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Abstract Size-effects characterize the fracture process of many engineering materials.
Their modelling calls for material constitutive relations which are not indifferent, as stan-
dard elasticity, to variations of scale: strain-gradient elasticity or plasticity have often served
the purpose.

The three classical crack opening problems of fracture mechanics are here solved within
the framework of linear strain-gradient elasticity for the most general isotropic material.
Apart from the Lamé constants, this is completely identified by five additional moduli,
modelling its micro-structural characteristics. This general setting allows for recovering,
as particular cases, previous analyses in (Gourgiotis and Geogiadis in J. Mech. Phys. Solids
57(11): 1898–1920, 2009), relative to modes I and II for the so-called Simplified Mindlin
materials (17), and in (Radi in Int. J. Solids Struct. 45(10): 3033–3058, 2008), relative to
mode III for couple-stress materials. More importantly, having a rather refined material de-
scription allows for understanding how the energy release rate is affected by the actual val-
ues of the characteristic lengths. Hence we demonstrate the strengthening effect of suitable
microstructures and their optimality in order to provide cohesive like actions on the crack
lips.

Despite being limited to the linear elastic hypothesis, the solutions found constitute an
useful insight to develop more complex, possibly nonlinear, constitutive relationships for
the strain-gradient terms as for plastic or viscoelastic materials.
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1 Introduction

The simplest approach to describe fracture propagation in continuous bodies is linear elastic
fracture mechanics in conjunction with Griffith’s laws; the former theory provides a charac-
terization of the crack opening displacement (COD) and state of stress asymptotically close
to the tip, whilst Griffith’s criteria are used to determine the critical energetic threshold
for the crack evolution. Within this framework asymptotic solutions of the classical frac-
ture problems (opening, shearing and tearing modes) are essentially based on the concept
of stress intensity factor K , i.e., the amplitude of the most singular term in the asymptotic
expansion for stress. Higher order singularities are usually eliminated by adopting suitable
physical requirements as the energy integrability. The so-called small scale yielding assump-
tion, say the existence of a region within which the stress field is reasonably approximated
by the K-terms only, has been elucidated in [26], where the proper condition to hold true for
having such dominance of K fields has been established. However linear elastic fracture me-
chanics fails to describe stresses and displacements in the very neighbourhood of the crack
tip, providing, there, infinite tensile stresses and a COD given as a square root function of
the distance from the tip.

For both metallic alloys and rocks, experimental evidences at the micro-scale revealed
that crack expansion is anticipated by strain localisation, micro-cracking and void nucle-
ation, see the review paper [7] and references therein. Within this process zone, a decrease
of the above mentioned tensile stresses can be detected as a consequence of energy dissipa-
tive mechanisms and elastic interactions of the main crack front with micro-defects, see [24].
More recently analogous phenomena have been demonstrated to take place at the nano-scale
for ceramics and glasses, see, e.g., [8] and [12]. These local behaviours are typically asso-
ciated with a departure from the predictions of the linear elastic model, and are responsible
for the size scaling of the material properties.

It is worth to notice that the CODs measured in [12] for an alumino-silicate glass (see
Fig. 4 therein) and in [37] for an amorphous glassy polymer (see Figs. 22 and 23 therein)
look very similar to those derived by Barenblatt [4] after supposing the existence of a co-
hesive zone near the crack tip. Hence the crack can conveniently be divided into an outer
region, r ≥ dI , where the crack lips are truly traction-free, and an inner region, r ≤ dII ,
where the crack lips do exchange cohesive forces, see Fig. 1. Here r is the radial distance
from the tip.

Whilst the forces of internal cohesion were initially introduced to avoid the stress singu-
larity in the vicinity of the crack tip, they could also serve as a phenomenological macro-
scopical description of cleavage mechanisms occurring at the micro or nano scales. Recently,
inverse techniques have been developed in order to elucidate the relation between CODs,
measured with micro-scale precision, and the cohesive tractions, see [37] and [39].

The refined description of the fracture process zone, in terms of its geometry, material
properties and time-evolution, currently represents a theoretical and experimental challenge:
to this aim several different approaches can be retrieved from the literature. In particular,
one can distinguish between atomistic theories, studying the fracture of a single crystal,
e.g., [3], and continuum theories, where either the hypothesis of linear elasticity is relaxed,
e.g., [9], or phenomenological damage variables are introduced, e.g., [32]. For the latter
theories, the variational approach to fracture, proposed in [11], provide a mathematically
well-grounded framework, as well as a clear justification of possible numerical solution
strategies, see [10]. It is not the purpose of this paper to summarize and review the cited
results. Conversely, in order to model the region surrounding the crack tip, where strain
localizes and the material cleaves, we focus on nonlocal elasticity and, in particular, on its
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Fig. 1 Qualitative profile of the
crack opening shape as found in
[4] (under the hypothesis of a
cohesive zone r < dII ) and
experimentally observed in
[12, 37]

simplest form known as strain-gradient elasticity. As we will soon discuss, nonlocal elastic
forces can provide the same CODs as those obtained assuming cohesive forces, despite being
associated to thermodynamically reversible processes. Whilst we are aware that in many
circumstances nonlocal elastic forces do not play a dominant role, we are also confident that
fracture processes could see the interplay of plastic, damage and strain-gradient effects to
produce the correct material behaviour.

Already [17], and more recently [35], extended the linear elastic fracture model to nonlo-
cal interactions to describe the roughness of the crack front and its trapping against forward
advance, due to the presence of material heterogeneities at the micro-scale. They considered
a dependence of the stress intensity factor on the entire crack geometry via a convolution
with a long-ranged kernel. Linear strain gradient elasticity renounces to such a level of
generality by assuming the stored elastic energy as a quadratic form of the strain and strain-
gradient only. Despite this simple assumption, the occurrence of a process zone and a rough
estimate of its characteristic length can be achieved. An important result in this direction
has been recently provided in [22] and [20]: by solving plane-strain crack problems in dipo-
lar elasticity they have proved that also a linear, purely elastic, continuum can model the
presence of a cohesive-like zone. In particular, adopting the simplified isotropic constitutive
dependence of the elastic energy on strain gradient proposed among others by [18], they
obtained a COD which asymptotically exhibits a r3/2 variation as in Fig. 1, giving raise
to cohesive effects and material strengthening. Using hyper-singular integral equations, they
estimated the limit of the process zone, dII in Fig. 1, to range from 0.45 to 0.77

√
c depending

on the actual Poisson ratio; here
√

c is the only characteristic length of the considered con-
stitutive relation. Similarly, extending previous results in [41] and using couple-stress elas-
ticity, [34] analysed the effects of the characteristic lengths in bending and torsion (�b, �t )

on mode III problems for semi-infinite cracks. Within the same framework, [21] analyzed
the case of a finite-length crack. Both reported a similar transition from the asymptotic r3/2

terms to the far field r1/2 terms in a region from dII = 0.5�t to dI = 5�b . In all these cases
the so-called total stress, summing the contribution of the stress and the divergence of hy-
perstress, see (6), remains singular for r → 0 and in particular diverges as r−3/2. However
this singularity, much stronger than the classical square root, does not violate boundedness
of the energy release rate, see for more details [36].
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In the present paper, for both plane-strain and antiplane crack opening, we limit our-
selves to the analysis of asymptotic fields, but extend the previous results to consider the
most general elastic constitutive relation for an isotropic strain-gradient material. This leads
to consider five additional constitutive parameters: four of them represent material charac-
teristic lengths, whilst the last one is a coupling parameter, see Sect. 3. Such general form
for the strain-gradient Hooke law was already introduced in [30]; the necessary conditions
on the constitutive parameters for a positive definite energy functional can be found in [15,
31] or, more recently, in [13].

By using four characteristic lengths for the material micro-structure we are able to obtain
a more refined description of stress fields approaching the crack tip; the explicit closed-form
dependence of both the stress intensity factors and the energy release rates on these char-
acteristic lengths is derived and discussed. Since based on the linear part of the material
response, these results should be of relevant interest also to develop more complex, possi-
bly non-linear, material relationships as those adopted in strain-gradient plasticity, see for
instance [16].

The paper is organized as follows. In Sect. 2 a brief recall of the gradient elasticity equa-
tions for an hyperelastic solid is provided. Within this framework, in Sect. 3, the character-
istic internal lengths of an isotropic material are listed and compared to other well-known
quantities of more standard use. Section 4 concerns with the statement of the strain gra-
dient constitutive laws and the corresponding governing equations in the case of antiplane
and inplane elasticity through which the tearing, opening and shearing fracture modes can
be described. In Sect. 5 the asymptotic solutions of these equations are explicitly reported.
Finally in Sect. 6, for all the cases studied, after deriving closed-form expressions for the
J -integrals, we discuss which are the optimal micro-structures, in terms of ratios among the
material characteristic lengths, in order to affect the energy release rates and, consequently,
the micro-structural strengthening effect. The closed form expressions reported in Sects. 5, 6
and in Appendices A–B have been obtained and checked using the software MATHEMATICA

for algebraic computations.

2 Governing Equations for Strain-Gradient Elasticity

Here we briefly recall the governing equations for hyperelastic strain-gradient solids; we
limit this resumé to the case of small deformations, since the subsequent analysis fits within
this assumption. For further details and the account of finite deformations, the interested
reader is referred to [19] and [30], or, for more recent contributions, to [13] or [33].

2.1 Kinematics and Balance Laws

We denote D ⊂ R
3 the reference configuration of the body, ui the components of the dis-

placement field with respect to a fixed orthonormal frame and Eij := (ui,j +uj,i)/2 the com-
ponents of the infinitesimal strain field. Moreover Dijk := Eij,k = (ui,jk + uj,ik)/2 denote
the components of the third-order tensor field measuring the gradient of the infinitesimal
strain. Let us remark that one can always decompose the infinitesimal strain gradient field
in the sum of two mutually orthogonal contributions, see [19]:

Dijk = ˜Dijk + ̂Dijk, (1)

where

˜Dijk := 1

3
(Eij,k + Ejk,i + Eki,j ), ̂Dijk := 1

3
(εjkldli + εikldlj ), dli := εljkEij,k. (2)
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Hence ˜D is characterized by 10 independent components being a third-order tensor which
is symmetric under permutations of all its indices. Instead ̂D is characterized by 8 inde-
pendent components being determined univocally by the second-order deviatoric tensor d .
The condition for d to be deviatoric is easily proven, since d = grad curlu and, therefore,
trd = div curlu = 0.

An elasticity theory is referred to as “strain-gradient”, or sometimes as “second-
gradient”, if, not only the strain, but also the gradient of the strain contribute to the stored
elastic energy; the most general form for the stored energy functional can therefore be writ-
ten, see [30], as

ψ = ψ̂(Eij ,Dijk) = ψ(Eij , ˜Dijk, dij ). (3)

“Couple-stress” theories refer to a particular case of (3) where the stored energy is postulated
not to depend on the completely-symmetric part of the strain gradient, but on E and d only,
see for instance [38].

The total energy is hence postulated as the sum of the total stored elastic energy and the
potential energy of external forces L = E + Q with

E :=
∫

D
ψ, −Q :=

∫

D
biui +

∫

∂D
(tiui + τiui,j nj ) +

∫

∂∂D
fiui, (4)

where ∂D is the boundary of D and ∂∂D its edges, if any. We have used standard names for
the body forces b, the tractions t , the double-forces τ and the edge forces f . The stationarity
of L implies the principle of virtual working,

∫

D
(Sij δEij + PijkδDijk) =

∫

D
biδui +

∫

∂D
(tiδui + τiδui,j nj ) +

∫

∂∂D
fiδui, (5)

to hold true, for every admissible virtual displacement field δu. In (5) the quantities

Sij := ∂ψ

∂Eij

, Pijk := ∂ψ

∂Dijk

, (6)

are respectively the stress and hyperstress fields. Since P shares the same symmetry prop-
erties of D, also the hyperstress can be decomposed according to (1) into a completely
symmetric part ˜P and a deviatoric second order tensor p; the strain gradient contribution to
(5) can therefore be split as:

PijkδDijk = ˜Pijkδ˜Dijk + ̂Pijkδ̂Dijk = ˜Pijkδ˜Dijk + 2

3
pij δdij . (7)

We remark that in strain-gradient theories the boundary ∂D and its edges ∂∂D can be
respectively decomposed in the non-intersecting union of four and two different regions,
respectively:

∂D = ∂Dn
n ∪ ∂De

n ∪ ∂Dn
e ∪ ∂De

e; ∂∂D = ∂∂Dn ∪ ∂∂De. (8)

The pedices e and n here indicate “essential” and “natural” boundary condition. Accordingly
we will call ∂D�

n := ∂Dn
n ∪ ∂De

n the region where tractions are applied, ∂Dn
� := ∂Dn

n ∪ ∂Dn
e

the region where contact double-forces are applied, ∂D�
e := ∂Dn

e ∪ ∂De
e the region where the

displacement is prescribed and ∂De
� := ∂De

n ∪ ∂De
e the region where the normal derivative

of the displacement is prescribed; for more details see [13].
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By standard localization arguments of the principle of virtual working (5) the local bal-
ance laws for strain-gradient elasticity follow:

(Sij − Pijk,k),j + bi = 0, on D,

(Sij − Pijk,k)nj − (QBjPijknk),B = ti , on ∂D�
n,

Pijknknj = τi, on ∂Dn
� ,

�QBjPijknkνB � = fi, on ∂∂Dn,

(9)

which must be used together with the essential boundary conditions

uh = uh on ∂D�
e , uh,ini = wh on ∂De

�, uh = uh on ∂∂De. (10)

In (9) X̂B for B = 1,2 indicate local coordinates for every part of the boundary ∂D; accord-
ingly the tensor field of components QBi := ∂X̂B/∂Xi project three-dimensional vectors
onto the boundary, while the surface-gradient is indicated as the derivation with respect
to the X̂B coordinates. Finally νB are the components in the surface coordinate system of
the Darboux tangent-normal vector. We remark that Eq. (9)4 can not be deduced if the hy-
perstress P is singular in the edge; a more detailed discussion of this item is reported in
Sect. 5.4.

For linearly elastic isotropic solids, the most general constitutive relations for stress and
hyperstress read as Sij = CijhkEhk and Pijk = GijklpqElp,q where C is the standard fourth-
order elasticity tensor determined by the two Lamé constants λ and μ, and G is a sixth-order
constitutive tensor univocally determined by five second-gradient elastic moduli, see [30]:

Cijhk = μ(δihδjk + δikδjh) + λδij δhk,

Gijklpq = c2(δij δklδpq + δij δkpδlq + δikδjqδlp + δiqδjkδlp)

+ c3(δij δkqδlp) + c5(δikδjlδpq + δikδjpδlq + δilδjkδpq + δipδjkδlq)

+ c11(δilδjpδkq + δipδjlδkq) + c15(δilδjqδkp + δipδjqδkl + δiqδjlδkp + δiqδjpδkl).

(11)

Apparently the stored elastic energy is a quadratic form of the strain and strain-gradient
fields; the explicit conditions required to guarantee its positive definiteness were recently
stated in [13] and read as follows:

μ > 0, 3λ + 2μ > 0, γ1 > 0, 0 < γ2 < 5γ1,

γ4 >
5γ 2

3

5γ1 − γ2
> 0, γ5 > 0,

(12)

where the elastic parameters γi (i = 1, . . . ,5) are given in terms of the constitutive parame-
ters in (11) by the following definitions

γ1 := 2c11 + 4c15 + 4c2 + c3 + 4c5, γ2 := 4(c11 + 2c15),

γ3 := −4

3
(c2 + c3 − 2c5), γ4 := 8

9

(

3c11 − 3c15 + 2(c3 + c5 − 2c2)
)

,

γ5 := 4(c11 − c15)

9
.

(13)
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Fig. 2 Examples of deformations of a material square element weighted the four characteristic lengths: �t ,
�b , �s and �e

3 Characteristic Lengths for Linear Elastic Isotropic Materials

Based on the conditions (12) for a positive definite energy, we introduce an equivalent set
of strain-gradient moduli, namely four characteristic lengths and a coupling parameter. We
discuss the relevant deformations weighted by each of them and their relationships to other
strain-gradient moduli used in the literature, as the characteristic lengths in bending and
torsion of couple-stress theories, see [34]. For the sake of conciseness we do not state the
general constitutive relation (11) for linearly elastic strain gradient solids in terms of these
characteristic lengths, but we limit ourselves to exhibit its reduced form in the case of an-
tiplane and plane strains, see Sect. 4.

Conditions (12) require four of the strain-gradient moduli to be positive. Since the phys-
ical dimensions of γi/μ for i = 1, . . . ,5 are length squared, we introduce four independent
lengths as characteristics of the material:

μ�2
e = γ1, μ�2

s = (16γ1 + 16γ2 + 24γ3 + 9γ4 + 54γ5)/144,

μ �2
t = (2γ2 + 9γ5)/6, μ�2

b = γ4 + 6γ5.
(14)

Only the modulus γ3 could be positive, negative or vanishing and, indeed, it represents a
coupling parameter between the completely symmetric part ˜P of the hyper-stress and the
deviatoric part of the strain gradient d , see [13].

The characteristic lengths (14) describe different independent micro-structural material
properties. Typical strain-gradient fields which are weighted by each one of them are shown
in Fig. 2. Therein it is clearly seen that �t and �b allow to penalize respectively torsional
and bending deformations of the material elements, while �s and �e measure the energetic
cost of differential-shearing and differential-elongation respectively. It is possible to observe
that, even for isotropic materials, the uniform-bending, the differential-elongation and the
differential-bending deformations are constitutively coupled by the elastic modulus γ3; this
last can hence be seen as a kind of second-order Poisson ratio.

For the energy to be positive definite, conditions (12) dictate not only the characteristic
lengths to be positive, but mutual relationships among them. For instance, maximizing the
ratio �2

t /�
2
s given in (14) over all the possible γi satisfying (12), we obtain 0 ≤ �t ≤ 2�s .

The definitions (14) do include well-know assumptions for the strain energy density
found in the literature. For instance, the case of couple-stress elasticity, [38] and [34], is
recovered letting γ1 = γ2 = γ3 = 0, therefore, obtaining

�2
e = 0, �2

b = γ4 + 6γ5

μ
, �2

s = �2
b

16
, �2

t = 3γ5

2μ
. (15)



34 G. Sciarra, S. Vidoli

Hence in couple stress theories only two characteristic lengths are independent, the so-called
bending and torsion characteristic lengths, respectively �b and �t . Note that �s the weight of
differential-shear is determined by �b , whilst both the weight �e of differential-elongation
and the coupling γ3 are assumed vanishing.

The constitutive assumption proposed by [18] and discussed by [29] is also frequently
used, see for instance [22]; it is expressed through only one strain-gradient constitutive mod-
ulus c as follows

ψ̂LM(Eij ,Dijh) := λ

2
EiiEjj + μEijEij + cλ

2
DiimDjjm + cμDijmDijm. (16)

This case can be recovered from the general form (14), letting γ1 = c(λ + 2μ), γ2 = 4cμ,
γ3 = −4cλ/3, γ4 = 8c(2λ + 3μ)/9 and γ5 = 4cμ/9. For the characteristic lengths one ob-
tains:

�2
e = c (2 + λ/μ), �2

b = 16 c

9
(3 + λ/μ), �2

s = c, �2
t = 2c. (17)

Hence none of them vanishes, but all are determined as functions of only one characteristic
length,

√
c, and the Poisson ratio ν, since λ/μ = 2ν/(1 − 2ν). From now on we will refer to

the assumptions (17) as Simplified Mindlin (SM) materials. Finally note that the differential-
elongation and the differential-shear characteristic lengths are equivalent, via the Poisson
modulus, to the characteristic lengths �̂1 and �̂2 introduced in [30], as

�2
e = 2

1 − ν

1 − 2ν
�̂2

1, �2
s = �̂2

2. (18)

4 Governing Equations for Antiplane & Plane Strain Fracture Modes

In order to study the three classical fracture modes, say the tearing, opening and shearing
modes, we explicit derive the reduced form of the constitutive relationships under antiplane
and plane-strain assumptions. The corresponding Navier equations, i.e., the balance equa-
tions in terms of displacement fields, are also deduced, see (22) and (27). In the following
subsections their asymptotic solutions are deduced.

4.1 The Case of Antiplane Strain: Constitutive Laws and Navier Equation

Antiplane strain displacement field is of the form:

u1 = 0, u2 = 0, u3 = w(x1, x2), (19)

with respect to a suitable fixed frame in the reference configuration; it is suitable for describ-
ing the tearing fracture mode, or mode III. Apparently, given (19), the only non-vanishing
strain components are E13 = E31 = w,1/2 and E23 = E32 = w,2/2; consequently the only
non-vanishing components of the associated strain-gradient are:

3˜D113 = 3˜D131 = 3˜D311 = 2d21 = w,11,

3˜D223 = 3˜D232 = 3˜D322 = −2d12 = w,22,

3˜D123 = 3˜D132 = · · · = 3˜D321 = −2d11 = 2d22 = w,12.

(20)
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Using the constitutive relations (11), (13) and (14), the corresponding non-vanishing com-
ponents of the hyperstress fields are:

⎛

⎝

˜P333
˜P223 + ˜P113

p21 − p12

⎞

⎠ =
⎛

⎜

⎝

9
32�2

b + 3
2 (�2

e − 3�2
s ) + 3

4γ3
γ3
2

1
2 (�2

e + 3�2
s ) − 3

32�2
b − 1

4γ3
γ3
3

3
2γ3

3
16�2

b − �2
e + 9�2

s − 3�2
t − 3

2γ3

⎞

⎟

⎠

×
(

˜D223 + ˜D113

d21 − d12

)

,

(

˜P123
˜P223 − ˜P113

)

= −
(

9

32
�2

b + 3

4
γ3 + 1

2

(

�2
e − 9�2

s

)

)(

˜D123
˜D223 − ˜D113

)

,

⎛

⎝

p11

p22

p21 + p12

⎞

⎠ =
(

9

16
�2

b + 3

2
γ3 + �2

e − 9�2
s + 3�2

t

)

⎛

⎝

d11

d22

d21 + d12

⎞

⎠ .

(21)

For more details on the derivation of such form of the constitutive relation we refer to [13].
Replacing these last into Eqs. (9) and using the strain gradients (20), the usefulness of the

definitions (14) becomes apparent as one obtains the following form of the Navier balance
law:

w,αα − �2
s w,ααββ = 0, (22)

with α,β = 1,2 and �s defined as in (14). The strain gradient correction of the antiplane
Navier equation is then proportional to a double-laplacian of the displacement w. Remark
that couple-stress theory prescribes exactly the same form for the Navier equation of an-
tiplane problems; in that case, however, the coefficient of the double-laplacian depends
only on the strain-gradient constants γ4 and γ5, whilst in (22) �s does depend on all of
them.

4.2 The Case of Plane Strain: Constitutive Laws and Navier Equation

Similarly, in order to study inplane opening and shearing fracture modes, we examine
the reduced form of strain-gradient relationships assuming plane-strain deformations. The
plane-strain assumption is enforced assuming the three-dimensional displacement field in
the form:

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0, (23)

with respect to a suitable fixed frame in the reference configuration. Apparently, given (23),
Ei3 = E3i = 0 for i = 1,2,3; moreover the only non-vanishing components of the associated
strain-gradient are

˜D111 = u1,11, ˜D112 = ˜D121 = ˜D211 = (2u1,12 + u2,11)/3,

˜D222 = u2,22, ˜D122 = ˜D212 = ˜D221 = (u1,22 + 2u2,12)/3,

d31 = −(u1,12 − u2,11)/2, d32 = −(u1,22 − u2,12)/2,

(24)



36 G. Sciarra, S. Vidoli

Hence, using the constitutive relations (11), (13) and (14), the corresponding non-vanishing
components of the hyperstress field are

⎛

⎝

˜Pααα

˜Pαββ + ˜Pα33

p3β − pβ3

⎞

⎠

=

⎛

⎜

⎜

⎝

�2
e

9
32 �2

b + 3
2 (�2

e − 3�2
s ) + 3γ3

4
γ3
2

3
16�2

b + �2
e − 3�2

s + γ3
2

1
2 (�2

e + 3�2
s ) − 3

32�2
b − γ3

4
γ3
3

3γ3
2

3γ3
2

3
16�2

b − �2
e + 9�2

s − 3�2
t − 3γ3

2

⎞

⎟

⎟

⎠

×
⎛

⎝

˜Dααα

˜Dαββ

d3β

⎞

⎠ , (25)

(˜Pαββ − ˜Pα33) = −
(

9

32
�2

b + 3

4
γ3 + 1

2

(

�2
e − 9�2

s

)

)

˜Dαββ,

(p3β + pβ3) =
(

9

16
�2

b + 3γ3

2
+ �2

e − 9�2
s + 3�2

t

)

d3β,

(26)

for α = 1, β = 2 and for α = 2, β = 1. Also in this case we refer to [13] for more details on
the derivation of (25).

Again the Navier form of the balance law demonstrates the advantage of the definitions
(14): replacing (25) and (26) into Eqs. (9) and using definition (24), one obtains

μuα,ββ + (λ + μ)uβ,βα − μ
[

�2
euα,ββγ γ + (

�2
e − �2

s

)

εαβδεβζηuζ,ηδγ γ

] = 0, (27)

with �e and �s as in (14). While the first two addends in (27) account for the standard Navier
operator of plane elasticity, the last two represent the contribution of strain gradient terms.
For later use, the plane-strain Navier equation (27) can be written in absolute notation as:

Δu + λ + μ

μ
∇(divu) − Δ

[

�2
eΔu + (

�2
e − �2

s

)

curl curlu
] = 0. (28)

5 Asymptotic Solutions for Antiplane and Inplane Opening Modes

Within the discussed framework of strain-gradient elasticity we examine the problem of
stress/strain localization around a crack for all the three opening modes of standard fracture
mechanics. In particular, we study the behaviour of the strain-gradient solutions asymptoti-
cally close to the tip of a rectilinear crack. Hence, referring to Fig. 1, we focus our attention
within the region r < dII , where the strain-gradient energy contributions, due to strain/stress
localization, are dominant with respect to standard strain energy. We provide upper bound
estimates for the limit radius dII as function of the material characteristic lengths.

5.1 Domain Definition, Boundary Conditions and Asymptotic Forms of Navier Equations

We examine the domain D := {(r, θ) : r > 0,−π < θ < π} centered around the crack tip o,
refer to Fig. 3. The boundary ∂D is composed by the two opposite lips L±, whilst the
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Fig. 3 Polar coordinates
centered in the tip of the crack.
The lips L± are supposed free as
both traction and contact
double-forces do vanish on them.
Also the edge point o is suppose
free of forces

boundary of the boundary ∂∂D is composed by the point o. In all these sets the applied
external actions, introduced in (9) are assumed to vanish, i.e.,

t (r, θ = ±π) = 0, τ (r, θ = ±π) = 0, fo = 0. (29)

Equations (22) and (27) represent the correct differential problems to be solved respec-
tively for the antiplane and in-plane cases. To derive their asymptotic forms we introduce
dimensionless coordinates X̂α = Xα/dII so that the two equations are respectively rescaled
to:

(antiplane) η2w,αα − w,ααββ = 0,

(inplane) η2

[

uα,ββ +
(

λ + μ

μ

)

uβ,βα

]

−
[

uα,ββγ γ +
(

1 − �2
s

�2
e

)

εαβδεβζηuζ,ηδγ γ

]

= 0,

(30)

where g,α now means derivation of the quantity g with respect to the X̂α coordinate and η a
positive small scale parameter; in particular η := dII /�s (resp. η := dII /�e) for the antiplane
(in-plane) case.

The leading terms of the asymptotic expansions of w and u valid for small η,

w = w(0) + ηw(1) + · · · , uα = u(0)
α + ηu(1)

α + · · · , (31)

are governed by Eqs. (30) with η → 0. We limit our attention to the leading terms w(0)

and u(0) only; hence we are led to consider only the highest order derivatives in (30) and,
therefore, to neglect the contribution of standard elastic terms. Dropping the (0) apices,
the reduced forms of Navier’s equations, which are considered in what follows, are finally
written:

ΔΔw = 0, ΔΔu +
(

1 − �2
s

�2
e

)

Δ(curl curlu) = 0, (32)

for the antiplane and in-plane cases, respectively. Similarly, in the limit η → 0, one can
easily check that the first gradient contributions to tractions t , double-forces τ and edge
forces f in the boundary conditions (29), fade away with respect to strain-gradient terms;
thus, also the boundary conditions will depend on the intrinsic characteristic lengths only.
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5.2 Asymptotic Solution for Antiplane Mode

In the spirit of the Williams expansion [40], the asymptotic solution of the antiplane problem
is found assuming the form w(r, θ) = rαW(θ) for the transverse displacement, with α ≥ 1
to assure integrability of the energy. The displacement is assumed anti-symmetric with re-
spect to the θ = 0 axis, i.e., W(−θ) = −W(θ). Accordingly the bulk balance equation (32)1

reduces to:

W ′′′′ + 2
(

α(α − 2) + 2
)

W ′′ + α2(α − 2)2W = 0, (33)

together with the boundary conditions (29)1,2:

t± = ∓2�2
s

(

W ′′′(±π) + α2W ′(±π)
) ∓ (

α2 − 3α + 2
)

�2
t W

′(±π) = 0, on L±,

τ± = W(±π)
(

2α2�2
s + α(1 − α)�2

t

) + 2�2
sW

′′(±π) = 0, on L±.
(34)

The expressions of t± and τ± in (34) can be derived from (9)2,3 once using polar coordinates
and the assumed form of w(r, θ).

Facing a system of linear differential equations, we assume the solution in the form
W(θ) = W exp(iκθ) and, accordingly, obtain a standard eigenvalue problem. First substi-
tuting into the bulk balance equation (33), the relationship between the angular wavelength
κ and the exponent α is derived. It turns out to be independent from material constants and
reads

(κ − α)(κ − α + 2)(κ + α − 2)(κ + α) = 0. (35)

Then, evaluating the boundary conditions (34) with the assumed form of W(θ), we obtain
a homogeneous linear system. Non-trivial solutions are found only if the determinant of the
associated 4 × 4 matrix vanishes. After cumbersome simplification of the determinant, we
obtain

64�4
t

(

�2
t − 8�2

s

)2
α2(α − 2)2(α − 1)4 sin2(2πα) = 0, (36)

which dictates the admissible values for the exponent α. We recall that 0 < �2
t < 4�2

s ; thus,
Eq. (36) could be solved solely in terms of α. Apart from the root α = 1, the first root of (36)
strictly greater than 1 is α = 3/2. Using the required anti-symmetry of W , the associated
eigenvectors are determined and the general solution in terms of displacement is written in
the form

w(r, θ) = Γ r sin θ + CIII r
3/2

(

3 sin θ/2

16(�s/�t )2 − 3
− sin

3θ

2

)

, (37)

for Γ and CIII two arbitrary constants. Remark that the first addend in (37) corresponds to
α = 1: it physically represents a field of uniform shear and does not contribute to the strain-
gradient energy density. The solution (37) is in perfect agreement with the solution obtained
in [34], but it is obtained in a setting more general than couple stress elasticity, as �s and �t

are the ones defined in (14).
We recall that (37) is valid only asymptotically close to the tip, i.e., within r < dII for

dII /�s → 0. To estimate an upper bound for the value dII , in which this solution still has
a reasonable validity, we seek for the radius d at which the strain-gradient energy density
associated to (37) equals the strain energy density associated to the classical far-field so-
lution wf (r, θ) ∝ KIII

√
r sin θ/2. Details of such calculation are reported in Appendix A;

the results, however, are shown in Fig. 4 where d/�s is plotted against the ratio �t/�s ; recall
that �t = 0 and �t = 2�s are the boundaries of the domain of positive definiteness. For r < d
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Fig. 4 Estimate of the process
zone radius d/�s is given in
terms of the characteristic
internal length �t for the
antiplane problem

the strain-gradient contributions in the elastic energy are certainly greater than the standard
strain terms; this fact justifies the radius d as an upper bound for dII : we see that, for a wide
class of materials (namely those with �t � �s ), a ball of radius 0.5�s is a fair approximation
for the validity region of the asymptotic solution. The obtained estimate is actually consis-
tent with the one provided in [34] and deduced from the complete solution, matching the
asymptotic and far fields via the Wiener-Hopf technique.

5.3 Asymptotic Solution for Inplane Modes

The asymptotic solution for the inplane problem is found assuming the form

ur(r, θ) = rαUr(θ), uθ (r, θ) = rαUθ (θ), α ≥ 1, (38)

for the radial ur and tangential uθ components of the displacement field. Again the request
on α assures the elastic energy to be integrable. Inserting (38) in the bulk balance equations
(32)2 we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(α − 3)�2
e

(

(α − 1)2(α + 1)ur + (α − 1)2u′
θ + (α + 1)u′′

r + u′′′
θ

)

− �2
s

(

(α − 1)2(α + 1)u′
θ − (α − 1)2u′′

r + (α + 1)u′′′
θ − u′′′′

r

) = 0,

(α − 3)�2
s

(

(α − 1)2(α + 1)uθ − (α − 1)2u′
r + (α + 1)u′′

θ − u′′′
r

)

− �2
e

(

(α − 1)2(α + 1)u′
r − (α − 1)2u′′

θ + (α + 1)u′′′
r − u′′′′

θ

) = 0,

(39)

together with the boundary conditions (29)1

t±r = 16�2
s

(

2u′′′
r (±π) + (α − 1)(5α − 8)u′

r (±π) − 2(α + 1)u′′
θ (±π)

+ uθ (±π)(α − 1)
(

α(4α − 15) + 8
))

+ 16�2
e(α − 2)

(

(α + 3)u′
r (±π) + 2u′′

θ (±π) + uθ (π)(α − 1)
)

− 3�2
b(α − 2)(α − 1)

(

u′
r (±π) + uθ (±π)(2α − 1)

)

− 8γ3(α − 2)(α − 1)
(

2u′
r (±π) + uθ(±π)(α − 2)

) = 0, (40)
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−t±θ = 16�2
s (α − 2)

(

2u′′
r (±π) + ur(±π)

(

6α2 − 9α + 3
) + (1 − 5α)u′

θ (±π)
)

− 16�2
e

(

2
(

u′′
r (±π) + u′′′

θ (±π)
)

+ 2αu′′
r (±π) + (α − 1)α

(

ur(±π)(2α − 1) + u′
θ (±π)

))

− 3�2
b(α − 2)(α − 1)

(

ur(±π)(2α − 1) − u′
θ (±π)

)

− 8γ3(α − 2)(α − 1)
(

ur(±π)(α − 2) − 2u′
θ (±π)

) = 0,

meaning the radial and tangential components of the tractions on the lips, and the boundary
conditions (29)2

τ±
r = 16

(

�2
s

(

2u′′
r (±π) − (α − 2)

(

3ur(±π)(α − 1) − 4u′
θ (±π)

))

+ ur(±π)�2
e(α − 1)α

) + 3�2
b(α − 1)

(

ur(±π)(α − 2) − 2u′
θ (±π)

)

+ 8(α − 1)γ3
(

ur(±π)(2α − 1) − u′
θ (±π)

) = 0,

τ±
θ = 2u′

r (±π)
(

3(α − 1)
(

�2
b − 16�2

s

) + 16�2
e(α + 1) + 4(α − 1)γ3

)

+ uθ (±π)(α − 1)
(

16
(

�2
eα − 3(α − 2)�2

s

) + 3�2
b(α − 2) + 8(2α − 1)γ3

)

+ 32�2
eu

′′
θ (±π) = 0,

(41)

meaning the radial and tangential components of the double forces on the lips. The previous
expressions of tractions (40) and double forces (41) can be derived from (9)2,3 once using
polar coordinates and the assumed form of the inplane displacement.

As (39)–(41) constitute a homogeneous system of linear ordinary differential equations,
the solution is sought in the form {Ur(θ),Uθ (θ)}� = {U,V }� exp(iκθ). First substituting
into the bulk balance equations (39) we obtain the relationship between the angular wave-
length and the exponent α: notably, as in the antiplane mode, also this relationship turns out
to be independent from material constants and reads

(κ − α − 1)(κ − α + 1)2(κ − α + 3)(κ + α − 3)(κ + α − 1)2(κ + α + 1) = 0. (42)

Hence, evaluating the boundary conditions (40)–(41) with the assumed form of Ur(θ) and
Uθ(θ), we obtain an homogeneous linear system. Non-trivial solutions are found only if the
determinant of the associated 8 × 8 matrix vanishes; after heavy symbolic calculations this
condition reduces to:

α4(α − 1)8(α − 2)4 sin4(2πα)

((α − 3)(�s/�e)2 − α − 1)2
= 0. (43)

Equation (43) dictates the admissible values for the exponent α. Again, apart from the evi-
dent root α = 1 the smallest root, strictly greater than 1, is α = 3/2. Let us remark that the
condition (43) holds for any strain-gradient material, independently from the choice of the
constitutive constants. The eigenvectors associated to α = 1 and α = 3/2 are consequently
determined and the general solution can be written as the sum of two contributions; a dis-
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placement field which is skew-symmetric with respect to θ = 0 axis:

uII
r = Γ3r sin 2θ + r3/2

[

C1

(

k1 sin
θ

2
+ k2 sin

3θ

2
+ k3 sin

5θ

2

)

+ C3

(

k4 sin
θ

2
+ k5 sin

5θ

2

)]

,

uII
θ = Γ3r cos 2θ + r3/2

[

C1

(

−2 cos
3θ

2
+ k3 cos

5θ

2

)

+ C3

(

−2 cos
θ

2
+ k5 cos

5θ

2

)]

,

(44)

and a displacement field which is symmetric with respect to θ = 0 axis:

uI
r = r(Γ1 + Γ2 cos 2θ)

+ r3/2

[

C2

(

−2 cos
θ

2
+

(

2

5
− k6

)

cos
5θ

2

)

+ C4

(

−k2 cos
3θ

2
+ k7 cos

5θ

2

)]

,

uI
θ = − Γ2r sin 2θ

+ r3/2

[

C2

((

2

5
− 6k6

)

sin
θ

2
−

(

2

5
− k6

)

sin
5θ

2

)

+ C4

(

k8 sin θ/2 − 2 sin
3θ

2
− k7 sin

5θ

2

)]

.

(45)

Here Γ1, . . . ,Γ3 and C1, . . . ,C4 are arbitrary constants. The constitutive constant k1, . . . , k8

are shown in Appendix B as function of the material characteristic lengths; if, for these
ki constants, the values specialized for SM materials are used, the solutions (44) and (45)
reduce to the cases examined in [2] and [22]. Here we have used the apices II and I as
the displacement fields (44) and (45) represent the heirs of inplane shearing and inplane
opening modes respectively. Again remark that the terms in (44) and (45) scaling as r do
not contribute to the strain-gradient energy density.

Similarly to the antiplane case, we recall that (44) and (45) are valid only asymptotically
close to the tip, i.e., for r < dII . To estimate such an upper bound dII , we seek for the
radius d at which the strain-gradient energy density associated to (44) and (45) equals the
strain energy density associated to the classical far-field solutions. The results, relative to
the inplane opening mode (45), are shown in Fig. 5: d/�e is plotted against the ratios �s/�e

and �b/�e for a vanishing γ3. For r < d the strain-gradient contributions in the elastic energy
are certainly greater than the standard strain terms; this fact justifies d as an upper bound
for dII . From Fig. 5 we see that, for a wide class of materials (namely those with �b � �e

and �s � 0.6�e ), a ball of radius 0.5�e is a fair approximation for the validity region of
the asymptotic solution; this estimate loosely depends on the material Poisson ratio. The
obtained estimate is actually consistent with the one deduced from the full-field solution
derived in [22] for the case of SM materials.

5.4 Edge Force Condition in the Crack Tip

As the hyper-stress field are singular in the same point where the edge o is located, the
localization of the balance law (9)4, expressing the edge force in terms of the hyperstress P ,
can not be deduced for the crack tip.

However a balance condition for forces acting on the tip can still be derived by using
a suitable test field in the principle of virtual working (5). To this aim one can consider a
test field δu having support on a ball Bε of radius ε centered in the crack tip o and then



42 G. Sciarra, S. Vidoli

Fig. 5 Estimate of the process zone radius d/�e in terms of the characteristic internal length �s and �b for
the in-plane opening problem: predictions for C4 = 0 (a), and C2 = 0 (b). Solid and dashed curves stand
respectively for ν = 0.2 and ν = 0.4

taking the limit for a vanishing radius. The set Bε has three edges: the two edges on the lips
P ±

ε := (−ε,0±) and the tip o; the resulting balance of forces reads then

lim
ε→0

(

fi

(

P +
ε

) + fi

(

P −
ε

) +
∫

∂Bε

ti

)

= f o
i , i = 1,2,3, (46)

where f o is the external applied force on the tip.
For all the displacement fields (37), (44) and (45) the argument of the limit in (46) is

identically zero, independently from all the constants C and Γ . This means that these solu-
tions satisfy also the condition (29)3 for a tip free of forces, which were not used to deduce
them. A simple calculation shows that if a non-vanishing force f o is considered on the crack
tip, one must necessarily account, in the asymptotic solutions, for additional, more regular,
terms scaling as r2.

6 Discussion of Results

The results obtained in terms of displacement fields, for the antiplane and inplane crack
opening problems, are here discussed with a three-fold aim. First an equivalence between
strain-gradient effects and cohesive forces (à la Barenblatt) is introduced in terms of COD
profiles. Then the rates of elastic energy release associated to crack propagation are com-
puted in order to examine, from an energetic point of view, how strengthening effects of
strain-gradient materials depend on the actual values of their characteristic lengths. In this re-
spect, the five considered strain-gradient moduli endow the material with a micro-structural
description much more refined than in couple-stress or SM theories. Finally we emphasize
some special features of the deformation fields which are characteristic of strain-gradient
elasticity and that could, therefore, be used for a direct measurement of the material moduli.

6.1 Cohesive-Like Effects

In his celebrated paper [4] Barenblatt proposed to introduce a suitable field of tractions
between the crack lips in order to eliminate the stress singularity. These contact forces, sup-
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Fig. 6 Far-field force P and
cohesive tractions g2 for the
inplane opening mode. The
radius dI labels the zone outside
of which the cohesive effects
becomes vanishing

posed non-vanishing only in a vicinity of the crack tip, were intended to model the “molecu-
lar forces of cohesion” within the process zone. It is well known that such a field of cohesive
force induces a COD profile which asymptotically scales as r3/2.

We here compare the classical solutions due to Barenblatt, with those obtained for strain-
gradient materials in (37) and (45).1 Equating the leading terms in the crack opening dis-
placements (CODs) leads to establish an equivalence between the strain-gradient character-
istic lengths and a given distribution of elastic cohesive forces between the lips.

To the aim, we focus first on the inplane opening mode and suppose acting on the crack
lips two opposite far-field forces, ±Pe2 at distance R from the tip, and a system of opposite
tractions t±(r) = ±g2(r)e2 in the tip vicinity, refer to Fig. 6. Therefore, using Muskhel-
ishvili’s method, one find that the leading part of the asymptotic solution for the Barenblatt
COD is

vB(r) = 4(1 − ν2)

πY

[(

P√
R

+
∫ ∞

0

g2(s)√
s

ds

)√
r +

(

P

R3/2
+

∫ ∞

0

g2(s)

3s3/2
ds

)

r3/2 + · · ·
]

,

(47)
where Y is the material Young modulus. As suggested in [4] the distribution of contact
actions g2 is chosen to let vanish the coefficient of

√
r , responsible for the stress divergence

as r → 0. Hence, choosing
∫

g2(s)/
√

s ds = −P/
√

R, one obtains

vB(r) = 4(1 − ν2)

πY

(

− 1

R

∫ ∞

0

g2(s)√
s

ds +
∫ ∞

0

g2(s)

3s3/2
ds

)

r3/2 + · · · . (48)

Finally as the forces P are applied far away from the tip, one lets R → ∞ to get

vB(r) = 4(1 − ν2)

3πY

(∫ ∞

0

g2(s)

s3/2
ds

)

r3/2 + · · · (49)

which is the leading term of the crack opening displacement for a cohesive material within
standard elasticity. The corresponding COD in strain-gradient elasticity, is easily obtained
from (45) as

vSG(r) = lim
θ→π

uI
θ = (

C4(2 − k7 + k8) − 5C2k6

)

r3/2 + · · · , (50)

1The shearing mode (44) could be treated similarly.
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Fig. 7 Intensity of equivalent cohesive forces |T2|/(Y�2
e) (a) and |T4|/(Y�2

e) (b) as functions of the ratios
�s/�e and �b/�e for γ3 = 0. The black points correspond to SM materials

corresponding to the amplitudes C2 and C4, determined by the far field conditions, and to the
constants k6, k7, k8 reported in Appendix B. Therefore strain-gradient elasticity can provide
the same asymptotic COD of Barenblatt cohesive model as long as vB ≡ vSG, implying

4(1 − ν2)

3π

(∫ ∞

0

g2(s)

s3/2
ds

)

= T2(�e, �s, �b, γ3)C2 + T4(�e, �s, �b, γ3)C4, (51)

for T2 and T4 given by

T2 := 512Y�2
e

15�2
b − 40γ3 − 16�2

e − 240�2
s

, (52)

and

T4 := 1024Y�2
e(5�2

s (−21�2
b + 8γ3 − 32�2

e) + �2
e(9�2

b + 24γ3 + 16�2
e) + 1680�4

s )

3(5�2
e + 3�2

s )(9�2
b + 24γ3 + 16(�2

e − 9�2
s ))(15�2

b − 40γ3 − 16(�2
e + 15�2

s ))
. (53)

The quantities T2 and T4, having physical dimensions of a pressure, can be though as equiv-
alent cohesive force distributions provided by the material micro-structure.

For the SM materials, using (17), one easily see that Eqs. (52) and (53) reduce to T2 =
16Y (1 − ν)/(3 − 8ν) and T4 = 160Y (1 − ν)/(39 − 48ν) respectively; hence, within the
region r < dII where (51) holds, also SM materials do provide cohesive effects, see also [22].
Instead, any strain-gradient material with a vanishing differential-elongation characteristic
length does not show cohesive effects as clearly �e → 0 implies T2 → 0 and T4 → 0.

The general expressions (52) and (53) are plotted in Fig. 7 against the ratios �s/�e and
�b/�e assuming γ3 = 0. One observes a monotonic increase of both the equivalent cohesive
forces as the upper boundary of the region:

9�2
b + 24γ3 + 16�2

e ≤ 144�2
s , (54)

for the admissible constitutive lengths, is approached. The inequality (54) translates the
condition (12)2, i.e. γ2 > 0, for a positive definite elastic energy in terms of characteristic
lengths. While T4 diverges approaching this limit, see the denominator in (53), T2 diverges
on a set outside the admissible region, namely on the dashed line in Fig. 7a.
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Using similar arguments, one obtains relations analogous to (51) for all the examined
modes; in particular, for the tearing mode (37), one finds:

2

3π

(∫ ∞

0

g3(s)

s3/2
ds

)

= TIII (�s, �t )CIII , TIII := 32μ�2
s

3�2
t − 16�2

s

, (55)

for TIII an equivalent distribution of elastic forces which relate the strain-gradient charac-
teristic lengths �s and �t to the cohesive forces g3 acting in the out-of-plane direction. The
coefficient TIII is plotted in Fig. 9 as a solid curve: it turns out to be a monotonic increas-
ing function of the ratio �t/�s . Then the maximum cohesive effects in antiplane problems
are attained at the limit value �t = 2�s of the admissible region, while the cohesion effect
would vanish if �s → 0. In the same figure SM materials are represented by the grid line at
�t/�s = √

2, cf. (17).
We remark that the cohesive effects demonstrated in both (51) and (55) are valid suffi-

ciently close to the crack tip, namely in the range of validity of the asymptotic solutions, say
r � 0.5�e and r � 0.5�s respectively.

6.2 Energy-Release Rates

A characterization of the strain-gradient strengthening can also be given in terms of energy.
Recently, in [36], the authors provided the general form of the elastic energy release rate
in finite strain-gradient elasticity. Therein special emphasis was paid to the contribution of
edge forces to the actual value of the associated J -integral; indeed, this last must be suitably
extended to cope with the edge points of the path, say Γ , of its definition. In particular, the
extended form of J -integral provided in [36] depends on the closure Γ and reads as

J (Γ ) :=
∫

Γ

(ψn1 − tlul,1 − τlul,1qnq) − (flul,1)|P+ + (flul,1)|P− , (56)

where Γ is a suitable path circumventing the crack tip and P ± := Γ ∩ L± its edge points
on the crack lips. Here, as usual, n1 denotes the component of the normal to Γ towards the
direction of crack propagation (supposedly e1), ψ the elastic energy density, u the displace-
ment, t , τ and f the tractions, double-forces and edge forces as given in (9).

Substituting the solution (45) in the J -integral expression (56), we obtain the energy
release rate associated to the inplane opening mode as:

JI = J22(�e, �s, �b, γ3)C
2
2 + J44(�e, �s, �b, γ3)C

2
4 + 2J24(�e, �s, �b, γ3)C2C4, (57)

where the functions of the characteristic lengths J22, J44 and J24 are reported in Appendix B.
It can be easily checked that when �e → 0 then JI → 0, whilst for SM materials (17) the
functions J22, J44 and J24 do not vanish; they result indeed proportional, via suitable func-
tions of the Poisson ratio, to the unique SM characteristic length

√
c, refer to (70). We

remark that, as discussed in [36], the contribution of edge forces implies an energetic cou-
pling between inplane sliding and opening modes as the J -integral turns out to be not, as in
standard elasticity, a quadratic diagonal form of the amplitude factors. However, since the
non-diagonal terms would appear only in mixed mode crack problems, here we have limited
the discussion to the purely symmetric loading cases, for which the amplitudes of the sliding
modes, C1 and C3 in (44), are vanishing and, therefore, JI is a quadratic form of C2 and C4

only.
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Fig. 8 Coefficients for the energy release rate JI in (57): (a) J22/(μ�2
e), (b) J44/(μ�2

e) and (c) J24/(μ�2
e)

as functions of the ratios �s/�e and �b/�e for γ3 = 0

Similarly, substituting the solution (37) in (56), the energy release rate for the tearing
mode is computed to be:

JIII = 72πμ�2
sC

2
III

�2
t (8�2

s − �2
t )

(16�2
s − 3�2

t )
2
. (58)

Here, contrary to inplane cases, the edge forces contributions in (56) identically vanish.
In Fig. 8 the coefficients for the energy release rates (57) are plotted as functions of

the micro-structural parameters �s/�e and �b/�e; we have chosen γ3 = 0, but qualitatively
similar plots can be given for γ3 �= 0. In both figures, the SM materials are represented by a
black points. For these materials, indeed, the ratios �b/�e and �s/�e depend of the Poisson
ratio only; however, to have γ3 = 0, we obtain �b/�e � 1.5 and �s/�e � 0.7.

When comparing Figs. 7 and 8, we observe the same qualitative dependences of cohesive
force intensities and energy release rates on the characteristic length ratios. In particular,
from Figs. 8, we again deduce that materials with �s/�e and �b/�e approaching the upper
boundary (54) are associated to the highest energy release rates. Conversely, the energy
release rates become vanishing as soon as �b → 0 and �s → 0.8�e or for �e → 0. Similarly
in Fig. 9 the energy release rate JIII is plotted as a dashed curve against the ratio �t/�s ; again
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Fig. 9 Intensity of cohesive
forces |TIII |/μ (solid curve) and
energy release rate
JIII /(72πμ�2

s C2
III

) (dashed
curve) for the tearing mode as
functions of the micro-structural
parameter �t /�s

in general agreement with the cohesive effect the maximum is reached at the boundary of
the admissible region when �t → 2�s .

As soon as the material lengths approach the boundaries of the admissible regions in
Figs. 8 and 9, the energy is characterized by a vanishing cost of at least one strain-gradient
deformation. It seems then that having a reduced stiffness, along suitable strain-gradient de-
formations, leads to increase the material energetic release. Starting from the actual material
microstructure, say geometric patterns or textures at the microscale, these results could be
extended to indicate the optimal values of micro-structural parameters to provide sensible
strengthening effects within a given crack opening mode.

6.3 Observable Quantities

Equations (57) and (58) reveal that, when the characteristic lengths associated to differen-
tial extension, �e , and differential shear, �s , tend to zero, the strain-gradient contributions to
the energy release rates tend to vanish. These results are consistent with the dII -estimates
provided in Sect. 5: as the amplitudes of the process zones are estimated to be of the same
magnitude order of �e and �s , their vanishing enforces these zones to collapse around the
crack tip. Conversely, observations of the displacement fields at the micro/nano scales, in
both tearing and opening modes, can hopefully provide a direct measurement for the ampli-
tudes of the regions where the CODs reveal a cusp-like behaviour. In this section we discuss
peculiar observable features of the strain-gradient asymptotic solution which could allow
for a coarse, but direct, estimation of the characteristic lengths. We point out that modern
techniques, such as the digital correlation of images acquired by atomic force microscopes,
allow for very high resolutions, up to micro or even nano-scales, as well as for the elimina-
tion of rugosity effects, see for instance [23].

Inspection of the polar representation of the asymptotic displacement fields, for both
antiplane (37) and plane-strain conditions (44) and (45), shows a non-monotone multi-
harmonic dependence on the azimuthal coordinate θ . In particular, for inplane opening tests,
the strain-gradient solution (45) predicts the deformations shown in Fig. 10, for Γ1 = Γ2 = 0,
whilst the one associated to the shearing mode are displayed in Fig. 11, for Γ3 = 0. There we
have respectively plotted the deformations uI /

√
JI and uII /

√
JII associated to the sequence

of values �b/�e and �s/�e depicted in Fig. 7; these ratios are used as independent of the C

constants.
On the other hand, in tearing tests, the strain-gradient solution (37) predicts the presence

of a uniform shear field, scaling as r and whose amplitude is determined by the constant Γ ,
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Fig. 10 Deformed shapes of a circular disk with radius r � �e surrounding the crack tip for inplane opening
mode: (a) C4 = 0, (b) C2 = 0. These plots are at fixed toughness as correspond to the fields uI /

√
JI , for

�s/�e = 0.8 and �b/�e varied along the path depicted in Fig. 7

Fig. 11 Deformed shapes of a circular disk with radius r � �e surrounding the crack tip for shear opening
mode: (a) C3 = 0, (b) C1 = 0. These plots are at fixed toughness as correspond to the fields uII /

√
JII , for

�s/�e = 0.8 and �b/�e varied along the path depicted in Fig. 7

and of a strain-gradient component associated with non-uniform strains. This last contribu-
tion scales as r3/2, it is controlled by the amplitude CIII and it is characterized by a circular
sector around the crack tip where the transverse displacement changes sign. Notice that the
angle αi in Fig. 12a, which determine the width of the sector where the transverse displace-
ment changes sign, depends only on the ratio �t/�s , as from (37) one easily obtains:

αi = 2 cos−1

(

2
√

16 − 3(�t/�s)2

)

. (59)

This function is shown in Fig. 12b for �t/�s in [0,2]: progressive increase of �t/�s yields
stronger cohesive effects (Fig. 9) and forces the inversion angle to vanish monotonically.
Accurate measurements of the inversion angle αi , within the process zone of materials under
tearing conditions, could then serve to directly estimate the ratio between the torsion and
differential-shear characteristic lengths. Certainly, the uniform-shear component must be
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Fig. 12 (a) Polar plot of the antiplane displacement for �t = �s : uniform-shear component (dashed), strain–
gradient component (gray) and whole field (thick black); (b) the inversion angle αi as a function of the ratio
�t /�s in [0,2]

filtered out, but this account to a simple Fourier analysis over the measured field w(r, θ) as
a function of θ , see Eq. (37) or Fig. 12a.

Aiming to estimate the strain-gradient moduli, the inspection of the deformations fields
near the tip seems to be a promising experimental approach in comparison with the studies
reported in [27] or [28]. These latter were based on simple tension, bending or torsion tests
where the contributions of strain-gradient were not dominant; as a matter of fact, the strain-
gradient moduli were estimated after filtering out, from the measured values of bending or
torsional stiffness, the contribution of homogeneous deformations, refer for instance to [1].
Instead, the direct experimental inspection of some strain-gradient effects and relies on local
measurements in zones where non-homogenous deformations are dominant. This behavior
is in close analogy with nanoindentation tests, where the effects of material length scales
on hardness can be accurately predicted, see, e.g., [5] and [25]. Certainly, more attention
must be paid to select both suitable candidate materials and experimental set-ups to reach
the necessary resolution even for modest strain levels.

7 Further Developments

The results presented in Sect. 6 provide several hints on the fracturing process of strain-
gradient materials. In particular, emphasis has been posed on the dependence of CODs and
energy release rates on the material characteristic lengths; the aim was both to establish
the effects of specific internal micro-structures on the material toughness properties and
to enlighten possible constitutive identification procedures which are based on microscale
measurements.

Accordingly future developments will be devoted to design an experimental setup able
to record full-field displacement measures of structured samples under inplane opening and
tearing tests. In order to get measurements accurate at the micro/nano scales, refined airbrush
painted speckle patterns, see, e.g., [37], or digital correlation of atomic force microscope
images, see, e.g., [23], are currently available methods.
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Development efforts will be also pursued to establish a micro-macro constitutive identi-
fication for structured materials, as metallic alloys or textured composites; in particular, one
should focus on the characterization of proper boundary value problems which guarantee
a “generalized” Hill lemma to hold true within the framework of strain-gradient elasticity.
As strain gradient effects become more important when the associated characteristic lengths
are comparable with the specimen size, the envisaged constitutive identification should not
assume the heterogeneity dilution inside the Representative Volume Element, see, e.g., [14];
as proved in [6] the dilution hypothesis leads indeed to a negligible influence of the hetero-
geneities, as the resulting Cosserat moduli depend on the square of the inclusions volume
fraction.

Appendix A

As suggested by Fig. 1 the actual crack opening displacement (COD) results from a match-
ing between the asymptotic solution (37), which on the upper lip θ = π , reads:

wa(r) = CIII

(

3

16(�s/�t )2 − 3
+ 1

)

r3/2, (60)

and the far-field solution suitably shifted by a distance b; this last, again on the lip θ = π ,
reads wf (r) ∝ KIII

√
r − b. We estimate the distance d by asking the C1 continuity between

the two CODs and the equality of the strain and strain-gradient energies. These requests are
tantamount to solve the three equations:

wa(d) = wf (d),
∂wa

∂r

∣

∣

∣

∣

d

= ∂wf

∂r

∣

∣

∣

∣

d

, ψ2(wa)(d) = ψ1(wf )(d), (61)

in the three unknowns d , b and CIII /KIII ; here ψ1 and ψ2 account respectively for the strain
and strain-gradient energy densities. For the antiplane case one easily obtain:

d = �t

√
3

16
√

2

√

�4
t

�4
s

− 32
�2

t

�2
s

+ 128, (62)

which is plotted in Fig. 4. A similar reasoning allows to estimate d for the inplane and shear
opening modes, see Fig. 5.

Appendix B

We report the expression for the constants in (44), (45) and (45), together with their special-
ization to couple-stress materials (15) and to Simplified Mindlin materials (17). In particular,
the k constants in Eqs. (44)–(45) are:

k1 = 32�2
s (−48�2

s − 8γ3 + 48�2
e + 3�2

b)

(3�2
s + 5�2

e)(176�2
s + 40γ3 + 80�2

e − 15�2
b)

, k2 = −2(5�2
s + 3�2

e)

3�2
s + 5�2

e

,

k3 = (

192�4
s

(

112γ3 − 104�2
e − 201�2

b

)

− 2�2
s

(

64
(

81γ 2
3 + 1472γ3�

2
e + 1572�4

e

) − 729�4
b + 10176�2

e�
2
b

)

+ 244224�6
s − 90�2

e

(

8γ3 + 16�2
e − 3�2

b

)(

24γ3 + 16�2
e + 9�2

b

))

/Δk3 ,
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k4 = 544�2
s − 16γ3 − 32�2

e + 6�2
b

176�2
s + 40γ3 + 80�2

e − 15�2
b

, k5 = −32�2
s + 16γ3 + 32�2

e − 6�2
b

176�2
s + 40γ3 + 80�2

e − 15�2
b

, (63)

k6 = 512�2
e

5(240�2
s + 40γ3 + 16�2

e − 15�2
b)

,

k7 = 2
(

1728γ 2
3

(

5�2
s + 3�2

e

) + 1024γ3
(

101�2
e�

2
s + 3�4

e

) + 32�4
e

(

2072�2
s − 45�2

b

)

− 3�2
e(�b − 4�s)(4�s + �b)

(

5104�2
s + 243�2

b

) − 1215�2
s

(

�2
b − 16�2

s

)2 − 256�6
e

)

/Δk7 ,

k8 = − 32�2
e(−16�2

s + 8γ3 + 16�2
e − 3�2

b)

(3�2
s + 5�2

e)(240�2
s + 40γ3 + 16�2

e − 15�2
b)

,

with

Δk3 = 3
(

3�2
s + 5�2

e

)(

9
(

�2
b − 16�2

s

) + 24γ3 + 16�2
e

)(

176�2
s + 40γ3 + 80�2

e − 15�2
b

)

Δk7 = 3
(

3�2
s + 5�2

e

)(

9
(

�2
b − 16�2

s

) + 24γ3 + 16�2
e

)(

240�2
s + 40γ3 + 16�2

e − 15�2
b

)

.
(64)

The expressions for the J -integral in (57) are:

J22 = 144πμ�2
e

(

3�2
s + 5�2

e

)2(
3�2

b − 8γ3 − 16(�e − 3�s)(�e − �s)
)

× (−3�2
b + 8γ3 + 16(�e + �s)(�e + 3�s)

)(

9�2
b + 24γ3 + 16

(

�2
e − 9�2

s

))

/Δ, (65)

J24 = 96π�2
e

(

�2
e − 5�2

s

)(

5�2
e + 3�2

s

)(

3�2
b − 8γ3 − 16(�e − 3�s)(�e − �s)

)

× (−3�2
b + 8γ3 + 16(�e + �s)(�e + 3�s)

)(

9�2
b + 24γ3 + 16

(

�2
e − 9�2

s

))

/Δ, (66)

J44 = −64π�2
e

(

172800�8
s

(

81�2
b − 72γ3 + 368�2

e

) + 16�6
s

(

2880�2
e

(

632γ3 − 67�2
b

)

+ 2025
(

8γ3 − 3�2
b

)(

9�2
b + 8γ3

) + 538112�4
e

) + �4
s

(

1536�4
e

(

4136γ3 − 405�2
b

)

+ 80�2
e

(

8γ3 − 3�2
b

)(

1257�2
b + 8840γ3

) + 675
(

8γ3 − 3�2
b

)2(
3�2

b + 8γ3

)

+ 2531328�6
e

) − 2�2
e�

2
s

(−1536�4
e

(

8γ3 − 21�2
b

) − 8�2
e

(

8γ3 − 3�2
b

)(

51�2
b + 3032γ3

)

− 285
(

8γ3 − 3�2
b

)2(
3�2

b + 8γ3

) + 43008�6
e

)

+ �4
e

(−3�2
b + 8γ3 + 16�2

e

)2(
9�2

b + 24γ3 + 16�2
e

) − 74649600�10
s

)

/Δ, (67)

where Δ = (5�2
e + 3�2

s )
2(9�2

b + 24γ3 + 16(�2
e − 9�2

s ))(−15�2
b + 40γ3 + 16(�2

e + 15�2
s ))

2.
For the constitutive case (15), Eqs. (63) reduce to:

k1 = k6 = k8 = 0, k2 = −10

3
, k3 = −14

9
, k4 = −10,

k5 = 2, k7 = 2,

(68)

while clearly J22 = J24 = J44 = 0 as �e = 0 in (15).
For the SM materials (17), Eqs. (63) reduce to:

k1 = 8

13 − 16ν
, k2 = 4

13 − 16ν
− 2, k3 = 74 − 64ν

39 − 48ν
, k4 = 2,

k5 = k8 = 0, k6 = 2

3 − 8ν
+ 2

5
, k7 = 10

16ν − 13
− 4

3
,

(69)
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while

J22 = 288πc(1 − ν)

(3 − 8ν)2
, J24 = 192πc(1 − ν)

(3 − 8ν)(16ν − 13)
,

J44 = 128πc(1 − ν)(41 − 32ν)

(13 − 16ν)2
.

(70)
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