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Abstract This work is concerned with the characterization of the statistical dependence
between the components of random elasticity tensors that exhibit some given material sym-
metries. Such an issue has historically been addressed with no particular reliance on proba-
bilistic reasoning, ending up in almost all cases with independent (or even some determin-
istic) variables. Therefore, we propose a contribution to the field by having recourse to the
Information Theory. Specifically, we first introduce a probabilistic methodology that allows
for such a dependence to be rigorously characterized and which relies on the Maximum
Entropy (MaxEnt) principle. We then discuss the induced dependence for the highest levels
of elastic symmetries, ranging from isotropy to orthotropy. It is shown for instance that for
the isotropic class, the bulk and shear moduli turn out to be independent Gamma-distributed
random variables, whereas the associated stochastic Young modulus and Poisson ratio are
statistically dependent random variables.

Keywords Elasticity tensor · Statistical dependence · Elastic moduli · Probabilistic
model · MaxEnt approach
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1 Introduction

This work is devoted to the characterization of the statistical dependence for the compo-
nents of random elasticity tensors. Such randomness can be encountered for several reasons,
among which:
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• The presence of uncertainties while modeling the experimental setup in either forward
simulations or inverse identification.

• The lack of scale separation for heterogeneous random materials, hence resulting in the
consideration of mesoscopic, apparent properties.

In the former case, one may consider uncertainties on a macroscopic elasticity tensor,
whereas the second situation may involve the construction of probabilistic models for
mesoscale random fields with values in the set of elasticity tensors (see [17] and the refer-
ences therein). In practice, such a construction can be carried out by introducing a non-linear
transformation acting on a set of homogeneous Gaussian random fields (see [26] for details
about the overall methodology, as well as [4–6] for further applications to random fields of
elasticity tensors). The aforementioned mapping can be defined by specifying the family of
first-order marginal distributions for the random field and thus requires the probability dis-
tribution of random elasticity tensors to be defined. In this paper, we focus on the stochastic
modeling of elasticity tensors which exhibit a.s. (almost surely) some material symmetry
properties. In such cases, one typically wonders whether or not the considered elastic mod-
uli may be modeled as dependent random variables: are the random Young modulus and
Poisson ratio, associated with random isotropic tensors, statistically dependent? If so, how
should such a dependence be integrated without introducing any modeling bias (i.e. model
uncertainties)?

In this context, uncertainty propagation is often based on strong assumptions regarding
the probability distributions, which are mostly chosen for the sake of theoretical and numer-
ical convenience rather than deduced from a probabilistic reasoning. Consequently, such
models arguably suffer from end-user’s subjectivity and may be questionable from both a
mechanical and mathematical standpoint.

In this work, we address such an issue from the point of view of Information Theory and
construct a prior stochastic model for the elasticity tensor. More specifically, we introduce
a probabilistic methodology, based on a particular decomposition of the elasticity tensors,
which allows for the aforementioned dependence to be rigorously characterized and dis-
cussed for the highest levels of elastic symmetries, ranging from isotropy to orthotropy (see
[2], among others, for a discussion about the definition of such symmetries). Fundamental
mathematical properties of random elasticity tensors, such as variance finiteness, are further
taken into account in order to ensure the physical consistency of the model.

This paper is organized as follows. Section 2 is devoted to the overall probabilistic
methodology. In particular, the tensor decomposition is introduced and the framework of
Information Theory, together with the Maximum Entropy principle, is briefly stated. The in-
duced general form for the prior probability distributions of the random components is then
explicitly given. In Sect. 3, we derive the probability distributions for the random compo-
nents of elasticity tensors exhibiting various symmetry properties and highlight the resulting
statistical dependence. It is shown that the latter depends on the retained parametrization
(i.e., on the choice of the tensor decomposition), as well as on the considered class of sym-
metry.

2 Probabilistic Modeling of Elasticity Tensors

2.1 Notations

Throughout this paper, we use double (e.g., �C�) and single (e.g., [C]) brackets to denote
fourth-order and second-order elasticity tensors respectively, the latter being defined with
respect to the Kelvin matrix representation (see [14] for a discussion). We denote by M

+
n (R)

the set of all the (n × n) real symmetric positive-definite matrices.
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2.2 Tensor Decomposition

Let Ela be the set of all the fourth-order elasticity tensors verifying the usual properties
of symmetries and positiveness. Hereafter, we denote by Elasym ⊆ Ela the subset of all the
fourth-order elasticity tensors belonging to the material symmetry class ‘sym’. It is well-
known that any element �Csym � ∈ Elasym can be decomposed as

�
Csym

� =
N∑

i=1

ci

�
Esym

(i)
�
, (1)

where {�Esym
(i)�}N

i=1 is a tensor basis of Elasym and {ci}N
i=1 is a set of coefficients satisfying

some algebraic properties related to the positiveness of �Csym �.
Extending the aforementioned decomposition to the case of random elasticity tensors, we

then denote by �Csym � the random variable with values in Elasym, the probability distribution
of which is sought, and similarly write

�
Csym

� =
N∑

i=1

Ci

�
Esym

(i)
�
, (2)

where {Ci}N
i=1 is now a set of random variables whose probability distributions and mutual

statistical dependence must be defined.
The definition of tensor basis for various classes of symmetry has been largely investi-

gated within the past four decades and we refer the interested reader to the literature avail-
able on this subject (see Sect. II.B of [30], as well as [12]). In this paper, we make use of
Walpole’s derivations and follow the notations and formalism proposed in [29], allowing for
simplified algebraic operations on tensors in Ela. Such representations have been used to de-
fine projection operators onto subsets of Ela with given symmetries in [16], for instance. For
the sake of self-readability, the expressions for tensor basis {�Esym

(i)�}N
i=1 will be recalled

for all the symmetry classes investigated in Sect. 3. A stochastic elasticity matrix [Csym] can
then be modeled as a M

sym
n (R)-valued random variable (with M

sym
n (R) ⊆ M

+
n (R)) and can

be written as

[
Csym

] =
N∑

i=1

Ci

[
Esym

(i)
]
, (3)

wherein [Esym
(i)] is the deterministic matrix representation of the fourth-order basis ten-

sor �Esym
(i)� (which is not orthonormal, except for the isotropic case [29]) and M

sym
n (R) =

span([Esym
(1)], . . . , [Esym

(N)]). Thus, the construction of a probabilistic model for the ran-
dom elasticity tensor �Csym � is strictly equivalent to the construction of a model for the
random coordinates C1, . . . ,CN , and such an issue is now to be addressed in Sect. 2.3.

2.3 Methodology for the Probabilistic Model Derivation

Let C = (C1, . . . ,CN) be the R
N -valued second-order random variable corresponding to

the modeling of the random coordinates of [Csym] onto {[Esym
(i)]}N

i=1. We denote by PC its
unknown probability distribution, which is defined by a probability density function (p.d.f.)
pC with respect to the Lebesgue measure dc = dc1 . . .dcN , PC(dc) = pC(c)dc. We denote
by S the support of pC. It is worthwhile to note that because of the a.s. positive-definiteness
of [Csym], S is a part, possibly unbounded, of R

N , the definition of which basically depends
on the considered material symmetry class.
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The prior probability model for random vector C is constructed by having recourse to
the Maximum Entropy (MaxEnt) principle, which is a general stochastic optimization pro-
cedure derived within the framework of Information Theory [21, 22] and which allows for
the explicit construction of probability distributions under a set of constraints defining some
available information [7–9]. The definition of the latter turns out to be the cornerstone of the
approach, for it aims at ensuring the objectivity of the model. At this stage of writing, let us
simply assume that all the constraints related to such information can be put in the form of
a mathematical expectation:

E
{
f(C)

} = h, (4)

where c �→ f(c) is a given measurable mapping from R
N into R

q and h is a given vector
in R

q . It is assumed that one of the constraints in Eq. (4) corresponds to the normalization
condition of the p.d.f. (see Eq. (8)). Let Cad be the set of all the integrable functions from
S ⊂ R

N into R
+ such that Eq. (4) is satisfied and let E (p) be the so-called Shannon measure

of entropy of p.d.f. p:

E (p) = −
∫

S
p(c) ln

(
p(c)

)
dc. (5)

The MaxEnt principle then reads:

pC = arg max
p∈Cad

E (p). (6)

In other words, the probability density function estimated by the MaxEnt principle is the
function which maximizes the uncertainties under the set of constraints stated by Eq. (4).
Consequently, this approach is intended to yield the most objective probabilistic model and
has been successfully used in various fields of application (see [10, 11, 23] and the references
therein, for instance). We assume that the optimization problem stated by Eq. (6) is well-
posed in the sense that the above constraints are algebraically independent (see Appendix B),
so that the optimization problem given by Eq. (6) admits at most one solution. Under this
assumption (which is satisfied hereafter), the general form of the solution for the stochastic
optimization problem (6) can be obtained by introducing a set of Lagrange multipliers and
by proceeding to the calculus of variations, whereas the uniqueness of the solution Lagrange
multiplier (the existence of which must be studied) can be deduced from a standard argument
of optimization for a strictly convex function which is associated with E and the constraints
(see Appendix B for the construction of such a strictly convex function). Below, we assume
that such a solution Lagrange multiplier exists (see the discussion in Appendix B).

In the case of elasticity tensors, three fundamental properties are worth taking into ac-
count, that are:

P1: the mean value of the tensor, denoted by [Csym], is given (and could correspond to the
nominal, expected value);

P2: the elasticity tensor, as well as its inverse, has a finite second-order moment (for physi-
cal consistency);

P3: the p.d.f. pC satisfies the usual normalization condition.

Although additional information could be considered, the information defined above basi-
cally corresponds to the most basic properties satisfied by [C] (since P2 and P3 are a.s.
mathematical properties and P1 corresponds to the very first property that may be estimated
from experimental measurements) and thus, the consequence of such constraints on the sta-
tistical dependence of the random components is of primary importance. Mathematically,
the properties P1 and P3 can be written as

E{C} = c, c = (c1, . . . , cN) (7)



Statistical Dependence for the Components of Random Elasticity Tensors 113

and
∫

S
pC(c)dc = 1, (8)

while the second property P2 can be stated as (see [24, 25]):

E

{
log

(
det

(
N∑

i=1

Ci

[
Esym

(i)
]
))}

= νC, |νC| < +∞, (9)

where νC is a given parameter (q = N + 2). Let λ(1) ∈ Aλ(1) ⊂ R
N , λ(2) ∈ Aλ(2) ⊂ R and

λ(0) ∈ R
+ be the Lagrange multipliers associated with constraints (7), (9) and (8) respec-

tively. Let λ = (λ(1), λ(2)) ∈ Aλ, with Aλ = Aλ(1) × Aλ(2) , and let λ
(0)

sol and λsol = (λ
(1)

sol , λ
(2)

sol)

be the solution Lagrange multipliers such that Eqs. (8), (7) and (9) are satisfied. It can be
shown that the p.d.f. pC takes the general form (see also [7, 8] for random vectors and [1]
for similar results in case of random matrices [15], for instance)

pC(c) = 1S (c)ksol exp
{−〈

λsol,g(c)
〉
RN+1

}
, (10)

in which:

• c �→ 1S (c) is the characteristic function of S , i.e. 1S (c) = 1 if c ∈ S , 0 otherwise;
• ksol = exp{−λ

(0)

sol} is the normalization constant;
• c �→ g(c) is the mapping defined on S , with values in R

N+1, such that g(c) = (c, ϕ(c));
• the mapping ϕ : S −→ R is given by

ϕ(c) = log

(
det

(
N∑

i=1

ci

[
Esym

(i)
]
))

. (11)

The existence of the Lagrange multiplier λsol (as well as its value, should it exist) can be
numerically studied, either by substituting λ for λsol in Eq. (10) and by minimizing (with
respect to some given metric) the discrepancy between the left- and right-hand sides of
Eqs. (7) and (9), or by minimizing the convex function introduced in Appendix B. The
mathematical expectations can be computed by using a numerical Monte Carlo integration,
for instance. In addition, this approach requires the use of an efficient random generator and
the use of a Markov Chain Monte Carlo technique [19] is a natural choice to this aim [27]. It
should be noticed that the admissible space Aλ for the Lagrange multipliers must be defined
in order to preserve the integrability of the p.d.f. (10) at both the origin and infinity. Once the
p.d.f. has been determined (by solving Eq. (6)), it can then be seen in practice that the level
of statistical fluctuations of the random elasticity matrix, characterized by a scalar parameter
δC defined as

δ2
C = E

{∥∥[
Csym

] − [
Csym

]∥∥2

F

}
/
∥∥[

Csym
]∥∥2

F
, (12)

depends on the prescribed mean value c and on the Lagrange multiplier associated with the
constraint given by Eq. (9) (see [24]). The constant νC could therefore be reparametrized in
terms of the mean value c and dispersion parameter δC.

The p.d.f. pC can be finally rewritten as:

pC(c) = 1S (c)ksol exp
{−λ

(2)

solϕ(c)
} N∏

i=1

exp
{−λ

(1)

sol ici

}
. (13)

The statistical dependence of the random components can then be characterized, in view
of Eq. (13), by studying the separability of mapping c �→ ϕ(c). It is interesting to note that
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this dependence intrinsically depends on the retained parametrization, as the latter yields a
particular form for the determinant involved in the definition of the mapping ϕ (see Eq. (11)).

Before discussing such an issue further, it is instructive to note that typical assumptions
used in practical applications consist in imposing the mean and second-order moments of all
the random coordinates. In this case, a straightforward analogy with the previous derivations
allows us to write the p.d.f. pC as

pC(c) = 1S (c)k
N∏

i=1

exp
{−λ

(1)

sol ici − λ
(2)

sol ici
2
}
, (14)

where λ
(2)

sol ∈ Aλ(2) ⊆ R
N is the Lagrange multiplier associated with the constraint on second-

order moments and k is the normalization constant. Using such information, one therefore
ends up with random coordinates whose mutual statistical dependence can be defined by
studying the separability of c �→ 1S (c). Subsequently, it will be shown that the invertibility
constraint stated by P2, which is absolutely fundamental in order to ensure physical con-
sistency, also creates some statistical dependence structure that is specific to the symmetry
class.

In the next section, we investigate the statistical dependence between the random co-
efficients induced by the MaxEnt principle (for which the available information is stated
by properties P1, P2 and P3), for the sixth highest levels of material symmetry (i.e., from
isotropic to orthotropic symmetries). The case of the monoclinic symmetry is less attractive,
since it is barely encountered in practice (except for crystallographic considerations), and
the case of triclinic materials has been considered in [28].

Remark on correlation structure Let �R� be the fourth-order covariance tensor of random
matrix [C], defined as:

�R� = E
{([C] − [C]) ⊗ ([C] − [C])}. (15)

with [C] = E{[C]} the mean value of [C]. Notice that the term �R�αβαβ then represents
the variance of random variable [C]αβ . The correlation structure described by �R� is then
completely characterized by the probability distributions of random components {Ci}i=N

i=1
and tensor basis {[Esym

(i)]}i=N
i=1 , since

�R�αβα′β ′ = E

{
N∑

i=1

N∑

j=1

C∗
i C

∗
j

[
Esym

(i)
]
αβ

[
Esym

(j)
]
α′β ′

}
(16)

with C∗
i = Ci − ci . When all the random components are statistically independent from one

another, Eq. (16) simplifies to:

�R�αβα′β ′ =
N∑

i=1

Vi

[
Esym

(i)
]
αβ

[
Esym

(i)
]
α′β ′ , (17)

in which Vi denotes the variance of Ci .

3 Results

For notational convenience, let us set λ
(1)

sol = (λ1, . . . , λN), λ
(2)

sol = λ. For calculation purposes
and without loss of generality, any triad (a,b, c) of mutually orthonormal vectors makes ref-
erence to the canonical basis in R

3 (i.e., a = (1,0,0) for instance). Whenever the definition
of a specific axis is required, we take this vector as (0,0,1).
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3.1 Isotropic Symmetry

Let the isotropic random elasticity matrix [C] be decomposed as

[C] = 3C1

[
E(1)

] + 2C2

[
E(2)

]
, (18)

where C1 and C2 are the random bulk and shear moduli, [E(1)] and [E(2)] being the matrix
representation of the classical fourth-order symmetric tensors �E(1)� and �E(2)� defined by

�
E(1)

�
ijk�

= (1/3)δij δk�,
�
E(2)

�
ijk�

= �I �ijk� − �
E(1)

�
ijk�

,

in which �I � represents the fourth-order symmetric identity tensor (�I �ijk� = (δikδj� +
δi�δjk)/2).

Proposition 1 For the isotropic class, the bulk and shear random moduli C1 and C2

involved in the tensor decomposition given by Eq. (18) are statistically independent
Gamma-distributed random variables, with respective parameters (1 − λ, c1/(1 − λ)) and
(1 − 5λ, c2/(1 − 5λ)), where c1 and c2 are the given mean values of C1 and C2 and
λ ∈]−∞,1/5[ is a model parameter controlling the level of statistical fluctuations.

Proof From Eq. (18), one can deduce that:

ϕ(c) = log
{
96 c1c2

5
}
. (19)

It follows that

pC(c) = pC1(c1) × pC2(c2), (20)

with

pC1(c1) = 1R+(c1)k1c1
−λ exp{−λ1c1} (21)

and

pC2(c2) = 1R+(c2)k2c2
−5λ exp{−λ2c2}, (22)

where k1 and k2 are positive normalization constants. Thus, the random bulk and shear
moduli are Gamma-distributed statistically independent random variables, with parameters
(α1, β1) = (1 − λ,1/λ1) and (α2, β2) = (1 − 5λ,1/λ2). The normalization constants k1 and
k2 are then found to be k1 = λ1

1−λ/Γ (1 − λ) and k2 = λ2
1−5λ/Γ (1 − 5λ), while it can be

deduced that c1 = (1 − λ)/λ1 and c2 = (1 − 5λ)/λ2. �

The coefficients of variation of the bulk and shear moduli are then given by 1/
√

1 − λ

and 1/
√

1 − 5λ respectively, showing that the two moduli do not exhibit the same level of
fluctuations.

Let E and ν be the random Young modulus and Poisson ratio associated with the
isotropic random elasticity tensor, defined as E = 9C1C2/(3C1 +C2) and ν = (3C1 −2C2)/

(6C1 +2C2). The joint p.d.f. (e, n) �→ pE,ν(e, n) of random variables E and ν can be readily
deduced from Eqs. (20), (21) and (22) and is found to be given by

pE,ν(e, n) = 1S (e, n)

(
e

3(1 − 2n)

)−λ(
e

2(1 + n)

)−5λ
e

2(1 + n)2(1 − 2n)2

× exp

{
−λ1

e

3(1 − 2n)
− λ2

e

2(1 + n)

}
, (23)

with S =]0,+∞[×]−1,1/2[. Consequently, the random Young modulus and Poisson ratio
turn out to be statistically dependent random variables.
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3.2 Cubic Symmetry

Let (a,b, c) be the unit mutually orthogonal vectors defining the crystallographic directions
of the cubic system and let the random elasticity matrix [C] exhibiting cubic symmetry be
decomposed as

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

[
E(3)

]
, (24)

where:

• [E(1)] is the matrix form of tensor �E(1)� defined in Sect. 3.1;
• [E(2)] and [E(3)] are the matrix representations of fourth-order tensors �E(2)� =

�I � − �S� and �E(3)� = �S� − �E(1)�, with �S�ijk� = aiajaka� + bibjbkb� + cicj ckc�.

Proposition 2 For the cubic case, the random components C1, C2 and C3 involved in
the tensor decomposition given by Eq. (24) are statistically independent and Gamma-
distributed, with respective parameters (1 − λ, c1/(1 − λ)), (1 − 3λ, c2/(1 − 3λ)) and
(1 − 2λ, c3/(1 − 2λ)), where c1, c2 and c3 are the given mean values of C1, C2 and C3

and λ ∈]−∞,1/3[ is a model parameter controlling the level of fluctuation.

Proof From Eq. (24), it can be shown that:

ϕ(c) = log
{
c1c2

3c3
2
}
. (25)

Therefore, it follows that

pC(c) = pC1(c1) × pC2(c2) × pC3(c3), (26)

with

pC1(c1) = 1R+(c1)k1c1
−λ exp{−λ1c1}, (27)

pC2(c2) = 1R+(c2)k2c2
−3λ exp{−λ2c2}, (28)

and

pC3(c3) = 1R+(c3)k3c3
−2λ exp{−λ3c3}, (29)

where k1, k2 and k3 are positive normalization constants. It can be deduced that the ran-
dom moduli C1, C2 and C3 are Gamma-distributed statistically independent random vari-
ables, with respective parameters (α1, β1) = (1 − λ,1/λ1), (α2, β2) = (1 − 3λ,1/λ2) and
(α3, β3) = (1 − 2λ,1/λ3). The expressions for the normalization constants and mean values
directly follow, yielding the general form of the p.d.f. �

3.3 Transversely Isotropic Symmetry

Let n be the unit normal orthogonal to the plane of isotropy and let [C] be decomposed as

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

([
E(3)

] + [
E(4)

]) + C4

[
E(5)

] + C5

[
E(6)

]
, (30)

where [E(1)], . . . , [E(6)] are the matrix representations of the fourth-order tensors defined
as �E(1)� = [p] ⊗ [p], �E(2)� = 1

2 [q] ⊗ [q], �E(3)� = 1√
2
[p] ⊗ [q], �E(4)� = 1√

2
[q] ⊗ [p],

�E(5)� = [q] � [q] − �E(2)� and �E(6)� = �I � − �E(1)� − �E(2)� − �E(5)�. In these ex-
pressions, the two second-order symmetric tensors [p] and [q] are defined by [p] = n ⊗ n
and [q] = [I ] − [p], with [I ] the second-rank symmetric identity tensor and � the usual
symmetrized tensor product, defined by 2([A] � [B])ijk� = [A]ik[B]j� + [A]i�[B]jk for any
second-order tensors [A] and [B].
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Proposition 3 For the transverse isotropic case, the random components Ci , i = 1, . . . ,5,
involved in the tensor decomposition given by Eq. (30) are such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose
joint p.d.f. (c1, c2, c3) �→ pC1,C2,C3(c1, c2, c3) is given by:

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (31)

in which

S = {
(x, y, z) ∈ R

+ × R
+ × R such that xy − z2 > 0

}

and k is a normalization constant
(ii) the components C4 and C5 are statistically independent and Gamma-distributed, with

respective parameters (1 − 2λ, c4/(1 − 2λ)) and (1 − 2λ, c5/(1 − 2λ)), where c4 and
c5 are the given mean values of C4 and C5 and λ ∈]−∞,1/2[ is a model parameter
controlling the level of statistical fluctuations

(iii) the random variables A = (C1,C2,C3), C4 and C5 are statistically independent.

Proof It can be shown that

ϕ(c) = log
{(

c1c2 − c3
2
)
c4

2c5
2
}
, (32)

so that the p.d.f. pC takes the form

pC(c) = pC1,C2,C3(c1, c2, c3) × pC4(c4) × pC5(c5), (33)

with pC1,C2,C3 defined by Eq. (31) and

pC4(c4) = 1R+(c4)k4c4
−2λ exp{−λ4c4}, (34)

pC5(c5) = 1R+(c5)k5c5
−2λ exp{−λ5c5}. (35)

Therefore, the random components C1, C2 and C3 are statistically dependent and are
jointly distributed with respect to the p.d.f. given by Eq. (31), whereas C4 and C5 are
Gamma-distributed statistically independent random variables with parameters (α4, β4) =
(1 − 2λ,1/λ4) and (α5, β5) = (1 − 2λ,1/λ5). The definition of the support S is readily
deduced from the a.s. positive-definiteness of the random elasticity tensor. �

Unlike the cases of isotropic and cubic symmetries, it is seen that some of the components
of a random elasticity matrix exhibiting transverse isotropy are statistically dependent, the
remaining components being independent from all others. It is also interesting to notice
that the two components C4 and C5 exhibit the same level of statistical fluctuations, with a
coefficient of variation equal to 1/

√
1 − λ.

3.4 Tetragonal Symmetry

Let (a,b, c) be unit mutually orthogonal vectors, with c identified as a principal axis of
symmetry.
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3.4.1 General Case

The most general definition of a tensor basis for the tetragonal symmetry necessitates the
consideration of the tensors {�E(i)�}i=4

i=1 and �E(6)� (renumbered as �E(9)�), introduced for
the transversely isotropic class (taking the principal axis of symmetry c as n; see Sect. 3.3).
It further requires the definition of four additional tensors given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�
E(5)

�
ijk�

= (aibj + biaj )(akb� + bka�)/2,
�
E(6)

�
ijk�

= (aiaj − bibj )(aka� − bkb�)/2,
�
E(7)

�
ijk�

= (aibj + biaj )(aka� − bkb�)/2,
�
E(8)

�
ijk�

= (aiaj − bibj )(akb� + bka�)/2.

(36)

The tetragonal random elasticity tensor can be written as

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

([
E(3)

] + [
E(4)

])

+ C4
[
E(5)

] + C5
[
E(6)

] + C6
([

E(7)
] + [

E(8)
]) + C7

[
E(9)

]
, (37)

in which the matrix representations of the aforementioned tensors is used.

Proposition 4 For the tetragonal case (parametrized by seven moduli), the random com-
ponents Ci , i = 1, . . . ,7, involved in the tensor decomposition given by Eq. (37) are such
that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose
joint p.d.f. (c1, c2, c3) �→ pC1,C2,C3(c1, c2, c3) is given by:

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (38)

in which

S = {
(x, y, z) ∈ R

+ × R
+ × R such that xy − z2 > 0

}

and k is a normalization constant
(ii) the components C4, C5 and C6 are statistically dependent random variables whose

joint p.d.f. (c4, c5, c6) �→ pC4,C5,C6(c4, c5, c6) is given by:

pC4,C5,C6(c4, c5, c6) = 1S (c4, c5, c6)k
∗(c4c5 − c6

2
)−λ

exp

{
−

6∑

i=4

λici

}
, (39)

where k∗ is a normalization constant
(iii) the component C7 is a Gamma-distributed random variable, with parameters (1 −

2λ, c7/(1−2λ)), where c7 is the given mean value of C7 and λ ∈]−∞,1/2[ is a model
parameter controlling the level of statistical fluctuations

(iv) the three random variables A = (C1,C2,C3), B = (C4,C5,C6) and C7 are statistically
independent.

Proof For the tetragonal symmetry and seven-parameters decomposition, one has:

ϕ(c) = log
{(

c1c2 − c3
2
)(

c4c5 − c6
2
)
c7

2
}
. (40)
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Consequently, it follows that:

pC(c) = pC1,C2,C3(c1, c2, c3) × pC4,C5,C6(c4, c5, c6) × pC7(c7), (41)

with

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (42)

pC4,C5,C6(c4, c5, c6) = 1S (c4, c5, c6)k
∗(c4c5 − c6

2
)−λ

exp

{
−

6∑

i=4

λici

}
, (43)

and

pC7(c7) = 1R+(c7)k7c7
−2λ exp{−λ7c7}. (44)

�

3.4.2 Reduced Parametrization

The tetragonal class is often considered as being parametrized by six coefficients. Indeed,
such a representation can be readily obtained from the previous one (see Eq. (37)) by a
specific rotation, such that the coefficient C6 vanishes [3]. The tensor decomposition then
reads:

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

([
E(3)

] + [
E(4)

])

+ C4

[
E(5)

] + C5

[
E(6)

] + C6

[
E(9)

]
. (45)

Proposition 5 For the tetragonal case with reduced parametrization, the random compo-
nents Ci , i = 1, . . . ,6, involved in the tensor decomposition given by Eq. (45) are such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose joint
p.d.f. (c1, c2, c3) �→ pC1,C2,C3(c1, c2, c3) is given by:

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (46)

in which

S = {
(x, y, z) ∈ R

+ × R
+ × R such that xy − z2 > 0

}

and k is a normalization constant
(ii) the components C4, C5 and C6 are statistically independent and Gamma-distributed,

with respective parameters (1 − λ, c4/(1 − λ)), (1 − λ, c5/(1 − λ)) and (1 − 2λ, c6/

(1 − 2λ)), where c4, c5 and c6 are the given mean values of C4, C5 and C6, and
λ ∈]−∞,1/2[ is a model parameter controlling the level of statistical fluctuations

(iii) the random variables A = (C1,C2,C3), C4, C5 and C6 are statistically independent.

Proof One has:

ϕ(c) = log
{(

c1c2 − c3
2
)
c4c5c6

2
}
. (47)

Therefore, the p.d.f. pC takes the form

pC(c) = pC1,C2,C3(c1, c2, c3) × pC4(c4) × pC5(c5) × pC6(c6), (48)
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with

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (49)

pC4(c4) = 1R+(c4)k4c4
−λ exp{−λ4c4}, (50)

pC5(c5) = 1R+(c5)k5c5
−λ exp{−λ5c5} (51)

and

pC6(c6) = 1R+(c6)k6c6
−2λ exp{−λ6c6}. (52)

�

3.5 Trigonal Symmetry

In order to investigate the statistical dependence of the random components for the trigonal
symmetry (which is basically referred to as the hexagonal one in [29]), let us consider three
unit vectors denoted by a, b and c, such that c is orthogonal to the plane spanned by a
and b, an angle of 2π/3 being left between the latter. Here, the values a = (1,0,0), b =
(−1/2,

√
3/2,0) and c = (0,0,1) have been retained.

3.5.1 General Case

Let us introduce the following symmetric second-order tensors
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[s] = √
2/3(a ⊗ a + a ⊗ b + b ⊗ a),

[t] = √
2/3(b ⊗ b + a ⊗ b + b ⊗ a),

[u] = (1/
√

2)(c ⊗ a + a ⊗ c),

[v] = −(1/
√

2)(c ⊗ b + b ⊗ c),

from which the four symmetric tensors
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
E(5)

� = (4/3)
([s] ⊗ [s] + [t] ⊗ [t] − (1/2)[s] ⊗ [t] − (1/2)[t] ⊗ [s]),

�
E(6)

� = (4/3)
([u] ⊗ [u] + [v] ⊗ [v] − (1/2)[u] ⊗ [v] − (1/2)[v] ⊗ [u]),

�
E(7)

� = (4/3)
([s] ⊗ [u] + [t] ⊗ [v] − (1/2)[t] ⊗ [u] − (1/2)[s] ⊗ [v]),

�
E(8)

� = (4/3)
([u] ⊗ [s] + [v] ⊗ [t] − (1/2)[u] ⊗ [t] − (1/2)[v] ⊗ [s])

(53)

and the two unsymmetric tensors
{ �

E(9)
� = (2/

√
3)

([s] ⊗ [v] − [t] ⊗ [u]),
�
E(10)

� = (2/
√

3)
([v] ⊗ [s] − [u] ⊗ [t]) (54)

can be defined. The random elasticity tensor is now decomposed as:

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

([
E(3)

] + [
E(4)

])

+ C4

[
E(5)

] + C5

[
E(6)

] + C6

([
E(7)

] + [
E(8)

])

+ C7

([
E(9)

] + [
E(10)

])
, (55)

wherein the matrix set {[E(i)]}i=4
i=1 coincides with the one introduced for the transverse

isotropy case (see Sect. 3.3), setting n = c, and [E(i)] is the matrix form of fourth-order
tensor �E(i)�.
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Proposition 6 For the trigonal case (parametrized by seven moduli), the random compo-
nents Ci , i = 1, . . . ,6, involved in the tensor decomposition given by Eq. (55) are such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose
joint p.d.f. (c1, c2, c3) �→ pC1,C2,C3(c1, c2, c3) is given by:

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (56)

in which

S = {
(x, y, z) ∈ R

+ × R
+ × R such that xy − z2 > 0

}

and k is a normalization constant
(ii) the components C4, C5, C6 and C7 are statistically dependent random variables whose

joint p.d.f. (c4, . . . , c7) �→ pC4,...,C7(c4, . . . , c7) is given by:

pC4,...,C7(c4, . . . , c7) = 1S∗(c4, . . . , c7)k
∗(c4c5 − c6

2 − c7
2
)−2λ

× exp

{
−

7∑

i=4

λici

}
, (57)

where

S ∗ = {
(x, y, z,w) ∈ R

+ × R
+ × R × R such that xy − z2 − w2 > 0

}

and k∗ is a normalization constant
(iii) the random variables A = (C1,C2,C3) and B = (C4,C5,C6,C7) are statistically inde-

pendent.

Proof For the trigonal symmetry case, the mapping ϕ is defined as:

ϕ(c) = log
{(

c1c2 − c3
2
)(

c4c5 − c6
2 − c7

2
)2}

. (58)

The p.d.f. pC is then given by:

pC(c) = pC1,C2,C3(c1, c2, c3) × pC4,...,C7(c4, . . . , c7), (59)

with

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (60)

and

pC4,...,C7(c4, . . . , c7) = 1S∗(c4, . . . , c7)k
∗(c4c5 − c6

2 − c7
2
)−2λ

× exp

{
−

7∑

i=4

λici

}
. (61)

The definitions of S and S ∗ follow from the positive-definiteness of [C]. �
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3.5.2 Reduced Parametrization

As for the tetragonal class, the number of parameters for the trigonal symmetry can be
reduced to six by an appropriate transformation (rotation), ending up with the following
decomposition of the random elasticity tensor:

[C] = C1

[
E(1)

] + C2

[
E(2)

] + C3

([
E(3)

] + [
E(4)

])

+ C4

[
E(5)

] + C5

[
E(6)

] + C6

([
E(7)

] + [
E(8)

])
. (62)

Proposition 7 For the trigonal case with reduced parametrization, the random components
Ci , i = 1, . . . ,6, involved in the tensor decomposition given by Eq. (62) are such that:

(i) the components C1, C2 and C3 are statistically dependent random variables whose
joint p.d.f. (c1, c2, c3) �→ pC1,C2,C3(c1, c2, c3) is given by:

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
, (63)

in which

S = {
(x, y, z) ∈ R

+ × R
+ × R such that xy − z2 > 0

}

and k is a normalization constant
(ii) the components C4, C5 and C6 are statistically dependent random variables whose

p.d.f. (c4, c5, c6) �→ pC4,C5,C6(c4, c5, c6) is given by:

pC4,C5,C6(c4, c5, c6) = 1S (c4, c5, c6)k
∗(c4c5 − c6

2
)−2λ

exp

{
−

6∑

i=4

λici

}
, (64)

where k∗ is a normalization constant
(iii) the random variables A = (C1,C2,C3) and B = (C4,C5,C6) are statistically indepen-

dent.

Proof For the trigonal symmetry case with the reduced parametrization, the mapping ϕ turns
out to be such that:

ϕ(c) = log
{(

c1c2 − c3
2
)(

c4c5 − c6
2
)2}

. (65)

Consequently, the p.d.f. pC now writes

pC(c) = pC1,C2,C3(c1, c2, c3) × pC4,C5,C6(c4, c5, c6), (66)

with

pC1,C2,C3(c1, c2, c3) = 1S (c1, c2, c3)k
(
c1c2 − c3

2
)−λ

exp

{
−

3∑

i=1

λici

}
(67)

and

pC4,C5,C6(c4, c5, c6) = 1S (c4, c5, c6)k
∗(c4c5 − c6

2
)−2λ

exp

{
−

6∑

i=4

λici

}
. (68)

The definition of S follows from the positive-definiteness of [C]. �
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3.6 Orthotropic Symmetry

Denoting as (a,b, c) the unit mutually orthogonal vectors defining the crystallographic di-
rections, let us consider the following fourth-order tensors:
⎧
⎪⎨

⎪⎩

�
E(11)

� = a ⊗ a ⊗ a ⊗ a,
�
E(12)

� = a ⊗ a ⊗ b ⊗ b,
�
E(13)

� = a ⊗ a ⊗ c ⊗ c,
�
E(21)

� = b ⊗ b ⊗ a ⊗ a,
�
E(22)

� = b ⊗ b ⊗ b ⊗ b,
�
E(23)

� = b ⊗ b ⊗ c ⊗ c,
�
E(31)

� = c ⊗ c ⊗ a ⊗ a, �E(32)� = c ⊗ c ⊗ b ⊗ b, �E(33)� = c ⊗ c ⊗ c ⊗ c

and
⎧
⎪⎨

⎪⎩

�
E(4)

�
ijk�

= (aibj + biaj )(akb� + bka�)/2,
�
E(5)

�
ijk�

= (bicj + cibj )(bkc� + ckb�)/2,
�
E(6)

�
ijk�

= (cibj + aicj )(cka� + akc�)/2.

The orthotropic random elasticity tensor is expanded as

[C] = C1

[
E(11)

] + C2

[
E(22)

] + C3

[
E(33)

]

+ C4
([

E(12)
] + [

E(21)
]) + C5

([
E(23)

] + [
E(32)

]) + C6
([

E(31)
] + [

E(13)
])

+ C7

[
E(4)

] + C8

[
E(5)

] + C9

[
E(6)

]
(69)

where again, use is made of the matrix representations for the tensor basis.

Proposition 8 For the orthotropic case, the random components Ci , i = 1, . . . ,9, involved
in the tensor decomposition given by Eq. (69) are such that:

(i) the components Ci , i = 1, . . . ,6 are statistically dependent random variables whose
joint p.d.f. (c1, . . . , c6) �→ pC1,...,C6(c1, . . . , c6) is given by:

pC1,...,C6(c1, . . . , c6) = 1S
(
Mat(c1, . . . , c6)

)
k det

(
Mat(c1, . . . , c6)

)−λ

× exp

{
−

6∑

i=1

λici

}
, (70)

in which S = M
+
3 (R), k is a normalization constant and the mapping Mat : R

6 →
M3(R) is defined as:

Mat(c1, . . . , c6) =
⎛

⎝
c1 c4 c6

c4 c2 c5

c6 c5 c3

⎞

⎠

(ii) the components C7, C8 and C9 are statistically independent random variables and
Gamma-distributed, with respective parameters (1−λ, c7/(1−λ)), (1−λ, c8/(1−λ))

and (1 − λ, c9/(1 − λ)), where c7, c8 and c9 are the (known) mean values of C7, C8

and C9 λ ∈]−∞,1[ is a model parameter controlling the level of fluctuation
(iii) the random variables A = (C1, . . . ,C6), C7, C8 and C9 are statistically independent.
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Proof We have

ϕ(c) = log
{
c7c8c9 det

(
Mat(c1, . . . , c6)

)}
, (71)

so that

pC(c) = pC1,...,C6(c1, . . . , c6)

× pC7(c7) × pC8(c8) × pC9(c9). (72)

The proof immediately follows using similar arguments as for the previous symmetry
classes. �

4 Synthesis

The structures of statistical dependence for all material symmetry classes (up to orthotropy),
induced by the MaxEnt principle, are summarized in Table 1.

At this stage, it is worth noticing that for the two symmetry classes offering a reduced
parametrization, namely the tetragonal and trigonal ones, one finally ends up with the same
probability distribution for the random elasticity matrix [C] (should the latter be calculated
making use of the tensor decomposition), since the prior probability distribution is invariant
under orthogonal transformations in M

+
n (R) (corresponding to a change of the coordinate

system). Finally, it should be pointed out that if for a given coordinate system (in which
the tensor basis is represented), another tensor basis is used, the joint probability density
function of the coordinates in this new tensor basis can be readily deduced (from the results
derived in Sect. 3) by using the theorem related to the image of a measure.

5 Conclusion

In this work, we have investigated the statistical dependence between the components of
random elasticity tensors exhibiting a.s. material symmetry properties. Such an issue is of
primary importance for both theoreticians and experimentalists, allowing for the definition
of either models or identification procedures that are mathematically sound and physically
consistent. While the subject was historically addressed by using arbitrary probability distri-
butions (by assuming, for instance, that the Young modulus is a log-normal random variable
and that the Poisson ratio is deterministic, for the isotropic case), we subsequently proposed
to characterize the dependence structure by invoking the framework of Information Theory
and the Maximum Entropy principle. A probabilistic methodology has then been proposed
and yields the general form for the joint probability distribution of the random coefficients.
In a second step, we discussed the induced dependence for the highest levels of elastic sym-
metries (ranging from isotropy to orthotropy) when constraints on first- and second-order
moments are integrated within the formulation. It is shown that the statistical dependence
intrinsically depends on the retained parametrization, and that the higher the level of elastic
symmetry, the larger the number of statistically dependent moduli. The isotropic class is an
instructive example, as it is shown that the bulk and shear moduli are independent, Gamma-
distributed random variables, whereas the associated random Young modulus and Poisson
ratio are statistically dependent random variables.
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Appendix A: Definition of the Gamma Probability Distribution

A positive univariate random variable X is said to be Gamma-distributed with parameters
(α,β) ∈ R

+∗ × R
+∗ , X ∼ G(α,β), if its probability density function (p.d.f.) x �→ pX(x), de-

fined from R
+ into R

+, writes (see [18] for instance):

pX(x) = 1

Γ (α)βα
xα−1 exp{−x/β},

in which u �→ Γ (u) represents the gamma function defined as:

Γ (u) =
∫ ∞

0
tu−1 exp{−t}dt.

Appendix B: Existence and Uniqueness of a Solution to the Maximum Entropy
Principle

Let S be an unbounded open part of R
N . Let Cfree be the space of all the integrable positive-

valued functions on S . Therefore, any function p in Cfree such that
∫

S p(c)dc = 1 is the
probability density function of a R

N -valued random variable, the support of which is S .
Let f : R

N ⊃ S → R
N × R × R � R

q (with q = N + 2) and h ∈ R
N × R × R � R

q be the
mapping and vector respectively defined as

f(c) = (
c, ϕ(c),1

)
, h = (c, νC,1), (73)

wherein ϕ, c and νC are defined in Sect. 2.3. Here, we consider the following constraint
equation:

∫

S
f(c)p(c)dc = h, p ∈ Cfree. (74)

Let Cad be the subset of Cfree such that:

Cad =
{
p ∈ Cfree,

∫

S
f(c)p(c)dc = h

}
. (75)

Note that any element of Cad is then a probability density function on R
N with support S .

Let us consider the following optimization problem corresponding to the MaxEnt principle:

psol = arg max
p∈Cad

E (p), (76)

where E (p) is the Shannon entropy of p.d.f. p (see Eq. (5)). In the sequel, we will demon-
strate that under some given assumptions, the problem defined by Eq. (76) has at most one
solution, the explicit form of which will be constructed while deriving the proof.

The very first step of the proof consists in assuming that there exists a unique solution,
which is denoted as psol, to the above optimization problem. The functionals

p �→
∫

S
fi(c)p(c)dc − hi, i ∈ {1, . . . , q}, (77)

are continuously differentiable on Cfree and are assumed to admit psol as a regular point
(see for instance p. 187 of [13]). The constraints defined by Eq. (74) are classically
taken into account by using the Lagrange multiplier method. We then introduce the vec-
tor λ = (λ1, . . . , λq) ∈ Aλ ⊂ R

q (note that Aλ is more precisely defined below), such that
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(λ1, . . . , λq −1) is the Lagrange multiplier associated with the constraints given by Eq. (74),
hence yielding the following Lagrangian L:

L(p,λ) = E (p) −
N+1∑

i=1

λi

(∫

S
fi(c)p(c)dc − hi

)
− (λq − 1)

(∫

S
p(c)dc − 1

)
. (78)

For convenience, the vector λ is now referred to as the Lagrange multiplier. Following the
Theorem 2, p. 188, of [13], it can be deduced that there exists a Lagrange multiplier λsol

such that the functional (p,λ) �→ L(p,λ) is stationary at psol for λ = λsol.
In a second step, we address the explicit construction of a family Fp of p.d.f., indexed

by λ, that renders p �→ L(p,λ) extremum. We further prove that this extremum is unique
and turns out to be a maximum. For any λ fixed in Aλ, it can first be deduced from the
calculus of variations (see for instance the Theorem 3.11.16, p. 341, in [20]) that the afore-
mentionned extremum, denoted by pλ, reads as:

pλ(c) = 1S (c) exp
{−〈

λ, f(c)
〉
Rq

}
. (79)

The admissible space Aλ is thus defined such that pλ is integrable on S . For any fixed value
of λ, the uniqueness of this extremum directly follows from the uniqueness of the solution
for the Euler equation that is derived from the calculus of variations. Upon calculating the
second-order derivative with respect to p, at point pλ, of the Lagrangian, it can be shown
that this extremum is, indeed, a maximum.

In a third step, we now prove that if there exists a Lagrange multiplier λsol in Aλ such
that the solution of the constraint equation in λ, defined by Eq. (74), is satisfied, then λsol is
unique. Using Eq. (79), Eq. (74) is rewritten as:

∫

S
f(c) exp

{−〈
λ, f(c)

〉
Rq

}
dc = h. (80)

It is assumed that the optimization problem stated by Eq. (76) is well-posed in the sense that
the constraints are algebraically independent, that is to say that there exists a bounded subset
S̃ of S , with

∫

S̃
dc > 0,

such that for any nonzero vector v in R
q , one has

∫

S̃

〈
v, f(c)

〉2
Rq dc > 0. (81)

Note at this stage that the constraints considered in this paper do satisfy such a property, as
will be shown at the end of the proof. Let us further consider the function λ �→ H(λ) defined
as:

H(λ) = 〈λ,h〉Rq +
∫

S
exp

{−〈
λ, f(c)

〉
Rq

}
dc. (82)

The gradient ∇H of H is then given by

∇H(λ) = h −
∫

S
f(c) exp

{−〈
λ, f(c)

〉
Rq

}
dc, (83)

so that any solution of ∇H(λ) = 0 satisfies Eq. (80) (and conversely). Below, it is assumed
that H admits at least one critical point. The Hessian matrix [H ′′(λ)] reads as:

[
H ′′(λ)

] =
∫

S
f(c) ⊗ f(c) exp

{−〈
λ, f(c)

〉
Rq

}
dc. (84)
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Since S̃ ⊂ S , it turns out that for any nonzero vector v in R
q :

〈[
H ′′(λ)

]
v,v

〉
Rq ≥

∫

S̃

〈
v, f(c)

〉2
Rq exp

{−〈
λ, f(c)

〉
Rq

}
dc > 0, (85)

where use has been made of Eq. (81). Therefore, the function λ �→ H(λ) is strictly con-
vex, hence ensuring the uniqueness of the critical point of H (should it exist). Under the
aforementioned assumption of algebraic independence for the constraints, it follows that if
a Lagrange multiplier λsol (such the constraint given by Eq. (80) is fulfilled) exists, then λsol

is unique and corresponds to the solution of the following optimization problem:

λsol = arg min
λ

H(λ), (86)

where H is the strictly convex function defined by Eq. (82). It is worth noticing that:

• The existence of λsol for the isotropic and cubic cases can be very easily studied (and
generally demonstrated) by performing a parametric analysis on scalar parameter λ (see
the Propositions 1 and 2), which must be such that the Eq. (9) is satisfied (since the
constraints on the mean values are all readily fulfilled through the reparametrization of
the probability density functions).

• The computation (and then, the existence) of λsol has been successfully addressed within
a computational framework and for the class of transversely isotropic elasticity matrices
in [6].

In a fourth step, it can be finally deduced that if λsol exists, then there exists a unique
p.d.f. psol which is the solution of the optimization problem stated by Eq. (76) and whose
expression is given

psol(c) = 1S (c) exp
{−〈

λsol, f(c)
〉
Rq

}
. (87)

For completeness, it is worth pointing out that discussions and sketches of proofs related
to the existence and uniqueness of the solution to the MaxEnt optimization problem in more
general situations (that is, when the assumption about the algebraic independence of the con-
straints is relaxed) can be found elsewhere. However, these situations fall beyond the scope
of this paper. In order to conclude the proof, it remains to demonstrate that the considered
constraints (see Eqs. (7), (8) and (9)) are algebraically independent. For this purpose, note
that Eq. (81) can be rewritten as

∀v ∈ R
q , v �= 0,

〈[AS̃ ]v,v
〉
Rq > 0, (88)

Table 2 Examples of subsets S̃ for the considered material symmetry classes. The symbol ∗ means that the
extended parametrization is considered

Symmetry class S̃ Smallest eigenvalue of [AS̃ ]

Isotropy ]0,1]2 0.014288

Cubic ]0,1]3 0.008280

Tr. Isotropy [1,2]2×]−1,1[× [1,2]2 0.003051

Tetragonal∗ [1,2]2×]−1,1[× [1,2]2×] − 1,1[× [1,2] 0.008116

Trigonal∗ [1,2]2×]−1,1[× [1,2]2×]−√
0.5,

√
0.5[2 0.010155

Orthotropic [10,11]3 × [0.1,0.5]3×]0,1]3 0.000016
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where the (q × q) matrix [AS̃ ] is defined as:

[AS̃ ] =
∫

S̃
f(c) ⊗ f(c)dc. (89)

It is therefore necessary to demonstrate that for each symmetry class, there exists at least
one bounded subset S̃ in S such that the associated matrix [AS̃ ] is positive-definite. Such a
characterization can be numerically carried out very easily, and some examples of subsets S̃

for which [AS̃ ] is positive-definite are given in Table 2 for all the material symmetry classes
considered in this paper (here, the integrals are computed by using the Monte-Carlo method
with 108 realizations, which is the value ensuring the convergence of the estimator).
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