ−
2

(

e4, e−4,1
)= 2e28(13+ e4)

3(1+ e4)
,

γ+
3

(

e4, e−4,1
)= 2e32(109− 85e8)

3(e8 − 1)
, δ1

(

e4, e−4,1
)= 4e32(19+ 15e4)

1+ e4
,

δ2

(

e4, e−4,1
)= 4e32(19+ 15e4)

1+ e4
, ε3

(

e4, e−4,1
)= 2e32(31+ 8e4 − 31e8)

e8 − 1
,

and

√

δ1

(

e4, e−4,1
)

δ2

(

e4, e−4,1
)+ ε3

(

e4, e−4,1
)=−2e32(7− 16e4 + e8)

e8 − 1
< 0. (6.19)

This means that the necessary and sufficient conditions from Zubov’s Theorem 5.5 are not
satisfied. Hence, we conclude

Proposition 6.4 The function F �→ e‖dev3 logU‖2
is not rank-one convex on SL(3).

6.3 Rank-One Convexity Domains for the Energy F �→ ek‖dev3 logU‖2

The understanding of loss of ellipticity may become important for severe strains and stresses
at crack tips. The analysis in this subsection is motivated by the results established by Bruhns
et al. [39, 40] (see also [92, 127] in order to compare the domains of ellipticity obtained
in nonlinear elastostatics for a special material),28 in which it is proved that the quadratic
Hencky strain energy function WH with non-negative Lamé constants, μ,λ > 0, fulfils the
Legendre-Hadamard condition for all principal stretches with

λi ∈
[

0.21162 . . . , 3
√

e
]= [0.21162 . . . ,1.39561 . . .]. (6.20)

The LH-ellipticity of the quadratic Hencky strain energy function WH for all principal
stretches in this cube [0.21162 . . . ,1.39561 . . .]3 implies (see Remark 5.14) that the ex-
ponentiated energy eWH is also LH-elliptic for all principal stretches in this box and for
non-negative Lamé constants μ,λ > 0.

28For this special material the energy is elliptic for ρ <
λ1
λ2

< 1
ρ , ρ = 2−√3= 0.268.
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Let us first remark that the function g :R3+ →R, g(λ1, λ2, λ3) := e
k
3 [log2 λ1

λ2
+log2 λ2

λ3
+log2 λ3

λ1
]

corresponding to our energy F �→ ek‖dev3 logU‖2
is invariant under scaling:29

g(aλ1, aλ2, aλ3)= g(λ1, λ2, λ3), for all a > 0. (6.21)

In fact, we have:

Remark 6.5 All functions F �→W(F)=W1(‖dev3 logU‖2) are invariant under the scaling:
F �→ aF , a > 0.

Let us consider the substitution (˜λ1,˜λ2,˜λ3) = (aλ1, aλ2, aλ3), for all a > 0. For the
derivatives, we deduce

∂

∂˜λi

g(˜λ1,˜λ2,˜λ3)= 1

a

∂

∂λi

g(λ1, λ2, λ3),

∂2

∂˜λi∂˜λj

g(˜λ1,˜λ2,˜λ3)= 1

a2

∂2

∂λi∂λj

g(λ1, λ2, λ3).

(6.22)

Hence, for the function g corresponding to our energy F �→ ek‖dev3 logU‖2
, the inequalities in

Dacorogna’s criterion are also invariant under scaling. More generally:

Remark 6.6

(i) Let F �→ W(F) = W1(‖dev3 logU‖2) be a function on GL+(3). Then, the inequali-
ties in Dacorogna’s criterion in terms of the corresponding function g : R+ → R are
invariant under scaling.

(ii) For all functions F �→W(F) (for instance for functions F �→W(F) =Wiso(
F

detF 1/3 ))
which are invariant under scaling, the inequalities in Dacorogna’s criterion in terms of
the corresponding function g :R+ →R are invariant under scaling.

Therefore, if the function g does not satisfy the requested inequalities in Dacorogna’s
criterion in a point (λ

(0)

1 , λ
(0)

2 , λ
(0)

3 ), then it also does not satisfy them in the point
(˜λ

(0)

1 ,˜λ
(0)

2 ,˜λ
(0)

3 ) = (aλ
(0)

1 , aλ
(0)

2 , aλ
(0)

3 ) for arbitrary a > 0. In the following we will exploit
this insight.

In the previous subsections we have proved that there exists a point in which the function
F �→ e‖dev3 logU‖2

looses the LH-ellipticity, namely in

λ
(0)

1 = e11, λ
(0)

2 = e7, λ
(0)

3 = e−1 (6.23)

for compressible materials and in

λ
(0)

1 = e4, λ
(0)

2 = e−4, λ
(0)

3 = 1 (6.24)

in the case of incompressible materials. In view of the scaling invariance discussed above,
we have

Lemma 6.7 If the function g : R3+ → R, g(λ1, λ2, λ3) := e
k
3 [log2 λ1

λ2
+log2 λ2

λ3
+log2 λ3

λ1
]

is not el-

liptic in a point P (0) = (λ
(0)

1 , λ
(0)

2 , λ
(0)

3 ), then it is not elliptic in all points P (λ1, λ2, λ3),

29This means ek‖dev3 log(aU)‖2 = ek‖dev3 logU‖2
for all a > 0.
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Fig. 16 F �→ ek‖dev3 logU‖2
is

not LH-elliptic in the domain
(0, y)× (0, y)× (0, y), y > 0

(λ1, λ2, λ3) �= (0,0,0) belonging to the line OP (0), where O = (0,0,0). In other words, the
ellipticity domain is invariant under scaling.

More general:

Remark 6.8 Let F �→ W(F) be an invariant under scaling function (for instance F �→
W(F)=Wiso(

F

detF 1/3 ) or F �→W(F)=W1(‖dev3 logU‖2)) defined on GL+(3). If the cor-

responding function g : R3+ → R is not elliptic in a point P (0) = (λ
(0)

1 , λ
(0)

2 , λ
(0)

3 ), then it is
not elliptic in all points P (λ1, λ2, λ3), (λ1, λ2, λ3) �= (0,0,0) belonging to the line OP (0),
where O = (0,0,0). In other words, the ellipticity domain of a function invariant under
scaling function will be invariant under scaling.

Proposition 6.9 The energy F �→ e‖dev3 logU‖2
, F ∈ GL+(3) cannot be LH-elliptic in any

cube like domain (0, y)× (0, y)× (0, y), y > 0.

Proof If the point P (0) = (λ
(0)

1 , λ
(0)

2 , λ
(0)

3 ) given by (6.23) belongs to the domain (0, y) ×
(0, y) × (0, y) then we have nothing more to prove. If P (0)(λ

(0)

1 , λ
(0)

2 , λ
(0)

3 ) /∈ (0, y) ×
(0, y)× (0, y), then there is a point P (λ1, λ2, λ3), (λ1, λ2, λ3) �= (0,0,0) belonging to the
line OP and P (λ1, λ2, λ3) ∈ (0, y) × (0, y) × (0, y) (see Fig. 16). For instance the point
( λ

(0)
1
a

,
λ
(0)
2
a

,
λ
(0)
3
a

)

, where a > maxi=1,2,3

{ λ
(1)
i

y

}

. In view of Lemma 6.7 the proof is complete. �

Proposition 6.10 The energy F �→ e‖dev3 logU‖2
, F ∈GL+(3) is not LH-elliptic in any cube

like domain (x,∞)× (x,∞)× (x,∞), x > 0.

Proof The proof is similar to the proof of the previous proposition, because for b <

mini=1,2,3
{ λ

(0)
i

x

}

, the point
( λ

(0)
1
b

,
λ
(0)
2
b

,
λ
(0)
3
b

) ∈ OP belongs also to the domain (x,∞) ×
(x,∞)× (x,∞) (see Fig. 17). �

We already can prove this more general result:

Proposition 6.11 Let F �→W(F) be a function defined on GL+(3) which is invariant un-
der scaling. If the corresponding function g : R3+ → R is not elliptic in a point P (0) =
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Fig. 17 F �→ ek‖dev3 logU‖2
is

not LH-elliptic in the domain
(x,∞)× (x,∞)× (x,∞), x > 0

(λ
(0)

1 , λ
(0)

2 , λ
(0)

3 ), then there are no cube-like domains (0, y)3, y > 0, or (x,∞)3, x > 0, on
which g is elliptic.

On the other hand, the energy F �→ ek‖dev3 logU‖2
is invariant under inversion,30 i.e.,

ek‖dev3 logU‖2 = ek‖dev3 logU−1‖2 ⇔ g(λ1, λ2, λ3)= g

(

1

λ1
,

1

λ2
,

1

λ3

)

,

for all (λ1, λ2, λ3) ∈R
3
+. (6.25)

However, Dacorogna’s ellipticity criterion is not invariant under inversion. This is the reason
why Proposition 6.10 does not follow directly from Proposition 6.9 using the invariance
under inversion.

Remark 6.12 Looking back to the quadratic Hencky energy F �→WB(F ) := ‖dev3 logU‖2

considered by Bruhns et al. [262]31 and to the corresponding function gB : R3+ → R,
gB(λ1, λ2, λ3) := 1

3

[

log2 λ1
λ2
+ log2 λ2

λ3
+ log2 λ3

λ1

]

, we remark:

• gB is separately convex (see Proposition 5.9 and Corollary 5.10) only for those U such
that the eigenvalues μ1,μ2,μ3 of dev3 logU are smaller than 2

3 , i.e, if and only if the
eigenvalues λ1, λ2, λ3 of U are such that

λ2
1 ≤ e2λ2λ3, λ2

2 ≤ e2λ3λ1, λ2
3 ≤ e2λ1λ2. (6.26)

• gB always satisfies the BE-inequalities.
• Numerical computations give us reasons to believe that there exists a number aB > 0 such

that F �→ ‖dev3 logU‖2 is LH-elliptic in the domain (invariant under scaling)

˜E
(

WB,LH,U,
4

3

)

:=
{

U ∈ PSym(3)|‖dev3 logU‖2 < aB <
4

3

}

.

30The invariance under inversion of an energy W is the tension-compression symmetry W(F)=W(F−1).
31Hutchinson and Neale [116] have considered the energy ‖dev3 logU‖N for 0 < N ≤ 1.
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Fig. 18 A section along the first
diagonal along the line
containing the origin O and 1 of
the LH-ellipticity domain of the
energy function

F �→ e‖dev3 logU‖2
if it is

LH-elliptic in a box
(x, y)× (x, y)× (x, y)

• The results already obtained in [39] cannot be used for the energy WB(F )= ‖dev3 logU‖2

= ‖ logU‖2 − 1
3 [tr(logU)]2, because they are applicable only for energies WH(F ) =

μ‖ logU‖2 + λ
2 [tr(logU)]2 for which μ,λ≥ 0.

Remark 6.13 As expected, the above properties are improved by considering the exponen-
tiated Hencky energy F �→ W(F) = ek‖dev3 logU‖2

. The corresponding function g : R3+ →
R, g(λ1, λ2, λ3) := e

k
3

[

log2 λ1
λ2
+log2 λ2

λ3
+log2 λ3

λ1

]

is such that:

• g is separately convex everywhere if k > 3
16 .

• g always satisfies the BE-inequalities.
• Numerical computations give us reasons to believe that there is a number a > 0, a > 4

3 >

aB > 0, such that F �→ ek‖dev3 logU‖2
is LH-elliptic in the domain ‖dev3 logU‖2 < a. The

approximative value which we observed is a = 27, i.e., U ∈ E(WeH,LH,U,27), where

E
(

W iso
eH ,LH,U,27

) := {

U ∈ PSym(3)|‖dev3 logU‖2 ≤ 27
}

. (6.27)

Of course, E(W iso
eH ,LH,U,27) contains a neighborhood of 1. Rephrasing the remark

of Ogden [182, page 409], “the question whether a constitutive inequality [LH, TSS-I,
TSTS-M, BSTS, BSS, etc.] holds for all deformations of a compressible solid is open.
The applicability of elastic theory outside [a bounded domain in stretch space] is itself
questionable because, for example, there may exist yield surfaces beyond which perma-
nent deformation occurs.”

Remark 6.14 The major open problems in this respect are:

• Do there exist numbers x, y > 0 such that the energy function F �→ e‖dev3 logU‖2
is LH-

elliptic in (x, y)× (x, y)× (x, y) and 1 ∈ (x, y)× (x, y)× (x, y)? If true, then in view of
Lemma 6.7 the function F �→ e‖dev3 logU‖2

is LH-elliptic in the domain given by Fig. 18.
In the three-dimensional representation it is a cone with the angle in the origin.

• Is the function F �→ e‖dev3 logU‖2
elliptic in a ball containing 1? If true, then in view of

Lemma 6.7 the function F �→ e‖dev3 logU‖2
is LH-elliptic in the domain given by Fig. 19.

In the two-dimensional representation this domain is a corner domain but in the three-
dimensional representation it is the interior of an infinite cone (not necessarily circular)
with the angle in the origin (see Fig. 20).

• In fact it is enough to check where the energy function F �→ e‖dev3 logU‖2
looses the ellip-

ticity in all planes λi = 1, meaning planes πi containing the point (1,1,1) and orthogonal
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Fig. 19 A section along the first
diagonal along the line
containing the origin O and 1 of
the LH-ellipticity domain of the
energy function

F �→ e‖dev3 logU‖2
if it is

LH-elliptic in a ball

Fig. 20 A section along the first
diagonal along the line
containing the origin O and 1 of
the domain ‖dev3 logU‖2 < 1.
This indicates that, similar to
TSTS-M+, ellipticity might be
controlled by the distortional
energy

to the axes Oλi , respectively. In view of the symmetry in λi , it is enough to see what
happens in the plane π1 : λ1 = 1.

7 Summary and Open Problems

To summarize, in the present paper:

• We have proved that the planar exponentiated Hencky strain energy function

F �→WeH(F ) := ̂WeH(U) : =
{ μ

k
ek‖dev2 logU‖2 + κ

2̂k
e
̂k(tr(logU))2

if detF > 0,

+∞ if detF ≤ 0
(7.1)

is rank-one convex for μ > 0, κ > 0, k ≥ 1
4 and ̂k ≥ 1

8 ;
• We have shown that the exponentiated volumetric energy function

F �→ κ

2̂k
e
̂k(tr(logU))2

, F ∈GL+(n) (7.2)

is rank-one convex w.r.t. F for the volumetric strain parameter̂k ≥ 1
m(m+1) . (m= 2 :̂k ≥ 1

8 ,

m= 3 :̂k ≥ 1
81 );
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• We have shown that for all distortional strain stiffening parameters k > 0 the energy func-
tion

F �→ μ

k
ek‖dev3 logU‖2

, F ∈GL+(3) (7.3)

is not rank-one convex;
• Numerical tests suggest that the LH-ellipticity domain of the distortional energy func-

tion F �→ μ

k
ek‖dev3 logU‖2

, F ∈ GL+(3), with k ≥ 3
16 (the necessary condition for separate

convexity (SC) of ek‖dev3 logU‖2
in 3D) is an extremely large cone

E(WeH,LH,U,27)= {

U ∈ PSym(3)|‖dev3 logU‖2 < 27
}; (7.4)

• We have proved that the energy function

F �→ μ

k
ek‖ logU‖2

, F ∈GL+(n), n= 2,3 (7.5)

is not rank-one convex;
• We have shown that the true-stress-true-strain relation is invertible for the family of ener-

gies WeH;
• The monotonicity of the Cauchy stress tensor, as a function of logV , for our family of

exponentiated Hencky energies is true in certain domains of bounded distortions

E
(

WeH,TSTS-M+, τeH,
2

3
σ 2

y

)

:=
{

τ ∈ Sym(3)|‖dev3 τ‖2 ≤ 2

3
σ 2

y

}

, (7.6)

superficially similar to the observed ellipticity domains E(WeH,TSTS-M+, τeH, 2
3 σ 2

y);
• For all exponentiated energies KSTS-M+, KSTS-I, TSTS-I, TSS-I conditions are satisfied

everywhere;
• For n= 3 among the family WeH we have singled out a special (k = 2

3
̂k) three parameter

subset

W
�
eH(logV )= 1

2k

{

E

1+ ν
ek‖dev3 logV ‖2 + E

2(1− 2ν)
e

2
3 k(tr(logV ))2

}

such that uniaxial tension leads to no lateral contraction if and only if ν = 0, as in linear
elasticity.

In forthcoming papers [170, 171, 177] our geodesic invariants

“the magnitude-of-dilatation”: K2
1 =

∣

∣tr(logU)
∣

∣

2 = | log detU |2
= | log detV |2 = | log detF |2,

“the magnitude-of-distortion”: K2
2 = ‖dev3 logU‖2 = ‖dev3 logV ‖2,

as basic ingredients of idealized isotropic strain energies will be motivated in detail. As
already stated in the introduction, it can be shown that [170, 171, 177]

dist2
geod

(

(detF)1/n · 1,SO(n)
)= dist2

geod,R+·1
(

(detF)1/n · 1,1
)

= | log detF |2 = ˜W vol
H (detU),
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dist2
geod

(

F

(detF)1/n
,SO(n)

)

= dist2
geod,SL(n)

(

F

(detF)1/n
,SO(n)

)

= ‖devn logU‖2 = ˜W iso
H

(

U

detU 1/n

)

,

where dist2
geod,R+·1 and dist2

geod,SL(n) are the canonical left invariant geodesic distances on the
Lie-group SL(n) and on the group R+ ·1, respectively (see [170, 171, 177]). For this inves-
tigation new mathematical tools had to be discovered [132, 177] also having consequences
for the classical polar decomposition [118, 119].

Hence, using this terminology, in the present paper we have shown rank-one convexity
of

WeH(F ) := μ

k
e

k dist2geod,SL(2)
( F

detF1/2 ,SO(2)) + κ

2̂k
e
̂k dist2geod,R+·1(detF 1/2·1,SO(2))

. (7.7)

Our WeH formulation ignores at first sight yield surfaces and other aspects of a theory
of plasticity. Yet, our investigation on the ellipticity conditions in 3D suggests a relation
between loss of ellipticity conditions and permanent deformations [173].

Let us finish this paper with some conjectures stemming from our unsuccessful attempts
in this direction:

Conjecture 7.1 For n=2,3 the energy F �→ μ

k
ek‖devn logU‖2

, k > 3
16 is rank-one convex in a

set which contains the large cone

E(WeH,LH,U,27)= {

U ∈ PSym(3)|‖dev3 logU‖2 < 27
}

. (7.8)

Moreover, it would be interesting to know the rank-one convex and quasiconvex envelope
of the energy F �→ μ

k
ek‖devn logU‖2

, k > 3
16 .

Conjecture 7.2 For n= 3 there is no elastic energy expression

W =W
(

K2
2

)=W
(‖dev3 logU‖2

)

(7.9)

such that F �→W(‖dev3 logU‖2) is Legendre-Hadamard elliptic in GL+(3), i.e., over the
entire deformation range.

Conjecture 7.3 For n= 2,3 there is no elastic energy expression

W =W
(

K2
2

)=W
(‖devn logU‖2

)

(7.10)

such that F �→W(‖devn logU‖2) satisfies the TSTS-M+ condition in GL+(n), i.e., over the
entire deformation range.

A further open problem is to find an energy F �→W(‖dev3 logU‖2, [tr(logU)]2) such
that the BSS-I condition is satisfied. In a future contribution we will discuss the application
of the family WeH(F ) to the description of large strain rubber elasticity for Treloar’s classical
data.
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Appendix

A.1 Some Useful Identities

• tr(B−1XB)= tr(X) for any invertible matrix B .
• devn(B

−1XB)= B−1XB − 1
n

tr(B−1XB)= B−1(devn X)B for any invertible matrix B .
• ‖devn X‖2 = ‖X − 1

n
trX · 1‖2 = ‖X‖2 + 1

n2 (trX)2‖1‖2 − 2
n

trX〈X,I 〉 = ‖X‖2 −
1
n
(trX)2.

• The norm of the deviator in R
n×n:

∥

∥

∥

∥

∥

∥

∥

∥

∥

devn

⎛

⎜

⎜

⎜

⎝

ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...

0 0 · · · ξn

⎞

⎟

⎟

⎟

⎠

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=
n

∑

i=1

ξ 2
i −

1

n

(

n
∑

i=1

ξi

)2

= n− 1

n

n
∑

i=1

ξ 2
i −

2

n

n
∑

i,j=1,i<j

ξiξj

= 1

n

[

(n− 1)

n
∑

i=1

ξ 2
i − 2

n
∑

i,j=1,i<j

ξiξj

]

(A.1)

= 1

n

n
∑

i,j=1,i<j

(

ξ 2
i − 2ξiξj + ξ 2

j

)= 1

n

n
∑

i,j=1,i<j

(ξi − ξj )
2.

• From [165, page 200] we have: ‖X‖p
zα is convex in (X, z) if α+1

α
≥ p

p−1 ⇔ p ≥ α + 1.
• logU =∑n

i=1 logλiNi ⊗Ni , where Ni are the eigenvectors of U and λi are the eigenval-
ues of U .

• logU = (U − 1)− 1
2 (U − 1)2 + 1

3 (U − 1)3 − · · · , convergent for ‖U − 1‖< 1.
• logV =∑n

i=1 loĝλi
̂Ni ⊗ ̂Ni , where ̂Ni are the eigenvectors of V and̂λi are the eigenval-

ues of V .
• logV = (V − 1)− 1

2 (V − 1)2 + 1
3 (V − 1)3 − · · · , convergent for ‖V − 1‖< 1.

•
(

F11 F12

F21 F22

)−1

= 1

F11F22 − F12F21

(

F22 −F12

−F21 F22

)

⇒ ‖F−1‖2 n=2= 1

(detF)2
‖F‖2.

•

F =
(

F11 F12

F21 F22

)

, U 2 = FT F =
(

F 2
11 + F 2

21 F11F12 + F21F22

F11F12 + F21F22 F 2
12 + F 2

22

)

.
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The eigenvalues of U 2 are:

μ1 = 1

2

(

F 2
11 + F 2

12 + F 2
21 + F 2

22 −
√

(

F 2
11 + F 2

12 + F 2
21 + F 2

22

)

2 − 4(F12F21 − F11F22)2
)

= 1

2

(‖F‖2 −
√

‖F‖4 − 4(detF)2
)

,

μ2 = 1

2

(

F 2
11 + F 2

12 + F 2
21 + F 2

22 +
√

(

F 2
11 + F 2

12 + F 2
21 + F 2

22

)

2 − 4(F12F21 − F11F22)2
)

= 1

2

(‖F‖2 +
√

‖F‖4 − 4(detF)2
)

.

The principal stretches of F , i.e., the eigenvalues of U =√FT F , which are the same as
the eigenvalues of V =√FFT , are λ1(F )=√μ1, λ2(F )=√μ2.

• Taking the pure stretch under shear stress F1 =
(

cosh t
2 sinh t

2 0

sinh t
2 cosh t

2 0
0 0 1

)

and the simple glide

F2 =
(

1 t 0
0 1 0
0 0 1

)

, the corresponding rates L1(t) = d
dtF1 · F−1

1 �= d
dtF2 · F−1

2 = L2(t) are dif-

ferent, as is logU1(t) �= log
√

FT
2 F2 = logU2(t) and d

dt logU1 �= d
dt logU2(t). However,

D1(t)= symL1(t)= symL2(t)=D2(t). This shows that d
dt logU(t)=D(t) is true only

for coaxial families U(t).

A.2 Vallée’s Formula

Lemma A.1 (Vallée’s formula32 (see also [130, 210, 256, 257])) Let us consider S ∈
Sym(3) and let Ψ : Sym(3) → R be a differentiable isotropic scalar value function. We
define W(S)= Ψ (exp(S)). Then, the following chain rules hold:

DS

[

Ψ
(

exp(S)
)]= exp(S) ·DΨ

(

exp(S)
)

, DSW(S)=DΨ
(

exp(S)
) · exp(S),

DCΨ (C)=DW(logC) ·C−1, C ·DCΨ (C)=DW(logC),
(A.2)

while it is generally not true that DC[logC].H = 〈C−1,H 〉.

Proof Let us first remark that

exp(X+H)

= 1+ (X+H)+ 1

2
(X+H)2 + 1

6
(X+H)3 + · · ·

= 1+ (X+H)+ 1

2

(

X2 +XH +HX+H 2
)

+ 1

6

(

X3 +XHX+HXX+H 2X+X2H +XH 2 +HXH +H 3
)+ · · ·

32In [257] Vallée et al. have given a proof without using a Taylor expansion.
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= 1+X+ 1

2
X2 + 1

6
X3 + · · · +H + 1

2
(XH +HX)+ 1

6
(XXH +XHX+HXX)

= exp(X)+H + 1

2
(XH +HX)+ 1

6
(XXH +XHX+HXX)+ · · ·

︸ ︷︷ ︸

D(exp(X)).H

. (A.3)

Further we consider the Taylor expansion of the function Ψ (exp(S))

Ψ
(

exp(S +H)
)

= Ψ
(

exp(S)+D
(

exp(S)
)

.H + · · · )

= Ψ
(

exp(S)
)+ 〈

DΨ
(

exp(S)
)

,D
(

exp(S)
)

.H
〉+ · · ·

= Ψ
(

exp(S)
)+

〈

DΨ
(

exp(S)
)

,H + 1

2
(SH +HS)

〉

+
〈

DΨ
(

exp(S)
)

,
1

6
(SSH + SHS +HSS)+ · · ·

〉

+ · · ·

= Ψ
(

exp(S)
)+ 〈

DΨ
(

exp(S)
)

,H
〉+ 1

2

〈

DΨ
(

exp(S)
)

, SH +HS
〉

+ 1

6

〈

DΨ
(

exp(S)
)

, SSH + SHS +HSS
〉+ · · ·

= Ψ
(

exp(S)
)+ 〈

DΨ
(

exp(S)
)

,H
〉+ 1

2

[〈

ST DΨ
(

exp(S)
)

,H
〉+ 〈

DΨ
(

exp(S)
)

ST ,H
〉]

+ 1

6

[

ST ST
〈

DΨ
(

exp(S)
)

,H
〉+ 〈

ST DΨ
(

exp(S)
)

ST ,H
〉

+ 〈

DΨ
(

exp(S)
)

ST ST ,H
〉]+ · · · . (A.4)

Since S ∈ Sym(3), it follows

Ψ
(

exp(S +H)
)= Ψ

(

exp(S)
)+ 〈

DΨ
(

exp(S)
)

,H
〉

+ 1

2

[〈

SDΨ
(

exp(S)
)

,H
〉+ 〈

DΨ
(

exp(S)
)

S,H
〉]

+ 1

6

[

SS
〈

DΨ
(

exp(S)
)

,H
〉+ 〈

SDΨ
(

exp(S)
)

S,H
〉

+ 〈

DΨ
(

exp(S)
)

SS,H
〉]+ · · · . (A.5)

On the other hand, since DΨ is a isotropic tensor function and obvious exp(S) is also
isotropic, we have that DΨ (exp(S)) is also a isotropic tensor function and therefore it holds

DΨ
(

exp(S)
) · S = S ·DΨ

(

exp(S)
)

. (A.6)

Therefore,

Ψ
(

exp(S +H)
)

= Ψ
(

exp(S)
)+ 〈

DΨ
(

exp(S)
)

,H
〉+ 〈

DΨ
(

exp(S)
)

S,H
〉
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+ 1

2

〈

DΨ
(

exp(S)
)

S2,H
〉+ · · ·

= Ψ
(

exp(S)
)+

〈

DΨ
(

exp(S)
)

[

1+ S + 1

2
S2 + · · ·

]

,H

〉

= Ψ
(

exp(S)
)+ 〈

DΨ
(

exp(S)
) · exp(S),H

〉

. (A.7)

Using again the isotropy of DΨ (exp(S)), we obtain

Ψ
(

exp(S +H)
)= Ψ

(

exp(S)
)+ 〈

exp(S) ·DΨ
(

exp(S)
)

,H
〉+ · · · . (A.8)

We recall that we simultaneously have

Ψ
(

exp(S +H)
)= Ψ

(

exp(S)
)+ 〈

DSΨ
(

exp(S)
)

,H
〉+ · · · , (A.9)

for all H ∈ Sym(3). Thus, we deduce

〈

DSΨ
(

exp(S)
)

,H
〉= 〈

exp(S) ·DΨ
(

exp(S)
)

,H
〉

,

〈

DSW(S),H
〉= 〈

exp(S) ·DΨ
(

exp(S)
)

,H
〉

.
(A.10)

Choosing S = logC, the relations (A.2)3 also results and the proof is complete. �

A.3 LH-Ellipticity for Functions of the Type F �→ h(detF)

We consider a function h : R→ R and we analyze when the function F �→ h(detF) is
LH-elliptic as a function of F , F ∈R

3×3. We recall that

D(detF).H = detF · tr(HF−1
)= 〈CofF,H 〉. (A.11)

Using the first Frechét-formal derivative, we compute the derivative

D
(

h(detF)
)

.(H,H)= h′(detF) · 〈CofF,H 〉, (A.12)

and the second derivative will be

D2
(

h(detF)
)

.(H,H)

= h′′(detF) · 〈CofF,H 〉2 + h′(detF)
〈

D(CofF).H,H
〉

= h′′(detF) · 〈CofF,H 〉2 + h′(detF)
{〈〈CofF,H 〉F−T ,H

〉

+ detF
〈−F−T HT F−T ,H

〉}

,

= h′′(detF) · 〈CofF,H 〉2 + h′(detF)detF
{〈

F−T ,H
〉2

− 〈

F−T HT F−T ,H
〉}

. (A.13)

Hence, for ξ, η ∈R
3 we have

D2
(

h(detF)
)

.(ξ ⊗ η, ξ ⊗ η))

= h′′(detF) · 〈CofF, (ξ ⊗ η)
〉2 + h′(detF)detF

{〈

F−T , (ξ ⊗ η)
〉2
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− 〈

F−T (ξ ⊗ η)T F−T , (ξ ⊗ η)
〉}

. (A.14)

On the other hand

〈

F−T , (ξ ⊗ η)
〉2 − 〈

F−T (ξ ⊗ η)T F−T , (ξ ⊗ η)
〉

= 〈

1,F−1(ξ ⊗ η)
〉2 − 〈(

η⊗ F−1ξ
)

,
(

F−1ξ ⊗ η
)〉

= 〈

1,F−1(ξ ⊗ η)
〉2 − 〈(

F−1ξ ⊗ η
)T

,
(

F−1ξ ⊗ η
)〉= 〈

F−1ξ, η
〉2 − 〈

F−1ξ, η
〉2 = 0.

This leads to the surprising simplification

D2
(

h(detF)
)

.(ξ ⊗ η, ξ ⊗ η)= h′′(detF) · 〈CofF, (ξ ⊗ η)
〉2
. (A.15)

In conclusion, F �→ h(detF) is LH-elliptic if and only if t �→ h(t) is convex since
〈CofF, (ξ ⊗ η)〉2 is positive.

From [55, page 213] we know more:

Proposition A.2 Let W :Rn×n →R be quasiaffine but not identically constant and h :R→
R be such that W(F)= h(detF). Then

Wpolyconvex ⇔ Wquasiconvex ⇔ W rank one convex ⇔ h convex.
(A.16)

A.4 Convexity for Functions of the Type t �→ ξ((log t)2)

We consider a generic function ξ :R+ →R+ and we find a characterization of the convexity
for the function t �→ ξ((log t)2). In the following let ζ denote the function ζ : R+ → R+ ,
ζ(t)= (log t)2. We deduce

d

dt
ξ
(

(log t)2
)= ξ ′

(

(log t)2
)

2
1

t
log t,

d2

dt2 ξ
(

(log t)2
)= 2

d

dt

(

ξ ′
(

(log t)2
)

2
1

t
log t

)

= 4ξ ′′
(

(log t)2
) 1

t2
(log t)2 − 2ξ ′

(

(log t)2
) 1

t2
log t + 2ξ ′

(

(log t)2
) 1

t2

= 2
1

t2

[

2ξ ′′
(

(log t)2
)

(log t)2 + ξ ′
(

(log t)2
)

(1− log t)
]

,

(A.17)

where ξ ′ = dξ

dζ
. Hence, the function t �→ ξ((log t)2) is

• convex on [1,∞) as a function of t if and only if 2 d2ξ(ζ )

dζ 2 ζ + dξ(ζ )

dζ
(1−√

ζ ) ≥ 0, for all
ζ ∈R+.

• convex on (0,1) as a function of t if and only if 2 d2ξ(ζ )

dζ 2 ζ + dξ(ζ )

dζ
(1 +√

ζ ) ≥ 0, for all
ζ ∈R+.
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A.5 Connecting dev3 logU with dev2 logU

For U� ∈GL(2), we define the lifted quantity

U =
⎛

⎝

U� 0
0

0 0 (detU�)1/2

⎞

⎠ ∈GL(3). (A.18)

We remark that

det

⎛

⎝

U� 0
0

0 0 (detU�)1/2

⎞

⎠= detU�
(

detU�
)1/2 = (

detU�
)3/2

, (A.19)

which implies (detU)1/3 = [detU�(detU�)1/2]1/3 = [(detU�)3/2]1/3 = (detU�)1/2. More-
over, we obtain

dev3 logU = log
U

detU 1/3
= log

U

(detU�)1/2
= log

⎛

⎝

U�

(detU�)1/2 0
0

0 0 1

⎞

⎠

=
⎛

⎝

log U�

(detU�)1/2 0
0

0 0 0

⎞

⎠=
⎛

⎝

dev2 logU� 0
0

0 0 0

⎞

⎠ . (A.20)

In general, for A� ∈R
2×2 and α ∈R we have

∥

∥

∥

∥

∥

∥

dev3

⎛

⎝

A� 0
0

0 0 α

⎞

⎠

∥

∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

∥

⎛

⎝

A� 0
0

0 0 α

⎞

⎠

∥

∥

∥

∥

∥

∥

2

− 1

3
[tr

⎡

⎣

⎛

⎝

A� 0
0

0 0 α

⎞

⎠

⎤

⎦

2

= ∥

∥A�
∥

∥

2 + α2 − 1

3

[

tr
(

A�
)+ α

]2

= ∥

∥A�
∥

∥

2 − 1

3

[

tr
(

A�
)]2 − 2

3
α tr

(

A�
)− 1

3
α2 + α2

= ∥

∥dev2 A�
∥

∥

2 − 2

3
α tr

(

A�
)+ 2

3
α2. (A.21)

Thus
∥

∥

∥

∥

∥

∥

dev3

⎛

⎝

A� 0
0

0 0 α

⎞

⎠

∥

∥

∥

∥

∥

∥

2

= ∥

∥dev2 A�
∥

∥

2
(A.22)

if and only if α = 0 or α = tr(A�). Hence, we deduce ‖dev3 logU‖2 = ‖dev2 logU�‖2, for
U of the form (A.18). Since U� ∈ PSym(2), we can assume that U� = ( λ1 0

0 λ2

)

, λ1, λ2 ∈R+.

Then, the lifted quantity U lies in PSym(3) and U = (
λ1 0 0
0 λ2 0

0 0 (λ1λ2)1/2

)

.

The next problem is if for a given deformation ϕ� = (ϕ
�

1, ϕ
�

2) : R2 → R
2 such that

U� = √

(∇ϕ�)T∇ϕ� we can construct an ansatz ϕ : R3 → R
3 such that U = √∇ϕT∇ϕ,
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where U is the lifted quantity associated to U�. For this it is necessary to have ϕ =
(ϕ1(x1, x2), ϕ2(x1, x2), x3α(x1, x2)) and α,x1 = 0, α,x2 = 0. Checking the compatibility
equation we see that this is possible if and only if det∇ϕ� = K = const., which implies
ϕ3,x3 =K . In the incompressible case det∇ϕ = 1, an appropriate ansatz is therefore

ϕ(x1, x2, x3)=
(

ϕ
�

1(x1, x2), ϕ
�

2(x1, x2), x3

)

, (A.23)

since

U 2 =∇ϕT∇ϕ =
⎛

⎝

(∇ϕ�)T∇ϕ� 0
0

0 0 1

⎞

⎠=
⎛

⎝

(∇ϕ�)T∇ϕ� 0
0

0 0 det[(∇ϕ�)T∇ϕ�]

⎞

⎠

=
⎛

⎝

(U�)2 0
0

0 0 (det[(U�)1/2])2

⎞

⎠=
⎛

⎝

U� 0
0

0 0 (detU�)1/2

⎞

⎠

2

, (A.24)

with detU� = 1.
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