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Abstract In this paper, we carry out further mathematical studies of nonlocal constrained
value problems for a peridynamic Navier equation derived from linear state-based peridy-
namic models. Given the nonlocal interactions effected in the model, constraints on the
solution over a volume of nonzero measure are natural conditions to impose. We generalize
previous well-posedness results that were formulated for very special kernels of nonlocal
interactions. We also give a more rigorous treatment to the convergence of solutions to
nonlocal peridynamic models to the solution of the conventional Navier equation of linear
elasticity as the horizon parameter goes to zero. The results are valid for arbitrary Poisson
ratio, which is a characteristic of the state-based peridynamic model.
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1 Introduction

Recently, there have been much interests in the nonlocal peridynamic (PD) continuum the-
ory introduced first by Silling in [16]. Most of the existing theoretical works on the mathe-
matical foundation of peridynamics [2, 3, 8, 10, 11, 14, 15, 24] have so far largely focused on
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the original bond-based PD models where the nonlocal force interaction at a material point
is specified as an integral over all pairs of points (bonds) within a spherical neighborhood.
However, much of the recent PD type modeling and simulation efforts have been focused
on the more general state-based PD models introduced in [18]. This naturally motivates us
to establish rigorous mathematical theory for general state-based PD systems.

Indeed, it is well-understood that with the use of only direct bond forces, bond-based
PD equations are suitable mostly for special materials systems [16, 18, 20]. For instance,
the linear isotropic bond-based PD model corresponds only to linear elastic materials with
a Poisson ratio 1/4. This is not a limitation of PD but rather the nature of simplistic bond-
based models. To work with more general materials, a sophisticated state-based PD model
was presented in [18] which is an important generalization of bond-based PD models. Silling
introduced a deformation operator—the deformation state about an equilibrium— to allow
the force interaction at a point to be dependent upon the deformation state, thus leading
to the state-based peridynamic theory. The resulting state-based PD system can represent a
linear elastic material with a general Poisson ratio. Meanwhile, with the exception of [5],
the mathematical theory of state-based PD systems has largely been under-developed. The
contribution of [5] is to introduce rigorous variational formulations of a nonlocal state-based
PD system, that is, a peridynamic Navier equation, using basic operators of the nonlocal cal-
culus developed in [6]. The paper [5] also demonstrated the well-posedness of constrained
value problems over a volume of non-zero measure for a special class of nonlocal interaction
kernels. The present work establishes general well-posedness results for nonlocal linear PD
Navier equations which are valid under more general conditions on the nonlocal interaction
kernels than that previously considered for linear bond-based PD models in [15] and for
state-based models in [5].

While the current work serves as a companion paper of [5], the key ingredients used
here are significantly different from that in [5] and are technically more involved than that
in [15]. Indeed, unlike [5], the current work analyzes models that may incorporate spatial
heterogeneity. Moreover, it develops the general theory that gives rise to the well posedness
of the PD Navier system in function spaces that may be either L2 or a subspace properly in
between L2 and H 1. This is because our analysis can be applied to more general interaction
kernel which may have stronger singularities (but with finite second moments), while in [5],
only square integrable interaction kernels are considered. Technically, and in contrast to [5]
where the theory of Hilbert-Schmidt operators associated could be utilized with the standard
L2 space acting as the energy space, in this work we need to provide more detailed charac-
terization of nonlocal operators and their associated energy spaces that arise from the use of
more general interaction kernels. For instance, the resulting nonlocal Navier operator could
be unbounded in L2 and its definition may have to be understood in more generalized sense
which is elucidated here. In addition, the validity of nonlocal Poincaré-type inequalities for
vector fields, which essentially is the coercivity of the PD operator, has to be established
carefully. The rigorous analytical set-up also allows us to study the convergence of nonlocal
state-based models to its local limit, as the extent of nonlocal interaction gets reduced to
zero. By this we mean, not only the convergence of the PD operator to the classical operator
as done in [5, 10, 18], but also the convergence of the corresponding solutions for a give
forcing term (see [15] for a similar result for the bond-based model). The solution to the
PD system may not have additional regularity other than being in the energy space. How-
ever, with a careful quantification of the relationship between the solution and the horizon,
together with compactness arguments, we are able to prove L2-convergence of solutions
without extra regularity assumptions. Such results are of practical interests since one of the
distinct advantages of nonlocal PD models is that they allow for deformation fields which
may not have well-defined gradients as in the classical sense.
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The paper is organized as follows. We begin the discussion with a brief account of model
equations in Sect. 2. In Sect. 3 we give variational formulations of volume constrained
problems associated with linear PD models and present the main well-posedness results.
In Sect. 4, we examine the local limit.

2 A Linear Peridynamic Solid

We assume that a body of a certain mass density occupies a bounded connected domain Ω

in R
d with sufficiently smooth boundary. According to Silling et al. [18], for constitutively

linear, isotropic solid undergoing deformation, the peridynamic model is given by the strain
energy density function

W(x) = Wdil(x) + Wdev(x).

The functions Wdil(x) and Wdev(x) are strain energy densities associated with the dilatation
and the deviatoric portions of the deformation, respectively. To give a precise expression for
the densities, let us first assume that the deformation y is given by y(x) = x + u(x), where u
is the displacement field. Let

e
〈
x′,x

〉 = ∣∣y
(
x′) − y(x)

∣∣ − ∣∣x′ − x
∣∣

measure the change in the length of the bond x′ − x due to the deformation. Writing
e〈x′,x〉 = s〈x′,x〉|x′ − x|, we notice that the expression s〈x′,x〉 = e〈x′,x〉

|x′−x| is the strain, also
called elongation, of the bond x′ − x at x. Taking into account the collective deformation of
a neighborhood of x, one can then introduce the nonlocal dilatation at x (cf. [5, 18]) as a
weighted mean of the strain given by

ϑ(x) = d

m(x)

∫

Bδ(x)∩Ω

ρ
(
x′ − x

)∣∣x′ − x
∣∣2

(
e〈x′,x〉
|x′ − x|

)
dx′,

where the (locally) integrable function ρ̃(ξ) = ρ(ξ)|ξ |2 measures the interaction strength of
the bond ξ between x and x′ = x + ξ and the weighted volume m(x) is defined as

m(x) =
∫

Ω

ρ̃
(
x′ − x

)
dx′ =

∫

Ω

ρ
(
x′ − x

)∣∣x′ − x
∣∣2

dx′. (1)

The strain energy density associated with the nonlocal dilatation is given by

Wdil(x) = k(x)

2

(
ϑ(x)

)2
,

where k(x) is the usual bulk modulus [18].
On the other hand, as observed in [17], the deviatoric part e〈x′,x〉

|x′−x| − 1
d
ϑ(x) of the strain

e〈x′,x〉
|x′−x| represents the bond strain after subtracting off an isotropic expansion of the neigh-
borhood of x with dilatation ϑ . This deviatoric part includes not only shear, but also any
deformation of the region in a δ neighborhood of x other than isotropic expansion. The
energy density associated with the deviatoric part of the deformation is given by

Wdev(x) = α(x)

2

∫

Bδ(x)∩Ω

ρ
(
x′ − x

)∣∣x′ − x
∣∣2

(
e〈x′,x〉
|x′ − x| − 1

d
ϑ(x)

)2

dx′,
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where α(x) is a scalar that is proportional to the shear modulus of the material.
To formulate the linearized peridynamics for solids, a uniform small difference displace-

ment

sup
|x′−x|<δ

∣∣u
(
x′) − u(x)

∣∣ � 1

is assumed, which leads to the peridynamic strain energy density function W̃ as a second-
order (quadratic) approximation of the strain energy W discussed above. The strain energy
density W̃ is again a sum of two energy densities associated with the different components
of the linearized deformation and is given by

W̃ (x) = k(x)

2

(
ϑ̃u(x)

)2 + α(x)

2

∫

Ω

ρ
(
x′ − x

)∣∣x′ − x
∣∣2

(
ẽu〈x′,x〉
|x′ − x| − 1

d
ϑ̃u(x)

)2

dx′, (2)

where ẽu〈x′,x〉 is the linearization of the measure of extension of bond with respect to small
relative displacement and is given by

ẽu
〈
x′,x

〉 = Tr
(
D∗u

)(
x′,x

)∣∣x′ − x
∣∣ := (

u
(
x′) − u(x)

) · x′ − x
|x′ − x| . (3)

Here Tr(D∗) is the trace of a nonlocal gradient operator D∗ defined in [6], namely, u �→
D∗u(x,y) := (u(y) − u(x)) ⊗ α(x,y) where α(x,y) is an antisymmetric vector field which
is taken as α(x,y) = y−x

|y−x|2 in the present work. This represents a slight modification to the
operator specialized in [5] for formulating the peridynamic Navier equations (and adopted in
[15] for the bond-based PD systems) where α(x,y) is taken to be a unit vector. The definition
adopted here is normalized to have the physically correct unit which is more compatible with
the notion of the local gradient and at the same time does not alter the mathematical analysis
except for a few notational changes.

As a consequence, the linearized nonlocal dilatation ϑ̃u(x) is given by

ϑ̃u(x) = Tr
(
D∗

ωu
)
(x) :=

∫

Ω

ω
(
x′,x

) ẽu〈x′,x〉
|x′ − x| dx′, (4)

where the function

ω
(
x′,x

) = d

m(x)
ρ̃
(
x′ − x

) = d

m(x)
ρ
(
x′ − x

)∣∣x′ − x
∣∣2

, (5)

is a weight function, and Tr(D∗
ω) is the trace of the weighted operator [6]

D∗
ω : u �→ D∗

ω(u)(x) :=
∫

Ω

D∗(u)(x,y)ω(y,x)dy.

Note that D∗
ω remains exactly the same as the nonlocal weighted gradient defined in [5, 6],

although as pointed out earlier, the operator D∗ introduced in this work makes a slight mod-
ification to that used in [6] in order to be more compatible in physical units.

We remark that there are other models for linear peridynamic solids such as the one
proposed by Aguiar and Fosdick in [1]. In fact, when ρ is radial, the energy density function
in (2) is a particular case of the linearly elastic material model studied in [1].
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To complete the section, we summarize the conditions on ρ and give additional notation
to be used throughout the paper. We assume that ρ satisfies the following minimal condi-
tions:

{
ρ = ρ(ξ) ≥ 0, ρ(ξ) = ρ(−ξ), ρ̃(ξ) = |ξ |2ρ(ξ) ∈ L1

loc(R
d); there exist

positive constants δ and λ satisfying Bλ(0) ⊂ supp(ρ) ⊂ Bδ(0).
(H)

The condition on ρ is said to be minimal as it allows more general ρ than the usually
assumed radially symmetric form used in many existing works for the well-posedness stud-
ies of PD models and related scalar nonlocal diffusion models, see for example, [14, 15].
The generality of allowing ρ to be even but possibly non-radial is not only of theoretical
interest but will also help us studying anisotropic models in the future. The function ρ is not
necessarily locally integrable; rather, we assume that it has finite second moments, which
is a less restrictive condition that allows for a much broader set of nonlocal interaction ker-
nels, all of which correspond to materials with finite elastic moduli. It is also a necessary
condition to make the weighted volume m(x) well defined. In addition to locally integrable
even functions, functions ρ(|ξ |) that are comparable to |ξ |−d−2s for some s ∈ (0,1) near
the origin, also satisfy (H). A kernel not included in the above class is the radial function
ρ(|ξ |) = −|ξ |−d ln(|ξ |) for |ξ | ≤ 1 and 0 otherwise with d ≥ 2.

The constant δ in condition (H) measures the extent of material points interactions and
is called the horizon. In principle, this quantity is material dependent. More discussions on
the effect of ρ and δ on the materials properties can be found in [23]. The non-degeneracy
condition in assumption (H), namely Bλ(0) ⊂ Supp(ρ), is needed to establish a nonlocal
Poincaré-type inequality that will be used in determining the solvability of the PD equa-
tions, and it is automatically satisfied if ρ is radial and non-degenerate. An elementary
but important consequence of this is that there are positive constants m0 and M such that
0 < m0 = minx∈Ω m(x) ≤ maxx∈Ω m(x) = M < ∞. As we proceed, additional necessary
conditions on ρ will be provided to establish special properties of interests.

For other materials dependent properties associated with PD models, we suppose that
0 < α0 = minx∈Ω α(x) ≤ maxx∈Ω α(x) = A < ∞, 0 < k0 = minx∈Ω k(x) ≤ maxx∈Ω k(x) =
K < ∞. As for the domain Ω , we take it to be smooth enough to satisfy an interior cone
condition, that is, there exists a positive constant angle θ > 0 such that for any x ∈ Ω̄ ,
Ω̄ ∩Bλ(x) contains a spherical cone Cθ

λ(x, ex) with its apex at x, radius λ, aperture angle 2θ

and around an axis in the direction of a unit vector ex.

3 Variational Principle

To simplify the discussion, unless otherwise noted, we refer to the linearized state-based PD
model simply as the PD model in the sequel. The potential energy under the external force
density function b(x) is then given by

E(u) =
∫

Ω

W̃u(x)dx −
∫

Ω

u · bdx

=
∫

Ω

α(x)

2

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

) − 1

d
Tr

(
D∗

ωu
)
(x)

)2

dx′ dx

+
∫

Ω

{
k(x)

2

(
Tr

(
D∗

ωu
)
(x)

)2 − u · b
}

dx. (6)
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The energy space is the set S(Ω) of all square integrable vector fields u defined on Ω such
that the total strain energy is finite. It is clearly the natural space to study the optimization
problem and one contribution of this paper is the characterization and close study of this
space for a wide class of weight functions. Our first result in that direction is given by
the following proposition which provides an equivalent, but simpler, characterization of the
space.

Proposition 1 The energy space S(Ω) is given by

S(Ω) =
{

u ∈ L2
(
Ω;Rd

) :
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx < ∞

}
.

Proof Let us denote the set of vector fields on the right hand side by E(Ω) for the moment.
The objective is to show that S(Ω) = E(Ω). Pick u ∈ E(Ω). We begin by writing the strain
energy density as

W̃u(x) =
(

k(x)

2
− α(x)m(x)

2d2

)(
Tr

(
D∗

ωu
)
(x)

)2

+ α(x)

2

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′.

Then it follows from the above that

W̃u(x) ≤ k(x)

2

(
Tr

(
D∗

ωu
)
(x)

)2 + α(x)

2

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′. (7)

Now we note that for all u ∈ E(Ω) and for each x ∈ Ω , applying the Cauchy-Schwarz
inequality, we have

Tr
(
D∗

ωu
)
(x) ≤ d

m(x)1/2

(∫

Ω

ρ̃
(
x′ − x

)∣∣Tr
(
D∗u

)(
x′,x

)∣∣2
dx′

)1/2

.

Then from the above we obtain that
∫

Ω

W̃u(x)dx ≤
∫

Ω

k(x)

2

(
Tr

(
D∗

ωu
)
(x)

)2
dx

+
∫

Ω

α(x)

2

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx

≤
(

d2K

2m0
+ A

2

)∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx < ∞.

This establishes the inclusion E(Ω) ⊂ S(Ω). Let us show the inclusion in the other direc-
tion. Let u ∈ S(Ω). Then

∫

Ω

(
Tr

(
D∗

ωu
)
(x)

)2
dx < ∞,

and
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

) − Tr(D∗
ωu)(x)

d

)2

dx′dx < ∞.



Nonlocal Constrained Value Problems for a Linear Peridynamic Navier 33

It follows that
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx

=
∫

Ω

{∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

) − Tr(D∗
ωu)(x)

d

)2

dx′ + 1

d2

(
Tr

(
D∗

ωu
)
(x)

)2
}
dx,

≤
(

2

a0
+ 2M

d2k0

)∫

Ω

W̃u(x)dx < ∞,

demonstrating that u ∈ E(Ω). �

Remark 1 From the proof of the above proposition we infer the following inequality: for
any u ∈ L2(Ω;Rd),

∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx ≤

(
2

a0
+ 2M

d2k0

)∫

Ω

W̃u(x)dx

≤
(

2

a0
+ 2M

d2k0

)(
A

2
+ d2K

2m0

)∫

Ω

∫

Ω

ρ̃
(
x′ − x

)(
Tr

(
D∗u

)(
x′,x

))2
dx′dx.

For ρ radial, the set S(Ω) is shown in [15] to be a Hilbert space with inner product

(u,w)s = (u,w) + (
(u,w)

)
, (8)

where (·, ·) is the standard L2-inner product and ((·, ·)) is defined as

(
(u,v)

) =
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)
Tr

(
D∗u

)(
x′,x

)
Tr

(
D∗v

)(
x′,x

)
dx′dx. (9)

A slight modification of the argument used to prove [15, Theorem 2.1] can also be used to
prove the completeness of S(Ω) for any ρ satisfying the minimal conditions stated in the
previous section.

We will use the notation ‖u‖ to denote the L2 norm of u and |u|s to denote the seminorm√
((u,u)) of u in S(Ω) and naturally we will use the notation ‖ · ‖s to denote the norm on

S(Ω):

‖u‖2
s = ‖u‖2

L2 + |u|2s .
Note that for smooth u, say u ∈ C2(Ω;Rd),

Tr
(
D∗u

)(
x′,x

) ≈ e(∇u) for all x′,x ∈ Ω with small
∣∣x′ − x

∣∣,

where e(∇u) = (∇u+∇uT )/2 is the symmetrized gradient. Thus one may think of the norm
|u|2s as a nonlocal approximation of the local seminorm ‖e(∇u)‖2

L2(Ω)
.

Our goal is to study the solvability of the nonlocal peridynamic Navier equation as a
nonlocal constrained value problem with the constraints imposed over a volume having non-
zero measure. To that end, we give a class of subspaces of the energy space S(Ω) in which
we expect the solution to belong.

Given an open subset Θ ⊂ Ω such that |Θ| > 0, one may define

VΘ = {
u ∈ S(Ω) : u = 0 on Θ

}
.
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Then VΘ is a closed subspace of S(Ω). Indeed, if un ∈ VΘ and un → u in S(Ω), then clearly
un → u in L2(Ω;Rd), implying that u = 0 on Θ , and thus u ∈ VΘ . It follows then that VΘ

is a Hilbert space with the inner product (·, ·)s given by (8).
A special case is when Θ = Ω \ Ωδ , where Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, the set of

points in Ω that are a δ-distance away from the boundary, where δ is the horizon. This
enables us to impose constraints (“nonlocal boundary conditions”) on a boundary layer of
thickness δ, mimicking the local Dirichlet boundary value problems. We denote this energy
space by V δ

0 = VΩ\Ωδ
, the set of elements of S(Ω) that vanish on a boundary layer of

thickness δ. For further discussions on nonlocal constrained value problems over a non-
measure zero volume, we refer to [7].

3.1 Nonlocal Poincaré-Type Inequality

Another important ingredient for our analysis is a Poincaré-type inequality.
We begin with a characterization of vector fields u such that u is nonzero and yet |u|s = 0.

For this, let Π denote the set of infinitesimally rigid displacements given by

Π = {
u : u =Qx + b,Q ∈R

d×d ,QT = −Q,b ∈R
d
}
.

Next, we provide a nonlocal means of identifying elements of Π , as done in [5, 13] for
various conditions on ρ. Replicating the argument used in [5, Lemma 2], one can prove the
following more general characterization as well.

Lemma 1 Suppose that ρ satisfies (H) and ρ̃(ξ) = |ξ |2ρ(ξ). Then

u ∈ Π ⇐⇒
∫

Ω

∫

Ω

ρ
(
x′ − x

)∣∣(u
(
x′) − u(x)

) · (x′ − x
)∣∣2

dx′dx = 0.

The above lemma together with the equivalence of the total strain energy with the semi-norm
yields the following corollary.

Corollary 1 Suppose that ρ satisfies (H). Then for all u ∈ S(Ω),
∫

Ω

W̃u(x)dx ≥ 0, with equality holding if and only if u ∈ Π.

We also need the following lemma in the proof of the next result.

Lemma 2 If ρ satisfies assumption (H) and Ω is sufficiently smooth, then there exists a
constant γ > 0 such that

A(x) :=
∫

Ω

ρ(y − x)(y − x) ⊗ (y − x)dy ≥ γ I

in the sense of quadratic forms, uniformly in x ∈ Ω .

Proof Denoting the unit sphere in R
d by S

d−1 and the characteristic function on Ω by
χΩ = χΩ(x), we define a function ψ : Ω × S

d−1 by

ψ(x,v) =
∫

B(0,λ)

χΩ(ξ + x)ρ(ξ)|ξ · v|2dξ .
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Then for any (x,v) ∈ Ω × S
d−1, since the domain Ω satisfies the interior cone condition,

we have at most a zero measure subset in Cθ
λ(x, ex) which is perpendicular to v, thus,

vT
A(x)v ≥ ψ(x,v) > 0.

The proof of the lemma will be complete if we show that ψ(x,v) is a continuous function
on Ω × S

d−1. Then, we may simply take

γ = min
(x,v)∈Ω×Sd−1

ψ(x,v) > 0.

To that end, let us pick (x,v) and (y,w) both in Ω × S
d−1. Then we have

∣∣ψ(x,v) − ψ(y,w)
∣∣ ≤

∫

B(0,δ)

χΩ(ξ + x)ρ(ξ)
∣∣|ξ · v|2 − |ξ · w|2∣∣dξ

+
∫

B(0,δ)

∣∣χΩ(ξ + x) − χΩ(ξ + y)
∣∣ρ(ξ)|ξ · w|2dξ = I1 + I2.

For the first term I1, it is estimated as

I1 =
∫

B(0,δ)

χΩ(ξ + x)ρ(ξ)
∣∣|ξ · v|2 − |ξ · w|2∣∣dξ ≤ 2|v − w|

∫

B(0,δ)

ρ(ξ)|ξ |2dξ .

Define the set Ω(x,y) = B(0, δ)∩ (Ω −{x} \Ω −{y})∪ (Ω −{y} \Ω −{x}). We note that
|χΩ(ξ + x) − χΩ(ξ + y)| = 1 if ξ ∈ Ω(x,y) and 0 otherwise. The second term I2 can be
estimated as

I2 =
∫

B(0,δ)

∣∣χΩ(ξ + x) − χΩ(ξ + y)
∣∣ρ(ξ)|ξ · w|2dξ ≤

∫

Ω(x,y)

ρ(ξ)|ξ |2dξ .

Given the smoothness of the domain, we obtain that, as x − y → 0, the measures of the set
Ω −{x} \Ω −{y} and Ω −{y} \Ω −{x} goes to 0, and therefore |Ω(x,y)| → 0. Now using
the absolute continuity of the integral, if |x − y| → 0, we have

∫

Ω(x,y)

ρ̃(ξ)dξ =
∫

Ω(x,y)

ρ(ξ)|ξ |2dξ → 0.

Thus, when (x,v) → (y,w) in Ω ×S
d−1, |ψ(x,v)−ψ(y,w)| → 0 as well. This establishes

the continuity of ψ(x,v) on Ω × S
d−1. �

Finally, we state and prove the nonlocal Poincaré inequality that will be used to demon-
strate the coercivity of the energy. We note that it is established under more general assump-
tions on spaces and nonlocal kernels than the ones presented before, say, in [15].

Proposition 2 Suppose that ρ satisfies (H) and V is a closed subspace of L2(Ω;Rd) such
that V ∩ Π = {0}. Then, there exists C = C(ρ,V,Ω) such that

‖u‖2
L2 ≤ C

∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(u
(
x′) − u(x)

) · (x′ − x
)∣∣2

dx′dx, ∀u ∈ V.

As a consequence, by taking κ = √
C|diam(Ω)|,

‖u‖s ≤ κ|u|s , for all u ∈ V ∩ S(Ω).
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Proof The proof adapts the proof of the standard Poincaré inequality. Suppose the conclu-
sion of the proposition is false. Then, there exist un ∈ L2 such that, for all n, ‖un‖ = 1
and

∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(un

(
x′) − un(x)

) · (x′ − x
)∣∣2

dx′dx → 0 as n → ∞.

We claim that

‖un‖L2 → 0 as n → ∞,

thus resulting in a desired contradiction. We now prove the claim. Let u be the weak limit
(up to a subsequence) of the sequence un. Then, u ∈ V , since V is a closed subspace of
L2(Ω;Rd). The aim is to show that u ∈ V is an infinitesimal rigid displacement, and there-
fore u = 0. To that end, let us define the bounded linear map L on L2(Ω;Rd) by

Lw(x) = −2
∫

Ω

ρ
(
x′ − x

)(
x′ − x

) ⊗ (
x′ − x

)(
w

(
x′) − w(x)

)
dx′. (10)

For φ ∈ C∞
c (Ω;Rd), define the sequence

Jn =
∫

Ω

Lφ(x) · un(x) dx. (11)

Then it follows from (11) together with (10) by interchanging x′ → x that

Jn =
∫

Ω

Lun(x) · φ(x) dx

= −2
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)((
un

(
x′) − un(x)

) · (x′ − x
))((

x′ − x
) · φ(x)

)
dx′dx.

Now, applying the Cauchy-Schwartz inequality, on the one hand, we get

Jn ≤ 2

[∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(un

(
x′) − un(x)

) · (x′ − x
)∣∣2

dx′dx
] 1

2

×
[∫

Ω

∫

Ω

∣∣φ(x)
∣∣2

ρ̃
(
x′ − x

)
dx′dx

] 1
2

≤ C

[∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(un

(
x′) − un(x)

) · (x′ − x
)∣∣2

dx′dx
] 1

2

×
[∫

Ω

∣∣φ(x)
∣∣2

dx
]1/2(

by condition (H )
)

→ 0, as n → ∞.

On the other hand because un ⇀ u weakly in L2(Ω;Rd), as n → ∞,

Jn →
∫

Ω

Lφ(x) · u(x) dx.
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We conclude that for all φ ∈ C∞
c (Ω;Rd),

∫

Ω

Lu(x) · φdx =
∫

Ω

Lφ(x) · u(x) dx = 0.

This implies that, for almost all x ∈ Ω , Lu(x) = 0. After multiplying this last equation by u
and integrating it, we obtain that

∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(u
(
x′) − u(x)

) · (x′ − x
)∣∣2

dx′dx = 0.

But by Lemma 1, this happens only when u is an infinitesimal rigid displacement.
We next show that the weak limit is actually a strong limit. We do this by showing

that ‖un‖ → 0 strongly in L2(Ω;Rd). We begin by observing that the operator L defined
(10) can be written as Lu(x) = K ∗ u(x) + A(x)u(x), where u is the zero extension of u,
K(ξ) = −2ρ(ξ)ξ ⊗ ξ ,

A(x) = −
∫

Ω

K
(
x′ − x

)
dx′, and (K ∗ u)j =

d∑

i=1

∫

Ω

Kij

(
x′ − x

)
ui

(
x′)dx′.

For any x ∈ Ω , by Lemma 2, we have A(x) ≥ γ I for some γ > 0 in the sense of quadratic
forms. Now proceeding to prove the lemma, we have

(Lun,un) =
∫

Ω

∫

Ω

ρ̃
(
x′ − x

)∣∣(un

(
x′) − un(x)

) · (x′ − x
)∣∣2

dx′dx → 0 as n → ∞.

Since un ⇀ 0 weakly in L2(Ω;Rd) we use compactness of the convolution operator to
obtain

K ∗ un → 0 strongly in L2
(
Ω;Rd

)
.

Therefore,

γ lim
n→∞

∫

Ω

|un|2dx ≤ lim
n→∞

(
Â(x)un,un

) + (K ∗ un,un) = lim
n→∞(Lun,un) = 0,

completing the proof of the proposition. �

Remark 2 We remark that the requirement that V is a closed subspace of L2(Ω;Rd) can not
be waived for the non-local Poincaré inequality, even if V is a proper subset of L2(Ω;Rd)

that does not include nontrivial rigid displacements. Indeed, the inequality, for example,
does not hold when V = {u ∈ H 1(Ω;Rd) : u|Γ = 0,∅ �= Γ ⊂ ∂Ω}. For d = 1, we present
the counterexample given in [9, 12]. Given 0 < s < 1/2, there are functions fn ∈ C∞([0,1])
such that fn = 0 on [0, 1

2n ], ‖fn‖L2[0,1] → 1, as n → ∞, while

∫ 1

0

∫ 1

0

|fn(x
′) − fn(x)|2

|x ′ − x|1+2s
dx ′dx −→ 0, as n → ∞.

Note that in this case ρ(ξ) = |ξ |−1−2s , and satisfies condition (H).

From the nonlocal Poincaré inequality, if V is a closed subspace of L2(Ω;Rd) such that
V ∩Π = {0}, then the inner product space (V ∩S(Ω), ((·, ·))) is a Hilbert space and that the
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seminorm | · |s defines an equivalent norm in the subspace. Hereafter Vs denotes the generic
subspace V ∩ S(Ω) with its dual denoted by V ′

s . We note that a special case is given by
Vs = VΘ for some measure non-zero set Θ ⊂ Ω or, in particular, we may take VΘ = V δ

0
which, as defined before, contains elements of S(Ω) that vanish on a boundary layer of Ω

with thickness δ.

3.2 Lax-Milgram

Let us define the bilinear form B : S(Ω) × S(Ω) →R by

B(u,v) =
∫

Ω

((
k(x) − α(x)m(x)

d2

)
Tr

(
D∗

ωu
)
(x)Tr

(
D∗

ωv
)
(x)

+ α(x)

∫

Ω

ρ̃
(
x′ − x

)
Tr

(
D∗u

)(
x′,x

)
Tr

(
D∗v

)(
x′,x

)
dx′

)
dx. (12)

It is not difficult to see, from (6) and (12), that for any u ∈ S(Ω),

B(u,u) = 2
∫

Ω

W̃u(x)dx.

Lemma 3 (Energy estimates) There exist positive constants c and C such that, for any
u,v ∈ Vs ,

B(u,v) ≤ C|u|s |v|s , B(u,u) ≥ c|u|2s .

Proof The lemma follows from Proposition 2 and the estimate (7) which holds for all u ∈
S(Ω) and all x ∈ Ω . �

The above energy estimates say that B = B(u,v) is a continuous and coercive bilinear
form on Vs . Thus it induces the nonlocal peridynamic Navier operator L : S(Ω) → S ′(Ω)

which is a bounded linear operator defined by

B(u,v) = 〈−L(u),v
〉

for any u,v ∈ Vs . (13)

More discussions on the operator L = L(u) will be given in later sections.
As discussed in [6], it is possible to pose variational problems in Vs . A standard applica-

tion of Lax-Milgram theorem yields the following result.

Theorem 1 Assume that ρ satisfies (H). For a given b ∈ V ′
s , there exists a unique u ∈ Vs

such that B(u,v) = 〈b,v〉, for all v ∈ Vs and satisfies the apriori estimate,

|u|s ≤ c|b|V ′
s
.

Moreover,

u = arg min
v∈Vs

(
E(v) − 〈b,v〉),

where E(v) is the potential energy defined in (6).
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3.3 Existence of Minimizer for Problems with Sign-Changing Kernels

In earlier sections, we have established the theory for nonlocal volume constrained value
problems for kernels that are always non-negative. In relation to the study of materials sta-
bility within the nonlocal peridynamic theory, necessary conditions for the existence of min-
imizers of variational problems associated with peridynamic models have been studied when
the kernels are allowed to have sign-changes. For the linear state-based PD model with an
integrable kernel ρ = ρ(ξ), since the potential energy is quadratic, the second variation of
the energy functional leads to a quadratic form

∫

Ω

W̃v(x)dx = (−Lv,v), ∀v ∈ VΘ,

where the operator L is defined in (13) and has the form, according to [17],

L(u)(x) =
∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (u
(
x′) − u(x)

)
dx′

+
∫

Ω

τ
(
x′)ρ

(
x − x′)(x′ − x

)(∫

Ω

ρ
(
x′ − z

)(
z − x′) · (u(z) − u

(
x′))dz

)
dx′

+
∫

Ω

τ(x)ρ
(
x − x′)(x′ − x

)(∫

Ω

ρ(x − z)(z − x) · (u(z) − u(x)
)
dz

)
dx′, (14)

where τ(x) = d2k(x)

m(x)2 − α(x)

m(x)
. Then we have the following lemma.

Lemma 4 If ρ = ρ(ξ) is integrable, a necessary condition for the existence of a minimizer
for the potential energy is that the matrix function

P(x) :=
∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

) ⊗ (
x′ − x

)
dx′

+ τ(x)

∫

Ω

ρ
(
x′ − x

)(
x′ − x

)
dx′ ⊗

∫

Ω

ρ
(
x′ − x

)(
x′ − x

)
dx′

is positive definite for all x ∈ Ω \ Θ .

Proof To prove the lemma, we pick x0 ∈ Ω \ Θ . Choose ε > 0 small so that B(x0, ε) ⊂ Ω .
Associated to x0, we define the sequence of functions

vε(x) = a√|B(x0, ε)|χB(x0,ε)(x).

Then vε ∈ VΘ . Moreover vε weakly converges to 0 in L2(Ω;Rd). Writing L(v) = L1(v) +
L2(v) + L3(v), where

L1(v) =
∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (v
(
x′) − v(x)

)
dx′,

L2(v) =
∫

Ω

τ
(
x′)ρ

(
x − x′)(x′ − x

)(∫

Ω

ρ
(
x′ − z

)(
z − x′) · (v(z) − v

(
x′))dz

)
dx′
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and

L3(v) =
∫

Ω

τ(x)ρ
(
x − x′)(x′ − x

)(∫

Ω

ρ(x − z)(z − x) · (v(z) − v(x)
)
dz

)
dx′,

we proceed to compute the limits of Li(vε), for i = 1,2,3. The limit of the part that involves
L1 can be computed as

lim
ε→0

∫

Ω

−L1(vε) · vε(x)dx

= lim
ε→0

∫

Ω

∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · vε(x),vε(x))dx′dx

= lim
ε→0

1

|B(x0, ε)|
∫

B(x0,ε)

∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
∣∣(x′ − x

) · a
∣∣2

dx′dx

=
∫

Ω

(
α(x0) + α

(
x′))ρ(x′ − x0)

|x′ − x0|2
∣∣(x′ − x0

) · a
∣∣2

dx′.

The first equality follows from the fact that vε weakly converges to 0, and as a consequence
where we have used

∫

Ω

(
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (vε

(
x′)dx′ → 0 strongly in L2.

We now work on the other terms. Let us introduce the functions

Λ(x) =
∫

Ω

ρ(x − z)(z − x)dz and ψε(x) =
∫

Ω

ρ(x − z)(z − x) · vε(z)dz.

Observe that Λ is a continuous vector function and that ψε(x) → 0 strongly in L2(Ω) as
ε → 0. On one hand, it follows that
∫

Ω

−L2(vε)(x) · vε(x)dx =
∫

Ω

τ
(
x′)ψε

(
x′)dx′ −

∫

Ω

τ
(
x′)ψε

(
x′)Λ

(
x′) · vε

(
x′)dx′ −→ 0,

as ε → 0. On the other hand, again writing
∫

Ω

−L3(vε)(x) · vε(x)dx = −
∫

Ω

τ(x)ψε(x)Λ(x) · vε(x)dx +
∫

Ω

τ(x)
∣∣Λ(x) · vε(x)

∣∣2
dx,

we see that the first term goes to 0 as ε → 0, while the second term
∫

Ω

τ(x)
∣∣Λ(x) · vε(x)

∣∣2
dx → τ(x0)

∣∣Λ(x0) · a
∣∣2

as ε → 0, thus proving the lemma. �

Remark 3 For homogeneous and isotropic materials, the necessity of the positive definite-
ness of P(x) for the existence of minimizers of bond-based models has been formally rec-
ognized in Silling’s original work [16]. The same condition also appears in [18] and [21]
without accounting for the complication due to boundary. In [16, 18, 21], the matrix P(x)

is actually a constant matrix and it has the same form for both the bond-based and state
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based models. Our analysis, on the other hand, is valid for more general cases that involve
inhomogeneities and anisotropies. We should mention that for scalar nonlocal models with
sign changing kernel similar necessary conditions are established in [14].

3.4 The Nonlocal Operator

With the introduction of the nonlocal Navier operator L via the bilinear form, Theorem 1 can
be interpreted as saying that for any b ∈ V ′

s , the equation −L(u) = b is uniquely solvable in
Vs and, as a consequence, the operator L restricted on Vs

−L : Vs → V ′
s

is an isomorphism. In addition, using the continuous embedding of L2(Ω;Rd) into V ′
s , we

see that the restriction of inverse operator L−1 to L2(Ω;Rd) is linear and bounded:

(−L)−1 : L2
(
Ω;Rd

) → Vs

and satisfies the inequality |L−1(b)|s ≤ C‖b‖L2(Ω;Rd ).
In the remaining part of this section, we will give a closed explicit form of the operator

L. We first consider an important special case.

Lemma 5 If ρ = ρ(ξ) ∈ L1
1oc(R

d), then the operator L is a bounded operator on L2(Ω;Rd)

and is given by, for any u ∈ L2(Ω;Rd),

L(u) =
∫

Ω

C
(
x′,x

)(
u
(
x′) − u(x)

)
dx′,

where the matrix function C(x′,x) = Φ1(x′,x) + Φ2(x′,x), with

Φ1

(
x′,x

) = (
α(x) + α

(
x′))ρ(x′ − x)

|x′ − x|2
(
x′ − x

) ⊗ (
x′ − x

)
,

τ (x) = d2k(x)

m(x)2
− α(x)

m(x)
,

and

Φ2
(
x′,x

) =
∫

Ω

(
τ(z)ρ(z − x)ρ

(
x′ − z

)
(x − z) ⊗ (

z − x′)

− τ
(
x′)ρ

(
x′ − x

)
ρ
(
z − x′)(x − x′) ⊗ (

x′ − z
)

+ τ(x)ρ(z − x)ρ
(
x′ − x

)
(x − z) ⊗ (

x − x′))dz.

Proof The results follows from Schur’s test, that is, a special form of Young’s inequality, by
first verifying that C ∈ L∞(Ω,L1(Ω)) ∩ L1(Ω,L∞(Ω)) under the condition ρ = ρ(ξ) ∈
L1

1oc(R
d). �

For any ρ satisfying (H), because of the potential singularity that may appear, we should
understand the formula for L in Lemma 5 in a proper way. To that end, let us introduce the
notation ρε(ξ) = ρ(ξ)χ{ξ :ρ(ξ)≤1/ε}(ξ), and define Tr(Dε,∗u) and Tr(Dε,∗

ω u) the same way as
Tr(D∗u) and Tr(D∗

ωu) in (3) and (4) but with ρ replaced by ρε and m(x), ω(x′,x), τ(x)

modified accordingly to mε(x), ωε(x′,x), τε(x). Then, we have the operator

Lε(u)(x) =
∫

Ω

(
α(x) + α

(
x′))ρε(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (u
(
x′) − u(x)

)
dx′
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+
∫

Ω

τε

(
x′)ρε

(
x − x′)(x′ − x

)(∫

Ω

ρε

(
x′ − z

)(
z − x′) · (u(z) − u

(
x′))dz

)
dx′

+
∫

Ω

τε(x)ρε

(
x − x′)(x′ − x

)(∫

Ω

ρε(x − z)(z − x) · (u(z) − u(x)
)
dz

)
dx′.

The following lemma summarizes the property of m(x) and the relationship between the
functions mε(x) and m(x).

Lemma 6 Suppose ρ satisfies (H). Then the functions m(x) and mε(x) are continuous
function on Ω . Moreover, minx∈Ω m(x) > 0,

‖mε − m‖L∞(Ω) → 0, as ε → 0,

and as a consequence there exists ε0 small such that

sup
0<ε≤ε0

min
x∈Ω

mε(x) ≥ 1

2
min
x∈Ω

m(x) > 0.

Proof The proof of the uniform convergence follows from the estimate

sup
x∈Ω

∣∣∣∣

∫

Ω

(
ρε

(
x′ − x

) − ρ
(
x′ − x

))∣∣x′ − x
∣∣2

dx′
∣∣∣∣ ≤

∫

{ξ :ρ(ξ)>1/ε}
ρ(ξ)|ξ |2dξ → 0

as ε → 0. The other statements are not difficult to prove. �

Proposition 3 The operator L is the weak* limit of the sequence of operators Lε . That is,
for any u and v in S(Ω),

lim
ε→0

∫

Ω

−Lε(u)(x) · v(x)dx = 〈−L(u),v
〉
.

Proof Using the notation specified above,
∫

Ω

−Lεu(x) · v(x)dx =
∫

Ω

((
k(x) − α(x)mε(x)

d2

)
Tr

(
Dε,∗

ω u
)
(x)Tr

(
Dε,∗

ω v
)
(x)

+ α(x)

∫

Ω

ρ̃ε

(
x′ − x

)
Tr

(
D∗u

)(
x′,x

)
Tr

(
D∗v

)(
x′,x

)
dx′

)
dx.

The convergence to the appropriate limit of the second term is easy to show since ρε(ξ) →
ρ(ξ) as ε → 0 and that ρε(ξ) ≤ ρ(ξ). Let us focus on the first term. Note that for any
u,v ∈ S(Ω), using Lemma 6, we have both Tr(Dε,∗

ω u) and Tr(Dε,∗
ω v) uniformly bounded

in L2(Ω), thus Tr(Dε,∗
ω u)Tr(Dε,∗

ω v) is uniformly bounded in L1(Ω). Now for all x ∈ Ω , as
ε → 0, we have

Tr
(
Dε,∗

ω u
)
(x)Tr

(
Dε,∗

ω v
)
(x) → Tr

(
D∗

ωu
)
(x)Tr

(
D∗

ωv
)
(x).

Then applying Lebesgue dominated theorem, we conclude that
∫

Ω

(
k(x) − α(x)mε(x)

d2

)
Tr

(
Dε,∗

ω u
)
(x)Tr

(
Dε,∗

ω v
)
(x)dx

→
∫

Ω

(
k − αm(x)

d2

)
Tr

(
D∗

ωu
)
(x)Tr

(
D∗

ωv
)
(x)dx,
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which completes the proof of the lemma. �

Theorem 2 Suppose that ρ satisfies (H). Assume that k(x) and α(x) are at least Lips-
chitz continuous on Ω . Suppose also that u ∈ C∞

c (Ω;Rd), and that the horizon δ � h =
dist(∂Ω,Supp(u)). Then the following is true.

1. supε>0 supx∈Ω |Lε(u)(x)| ≤ C, where the constant 0 < C = C(ρ,u,Ω),
2. Lε(u) → L(u) strongly in L2(Ω;Rd), thus, for almost all x ∈ Ω ,

L(u)(x) = lim
ε→0

Lε(u)(x). (15)

We thus may write the closed formula for L(u) as in (14) for almost all x ∈ Ω , but under-
stood in the sense of (15).

Proof To show the bounds in (1), suppose that u ∈ C∞
c (Ω;Rd). Assume that the horizon

δ < h/8. When x ∈ Ωc
3h/4, then B(x, δ) ⊂ Ωc

7h/8. Moreover, for any x′ ∈ B(x, δ), the ball
B(x′, δ) ⊂ Ωc

h . As a result, Lε(u)(x) = 0.
When x ∈ Ω3h/4, B(x, δ) ⊂ Ωh/2 and for any x′ ∈ B(x, δ), B(x′, δ) ⊂ Ωh/4. In this case,

mε(x) = mε(x′) = mε , a constant, and we can write Lε(u)(x) as

Lε(u)(x) =
∫

B(x,δ)

(
α(x) + α

(
x′))ρε(x′ − x)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (u
(
x′) − u(x)

)
dx′

+
∫

B(x,δ)

τε

(
x′)ρε

(
x − x′)(x′ − x

)

×
(∫

B(x′,δ)
ρε

(
x′ − z

)(
z − x′) · (u(z) − u

(
x′))dz

)
dx′

+
∫

B(x,δ)

τε(x)ρε

(
x − x′)(x′ − x

)

×
(∫

B(x,δ)

ρε(x − z)(z − x) · (u(z) − u(x)
)
dz

)
dx′.

Noting that the third term is zero, after a change of variable to the first two terms we get

Lε(u)(x) =
∫

B(0,δ)

(
α(x) + α(x + z)

)ρε(z)
|z|2 (z ⊗ z)

(
u(x + z) − u(x)

)
dz

+
∫

B(0,δ)

τε(x + z)ρε(z)z
(∫

B(0,δ)

ρε(w)w · (u(x + z + w) − u(x + z)
)
dw

)
dz

= J ε
1 (x) + J ε

2 (x).

Now let us bound J ε
1 (x) and J ε

2 (x) uniformly in ε and x. First,

J ε
1 (x) =

∫

B(0,δ)

(
α(x) + α(x + z)

)ρε(z)
|z|2 (z ⊗ z)

(
u(x + z) − u(x)

)
dz

=
∫

B(0,δ)

(
α(x + z) − α(x)

)ρε(z)
|z|2 (z ⊗ z)

(
u(x + z) − u(x)

)
dz
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+ 2α(x)

∫

B(0,δ)

ρε(z)
|z|2

〈
D2(u)

(
ζ(x, z)

)
z ⊗ z, z

〉
zdz,

implying that
∣∣J ε

1 (x)
∣∣ ≤ m

(‖∇α‖L∞(Ω)‖∇u‖L∞(Ω) + ‖α‖L∞(Ω)

∥∥D2(u)
∥∥

L∞(Ω)

)
.

Similarly, using the mean value theorem, we may rewrite the second integral as

J ε
2 (x) =

∫

B(0,δ)

τε(x + z)ρε(z)z
(∫

B(0,δ)

ρε(w)

|w|
∫ |w|

0

〈
∇u

(
x + z + t

w
|w|

)
w,w

〉
dtdw

)
dz

=
∫

B(0,δ)

τε(x + z)ρε(z)z
(∫

B(0,δ)

ρε(w)

|w|
∫ |w|

0

〈(
∇u

(
x + z + t

w
|w|

)

− ∇u
(

x + t
w
|w|

))
w,w

〉
dtdw

)
dz

+
∫

B(0,δ)

(
τε(x + z) − τε(x)

)
ρε(z)z

(∫

B(0,δ)

ρε(w)

|w|

×
∫ |w|

0

〈
∇u

(
x + t

w
|w|

)
w,w

〉
dtdw

)
dz

from which we obtain that
∣∣J ε

2 (x)
∣∣ ≤ (∥∥m2

ετε

∥∥
L∞

∥∥D2u
∥∥

L∞ + ∥∥m2
ε∇τε

∥∥
L∞‖Du‖L∞

)
.

That completes the proof of Part (1) after observing that m2
ετε(x) = k(x) + α(x)mε(x)/d2

and both ‖m2
ετε‖L∞ and ‖m2

ε∇τε‖L∞ are uniformly bounded in ε.
To prove Part (2), we first notice that by uniform bounded convergence theorem,

Lε(u)(x) → L0(u)(x) strongly in L2(Ω;Rd) as ε → 0 where

L0(u)(x) = lim
ε→0

Lε(u)(x), for x ∈ Ω.

Then for any v ∈ S(Ω), we have

〈−L0(u),v
〉 = (−L0(u),v

) = lim
ε→0

(−Lε(u),v
) = 〈−L(u),v

〉
,

demonstrating that L(u) is in fact a vector function in L2(Ω;Rd) and agrees with L0(u)(x)

for almost all x ∈ Ω . �

4 The Limiting Behavior for Vanishing Non-locality

When the horizon is sufficiently close to zero, the nonlocal PD Navier operator approxi-
mates the classical Navier operator of arbitrary Poisson ratio. Such a statement has been
verified with different degrees of generality and rigor in earlier works [6, 18, 19]. Except
for simpler bond based nonlocal models [8, 15], the results are derived for operators defined
in the whole space, that is, without taking into account the effect of bounded domain and
the approaches are either based on Taylor expansion or Fourier transforms, see for exam-
ple, [10, 24]. The aim of this section is to implement the approach used in [15] to prove
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the convergence of nonlocal-to-local for the state-based model for radial kernels under min-
imal assumptions on the regularity of solutions. By this we mean, not only we show that
the sequence of PD Navier operators, parametrized by the horizon, approaches the classical
Navier operator as the horizon vanishes, as shown in [5, 10, 18], but also, for a given right
hand side, the associated sequence of solutions to the nonlocal problem converges to the cor-
responding solution to the classical problem. To do this, we carefully study the dependence
of the nonlocal PD solutions on the horizon. Our analysis, unlike previous works, allows
spatial inhomogeneities while focusing on volume constrained problems.

To that end, let ρ1 be a nonnegative nonincreasing radial function satisfying

ρ1

(|ξ |) > 0, near ξ = 0, Supp(ρ1) ⊂ B(0,1), and
∫

B(0,1)

ρ1

(|ξ |)dξ = 1.

We denote

ρ̃δ

(|ξ |) = δ−dρ1

(
δ−1|ξ |), ρδ

(|ξ |) = |ξ |−2ρ̃δ

(|ξ |).
Given b ∈ L2(Ω;Rd), we would like to study the limiting behavior of the solution to the

nonlocal equation as the measure of nonlocality δ → 0.
We have shown that the equation for any δ > 0,

{−Lδ(u) = b x ∈ Ω

u = 0 on Ω \ Ωδ,

has a unique solution uδ ∈ V δ
0 = V0(Ωδ) where we have denoted Lδ as the peridynamic

operator corresponding to ρδ , and as before, Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.
Similar as before, we define Tr(Dδ,∗u) and Tr(Dδ,∗

ω u) the same way as Tr(D∗u) and
Tr(D∗

ωu) in (3) and (4) but with ρ being replaced by ρδ , and m(x), ω(x′,x) and τ(x) being
modified accordingly with the corresponding modified quantities being denoted by mδ(x),
ωδ

(
x′,x

)
and τδ(x). We also use Bδ(u,v) to denote the same bilinear form as B(u,v) defined

in (12) but with the above modified operators and coefficients. Let us first discuss the con-
vergence of operators. The following proposition states that the above sequence of nonlocal
operators converge to a well known local operator.

Proposition 4 Assume that k(x), α(x) are nonnegative bounded functions. Then for all
w,v ∈ C1(Ω;Rd) we have

〈
Lδw,v

〉 −→ 〈L0w,v〉 as δ → 0,

where the bilinear form 〈L0w,v〉 is given by

〈L0w,v〉 =
∫

Ω

[
μ(x)∇w(x) · ∇v(x) + (

μ(x) + λ(x)
)
div w(x)div v(x)

]
dx

with

μ(x) = α(x)

d(d + 2)
, and λ(x) =

(
1

d(d + 2)
− 1

d2

)
α(x) + k(x).

Proof Recall that
〈
Lδw,v

〉 = Bδ(w,v) = I 1
δ + I 2

δ ,
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where

I 1
δ =

∫

Ω\Ωδ

[(
k(x) − α(x)mδ(x)

d2

)
Tr

(
Dδ,∗

ω w
)
(x)Tr

(
Dδ,∗

ω v
)
(x)

+ α(x)

∫

Ω

ρ̃δ

(|x′ − x|)Tr
(
Dδ,∗w

)(
x′,x

)
Tr

(
Dδ,∗v

)(
x′,x

)
dx′

]
dx,

and I 2
δ = 〈Lδw,v〉 − I 1

δ . Now, on the one hand, using the inequalities,

sup
x∈Ω

∣∣mδ(x)
∣∣ ≤ 1, sup

δ>0,x∈Ω

∣∣Tr
(
Dδ,∗

ω w
)
(x)Tr

(
Dδ,∗

ω v
)
(x)

∣∣ ≤ d2‖∇w‖L∞‖∇v‖L∞

and |Tr(Dδ,∗w)(x′,x)Tr(Dδ,∗v)(x′,x)| ≤ |x′ − x|2‖∇w‖L∞‖∇v‖L∞ , we obtain that I 1
δ → 0,

as δ → 0.
On the other hand, using the fact that when x ∈ Ωδ , τδ(x) = τ(x) = k(x)d2 − α(x), it is

not difficult to show that as δ → 0,

∫

Ωδ

(
k(x) − α(x)mδ(x)

d2

)
Tr

(
Dδ,∗

ω w
)
(x)Tr

(
Dδ,∗

ω v
)
(x)dx

−→
∫

Ω

τ(x)

d2

(
divw(x)

)(
divv(x)

)
dx.

Moreover, as δ → 0,

∫

Ωδ

α(x)

∫

B(x,δ)

ρ̃δ

(|x′ − x|)Tr
(
Dδ,∗w

)(
x′,x

)
Tr

(
Dδ,∗v

)(
x′,x

)
dx′

=
∫

Ωδ

α(x)

∫

B(x,δ)

ρ̃δ

(|ξ |) ξ

|ξ | · (w(x + ξ) − w(x)
) ξ

|ξ | · (v(x + ξ) − v(x)
)
dξdx

−→
d∑

i,j,k,l=1

∫

Ω

α(x)
∂wi

∂xj

∂vl

∂xk

∫

B(0,1)

ρ(ξ)

|ξ |2 ξiξj ξlξkdξ

=
∫

Ω

α(x)

d(d + 2)

[∇w(x) · ∇v(x) + 2div w(x)div v(x)
]
dx.

Adding up the two terms, we conclude that, as δ → 0,

〈
Lδw,v

〉 −→
∫

Ω

[
α(x)

d(d + 2)
∇w(x) · ∇v(x)

+
(

2α(x)

d(d + 2)
+ τ(x)

d2

)
div w(x)div v(x)

]
dx.

The right hand side is precisely

〈L0w,v〉 =
∫

Ω

[
μ(x)∇w(x) · ∇v(x) + (

μ(x) + λ(x)
)
div w(x)div v(x)

]
dx,

proving the proposition. �
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Theorem 3 Assume that k(x) and α(x) are smooth functions (at least C1). Then for w ∈
C∞

c (Ω;Rd), Lδw is uniformly bounded in L∞(Ω;Rd), and that for almost all x ∈ Ω ,

Lδw(x) −→ L0w, (x)

as δ → 0, where L0 is the operator:

L0w(x) = div
(
μ(x)∇w(x)

) + ∇((
μ(x) + λ(x)

)
divw(x)

)
,

with μ(x), and λ(x) as defined in Proposition 4.

Proof Given w ∈ C∞
c (Ω;Rd), the estimate supδ>0 ‖Lδ(w)‖L∞(Ω) ≤ C can be proved in the

same way as part (1) of Theorem 2. To show the convergence, we recall that for sufficiently
small δ, the function Lδw ∈ L2(Ω;Rd) and that for almost all x ∈ Ω , it is given by

Lδ(w)(x) =
∫

Ω

(
α(x) + α

(
x′))ρδ(|x′ − x|)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (w
(
x′) − w(x)

)
dx′

+
∫

Ω

τ δ
(
x′)ρδ

(
x − x′)(x′ − x

)(∫

Ω

ρδ
(
x′ − z

)(
z − x′) · (w(z) − w

(
x′))dz

)
dx′

+
∫

Ω

τ δ(x)ρδ
(
x − x′)(x′ − x

)(∫

Ω

ρδ(x − z)(z − x) · (w(z) − w(x)
)
dz

)
dx′,

understood in the PV sense. To see where it converges, pick x ∈ Ω . Choose δ sufficiently
small so that B(x,2δ) ⊂ Ω . Then for all x′ ∈ B(x, δ), B(x′, δ) ⊂ B(x,2δ) ⊂ Ω . Therefore,
mδ(x) = mδ(x′) = 1, and as a result

Lδ(w)(x) =
∫

B(x,δ)

(
α(x) + α

(
x′))ρδ(|x′ − x|)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (w
(
x′) − w(x)

)
dx′

+
∫

B(x,δ)

τ
(
x′)ρδ

(
x − x′)(x′ − x

)(∫

B(x′,δ)
ρδ

(
x′ − z

)(
z − x′)

· (w(z) − w
(
x′))dz

)
dx′

+
∫

B(x,δ)

τ (x)ρδ
(
x − x′)(x′ − x

)(∫

B(x′,δ)
ρδ(x − z)(z − x)

· (w(z) − w(x)
)
dz

)
dx′.

Noting that the third term vanishes, the proof of the theorem can then be completed by using
Taylor expansion and a careful accounting of terms as a function of δ. Indeed, we obtain
that, as δ → 0,

∫

B(x,δ)

(
α(x) + α

(
x′))ρδ(|x′ − x|)

|x′ − x|2
(
x′ − x

)(
x′ − x

) · (w
(
x′) − w(x)

)
dx′

−→ div
(
μ(x)

(∇w(x)
) + ∇(

2μ(x)div w(x)
))
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and
∫

B(x,δ)

τ
(
x′)ρδ

(
x − x′)(x′ − x

)(∫

B(x′,δ)
ρδ

(
x′ − z

)(
z − x′) · (w(z) − w

(
x′))dz

)
dx′

−→ ∇
(

τ(x)

d2
divw(x)

)
.

Note that τ(x) = d2k(x) − α(x), since m(x) = 1. Combining the above, we get the conclu-
sion of the theorem. �

Next we study the behavior of the sequence of solutions as δ → 0. Recall that for all
w ∈ V δ

0 ,
〈−Lδuδ,w

〉 = (b,w). (16)

To study the convergence properties of the solutions uδ , we first obtain estimates that are uni-
form in δ via a nonlocal Poincaré-type inequality. The inequality we proved in Proposition 2
is not, however, good enough to offer precise estimates that show the explicit dependence of
the constant on δ as the constant depends on the subspace V0(Ωδ), hence on δ. Rather we use
the sharper version that is proved in [15]. We state the statement of the sharper Poincaré-type
inequality but refer to [15] for the proof.

Proposition 5 There exists δ0 and C(δ0) such that for all δ ∈ (0, δ0],

‖u‖2
L2(Ω)

≤ C(δ0)

∫

Ω

∫

Ω

ρ̃δ

(∣∣x′ − x
∣∣)∣∣Tr

(
D∗u

)(
x′,x

)∣∣2
dx′dx ∀u ∈ V0(Ωδ).

Another ingredient we need is the following compactness result [13, Theorem 5.1] (see also
[4, Theorem 4] or [22, Theorem 1.2] for functions) which we state here as a lemma.

Lemma 7 Suppose that uδ is a bounded sequence in L2(Ω;Rd) with compact support in Ω .
If

sup
δ>0

∫

Ω

∫

Ω

ρ̃δ

(∣∣x′ − x
∣∣)∣∣Tr

(
D∗uδ

)(
x′,x

)∣∣2
dx′dx < ∞,

then uδ is precompact in L2(Ω;Rd). Moreover, any limit point u ∈ W
1,2
0 (Ω;Rd).

We are now in a position to establish the convergence of the solutions uδ to u of the classical
Navier-Lamé system.

Theorem 4 Suppose that α(x) and k(x) are positive C1(Ω) functions. Then for any
b ∈ L2(Ω;Rd) the sequence of solutions uδ converges strongly in L2(Ω;Rd) to u ∈
W

1,2
0 (Ω;Rd), where u is the unique weak solution of the (conventional) Navier system

{−L0u(x) = b(x) a.e x ∈ Ω

u(x) = 0 on ∂Ω,

where L0u is as defined in Proposition 4.
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Proof We begin the proof by obtaining some uniform estimates. Plugging in uδ in place of
w in (16) we obtain that

∫

Ω

∫

Ω

ρδ(x′ − x)

|x′ − x|2
∣∣(x′ − x

) · (uδ

(
x′) − uδ(x)

)∣∣2
dx′dx

≤
(

2

α0
+ 2

d2k0

)〈−Lδuδ,uδ

〉

≤
(

2

α0
+ 2

d2k0

)
(b,uδ)

≤
(

2

α0
+ 2

d2k0

)
‖b‖L2(Ω)‖uδ‖L2(Ω),

where 0 < α0 = minx∈Ω α(x), and 0 < k0 = minx∈Ω k(x). Applying the Poincaré-type in-
equality, Proposition 5, we obtain that

‖uδ‖L2 ≤ ν‖b‖L2 ,

where ν is independent of δ. Combining the above two estimates, we obtain that

∫

Ω

∫

Ω

ρδ(x′ − x)

|x′ − x|2
∣∣(x′ − x

) · (uδ

(
x′) − uδ(x)

)∣∣2
dx′dx ≤ C,

where the constant C is independent of δ.
With these uniform estimates at hand, we may apply Lemma 7 to conclude that the se-

quence {uδ} is precompact in L2(Ω;Rd), and any limit point u ∈ W
1,2
0 (Ω;Rd). Let us show

that any limit point indeed solves the Navier system and is therefore unique and thus the
entire sequence actually strongly converge to the unique solution u.

Let w ∈ C∞
c (Ω;Rd). Then since the operators are self adjoint and Lδw ∈ L∞(Ω;Rd)

(see Proposition 3), we may rewrite (16) as

(−Lδw,uδ

) = (b,w). (17)

Using Proposition 4, the facts that uδ → u strongly in L2(Ω;Rd), uδ = 0 outside of Ωδ and
Ωδ ⊂ supp(w) as δ → 0, we obtain from (17) that for all w ∈ C∞

c (Ω;Rd),

∫

Ω

−L0w(x) · u(x) =
∫

Ω

b(x) · w(x)dx

as δ → 0, verifying that u solves the Navier system. �

5 Conclusion

In this work we have analyzed a nonlocal constrained value problem of a linear state-based
peridynamic model via a constraint imposed on the solution in a volume of nonzero mea-
sure. Our main contribution is showing the well-posedness of the model and the convergence
of its solutions to the solution of its local PDE limit as the horizon of nonlocal interactions
diminishes to zero. These results are established for very general kernels and under mini-
mal regularity assumptions on the solutions, which essentially give a unified theory of that
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developed in earlier analysis of both bond-based and state-based PD models. They also
reveal that while the state-based models correspond to more general materials class than
bond-based models, the basic energy spaces for the associated variational problems remain
the same for both models. Moreover, they are of close relevance to materials modeling,
given the increasing trend in using state-based models as the more general choice in PD
based numerical simulations. In addition, for interaction kernels that may change sign, the
stability matrix function is shown rigorously to be related to the existence of minimizers.
Furthermore, by allowing inhomogeneities in the material parameters, our analysis is also
applicable to models that are more general and more realistic in nature.

The work presented here can also serve as the basis to study other linear peridynamic
models [1] as well as more general nonlinear and time-dependent nonlocal models in the
future.
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