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Abstract The convergence of a peridynamic model for solid mechanics inside heteroge-
neous media in the limit of vanishing nonlocality is analyzed. It is shown that the operator
of linear peridynamics for an isotropic heterogeneous medium converges to the correspond-
ing operator of linear elasticity when the material properties are sufficiently regular. On the
other hand, when the material properties are discontinuous, i.e., when material interfaces
are present, it is shown that the operator of linear peridynamics diverges, in the limit of van-
ishing nonlocality, at material interfaces. Nonlocal interface conditions, whose local limit
implies the classical interface conditions of elasticity, are then developed and discussed.
A peridynamics material interface model is introduced which generalizes the classical in-
terface model of elasticity. The model consists of a new peridynamics operator along with
nonlocal interface conditions. The new peridynamics interface model converges to the clas-
sical interface model of linear elasticity.

Keywords Peridynamics · Heterogeneous materials · Material interfaces · Nonlocal
interface conditions
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1 Introduction

Peridynamics [7, 8] is a nonlocal theory for continuum mechanics. Material points interact
through forces that act over a finite distance with the maximum interaction radius being
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called the peridynamics horizon. Peridynamics is a generalization to elasticity theory in
the sense that peridynamics operators converge to corresponding elasticity operators in the
limit of vanishing horizon. These convergence results have been shown for different cases;
see [4–6, 10]. For example, in a linear isotropic homogeneous medium, and under certain
regularity assumptions on the vector field v, it has been shown in [5] that

lim
δ→0

Lδ
sv = Nsv in L∞(Ω)3 (1.1)

and in [4] it has been shown that

lim
δ→0

Lδv = Nv in H−1
(
R

3
)
, (1.2)

where Ω is a bounded domain, Lδ
s is the bond-based and Lδ is the state-based linear peri-

dynamics operators, and Ns and N are the corresponding linear elasticity operators, respec-
tively (see Sect. 2 for the definitions of these operators).

In this work, we study the behavior of linear peridynamics inside heterogeneous media
in the limit of vanishing horizon. We focus on the linear peridynamics model for solids
given in [8, 9]. We note that other models for linear peridynamic solids have been proposed;
see for example [1]. In Theorem 1 and Proposition 1 of this work we show that when the
vector-field v and the material properties are sufficiently differentiable then

lim
δ→0

Lδv = Nv in Lp(Ω)3, 1 ≤ p < ∞, (1.3)

and

lim
δ→0

Lδ
sv = Nsv in Lp(Ω)3, 1 ≤ p < ∞, (1.4)

where Lδ and Lδ
s are the state-based and bond-based linear peridynamics operator for an

isotropic heterogeneous medium and N and Ns are the corresponding operators of linear
elasticity, respectively. In addition, we show that continuity of the material properties is a
necessary condition for the convergence of peridynamics to elasticity. Indeed, if the material
properties have jump discontinuities, as for example in multi-phase composites, then it is
shown in Theorem 2 and Lemma 3 that the local limits of the peridynamic operators do not
exist. In particular, we find that for points x on the interface,

lim
δ→0

(
Lδv

)
(x) does not exist, (1.5)

and

lim
δ→0

(
Lδ

sv
)
(x) does not exist. (1.6)

We consider the classical interface model in linear elasticity inside a two-phase compos-
ite. The strong form of the elastic equilibrium problem is given by the following system of
partial differential equations and interface conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · σ(x) = b(x), x ∈ Ω+ (1.7a)

∇ · σ(x) = b(x), x ∈ Ω− (1.7b)

σn
(
x+) = σn

(
x−)

, x ∈ Γ (1.7c)

u
(
x+) = u

(
x−)

, x ∈ Γ , (1.7d)
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where σ is the stress tensor, u is the displacement field, b is a body force density, n is the
unit normal to the interface, and Ω = Ω+ ∪ Ω− ∪ Γ , with Γ being the interface between
the two phases Ω+ and Ω−. Equations (1.7c) and (1.7d) are the interface jump conditions,
assuming continuity of the displacement field and traction across the interface.

Developing a material interface model which generalizes the classical interface model
of elasticity to the nonlocal setting is an open problem in peridynamics. The fact that inter-
face conditions are necessary for a classical solution of (1.7a–1.7d) to exist together with
the fact that the peridynamics operator diverges, in the limit of vanishing horizon, at ma-
terial interfaces strongly suggests that nonlocal interface conditions must be imposed in a
peridynamics model for heterogeneous media in the presence of material interfaces. There-
fore, a peridynamics interface model which is locally consistent with the interface model of
elasticity is required to satisfy the following three conditions:

C(i) Nonlocal interface conditions must be imposed such that the peridynamics operator
converges, in the local limit, to the corresponding elasticity operator.

C(ii) The interface conditions in elasticity are recovered from the local limit of the nonlocal
interface conditions in peridynamics.

C(iii) The nonlocal interface conditions are integral equations that do not include spatial
derivatives of the displacement field.

We note that condition C(i) implies that the peridynamics operator is required not to diverge,
in the limit of vanishing horizon, at material interfaces. Condition C(iii) requires that the
nonlocal interface conditions be compatible with the peridynamics model. Peridynamics is
formulated with integral equations and oriented towards modeling discontinuities, and thus
peridynamics equations do not include spatial derivatives of the displacement field.

We consider the following peridynamics model, under equilibrium conditions, for het-
erogeneous media in the presence of material interfaces

{
Lδu(x) = b(x), x ∈ Ω (1.8a)

Lδu(x) = 0, x ∈ Γ . (1.8b)

Equation (1.8b) is a nonlocal interface condition. By imposing (1.8b), and under certain
regularity assumptions on the material properties and the displacement field, we show that

lim
δ→0

Lδv = Nv in Lp(Ω)3

for 1 ≤ p < ∞. Thus, the peridynamics interface model (1.8a, 1.8b) satisfies conditions
C(i) and C(iii). However, it is shown in Proposition 3 that this model does not satisfy C(ii).
Therefore, the interface model (1.8a, 1.8b) is not a valid generalization of the local interface
model of elasticity. We note that this result remains true if an inhomogeneity is introduced
into (1.8b). We also note that, in the nonlocal setting, the material interface remains sharp;
however, because of the nonlocality of interactions, nonlocal interface conditions involve
points on both sides of the material interface, and not just points on the material interface.

In Sect. 5.2, we propose a solution to the interface problem in peridynamics. We develop
a peridynamics interface model which is locally consistent with elasticity’s interface model
(1.7a–1.7d). Our model is defined by

{
Lδ

∗u(x) = b(x), x ∈ Ω (1.9a)

Lδ
∗u(x) = 0, x ∈ Γδ , (1.9b)
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where Γδ is an extended interface, which is a three-dimensional set of thickness 2δ, and the
operator Lδ∗ is of the form

Lδ
∗u = Lδu + 1Γδ

Lδ
Γδ

u, (1.10)

with 1Γδ
being the indicator function of the set Γδ . The new operator Lδ

Γδ
acts on the dis-

placement field but only at points in the extended interface Γδ . The set Γδ and the operator
Lδ

Γδ
are explicitly defined in Sect. 5.2. Equation (1.9b) is the peridynamics nonlocal inter-

face condition for our interface model. By imposing (1.9b), and under the assumptions that
the material properties are sufficiently differentiable in Ω \Γ and have jump discontinuities
at the interface Γ , and that the displacement field u is sufficiently differentiable in Ω \ Γ

and continuous across Γ , we show in Theorem 3 that

lim
δ→0

Lδ
∗v = Nv in Lp(Ω)3

for 1 ≤ p < ∞. Moreover, we show that the local interface condition (1.7c) can be recovered
from the local limit of the nonlocal interface condition (1.9b). Therefore, the peridynamics
material interface model (1.9a, 1.9b) satisfies the three conditions C(i)–C(iii) and hence
serves as a peridynamics generalization to the classical elasticity interface model.

Here we discuss the mechanical interpretations and implications of the main results in
this work. The convergence results given by (1.3) and (1.4), which are introduced in Theo-
rem 1 and Proposition 1, respectively, imply that peridynamics (bond-based or state-based)
is a nonlocal generalization of the local continuum theory in the case of isotropic heteroge-
neous media with smoothly varying material properties. This extends the previous peridy-
namics convergence results for homogeneous media [4, 5, 10].

In the case of heterogeneous media with discontinuous material properties, our results
given by (1.5) and (1.6), which are introduced in Theorem 2 and Lemma 3, respectively,
imply that the local limit of the peridynamic force is infinite at the material interface. This
divergence behavior can be explained mathematically through the fact that material inter-
faces break the inherent symmetry of the peridynamic operators. Mechanically, the diver-
gence of peridynamics is due to the mismatch in the nonlocal tractions on each side of the
interface. In fact, the divergence of the local limit of peridynamics at material interfaces is
not surprising because in the local interface problem (1.7a–1.7d) one must impose interface
conditions to obtain a well-posed system. Therefore, when material interfaces are present,
nonlocal interface conditions must be imposed in order for peridynamics to converge to a
local theory. The goal of imposing nonlocal interface conditions is to fix the mismatch in the
nonlocal tractions on each side of the interface. One way to achieve this is by imposing the
nonlocal interface condition given by (1.8b). Indeed, in Sect. 5.1 it is shown that when (1.8b)
is imposed, then Lδu converges in the limit as δ → 0. However, it is shown in Proposition 3
that the peridynamic system given by (1.8a, 1.8b) does not converge to the local elastic in-
terface model given by (1.7a–1.7d). We conclude in Sect. 5 that imposing nonlocal interface
conditions alone is not sufficient to achieve a peridynamic interface model that recovers the
classical interface model in the local limit. We therefore propose the peridynamic interface
model given by (1.9a, 1.9b) which consists of introducing a new peridynamic operator Lδ∗
together with imposing a nonlocal interface condition given by (1.9b). The new operator sat-
isfies Lδ∗u(x) = Lδu(x) for points x ∈ Ω \Γ . For points x on the interface Γ , the expression
δLδ∗u(x) represents the jump in the nonlocal traction across the interface. This is justified in
Sect. 5.2 in which it is shown that

lim
δ→0

δLδ
∗u(x) = 45

32
[σ ]+−n. (1.11)
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The operator Lδ
Γδ

in (1.10), given explicitly by (5.17), which acts on points on the extended
interface Γδ , can be interpreted as the missing term in peridynamics which modifies the
jump in the nonlocal traction such that (1.11) holds true. It follows from (1.11), as described
in Sect. 5.2, that the nonlocal interface condition (1.9b) is the nonlocal analogue of the local
interface condition (1.7c). Theorem 3 implies that the peridynamic interface model given by
(1.9a, 1.9b) is the nonlocal analogue of the local interface model given by (1.7a–1.7d).

This article is organized as follows. Section 2 provides an overview of linear peridynam-
ics and linear elasticity inside isotropic heterogeneous media. The convergence of linear
peridynamics operator to linear elasticity operator for the case of heterogeneous media is
given in Sect. 3. The divergence of the peridynamics operator, in the local limit, at material
interfaces is addressed in Sect. 4. Finally, in Sect. 5 nonlocal interface conditions are devel-
oped and discussed and our new peridynamics material interface model is introduced and
justified.

2 Overview

2.1 The Peridynamics Model for Solid Mechanics

We consider the state-based peridynamics model introduced in [8] for the dynamics of de-
formable solids. To simplify the presentation, we provide a direct description of this model
without adhering to the notation used in [8]. Following the presentation of peridynamics
given in [3], let Ω denote a domain in R

3, u(x, t) the displacement vector field, ρ(x) the
mass density, and b(x, t) a prescribed body force density. Let Bδ(x) denote the ball centered
at x having radius δ; here, δ denotes the peridynamics horizon. Then the linear peridynamics
equation of motion for an isotropic heterogeneous medium is given by

ρ(x)ü(x, t) = (
Lδu

)
(x) + b(x, t), x ∈ Ω, (2.1)

where

Lδ = Lδ
s +Lδ

d , (2.2)

and, for a vector field v, the operators Lδ
s and Lδ

d are given by

(
Lδ

sv
)
(x) =

∫

Bδ(x)

15

m

(
μ(x) + μ(y)

)
w

(|y − x|) (y − x) ⊗ (y − x)

|y − x|2
(
v(y) − v(x)

)
dy, (2.3)

(
Lδ

dv
)
(x) =

∫

Bδ(x)

∫

Bδ(x)

9

m2

(
λ(x) − μ(x)

)
w

(|y − x|)w(|z − x|)(y − x)

⊗ (z − x)
(
v(z) − v(x)

)
dzdy

+
∫

Bδ(x)

∫

Bδ(y)

9

m2

(
λ(y) − μ(y)

)
w

(|y − x|)w(|z − y|)(y − x)

⊗ (z − y)
(
v(z) − v(y)

)
dzdy. (2.4)

Here λ and μ are Lamé parameters, with μ denoting the shear modulus, w is a weighting
function, and m denotes a scalar weight given by m = ∫

Ω
w(|y − x|)|y − x|2dy. Since w is a
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radial function in (2.3), (2.4), the material is isotropic, and w can be taken to be of the form
(see, for example, [7])

w
(|ξ |) =

{
1

|ξ |r , if |ξ | < δ

0, otherwise.
(2.5)

In this case

m =
∫

Bδ(0)

|ξ |2−rdξ = 4π
δ5−r

5 − r
. (2.6)

Note that when r < 5, m is finite. To simplify the presentation, and without loss of generality,
we assume that r = 2; consequently, m = 4

3πδ3 = |Bδ| and

(
Lδ

sv
)
(x) = 15

|Bδ|
∫

Bδ(x)

(
μ(x) + μ(y)

) (y − x) ⊗ (y − x)

|y − x|4
(
v(y) − v(x)

)
dy, (2.7)

(
Lδ

dv
)
(x) = 9

|Bδ|2
∫

Bδ(x)

∫

Bδ(x)

(
λ(x) − μ(x)

) y − x
|y − x|2 ⊗ z − x

|z − x|2
(
v(z) − v(x)

)
dzdy

+ 9

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

(
λ(y) − μ(y)

) y − x
|y − x|2 ⊗ z − y

|z − y|2
(
v(z) − v(y)

)
dzdy.

(2.8)

Due to symmetry we have the following identity

∫

Bδ(p)

q − p
|q − p|2 dp = 0. (2.9)

For points x ∈ Ω with a distance of at least 2δ from the boundary ∂Ω , the operator Lδ
d in

(2.8) reduces to

(
Lδ

dv
)
(x) = 9

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

(
λ(y) − μ(y)

) y − x
|y − x|2 ⊗ z − y

|z − y|2 v(z) dzdy, (2.10)

where we have applied (2.9). Throughout this article, we will use the notation A : B to
denote the inner product of the same-order tensors A and B . For example, if A and B are
third-order tensors then

A : B =
∑

i,j,k

AijkBijk.

2.2 Linear Elasticity

In linear elasticity, the stress tensor for an isotropic heterogeneous medium is given by

σ(x) = λ(x)∇ · u(x) I + μ(x)
(∇u(x) + ∇u(x)T

)
, (2.11)

where u is the displacement field, I is the identity tensor, and λ and μ are Lamé parameters.
The equation of motion in this case is given by

ρ(x)ü(x, t) = (Nu)(x) + b(x, t), x ∈ Ω, (2.12)
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where N is the Navier operator of linear elasticity which is given by

Nu = ∇ · σ
= ∇(λ∇ · u) + ∇ · (μ(∇u + ∇uT

))
. (2.13)

We decompose the operator of linear elasticity as

N = Ns +Nd , (2.14)

where the operators Ns and Nd are defined by

Nsv = ∇(μ∇ · v) + ∇ · (μ(∇v + ∇vT
))

, (2.15)

Ndv = ∇(
(λ − μ)∇ · v

)
, (2.16)

for sufficiently regular vector field v.
We note that the above decomposition of N is not a standard one; however, this de-

composition will be useful for studying the relationship between the nonlocal operator of
peridynamics Lδ , defined in Sect. 2.1, and the local operator of elasticity N ; see Sect. 3.

Remark 1 It is easy to see that N = Ns for materials in which λ = μ or, equivalently,
materials with Poisson ratio ν = 1

4 .

3 Convergence of Linear Peridynamics to Linear Elasticity Inside
Heterogeneous Media

In this section we show that in a heterogeneous medium and under certain regularity as-
sumptions on the material properties and the vector field v, the linear peridynamics operator
Lδ converges to the linear elasticity operator N in the limit of vanishing horizon. This is
given by Theorem 1 in the last part of this section.

We start by defining an operator Lδ
0, which is independent of material properties,

(
Lδ

0v
)
(x) = 30

|Bδ|
∫

Bδ(x)

(y − x) ⊗ (y − x)

|y − x|4
(
v(y) − v(x)

)
dy

= 30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz, (3.1)

where v is a vector field and x ∈R
3. We note Lδ

0 is a bounded linear operator on Lp(Ω)3 for
1 ≤ p ≤ ∞; see for example [2].

Lemma 1 If v ∈ C3(Ω)3 then

lim
δ→0

Lδ
0v = 2∇(∇ · v) + �v, in Lp(Ω)3 (3.2)

for 1 ≤ p < ∞.

Proof The Taylor expansion of v about z = x is given by

v(x + z) = v(x) + ∇v(x)z + 1

2
∇∇v(x)(z ⊗ z) + r(v;x, z), (3.3)
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where

r(v;x, z) = 1

3!∇∇∇v(x + tz)(z ⊗ z ⊗ z) (3.4)

for some t ∈ (0,1). By inserting (3.3) in (3.1), expanding the integral, and then rearranging
the tensor products, we obtain

(
Lδ

0v
)
(x) = 30

|Bδ|
∫

Bδ(0)

z ⊗ z ⊗ z
|z|4 dz∇v(x) + 30

|Bδ|
∫

Bδ(0)

z ⊗ z ⊗ z ⊗ z
|z|4 dz

1

2
∇∇v(x)

+ 30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4 r(v;x, z) dz. (3.5)

We note that, due to symmetry, the integral

∫

Bδ(0)

z ⊗ z ⊗ z
|z|4 dz = 0, (3.6)

with the obvious notation that 0 in the right hand side of (3.6) denotes the third-order zero
tensor. Thus the first term in (3.5) vanishes. We note that the third term in (3.5) vanishes in
the limit as δ → 0 because

∣
∣∣
∣

30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4 r(v;x, z) dz

∣
∣∣
∣ ≤ M

δ3

∫

Bδ(0)

|z|dz = O(δ), (3.7)

for some M > 0. For the second term in (3.5), a straightforward calculation, using spherical
coordinates, shows that the following fourth-order tensor satisfies

30

|Bδ|
∫

Bδ(0)

zizj zkzl

|z|4 dz =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

6, if i = j = k = l,

2, if (i = j, k = l, and i 
= k)

or (i = k, j = l, and i 
= j)

or (i = l, j = k, and i 
= j),

0, otherwise.

(3.8)

Using (3.8) the i-th component of the second term in (3.5) becomes

∑

j,k,l

30

|Bδ|
∫

Bδ(0)

zizj zkzl

|z|4 dz
1

2

∂2vj

∂xl∂xk

= 1

2

(
6
∂2vi

∂x2
i

+ 2
∑

k 
=i

∂2vi

∂x2
k

+ 4
∑

j 
=i

∂2vj

∂xixj

)

=
∑

k

∂2vi

∂x2
k

+ 2
∑

j

∂2vj

∂xixj

= �vi + 2
(∇(∇ · v)

)
i
. (3.9)

By combining (3.5) with (3.6), (3.7), and (3.9), we conclude that

lim
δ→0

(
Lδ

0v
)
(x) = 2∇(∇ · v(x)

) + �v(x) (3.10)

for all x in R
3. Equation (3.2) follows from the point-wise convergence result (3.10) and

Lebesgue’s dominated convergence theorem, completing the proof. �
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The operator Lδ
0 : Lp(Ω)3 → Lp(Ω)3 can also be defined to operate on scalar-fields

(
Lδ

0f
)
(x) := 30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4

(
f (x + z) − f (x)

)
dz,

in which case f ∈ Lp(Ω) �→ Lδ
0f ∈ Lp(Ω)3×3. The convergence result in this case is given

by the following lemma, whose proof is similar to that of Lemma 1.

Lemma 2 If f ∈ C3(Ω) then

lim
δ→0

Lδ
0f = 2∇∇f + �f I, in Lp(Ω)3×3 (3.11)

for 1 ≤ p < ∞.

We use Lemmas 1 and 2 to show the following convergence result for the operator Lδ
s

defined in (2.7).

Proposition 1 Assume that the vector field v is in C3(Ω)3 and the shear modulus μ is in
C3(Ω). Then as δ → 0,

Lδ
sv −→ Nsv, in Lp(Ω)3 (3.12)

for 1 ≤ p < ∞.

Proof The operator Lδ
s in (2.7), after the change of variables z = y − x, becomes

(
Lδ

sv
)
(x) = 15

|Bδ|
∫

Bδ(0)

(
μ(x) + μ(x + z)

)z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz. (3.13)

We decompose the operator Lδ
s as Lδ

s = Lδ
s1 +Lδ

s2, where

(
Lδ

s1v
)
(x) = 1

2
μ(x)

30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz, (3.14)

(
Lδ

s2v
)
(x) = 1

2

30

|Bδ|
∫

Bδ(0)

μ(x + z)
z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz. (3.15)

Using Lemma 1 we find that, as δ → 0

Lδ
s1v −→ 1

2
μ

(
2∇(∇ · v) + �v

)
, in Lp(Ω)3. (3.16)

The integral in (3.15) can be written as

(
Lδ

s2v
)
(x) = 1

2

30

|Bδ|
∫

Bδ(0)

z ⊗ z
|z|4

(
μ(x + z)v(x + z) − μ(x)v(x)

)
dz

− 1

2

30

|Bδ|v(x)

∫

Bδ(0)

z ⊗ z
|z|4

(
μ(x + z) − μ(x)

)
dz. (3.17)

By applying Lemma 1 on the first term of the right hand side of (3.17) and Lemma 2 on the
second term we find that, as δ → 0

Lδ
s2v −→ 1

2

(
2∇(∇ · (μv)

) + �(μv)
) − 1

2

(
(2∇∇μ + �μ)I v

)
, (3.18)
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in Lp(Ω)3. From (3.16) and (3.18), we obtain the following convergence in Lp(Ω)3

lim
δ→0

Lδ
sv = 1

2

(
2μ∇(∇ · v) + μ�v + 2∇(∇ · (μv)

) + �(μv) − 2(∇∇μ)v − (�μ)v
)
.

(3.19)

Expanding �(μv) and ∇(∇ · (μv)) in the right hand side of (3.19), using the identities

�(μv) = μ�v + 2∇v∇μ + (�μ)v,

∇(∇ · (μv)
) = (∇∇μ)T v + (∇v)T ∇μ + μ∇(∇ · v) + (∇ · v)∇μ,

and then simplifying, one finds that

1

2

(
2μ∇(∇ · v) + μ�v + 2∇(∇ · (μv)

) + �(μv) − 2(∇∇μ)v − (�μ)v
)

= (∇ · v)∇μ + 2μ∇(∇ · v) + μ�v + ∇v∇μ + (∇v)T ∇μ

= ∇(μ∇ · v) + ∇ · (μ(∇v + (∇v)T
))

. (3.20)

Finally, equation (3.12) follows from (2.15), (3.19), and (3.20). �

In the next result we consider the convergence of the operator Lδ
d defined in (2.10).

Proposition 2 Assume that the vector field v is in C3(Ω)3 and that the material properties
μ and λ are in C2(Ω). Then as δ → 0,

Lδ
dv −→ Ndv, in Lp(Ω)3 (3.21)

for 1 ≤ p < ∞.

Proof Let x be a point in the interior of Ω and c = λ − μ. Then by changing variables
(w = z − y then h = y − x) in (2.10), Lδ

dv can be written as

(
Lδ

dv
)
(x) = 9

|Bδ|2
∫

Bδ(0)

∫

Bδ(0)

c(x + h)
h ⊗ w

|h|2|w|2 v(x + h + w) dwdh

= 9

|Bδ|2
∫

Bδ(0)

c(x + h)
h

|h|2
∫

Bδ(0)

w
|w|2 · v(x + h + w) dwdh. (3.22)

The Taylor expansion of v about w = x + h is given by

v(x + h + w) = v(x + h)+∇v(x + h)w + 1

2
∇∇v(x + h)(w ⊗ w)+ r1(v;x + h,w), (3.23)

where

r1(v;x + h,w) = 1

3!∇∇∇v(ξ)(w ⊗ w ⊗ w) (3.24)

for some ξ on the line segment joining x + h and w. By inserting (3.23) in the inner integral
of (3.22), expanding the integral, and then rearranging the tensor products, we find

∫

Bδ(0)

w
|w|2 · v(x + h + w) dw
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=
∫

Bδ(0)

w
|w|2 dw · v(x + h) +

∫

Bδ(0)

w ⊗ w
|w|2 dw : ∇v(x + h)

+
∫

Bδ(0)

w ⊗ w ⊗ w
|w|2 dw : 1

2
∇∇v(x + h) +

∫

Bδ(0)

w
|w|2 · r(v;x + h,w) dw. (3.25)

We note that due to symmetry, the integrals in the first and third terms of the right hand side
of (3.25) are identical to zero. A straightforward calculation shows that

∫

Bδ(0)

w ⊗ w
|w|2 dw = |Bδ|

3
I, (3.26)

and thus (3.25) is equivalent to
∫

Bδ(0)

w
|w|2 · v(x + h + w) dw = |Bδ|

3
∇ · v(x + h) +

∫

Bδ(0)

w
|w|2 · r(v;x + h,w) dw.

(3.27)

Substituting (3.27) in (3.22) one finds that

(
Lδ

dv
)
(x) = 3

|Bδ|
∫

Bδ(0)

c(x + h)∇ · v(x + h)
h

|h|2 dh

+ 9

|Bδ|2
∫

Bδ(0)

c(x + h)
h

|h|2
∫

Bδ(0)

w
|w|2 · r(v;x + h,w) dwdh. (3.28)

Using (3.24) we obtain that for some K > 0,
∣∣
∣∣

9

|Bδ|2
∫

Bδ(0)

c(x + h)
h

|h|2
∫

Bδ(0)

w
|w|2 · r(v;x + h,w) dwdh

∣∣
∣∣

≤ K
9

|Bδ|2
∫

Bδ(0)

1

|h| dh
∫

Bδ(0)

|w|2 dw

= O(δ), (3.29)

where we used the facts that
∫

Bδ(0)
1
|h| dh = O(δ2) and

∫
Bδ(0)

|w|2 dw = O(δ5). Therefore, the

second term in the right hand side of (3.28) vanishes in the limit as δ → 0. For the first term
in the right hand side of (3.28), we first expand c∇ · v in a Taylor series about h = x

(c∇ · v)(x + h) = (c∇ · v)(x) + ∇(c∇ · v)(x) · h + r2(v;x,h), (3.30)

where

r2(v;x,h) = 1

2
∇∇(c∇ · v)(ξ) : (h ⊗ h) (3.31)

for some ξ on the line segment joining x and h. Then by substituting (3.30) in the first term
in the right hand side of (3.28), we find

3

Bδ

∫

Bδ(0)

c(x + h)∇ · v(x + h)
h

|h|2 dh

= 3

Bδ

∫

Bδ(0)

h
|h|2 dh c(x)∇ · v(x)
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+ 3

Bδ

∫

Bδ(0)

h ⊗ h
|h|2 dh∇(c∇ · v)(x) + 3

Bδ

∫

Bδ(0)

r2
h

|h|2 dh

= ∇(c∇ · v)(x) + O(δ). (3.32)

We note that, in order to obtain (3.32) we used (3.26), the identity

∫

Bδ(0)

h
|h|2 dh = 0, (3.33)

and the estimate
∣
∣∣
∣

3

Bδ

∫

Bδ(0)

r2(v;x,h)
h

|h|2 dh

∣
∣∣
∣ ≤ M

3

Bδ

∫

Bδ(0)

|h|dh

= O(δ) (3.34)

for some M > 0. By substituting (3.32) in (3.28) and using (3.29), one finds

lim
δ→0

(
Lδ

dv
)
(x) = ∇(c∇ · v)(x). (3.35)

The result follows from (3.35) and Lebesgue’s dominated convergence theorem. �

We conclude this section by the following result which follows from combining Propo-
sitions 1 and 2.

Theorem 1 Assume that the vector field v is in C3(Ω)3 and that the material properties μ

and λ are in C3(Ω). Then

lim
δ→0

(
Lδv

)
(x) = (Nv)(x), x ∈ Ω̊. (3.36)

Moreover, as δ → 0,

Lδv −→ Nv in Lp(Ω)3, (3.37)

for 1 ≤ p < ∞.

Remark 2 The regularity assumptions on the vector field v and the material properties μ

and λ in Theorem 1 as well as in the other results in this section can be relaxed. However, in
Sect. 4, we show that the material properties must at least be continuous for the convergence
of peridynamics to elasticity results to hold.

4 Non-Convergence of Peridynamics at Interfaces

In this section we show that continuity of the material properties is a necessary condition for
the convergence of linear peridynamics to linear elasticity as described in Theorem 1.

Let Γ be an interface separating different phases inside a heterogeneous medium occu-
pying the region Ω , as illustrated in Fig. 1. We assume that the surface Γ is C1. In this case,
the material properties λ and μ have jump discontinuities at the interface. To simplify the
presentation, we assume that the medium is a two-phase composite with Ω = Ω+ ∪Ω− ∪Γ ,
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Fig. 1 The interface Γ separates
the two phases Ω+ and Ω−

where Ω+ and Ω− are two open disjoint sets, and the material properties are piecewise con-
stants, which are given by

λ(x) =
{

λ+, x ∈ Ω+ ∪ Γ

λ−, x ∈ Ω−
, μ(x) =

{
μ+, x ∈ Ω+ ∪ Γ

μ−, x ∈ Ω−
(4.1)

In the remaining part of this article, we will use the following notations. Given a point
x0 ∈ Γ , let n(x0) be the unit normal to the interface at x0. We suppose that n is directed
outward from the −side of the interface, pointing toward the +side, as illustrated in Fig. 1.
For a scalar , vector, or, tensor field F , we define

F
(
x+

0

) := lim
y→x0,y∈Ω+

F(y),

F
(
x−

0

) := lim
y→x0,y∈Ω−

F(y).

In addition, we define

B+
δ (x0) := Bδ(x0) ∩ Ω+ ∩ Γ,

B−
δ (x0) := Bδ(x0) ∩ Ω−.

Note that the sets B+
δ (x0) and B−

δ (x0) depend on the normal n. Furthermore, we use the
following notation to denote the jump in F across the interface

[F ]+− := F
(
x+) − F

(
x−)

, x ∈ Γ.

The behavior of the operator Lδ
s at material interfaces, in the local limit, is described by

the following result.

Lemma 3 Assume that the shear modulus μ is given by (4.1) and that the vector field v is
continuous on Ω and smooth on Ω \ Γ . Then for x ∈ Γ ,

lim
δ→0

(
Lδ

sv
)
(x) does not exist.

Moreover, the sequence (Lδ
sv)δ is unbounded in Lp(Ω), with 1 ≤ p < ∞.

Remark 3 This result holds in the more general case when μ is differentiable on Ω \ Γ and
has a jump discontinuity across the interface Γ rather than just piecewise constant.
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Proof Let x be a point on the interface Γ away from ∂Ω by a distance of at least δ. Then
(Lδ

sv)(x) in (2.7), after a change of variables and using the fact that Bδ(x) = B+
δ (x)∪B−

δ (x),
can be written as

(
Lδ

sv
)
(x) = 15

|Bδ|
∫

B+
δ (0)

(μ+ + μ+)
z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz

+ 15

|Bδ|
∫

B−
δ (0)

(μ+ + μ−)
z ⊗ z
|z|4

(
v(x + z) − v(x)

)
dz, (4.2)

where B+
δ (0) = B+

δ (x)−x and B−
δ (0) = B−

δ (x)−x. Note that in (4.2) we have used the facts
that, for x ∈ Γ , μ(x) = μ+, μ(x+z) = μ+ for z ∈ B+

δ (0), and μ(x+z) = μ− for z ∈ B−
δ (0).

Since v is smooth on each side of Γ , then for z in the +side of Γ (i.e., z ∈ B+
δ (0)), v can be

expanded as

v(x + z) − v(x) = ∇v
(
x+)

z + r+(v;x, z), (4.3)

where

r+(v;x, z) = 1

2
∇∇v(ξ+)z ⊗ z (4.4)

for some ξ+ on the line segment joining x and x + z. Similarly, v can be expanded in a
Taylor series in the −side of Γ . For z ∈ B−

δ (0),

v(x + z) − v(x) = ∇v
(
x−)

z + r−(v;x, z), (4.5)

where

r−(v;x, z) = 1

2
∇∇v(ξ−)z ⊗ z (4.6)

for some ξ− on the line segment joining x and x + z. Substituting (4.3) and (4.5) in (4.2),
expanding the integrals, and rearranging the tensor products, we find

(
Lδ

sv
)
(x) = 15

|Bδ| (2μ+)

∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz∇v

(
x+) + 15

|Bδ| (2μ+)

∫

B+
δ (0)

z ⊗ z
|z|4 r+(v;x, z) dz

+ 15

|Bδ| (μ+ + μ−)

∫

B−
δ (0)

z ⊗ z ⊗ z
|z|4 dz∇v

(
x−)

+ 15

|Bδ| (μ+ + μ−)

∫

B−
δ (0)

z ⊗ z
|z|4 r−(v;x, z) dz. (4.7)

Using (4.4), we obtain the following bound
∣
∣∣
∣

15

|Bδ| (2μ+)

∫

B+
δ (0)

z ⊗ z
|z|4 r+(v;x, z) dz

∣
∣∣
∣ ≤ 15

|Bδ| (2μ+)

∫

B+
δ (0)

|z ⊗ z ⊗ z ⊗ z|
|z|4 dz

∣
∣∣
∣
1

2
∇∇v(ξ+)

∣
∣∣
∣

= O(1). (4.8)

Similarly, one finds

15

|Bδ| (μ+ + μ−)

∫

B−
δ (0)

z ⊗ z
|z|4 r−(v;x, z) dz = O(1), (4.9)
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and hence the second and fourth terms in (4.7) are finite in the limit as δ → 0. Using (4.8),
(4.9), and using the fact that

0 =
∫

Bδ(0)

z ⊗ z ⊗ z
|z|4 dz =

∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz +

∫

B−
δ (0)

z ⊗ z ⊗ z
|z|4 dz,

equation (4.7) becomes

(
Lδ

sv
)
(x) = 15

|Bδ|
∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz

(
2μ+∇v

(
x+) − (μ+ + μ−)∇v

(
x−)) + O(1). (4.10)

From Lemma 5 (see Sect. 5), the third-order tensor

Kδ := 1

|Bδ|
∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz (4.11)

behaves, in the limit as δ → 0, as

Kδ ≈ 1

δ
K (4.12)

for a constant third-order tensor K. Thus, equations (4.10), (4.11), and (4.12) imply that

lim
δ→0

(
Lδ

sv
)
(x) = ∞ for x ∈ Γ, (4.13)

and, consequently, that the sequence (Lδ
sv)δ is unbounded in Lp(Ω). �

Remark 4 If v is smooth at the interface then (4.10), in the proof above, becomes

(
Lδ

sv
)
(x) = 15

|Bδ|
∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz(μ+ − μ−)∇v(x) + O(1), (4.14)

and hence (4.13) still hold in this case.

The behavior of the operator Lδ
d in (2.10) at material interfaces, in the local limit, is given

by the following result.

Lemma 4 Assume that μ and λ are given by (4.1) and that the vector field v is continuous
on Ω and smooth on Ω \ Γ . Then for x ∈ Γ ,

lim
δ→0

(
Lδ

dv
)
(x) does not exist.

Moreover, the sequence (Lδ
dv)δ is unbounded in Lp(Ω), with 1 ≤ p < ∞.

The proof of this lemma is similar to that of Lemma 3 and thus will not be presented
here. However, we note that for x ∈ Γ , it can be shown that

(
Lδ

dv
)
(x) = (

(λ+ −μ+)(∇ ·v)
(
x+)− (λ− −μ−)(∇ ·v)

(
x−)) 3

|Bδ|
∫

B+
δ (x)

y − x
|y − x|2 dy+O(1),

(4.15)



240 B. Alali, M. Gunzburger

and

lim
δ→0

3δ

|Bδ|
∫

B+
δ (x)

y − x
|y − x|2 dy = 9

8
n. (4.16)

The following result provides a summary to the behavior of the linear peridynamics op-
erator Lδ , in the limit as δ → 0, in the presence of material interfaces.

Theorem 2 Assume that the material properties μ and λ are smooth on Ω \ Γ and have
jump discontinuities across the interface Γ . Assume further that the vector field v is contin-
uous on Ω and smooth on Ω \ Γ . Then

(i) for x ∈ Ω \ Γ ,

lim
δ→0

(
Lδv

)
(x) = Nv(x),

where N is the operator of linear elasticity given by (2.13), and
(ii) for x ∈ Γ ,

lim
δ→0

(
Lδv

)
(x) does not exist.

Moreover, the sequence (Lδ
dv)δ is unbounded in Lp(Ω), with 1 ≤ p < ∞.

Proof Part (ii) follows from Lemmas 3 and 4. For part (i), let x ∈ Ω \Γ . Then for sufficiently
small δ, the ball Bδ(x) is away from the interface. Thus, Theorem 1 applies and part (i)
follows. �

5 A New Peridynamics Model for Material Interfaces

In this section we introduce a peridynamics model for heterogeneous media in the presence
of material interfaces. Our model consists of a modified version of the linear peridynamics
operator Lδ , given by (2.2), (2.7), and (2.10), together with a nonlocal interface condition.
This new model is shown, in Theorem 3, to converge to the classical interface model of
linear elasticity.

5.1 Peridynamics Interface Conditions

The divergence of peridynamics at interfaces in the limit of vanishing nonlocality (see Theo-
rem 2) is, in fact, not surprising. Indeed, let us consider the corresponding interface problem
in linear elasticity inside a two-phase composite, with Ω = Ω+ ∪ Ω− ∪ Γ as described in
Sect. 4. The strong form of the elastic equilibrium interface problem is given by the follow-
ing system of partial differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ · σ(x) = b(x), x ∈ Ω+
∇ · σ(x) = b(x), x ∈ Ω−

[σn]+− = 0, x ∈ Γ

[u]+− = 0, x ∈ Γ

(5.1)

where σ is the stress tensor given by (2.11). We emphasize that imposing interface jump
conditions (the last two equations of (5.1)) is necessary for a classical solution u defined on
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Ω to exist. Therefore, in order to recover the interface problem in elasticity, given by (5.1)
as the local limit of peridynamics inside heterogeneous media in the presence of material
interfaces, we need to introduce a peridynamics interface model and impose nonlocal inter-
face conditions such that the model satisfies the conditions C(i)–C(iii), introduced in Sect. 1
(Introduction).

We note that Theorems 1 and 2 imply that if we assume

(
Lδu

)
(x) = 0, x ∈ Γ, (5.2)

then as δ → 0,

Lδu −→ Nu in Lp(Ω)3 (5.3)

for 1 ≤ p < ∞. This means that the following system

{
Lδu(x) = b(x), x ∈ Ω

Lδu(x) = 0, x ∈ Γ
(1.8)

satisfies conditions C(i) and C(iii), and, since the peridynamics operator Lδ has been kept
without modifications we call (5.2) peridynamics natural interface condition. However, we
show in Proposition 3 that (5.2) does not satisfy requirement (ii) since the local limit of (5.2)
is different from the local interface condition

σn
(
x+) = σn

(
x−)

, x ∈ Γ. (5.4)

By applying a coordinate translation, we may assume that the unit vector n is the normal
to the interface at the origin (i.e., n = n(0)).

Lemma 5 Let Kδ be given by (4.11). Then

lim
δ→0

δKδ =K, (5.5)

where the third-order tensor K satisfies

KA = 3

32

((
A + AT

)
n + (

tr(A) − An · n
)
n
)

(5.6)

for any second-order tensor A.

Proof To emphasize the dependence of the set B+
δ (0) on the normal n, we denote this set

by Bn+
δ (0). Using spherical coordinates the unit normal n can be represented by

n =
⎛

⎝
cosφ sin θ

sinφ sin θ

cos θ

⎞

⎠ ,

where 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π . Define the rotation matrix

R =
⎛

⎝
cosφ cos θ sinφ cos θ − sin θ

− sinφ cosφ 0
cosφ sin θ sinφ sin θ cos θ

⎞

⎠ , (5.7)
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and notice that

Rn = ẑ3 =
⎛

⎝
0
0
1

⎞

⎠ .

Then, by applying the change of coordinates z = Rw, we find

δKδ = δ

|Bδ|
∫

Bn+
δ (0)

w ⊗ w ⊗ w
|w|4 dw

= δ

|Bδ|
∫

B
ẑ3+
δ (0)

R−1z ⊗ R−1z ⊗ R−1z
|R−1z|4 det

(
R−1

)
dz

= δ

|Bδ|
∫

B
ẑ3+
δ (0)

RT z ⊗ RT z ⊗ RT z
|z|4 dz, (5.8)

where in the last step we have used the facts that R−1 = RT , |RT z| = |z|, and det(R−1) = 1.
Since the interface Γ is smooth, we may assume that, in the limit as δ → 0, the set B

ẑ3+
δ is

a half ball. Thus, a straightforward calculation using spherical coordinates shows that

lim
δ→0

δKδ = K,

where the entries Kijk of the third-order tensor K are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K111 = 3

32
cosφ sin θ

(
3 − cos2 φ sin2 θ

)
,

K112 = 3

32
sinφ sin θ

(
1 − cos2 φ sin2 θ

) = K121 = K211,

K113 = 3

32
cos θ

(
1 − cos2 φ sin2 θ

) =K131 = K311,

K122 = 3

32
cosφ sin θ

(
1 − sin2 φ sin2 θ

) = K212 = K221,

K123 = − 3

32
sinφ cosφ sin2 θ cos θ = K132 = K213 = K231 = K312 = K321,

K133 = 3

32
cosφ sin3 θ = K313 =K331,

K223 = 3

32
cos θ

(
1 − sin2 φ sin2 θ

) =K232 = K322,

K233 = 3

32
sinφ sin3 θ =K323 = K332,

K222 = 3

32
sinφ sin θ

(
3 − sin2 φ sin2 θ

)
,

K333 = 3

32
cos θ

(
3 − cos2 θ

)
.

(5.9)

By calculating KA, using (5.9), and comparing it with 3
32 ((A + AT )n + (tr(A) − An · n)n),

one finds that (5.6) holds true. �
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Applying Lemma 5 with A = ∇v we obtain the following result.

Corollary 1 Assume that v is a differentiable vector-field. Then

lim
δ→0

δ

|Bδ|
∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dz∇v = 3

32

((∇v + ∇vT
)
n + (∇ · v)n − (∇vn · n)n

)
. (5.10)

The local limit of peridynamics’ natural interface condition (5.2) is given by the follow-
ing result.

Proposition 3 Assume that the material properties μ and λ are given by (4.1). Assume
further that u is continuous on Ω and smooth on Ω \ Γ . Then for x ∈ Γ

lim
δ→0

δ
(
Lδu

)
(x) = 45

32

(
[
(μ+ + μ)

(∇u + ∇uT
)]+

−n + [
(μ+ + μ)∇ · u

]+
−n

− [
(μ+ + μ)∇u

]+
−n · n n + 4

5

[
(λ − μ)∇ · u

]+
−n

)
. (5.11)

Proof Let x ∈ Γ . Using Corollary 1 and from (4.10), one finds that

lim
δ→0

δ
(
Lδ

sv
)
(x) = 45

32

([
(μ+ + μ)

(∇u + ∇uT
)]+

−n + [
(μ+ + μ)∇ · u

]+
−n

− [
(μ+ + μ)∇u

]+
−n · n n

)
. (5.12)

And from (4.15) and (4.16), one finds that

lim
δ→0

δ
(
Lδ

du
)
(x) = 9

8

[
(λ − μ)∇ · u

]+
−n. (5.13)

Equation (5.11) follows from (5.12) and (5.13). �

Remark 5 Note that for x ∈ Γ and σ given by (2.11) then

[σ ]+−n = [λ∇ · u]+−n + [
μ(∇u + ∇uT

]+
−n. (5.14)

Comparing (5.14) and (5.11) we conclude that the local interface condition (5.4) is not
recoverable from the nonlocal interface condition (5.2).

5.2 A Peridynamic Interface Model

Let Γδ be the set defined by

Γδ = {
x ∈ Ω : |x − Γ | < δ

}
,

where |x − Γ | denotes the distance between the point x and the interface. We refer to this
three-dimensional set as the extended interface. An illustration of this set is shown in Fig. 2.

The peridynamics material interface model, under conditions of equilibrium, is given by
{
Lδ

∗u(x) = b(x), x ∈ Ω

Lδ
∗u(x) = 0, x ∈ Γδ

, (5.15)
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Fig. 2 The extended
interface Γδ

where

Lδ
∗u = Lδu + 1Γδ

Lδ
Γδ

u. (5.16)

Here Lδ is given by (2.2), (2.7), and (2.10), 1Γδ
is the indicator function

1Γδ
(x) =

{
1, x ∈ Γδ

0, x /∈ Γδ
,

and the operator Lδ
Γδ

is defined by

Lδ
Γδ

u(x) = − 15

|Bδ|
∫

Bδ(x)

μ(x)
(y − x) ⊗ (y − x)

|y − x|4
(
u(y) − u(x)

)
dy,

+ 1

4

9

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

(
λ(y) − μ(y)

) y − x
|y − x|2 ⊗ z − y

|z − y|2 u(z) dzdy

+ 5

4

9

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 u(z) dzdy · n(x)n(x). (5.17)

Similarly, the general peridynamics material interface model is given by
{

ρ(x)ü(x, t) = Lδ∗u(x) + b(x, t), x ∈ Ω

Lδ∗u(x) = 0, x ∈ Γδ

. (5.18)

The convergence of the peridynamics interface model (5.15) to the local interface model
(5.1) is given by the next result.

Theorem 3 Assume that μ and λ are given by (4.1) and that the vector field u is continuous
on Ω and smooth on Ω \ Γ . Then if

Lδ
∗u(x) = 0, for all x ∈ Γδ, (5.19)

then as δ → 0,

1.

Lδ
∗u −→ Nu, in Lp(Ω)3, for 1 ≤ p < ∞, and (5.20)

2.

[σ ]+−n = 0, for x ∈ Γ. (5.21)
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Remark 6

– The first part of Theorem 3 shows that imposing the nonlocal interface condition (5.19)
implies that the Navier operator N is the local limit of the operator Lδ∗ and, consequently,
the model (5.15) satisfies C(i).

– The second part of Theorem 3 shows that the local interface condition (5.21) can be re-
covered from the local limit of the nonlocal interface condition (5.19) and, consequently,
the model (5.15) satisfies C(ii).

– The peridynamics interface model (5.15) satisfies C(iii).

Proof Part (1). We show that (5.19) implies (5.20).
Let x ∈ Ω with a distance of at least 2δ from ∂Ω . Then for x /∈ Γδ , and by using (5.16)

we obtain

Lδ
∗u(x) = Lδu(x). (5.22)

From (5.22) and by using Theorem 1, one finds

lim
δ→0

Lδ
∗u(x) = N (x). (5.23)

On the other hand, for x ∈ Γδ , and by using the assumption (5.19), one finds that

lim
δ→0

Lδ
∗u(x) = 0. (5.24)

Since Γδ → Γ as δ → 0 and that |Γ | = 0, it follows from (5.23) and (5.24) that

lim
δ→0

Lδ
∗u(x) = N (x), for almost every x ∈ Ω. (5.25)

Using (5.25) and Lebesgue’s dominated convergence theorem, (5.20) follows.

Part (2). We show that (5.19) implies (5.21).
Let x ∈ Γ . Then, by multiplying both sides of (5.19) by δ and taking the limit, one obtains

lim
δ→0

δLδ
∗u(x) = 0. (5.26)

Next, we show that

lim
δ→0

δLδ
∗u(x) = 45

32

([λ∇ · u]+−n + [
μ

(∇u + ∇uT
)]+

−n
)

(5.27)

= 45

32
[σ ]+−n. (5.28)

Equation (5.21) follows from (5.26) and (5.28). Thus, it remains to prove (5.27) to complete
the proof.

From (5.16) and since x ∈ Γ , Lδ∗u(x) can be written as

Lδ
∗u(x) = Lδu(x) +Lδ

Γδ
u(x)

= (
Lδ

su(x) +Lδ
du(x)

) +
(
Lδ

1u(x) + 1

4
Lδ

du(x) +Lδ
2u(x)

)

= Lδ
su(x) + 5

4
Lδ

du(x) +Lδ
1u(x) +Lδ

2u(x), (5.29)
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where

Lδ
1u(x) = − 15

|Bδ|
∫

Bδ(x)

μ(x)
(y − x) ⊗ (y − x)

|y − x|4
(
u(y) − u(x)

)
dy, (5.30)

Lδ
2u(x) = 5

4

9

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 u(z) dzdy · n(x)n(x). (5.31)

We note that the definition of Lδ
1 is similar to that of Lδ

s . Thus, and since μ is given by (4.1),
an argument similar to the derivation of (4.10) in Lemma 3 yields

(
Lδ

1u
)
(x) = − 15

|Bδ|
∫

B+
δ (0)

z ⊗ z ⊗ z
|z|4 dzμ+

(∇u
(
x+) − ∇u

(
x−)) + O(1). (5.32)

From (5.32) and (5.10), one finds that

lim
δ→0

δ
(
Lδ

1u
)
(x) = 45

32
μ+

([∇u + ∇uT
]+
−n + [∇ · u]+−n − [∇u]+−n · n n

)
. (5.33)

Combining (5.33), (5.12), and (5.13), we obtain

lim
δ→0

δ

(
Lδ

s + 5

4
Lδ

d +Lδ
1

)
(u)(x) = 45

32

([λ∇ · u]+−n + [
μ

(∇u + ∇uT
)]+

−n − [∇u]+−n · n n
)
.

(5.34)

Equation (5.27) follows from (5.34), (5.31), (5.29), and Lemma 6, completing the proof of
Part (2). �

Lemma 6 Let x be a point on the interface Γ and n = n(x) be the unit normal to the
interface. Assume that the vector field v is smooth on Ω \ Γ . Then

lim
δ→0

δ
(
Lδ

2v
)
(x) = 45

32
[∇v]+−n · n n. (5.35)

Proof It is sufficient to show that

lim
δ→0

3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 v(z) dzdy = 3

8
[∇v]+−n. (5.36)

The Taylor expansion of v about z = y is given by

v(z) = v(y) + ∇v(y)(z − y) + r(v; z,y), (5.37)

where

r(v; z,y) = 1

2
∇∇v(ξ)

(
(z − y) ⊗ (z − y)

)
(5.38)

for some ξ on the line segment joining z and y. Using (5.37), the integral on the left hand
side of (5.36) becomes

3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 v(z) dzdy
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= 3δ

|Bδ|2
∫

Bδ(x)

μ(y)
y − x

|y − x|2 ·
∫

Bδ(y)

z − y
|z − y|2 dz v(y)dy

+ 3δ

|Bδ|2
∫

Bδ(x)

μ(y)∇v(y)

∫

Bδ(y)

(z − y) ⊗ (z − y)

|z − y|2 dz
y − x

|y − x|2 dy

+ 3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 r(v; z,y) dzdy. (5.39)

We note that by using (2.9), the first term on the right hand side of (5.39) is equal to zero
and it is straightforward to show that the third term on the right hand side of (5.39) is O(δ).
Thus, by using (3.26) in the second term, equation (5.39) becomes

3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 v(z) dzdy

= δ

|Bδ|
∫

Bδ(x)

μ(y)∇v(y)
y − x

|y − x|2 dy + O(δ)

= δ

|Bδ|
∫

B+
δ (x)

μ(y)∇v(y)
y − x

|y − x|2 dy

+ δ

|Bδ|
∫

B−
δ (x)

μ(y)∇v(y)
y − x

|y − x|2 dy + O(δ). (5.40)

Since v is smooth on each side of Γ , then for y on the +side of Γ (i.e., y ∈ B+
δ (x)), ∇v can

be expanded as

∇v(y) = ∇v(x) + R+(∇v;x,y), (5.41)

where

R+(∇v;x,y) = ∇∇v(ξ+)(y − x) (5.42)

for some ξ+ on the line segment joining x and y. Similarly, ∇v can be expanded on the
−side of Γ . For y ∈ B−

δ (x),

∇v(y) = ∇v(x) + R−(∇v;x,y), (5.43)

where

R−(∇v;x,y) = ∇∇v(ξ−)(y − x) (5.44)

for some ξ− on the line segment joining x and y. By substituting (5.41) and (5.43) on the
right hand side of (5.40) and expanding the integrals, we find

3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 v(z) dzdy

= δ

|Bδ|
∫

B+
δ (x)

μ+∇v
(
x+) y − x

|y − x|2 dy

+ δ

|Bδ|
∫

B−
δ (x)

μ−∇v
(
x−) y − x

|y − x|2 dy
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+ δ

|Bδ|
∫

B+
δ (x)

μ+R+(∇v;x,y)
y − x

|y − x|2 dy

+ δ

|Bδ|
∫

B−
δ (x)

μ−R−(∇v;x,y)
y − x

|y − x|2 dy + O(δ). (5.45)

Using (5.42) and (5.44) one can easily show that the third and the fourth terms on the right
hand side of (5.45) are O(δ), and using (2.9) for the first and second terms on the right hand
side of (5.45), we find

3δ

|Bδ|2
∫

Bδ(x)

∫

Bδ(y)

μ(y)
y − x

|y − x|2 · z − y
|z − y|2 v(z) dzdy

= (
μ+∇v

(
x+) − μ−∇v

(
x−)) δ

|Bδ|
∫

B+
δ (x)

y − x
|y − x|2 dy + O(δ). (5.46)

Equation (5.36) follows from (5.46) and (4.16), completing the proof. �

We conclude this section by providing a mechanical interpretation to (5.16) and (5.17).
Equation (5.28) in the proof of Theorem 3 provides an important relationship between the
jump in the local traction across the interface and the nonlocal operator Lδ∗. This implies
that, for points x ∈ Γ , the expression 32

45δLδ∗u(x) represents the nonlocal analogue of [σ ]+−n.
Therefore, we can interpret 32

45δLδ∗u(x) as the jump in the nonlocal traction across the inter-
face. Moreover, the operator Lδ

Γδ
, given by (5.17), can be interpreted as the missing term in

peridynamics which modifies the jump in the nonlocal traction such that (5.28) holds true.
Furthermore, Theorem 3 and (5.28) imply that the nonlocal interface condition (1.9b) is the
nonlocal analogue of the local interface condition (1.7c) and that the peridynamic interface
model given by (1.9a, 1.9b) is the nonlocal analogue of the local interface model given by
(1.7a–1.7d).
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