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Abstract Koiter’s shell model is derived systematically from nonlinear elasticity theory,
and shown to furnish the leading-order model for small thickness when the bending and
stretching energies are of the same order of magnitude. An extension of Koiter’s model to
finite midsurface strain emerges when stretching effects are dominant.
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1 Introduction

Koiter’s nonlinear shell theory, which purports to be valid for isotropic shells undergoing
finite deformations with small strains, enjoys a unique status. This stems in large part from
the extensive assessment of it in recent years, on the part of Ciarlet and his school, as an
approximation to elasticity theory for thin bodies. A large body of evidence is given in [1] in
support of the contention that the Koiter model furnishes the ‘best’ all-around theory, despite
the fact that it has not been obtained either as a gamma limit or an asymptotic limit of the
three-dimensional theory. The important features of Koiter’s theory are associated with the
areal strain-energy density (see [1], p. 156 and [2], p. 30)

W = 1

2
hε · D[ε] + 1

24
h3ρ · D[ρ], (1)

where D is the positive-definite tensor of linear plane-stress elastic moduli, h is the thick-
ness of the shell prior to deformation, and ε and ρ respectively are surface tensors that
characterize the change in metric and curvature of the shell midsurface induced by defor-
mation. Accordingly, by the fundamental theorem of surface theory [1], the energy vanishes
for rigid-body motions of the midsurface and is positive definite for any non-rigid motion.
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In the present work we revisit Koiter’s theory for the purpose of providing a pedagog-
ically useful derivation of the model together with an understanding of its position vis a
vis nonlinear elasticity theory. Although we do not use the methods of gamma convergence
theory explicitly, the reader will recognize our leading-order energy, pertaining to states in
which the bending and stretching energies are of the same order, as formally coinciding with
the gamma (or asymptotic) limit. Remarkably, this limit is exactly Koiter’s expression for
the energy [2]. Our procedure may be viewed as an update of that used by Koiter in his orig-
inal treatment [3]. In particular we seek a small-thickness estimate, for a given deformation,
of the potential energy of an edge-loaded shell.

The present work draws on a wide range of ideas developed over the history of shell
theory. For this reason a number of pre-requisite facts are quoted from various sources, rather
than developed explicitly. Standard bold face notation is used for vectors and tensors and
indices to denote their components. Latin indices take values in {1,2,3}; Greek in {1,2}. The
latter are associated with surface coordinates and attendant vector and tensor components.
A dot between bold symbols is used to denote the standard Euclidean inner product; if
A1 and A2 are second-order tensors, then their inner product is A1 · A2 = tr(A1At

2), where
tr(·) is the trace and the superscript t is used to denote the transpose. The associated norm is
|A| = √

A · A. The notation ⊗ identifies the standard tensor product of vectors. The symbols
Div and D are used for the three-dimensional divergence and gradient operators, while div
and ∇ are reserved for their two-dimensional counterparts on a curved surface. We use a
combination of direct notation and the indicial tensor notation preferred by shell theorists.
Regarding the latter, useful background material, together with a summary of the requisite
differential geometry of surfaces, may be found in [1, 2]. Commas followed by subscripts
are used to denote partial derivatives with respect to convected surface coordinates, while
vertical strokes are used for covariant derivatives on the reference surface.

Superposed tildes are used to denote three-dimensional fields whereas variables ap-
pearing without the tilde are the restrictions of these fields to a midsurface Ω embed-
ded in the three-dimensional shell-like body. The body itself occupies the volume κ =
Ω × [−h/2, h/2]. Our basic assumption is that the plate is thin in the sense that h/l � 1,
where l is any characteristic length associated with the geometry of Ω . This is taken to be
the smaller of the minimum radius of curvature of the shell or the minimum spanwise dimen-
sion. To ease the notation, we assume that all length scales have been non-dimensionalized
by l a priori. We then have h � 1, where h is now the dimensionless thickness, and we seek
a model for the elastic shell valid to order h3.

2 Three-dimensional Theory

In a purely mechanical setting the Piola stress of the three-dimensional theory is given by

P̃ = WF̃, (2)

the derivative with respect to the deformation gradient F̃ of the strain energy, W(F̃), per unit
reference volume. This is assumed, for the sake of simplicity, not to depend explicitly on
the position X of a material point in the reference κ . Thus we confine attention to materials
with uniform properties. The force per unit area transmitted across a surface in the reference
configuration with unit normal N is

t̃ = P̃N. (3)
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It is well known that this, together with the equilibrium equation

Div P̃ = 0, (4)

are the natural boundary condition and Euler equation for energy-minimizing deformations
under conditions of conservative loading without body force, holding on a subset of ∂κ and
in κ respectively.

We seek an expression for the term E in the expansion

E = E + o
(
h3

)
(5)

of the potential energy

E =
∫

κ

W dv −
∫

∂κt

t̃ · χ̃ da (6)

under dead-load conditions, say, where χ̃(X) is the deformation and ∂κt is the part of the
boundary where traction is assigned. The result should be of optimal accuracy by the stan-
dard of the three-dimensional theory, and well-posed in the sense of furnishing a meaningful
minimization problem in its own right.

Attention is confined to three-dimensional deformations that satisfy the strong-ellipticity
condition

a ⊗ b · M(F̃)[a ⊗ b] > 0 for all a ⊗ b �= 0, (7)

where

M(F̃) = WF̃F̃ (8)

is the tensor of elastic moduli. It is well known that this condition is necessary for minimizers
of the three-dimensional energy. Later, we shall make use of the strain-dependent elastic
moduli C(Ẽ), where

Ẽ = 1

2

(
F̃t F̃ − I

)
(9)

is the strain in which I is the identity for 3-space, and

C(Ẽ) = UẼẼ, (10)

in which

U (Ẽ) = W(F̃) (11)

is the associated strain-energy function. An application of the chain rule furnishes the useful
connection

M(F̃)[A] = AS̃ + 1

2
F̃C(Ẽ)

[
At F̃ + F̃tA

]
(12)

for any tensor A, where

S̃ = UẼ (13)

is the symmetric second Piola-Kirchhoff stress, given in terms of the Piola stress by

P̃ = F̃S̃. (14)
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We assume U (·) to be convex in a neighborhood of the origin in strain space, with the
origin furnishing an isolated local minimum. Thus S̃ vanishes at zero strain, and C(0) is
positive definite on the linear space of symmetric tensors. Then,

S̃ = C(0)[Ẽ] + o
(|Ẽ|). (15)

It follows from (14), (15) and the minor symmetries of C that

M(I)[A] = C(0)[A] (16)

and hence that our hypotheses yields strong ellipticity at zero strain, a result that is well
known in linear elasticity theory. Accordingly, these hypotheses are compatible with (7).

Later, we have occasion to use the connection

M(R̃)[A] = R̃C(0)
[
R̃tA

]
, (17)

where R̃ is a rotation.

3 Geometric and Kinematic Formulae

We record a number of formulae pertaining to the geometry of the shell and to the kinematics
of the material in a three-dimensional neighborhood of the midsurface. These either coincide
with their counterparts in the linear theory or are easily obtained from them by substituting
the deformation gradient in place of the displacement gradient of the linear theory. For this
reason we present these matters in outline here, citing results from [4] as needed.

We seek a model for the shell involving as independent variables the coordinates θα that
parametrize a curved base surface Ω . To this end we use the standard normal-coordinate
parametrization of three dimensional space in the vicinity of the base surface [1–4]. Thus,

X
(
θα, ς

) = x
(
θα

) + ςN
(
θα

)
, (18)

where x(θα) is the parametrization of Ω with unit-normal field N(θα) and ς is the coordinate
in the direction perpendicular to Ω , the latter corresponding to ς = 0. The lateral surfaces of
the thin three-dimensional body are assumed to correspond to constant values of ς . These
are separated by the distance h, the thickness of the shell. For simplicity we assume the
thickness to be uniform. Further, h is assumed to be small against any other length scale at
hand, such as a spanwise dimension or a local radius of curvature, and, following standard
practice, we identify the base surface with the midsurface.

The orientation of Ω is induced by the assumed right-handedness of the coordinate sys-
tem (θα, ς); thus, A1 × A2 · N > 0, where Aα = x,α ≡ ∂x/∂θα span the tangent plane TΩ(p)

to Ω at the point p with coordinates θα . The curvature B of the base surface is the symmetric
linear map from TΩ(p) to itself defined by the Weingarten equation

dN = −Bdx, (19)

where dx = Aαdθα and dN = N,αdθα . Accordingly,

dX = dx + ςdN + Ndς = G(dx + Ndς), (20)
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where

G = μ + N ⊗ N, μ = 1 − ςB, (21)

and

1 = I − N ⊗ N = Aα ⊗ Aα (22)

is the projection onto—and the identity transformation for—TΩ(p), on which {Aα} is dual to
{Aα}.

In Sect. 3 we require the volume measure induced by the coordinates. This is [1–4]
dv = μdςda, where da = N · dx1 × dx2 is the area measure on Ω , and

μ = 1 − 2Hς + ς2K (23)

is the (two-dimensional) determinant of μ in which

H = 1

2
tr B and K = det B (24)

are the mean and Gaussian curvatures of Ω , respectively. This may be written μ = (1 −
ςκ1)(1 − ςκ2), where κα—the principal curvatures—are the eigenvalues of B. The trans-
formation from (θα, ς) to X is one-to-one and orientation preserving if and only if μ > 0.
Following common practice we refer to the region of space in which this condition holds as
shell space. This is the region containing the base surface in which |ς | < min{r1, r2}, where
rα = |κα|−1 are the principal radii of curvature. Equation (20) yields dς(x) = N · dX and
hence N = Dς , implying that the normal to the base surface is also normal to the lateral
surfaces of the shell. We make use of this fact in Sect. 4.

Let C∗ be the line orthogonal to Ω and intersecting κ at a point with surface coordinates
θα . Let ∂κC = ∂Ω × C, where C is the collection of such lines, be the ruled generating
surface of the thin shell-like region κ obtained by translating the points of ∂Ω along their
associated lines C∗. Let s measure arclength on the curve ∂Ω with unit tangent τ and
rightward unit normal ν = τ × N. The oriented differential surface measure induced by the
(s, ς)-parametrization of ∂κC , required in Sect. 4, is [4] G∗νdsdς , where G∗ is the cofactor
of G. From this it is possible to develop a formula for the oriented area measure on the ruled
generators of the shell-like body which, in turn, facilitates the development of an expression
for the potential energy of an edge-loaded shell. We do not do so explicitly here, but instead
quote the relevant results from [4] as needed in the sequel.

The model to be developed requires expressions for the three-dimensional deformation
gradient and its through-thickness derivatives. Let χ̃(X) be the three-dimensional deforma-
tion with gradient F̃(X) = Dχ̃ . We define

χ̂
(
θα, ς

) = χ̃
(
x
(
θα

) + ςN
(
θα

))
and F̂

(
θα, ς

) = F̃
(
x
(
θα

) + ςN
(
θα

))
. (25)

Then,

F̂(μdx + Ndς) = dχ̂ = χ̂ ,αdθα + χ̂
′
dς = (∇χ̂)dx + χ̂

′
dς, (26)

where dθα = Aα · dx, χ̂ ,α = ∂χ̂/∂θα , χ̂
′ = ∂χ̂/∂ς and

∇χ̂ = χ̂ ,α ⊗ Aα (27)

is the surface deformation gradient. Thus,

F̂1μ = ∇χ̂ and F̂N = χ̂
′
, (28)
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in which the orthogonal decomposition F̂ = F̂1 + F̂N ⊗ N has been used. Assuming the
configuration κ to be contained in shell space, we then have

F̂ = (∇χ̂)μ−1 + χ̂
′ ⊗ N. (29)

The mid-surface value of F̂, and those of its through-thickness derivatives F̂′ and F̂′′, are
needed in Sect. 4. These, and other variables defined on the midsurface, are identified by the
absence of superposed carets. Following the procedure discussed in [4], they are found to be

F = ∇r + d ⊗ N, F′ = ∇d + (∇r)B + g ⊗ N (30)

and

F′′ = ∇g + 2(∇d)B + 2(∇r)B2 + h ⊗ N, (31)

where

r = χ , d = χ ′, g = χ ′′ and h = χ ′′′ (32)

are mutually independent functions of θα and the operation ∇(·) is defined by (27). The first
of these is the mid-surface deformation field and the latter three are the directors. Together
they furnish the coefficient vectors in the expansion

χ̂ = r + ςd + 1

2
ς2g + 1

6
ς3h + · · · (33)

of the three-dimensional deformation, where r(θα) = χ̂(x(θα)) is the position of a material
point on the deformed image ω of the midsurface Ω ; its gradient ∇r maps TΩ(p) to the
tangent plane Tω(p) to ω at the material point p.

We note that the regularity of the three-dimensional deformation required by the ex-
pansion (33) is not implied by Ball’s existence theory for equilibria [5]. Nevertheless any
piecewise C2 equilibrium deformation, possessing a potential jump in its normal derivative
across a smooth surface in κ , is in fact C2 in the presence of strong ellipticity. It is straight-
forward to show that it is then Cn for arbitrary n. Further, in [6] strong ellipticity is used
with degree-theoretic arguments to obtain partial existence results for classically smooth
(i.e., C2) equilibria. Given our adoption of strong ellipticity it is thus appropriate to assume
that equilibria are sufficiently smooth to justify (33), and to confine attention to deforma-
tions that satisfy it a priori. It is well known that such deformations are not rich enough to
yield the optimal leading-order stretching (membrane) energy [7]. However, the latter may
be identified with the relaxation [8] of the stretching energy found here, as explained in [9].

4 Expansion of the Three-dimensional Energy

The strain energy of the shell is

∫

κ

W(F̂) dv =
∫

Ω

W da, (34)

where

W =
∫

C

μW(F̂) dς, (35)
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with C = [−h/2, h/2], is the areal strain-energy density on Ω . For a given deformation this
may be regarded as a function of h. Our smoothness assumptions are then consistent with
the Taylor expansion [4]

W = h

(
1 + 1

12
h2K

)
W + 1

24
h3

(
W ′′ − 4H W ′) + o

(
h3

)
, (36)

obtained with the aid of Leibniz’ rule, where, for uniform materials,

W = W(F), W ′ = P · F′, and W ′′ = P′ · F′ + P · F′′, (37)

with

P′ = M(F)
[
F′]. (38)

The development is eased considerably by using the decompositions (cf. (22))

P = P1 + PN ⊗ N and P′ = P′1 + P′N ⊗ N (39)

in (37), leading to

W ′ = P1 · [∇d + (∇r)B
] + PN · g (40)

and

W ′′ = P′1 · [∇d + (∇r)B
] + P′N · g + P1 · [∇g + 2(∇d)B + 2(∇r)B2

] + PN · h. (41)

Assuming the lateral surfaces to be traction free, the load potential in (6) is found, pre-
cisely as in [4], to be

∫

∂κt

t̃ · χ̃ da =
∫

∂Ωt

(pr · r + pd · d + pg · g) ds + o
(
h3

)
, (42)

where

pr = h

(
1 + 1

24
h2τ 2

)
t + 1

24
h3

(
t′′ − 2κτ t′

)
, pd = 1

12
h3

(
t′ − κτ t

)
,

pg = 1

24
h3t,

(43)

and

t = P1ν, t′ − κτ t = P′1ν + τP1τ − κτ P1ν,

t′′ − 2κτ t′ = P′′1ν + 2
(
τP′1τ − κτ P′1ν

) − τ 2P1ν
(44)

in which κτ is the normal curvature of ∂Ω and τ is the twist. The latter formulas follow by
expanding the oriented area measure, alluded to previously, on the ruled generators of the
shell [4].
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5 The Optimum Order-h3 Energy

We seek an order-h3 truncation of the potential energy that is as accurate as possible by the
standard of three-dimensional elasticity theory. To this end we impose restrictions on the
director fields d,g, etc. as required by that theory. Thus we use partial information about
three-dimensional equilibria to generate the optimal order-h3 potential energy functional
for the midsurface deformation. In other words, although at this stage r(θα) is unrestricted,
the expression for E, to be derived, is not valid for arbitrary kinematically possible three-
dimensional states. Instead it is defined on a manifold of configurations parametrized by
r(θα), defined by equilibrium constraints on the directors.

For example, the exact expressions t̃+ = P̃+N and t̃+ = −P̃−N for the tractions at the
lateral surfaces with exterior unit normals ±N (cf. Sect. 2), together with Taylor expansions
of P̃±, furnish

t̃+ + t̃− = hP′N + O
(
h3

)
and t̃+ − t̃− = 2PN + O

(
h2

)
. (45)

Accordingly, for traction-free lateral surfaces,

PN,P′N = O
(
h2

)
, (46)

and with these in hand it follows that the terms in (36) involving PN and P′N in the coeffi-
cient of h3 may be dropped. Thus, (36) remains valid with the simplifications

W ′ = P̄1 · [∇d̄ + (∇r)B
]

(47)

and

W ′′ = P̄′1 · [∇d̄ + (∇r)B
] + P̄1 · [∇ḡ + 2(∇d̄)B + 2(∇r)B2

]
, (48)

in which d̄ and ḡ satisfy the constraints PN = 0 and P′N = 0, respectively, i.e.,

{
P̃(∇r + d̄ ⊗ N)

}
N = 0 and

{
A(∇r + d̄ ⊗ N)

}
ḡ = −{

M(∇r + d̄ ⊗ N)
[∇d̄ + (∇r)B

]}
N,

(49)

and where A is the acoustic tensor defined by

A(F̃)v = {
M(F̃)[v ⊗ N]}N. (50)

This of course is positive definite by virtue of strong ellipticity, and (49)2 then furnishes ḡ
uniquely. That (49)1 possesses a unique solution also follows from strong ellipticity; this is
demonstrated in [10, 11]. The notation P̄ and P̄′ in (48) refers to the midsurface values of
the stress and its ς -derivative in which d = d̄ and g = ḡ are imposed. We observe, however,
that our argument does not yield d = d̄ in the coefficient of h in the expression (36) for the
strain-energy density. Indeed, if this is imposed then in principle an error is incurred which
is of the same order as the order-h3 term exhibited explicitly.

Remark It is shown in [12] that the solution d̄ to (49)1 minimizes the midsurface strain
energy W(∇r + d ⊗ N) with respect to d and that the solution ḡ to (49)2 minimizes the
quadratic form (∇d̄ + (∇r)B + g ⊗ N) · M(F)[∇d̄ + (∇r)B + g ⊗ N] with respect to g.
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These claims also follow from strong ellipticity. The first result justifies the imposition of
d = d̄ in all terms of the energy, yielding (36), with (47) and (48), in which

W = W(∇r + d̄ ⊗ N) and P̄′1 · [∇d̄ + (∇r)B
] = K · M(∇r + d̄ ⊗ N)[K], (51)

where

K = ∇d̄ + (∇r)B + ḡ ⊗ N. (52)

The term P1 ·∇g appearing in (48) may be reduced with the aid of the equilibrium (4). We
write the latter in the form (P̃,i )Gi = 0, where Gi = Dθi(X) and {θ i} = {θα, ς}. This is well
defined in shell space and hence on the midsurface, where it reduces to (P,α)Aα + P′N = 0.
With some effort this may be recast as [4]

div(P1) + P′N − 2HPN = 0, (53)

where

div(P1) = Pα
|α = A−1/2

(
A1/2Pα

)
,α

, (54)

in which Pα = PAα , A = det(Aαβ) and Aαβ = Aα · Aβ is the (positive definite) metric on
Ω induced by the parametrization x(θα). Equation (53) is amenable to the application of
Stokes’ theorem, which furnishes [4]

∫

Ω

P1 · ∇gda =
∫

∂Ω

P1ν · gds +
∫

Ω

g · (P′N − 2HPN
)
da. (55)

Using (46), (47) and (48) we thus derive

∫

κ

W dv =
∫

Ω

Wda + 1

24
h3

∫

∂Ω

P̄1ν · ḡds, (56)

where W is now given by

W =
(

1 + 1

12
h2K

)
W1 + W2 + W3 + o

(
h3

)
, (57)

with

W1 = hW(∇r + d̄ ⊗ N), W2 = 1

24
h3K · M(∇r + d̄ ⊗ N)[K] and

W3 = 1

12
h3P̄1 · {[(∇d̄)B + (∇r)B2

] − 2H
[∇d̄ + (∇r)B

]}
.

(58)

The term W3 is non-standard. Its counterpart in Koiter’s work [3] was the subject of exten-
sive analysis, the rough conclusion of which is that it may be neglected in comparison to the
sum W1 + W2, provided that the midsurface strain is small and the shell is sufficiently thin.
We return to this issue below. Evidently W = W1 + W2 if the midsurface is flat, i.e. if the
shell is a plate [12].
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6 Reflection Symmetry

It is usual, when deriving shell theory from the three-dimensional theory, to restrict attention
to materials that exhibit reflection symmetry of the material properties with respect to the
midsurface. These are exemplified by the case of isotropy, discussed by Koiter, which we
develop in detail. In the classical linear theory of flat plates, this generates a model in which
the in-plane and bending displacements decouple at leading order. It also yields important
simplifications in the case of shells, the absence of such decoupling notwithstanding. Thus
we consider strain-energy functions that satisfy U (E) = U (QtEQ) with Q = I − 2N ⊗ N,
which in turn implies that U ′(Eij ) = U (EklGk ⊗ Gl ), where Gα = Aα and G3 = N, is an
even function of the transverse shear strain Eα3(= E3α).

Let Γ (Eα3) be the function obtained by fixing all components of E except Eα3 in the
midsurface strain-energy function. Then,

∂Γ/∂Eα3 = Aα · (UE)N, (59)

which vanish by (13) and (49)1, the latter being equivalent to

SN = 0. (60)

In materials that exhibit reflection symmetry these restrictions are satisfied at Eα3 = 0 be-
cause the strain energy is then an even function of the transverse shears [10]. The corre-
sponding strain is

E = ε + E33N ⊗ N, where ε = EαβAα ⊗ Aβ, E33 = 1

2

(
ϕ2 − 1

)
(61)

and ϕ is the transverse stretch. Comparing with the midsurface strain obtained from (30)1,
we conclude that

d = ϕn, (62)

where n is the unit normal to the deformed surface defined by |F∗N|n = F∗N, where F∗ is
the cofactor of F, and where ϕ(> 0) is obtained in terms of ε by solving

N · SN = 0. (63)

That (62) furnishes a solution to (60) in the presence of reflection symmetry was proved in
[2, 10]. The energetic optimality of the solution, granted strong ellipticity, was proved in
[12, p. 288]. Therefore reflection symmetry and strong ellipticity, combined with (60), yield
deformations in which the transverse shear strain necessarily vanishes and S is a symmetric
2-tensor that maps the tangent plane TΩ(p) to itself.

For the truncated energy exhibited explicitly in (56) to furnish a meaningful minimization
problem in its own right, it is necessary that a minimizing configuration satisfy the operative
Legendre-Hadamard condition pointwise in Ω . Because the integrand W involves ∇r and
∇∇r in which dependence on the latter is quadratic, this amounts to the requirement that the
homogeneous quadratic term W2 be positive definite when ∇∇r is replaced by y ⊗ z ⊗ z,
for any three-vector y and any two-vector z ∈ TΩ(p) [13]. Choosing y such that N · y = 0
reduces this requirement, in the case of reflection symmetry, to the restriction

∇ϕ · S(∇ϕ) ≥ 0 (64)
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in which ∇ϕ can be assigned arbitrary values by choice of z and the projection 1y. The
proof, which makes use of (12), is given in [11], where a truncated strain energy equivalent
to our W1 +W2 is derived for plates. The requirement thus limits the present model to states
of midsurface stress that are pointwise positive definite. This of course does not portend a
deficiency of the theory, because minimizers of the actual three-dimensional energy need
not minimize finite-order truncations of the energy. Nevertheless the issue does pose an
obstacle to analysis based on the truncated energy. In [11] this is addressed by adding an
ad hoc strain-gradient term arranged to ensure that the Legendre-Hadamard condition is
automatically satisfied. Here, we pursue an alternative that culminates in Koiter’s expression
for the energy.

7 Koiter’s Energy as the Leading-Order Model

7.1 Restriction to Small Midsurface Strain

The restriction (64) to positive-definite stress S is associated with the coefficient of h3 in the
strain-energy function. To remove it, and thus to restore the potential well-posedness of the
truncated shell energy (56) when the pointwise restriction (64) is violated, we assume that
S vanishes with shell thickness, i.e., that

|S| = o(1) (65)

after suitable non-dimensionalization. This assumption must be verified a posteriori. Indeed,
the connection between shell thickness and the magnitude of the midsurface stress, and
consequently that of the midsurface strain, lies at the heart of the ubiquitous claim made
in the technical literature, either tacitly or explicitly [1, 2], to the effect that thin shells
typically undergo finite deformations with small midsurface strains. Here we interpret this
view to mean that the stress scales with shell thickness; our assumption (65) is the most
conservative restriction of this kind.

This reasoning amounts to a conjecture that states which involve bending and which
are such as to violate the Legendre-Hadamard condition (64) are accommodated, in stable
configurations, by a reduction in the magnitude of stress, and associated midsurface strain,
precisely so that equilibria then furnish minima of the dominant contribution to the overall
energy. Said differently, to the extent that the order-h3 truncation of the energy furnishes a
meaningful approximation to the energy for shells of small thickness, it is necessary that the
stress in a stable configuration scale as indicated whenever it fails to be pointwise positive
definite. From this point of view the restriction to small midsurface strain, discussed on an
anecdotal basis in the literature, may be motivated on energetic grounds, at least for stable
equilibria.

We thus have h3S = o(h3), and from P1 = (∇r)S we conclude that W3 = o(h3). This
implies that the involved estimates of W3 underlying Koiter’s approach [3] are not required.
Further, the constitutive hypotheses discussed in Sect. 1 imply that the midsurface value of
the strain is sufficiently small—of order o(1)—that it may be neglected in the coefficient of
h3 without adverse effect on the accuracy of (56). Suppressing, in addition, the small term
h2K in comparison to unity, we arrive at

∫

κ

W(F̂) dv =
∫

Ω

W da, with W = W1 + W2 + o
(
h3

)
(66)
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in which W2 is now given by

W2 = 1

24
h3K · M(R)[K], (67)

where R is the rotation factor in the polar decomposition of F̄ = ∇r + d̄ ⊗ N; that is, the
replacement of F̄ by R entails an error of order o(1), provided that the strain-energy function
is sufficiently smooth, and thus an overall error of order o(h3) which does not affect the
order-h3 truncation. Using (17) we then have

W2 = 1

24
h3RtK · C(0)

[
RtK

]
, (68)

with K given by (52), where (cf. (62))

∇d̄ = ∇n + n ⊗ ∇ϕ, (69)

in which ϕ = 1 has been imposed for consistency with the suppression of the strain in the
coefficient of h3. For consistency we also impose

∇r = F̄1 = R1 and n = RN (70)

in this coefficient. The consistent computation of ḡ entails the replacement of (49)2 by

{
A(R)

}
ḡ = −{

M(R)
[∇d̄ + (∇r)B

]}
N, (71)

where (cf. (50))

A(R)v = {
M(R)[v ⊗ N]}N. (72)

Using (17), (71) may then be cast in the form

{
C(0)

[
Rt ḡ ⊗ N

]}
N = −{

C(0)
[
Rt∇d̄ + B

]}
N. (73)

The strain energy is thus given by (66) in which

W = hW(∇r + d̄ ⊗ N) + 1

24
h3RtK · C(0)

[
RtK

]
, (74)

with K computed as indicated. Details of the calculation are given below. The load potential
(42) may also be simplified; we obtain

∫

∂κt

t̃ · χ̃ da =
∫

∂Ωt

(pr · r + pd · d̄) ds + o
(
h3

)
, (75)

in which

pr = ht + 1

24
h3

(
t′′ − 2κτ t′

)
, pd = 1

12
h3t′ (76)

and the small term 1
24h2τ 2 has been neglected in comparison to unity.

Here we have assumed d = d̄ and g = ḡ to obtain on the closure of Ω . Regarding bound-
ary data, we assume that χ̃ is assigned on (∂Ω \ ∂Ωt) × [−h/2, h/2]. This implies that
its midsurface value, r, and those of its tangential through-thickness derivatives, d and g,



Koiter’s Shell Theory and Nonlinear Elasticity 103

are also assigned there. However, the latter two fields cannot be assigned arbitrarily if the
foregoing model is to apply on the closure of Ω . The assigned values must agree with the
continuous extensions to ∂Ω \∂Ωt of the functions d̄ and ḡ, respectively. If these extensions
are in conflict with the values derived from the data for the three-dimensional problem—this
situation being typical—then it is necessary to use three-dimensional theory (or some refine-
ment of the present theory) in a region adjoining the boundary; one then attempts to match
its predictions to those of the present model in the interior.

7.2 Koiter’s Energy as the Leading-Order Model

If the midsurface stress scales as

S = hS̄ + h2S̊ + o
(
h2

)
, (77)

with S̄ and S̊ independent of h, then our constitutive hypotheses furnish the strain

E = hĒ + o(h), (78)

where Ē = S[S̄] and S is the compliance tensor (the inverse of C(0)). Scalings of this kind
are sometimes assumed a priori in asymptotic treatments (e.g., [14]). The term W1 in the
strain energy (cf. (58)) reduces to

W1 = 1

2
h3Ē · C(0)[Ē] + o

(
h3

)
, (79)

yielding

W = h3W̄ + o
(
h3

)
, (80)

where

W̄ = 1

2
Ē · C(0)[Ē] + 1

24
RtK · C(0)

[
RtK

]
. (81)

We show below that this coincides with Koiter’s expression for the shell strain-energy den-
sity.

In consequence of (43) and (44) we also have

pr · r + pd · d̄ = h3(p̄r · r + p̄d · d̄) + o
(
h3

)
, (82)

where

p̄r = t̊ + 1

24

(
t′′ − 2κτ t′

)
, p̄d = 1

12
t′ with t̊ = RS̊ν (83)

and we have imposed S̄ν = 0 on ∂Ωt to suppress an order-h2 term in the load potential. The
latter assumption must also, in principle, be checked a posteriori.

Altogether, the potential energy E is then given by

E /h3 = Ē + o
(
h3

)
/h3, (84)

where

Ē =
∫

Ω

W̄ da −
∫

∂Ωt

(p̄r · r + p̄d · d̄) ds, (85)
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yielding E = h3Ē in (5). This is the leading order potential energy of the shell under the
present hypotheses. In view of (84), it would be possible to regard Ē as the rigorous leading-
order energy, in the sense of gamma convergence or asymptotic analysis, if the estimate (77)
on the (plane) stress could be established a priori in the interior of Ω . As it stands, the only
rationale for (77) that we know of is that it yields an expression for the leading-order energy
which furnishes a meaningful minimization problem. Examples of such states include, rather
obviously, the minimizers (if any) of Ē.

We note that the separate stretching and bending energies in (74), based on the hypothe-
sis that the (three-dimensional) material is of the linear Kirchhoff–St. Venant type and hence
that W1 = 1

2 hE · C(0)[E], have been justified via asymptotic analysis of the weak forms of
the equilibrium equations [15–17]. However, the a priori restriction to small strain implicit
in the Kirchhoff–St. Venant model seems not to have been justified. From the present per-
spective the restriction to small strain may be motivated by requiring the order-h3 truncation
(56) of the energy to furnish a meaningful minimization problem, the appropriateness of the
requirement then hinging, post facto, on the existence of minimizers of the truncated energy.
If, in addition, the stress scales in accordance with (77), then bending and stretching effects
are of comparable importance and Koiter’s combined bending-stretching model emerges as
the rigorous leading-order energy.

For stresses that satisfy the weaker restriction (65), the energy (74) furnishes the natu-
ral extension of Koiter’s to the case of finite midsurface strain. The separate order-h and
order-h3 terms therein may also be justified via asymptotic analysis in the manner of [15–
17] and [18, Sect. 3], and, as remarked by Koiter [19], the composite energy may then be
regarded as furnishing leading-order models in different regions of the shell; the first (order
h), wherever the midsurface strain is non-zero, and the second (order h3), where bending
effects dominate. A weakly nonlinear extension of the Kirchhoff–St. Venant model is then
appropriate (see [20], Sect. 7). However, in the absence of a precise scaling in place of (65),
it is necessary to retain the given constitutive function W in (74).

The associated Euler equations and boundary conditions are well known and will not
be presented here. It is customary to express them in terms of covariant derivatives and
geometric parameters on the deformed surface [1, 2]. To connect the boundary conditions
to the load potential in (85), we show that the variation of the latter may be expressed in the
form

∫

∂Ωt

[
p̄r · u + p̄d · (d̄)·]ds =

∫

∂ωt

(f · u − M τ̄ · ω) ds̄, (86)

where u = ṙ, superposed dots are used to denote variational (Gateaux) derivatives, f is the
net force density on the deformed edge with unit tangent τ̄ , ω is the virtual rotation of the
shell midsurface defined by ṅ = ω × n and M is the density of bending couple along the
edge.

To this end we observe that to within negligible errors of order h, arclength on ∂Ω

coincides with that on ∂ω, and d̄ = n (see (62)), whereas [21]

ṅ = (τ̄ · ω)ν̄ − (n · u,s̄ )τ̄ , (87)

where ν̄ = τ̄ × n and (·),s̄ = d(·)/ds̄. Thus, to consistent order,

p̄r · u + p̄d · (d̄)· = {
p̄r − [

(τ̄ · p̄d)n
]
,s̄

} · u + (ν̄ · p̄d)τ̄ · ω + [
(τ̄ · p̄d)n · u

]
,s̄
. (88)

Because u vanishes identically on ∂ω \ ∂ωt the integral of the last term on the right may be
extended to ∂ω and is thereby seen to contribute nil to the net working if ∂ω is smooth, i.e.,
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if τ̄ is continuous. The same term generates corner forces in the case of a piecewise smooth
edge with a finite number of jumps in τ̄ . We thus derive (86) with

f = p̄r − [
(τ̄ · p̄d)n

]
,s̄

and M = −ν̄ · p̄d . (89)

It is interesting that whereas p̄r and p̄d are fixed in a formulation based on the three-
dimensional dead-load problem (see (83)), f and M are not fixed because they involve the
unknown orientation of the deformed surface ω at the edge ∂ωt . Said differently, ḟ and Ṁ

do not vanish on ∂ωt although the variations of p̄r and p̄d vanish there.

7.3 The Explicit Energy for Isotropic Materials

For isotropic materials we have the well-known representation

C(0)[A] = λ(tr A)I + 2μSymA, (90)

where λ and μ are the classical Lamé moduli, satisfying the inequalities 3λ + 2μ > 0 and
μ > 0 associated with the positivity of C(0). This furnishes

{
C(0)[v ⊗ N]}N = (λ + 2μ)vN + 2μ1v (91)

for any vector v, where v = v · N. Using this in (73), we derive

N · Rt ḡ = −(λ + 2μ)−1
{
λ tr

[
Rt∇d̄ + B

] + 2μN · (Sym
[
Rt∇d̄ + B

])
N

}
and

1
(
Rt ḡ

) = −21
(
Sym

[
Rt∇d̄ + B

])
N,

(92)

which in turn generate Rt ḡ = 1(Rt ḡ) + (N · Rt ḡ)N for use in (52) and (81).
From (69) the term Rt∇d̄ is seen to involve [18]

Rt∇n = κ, with κ = −(∇r)tb(∇r), (93)

where b is the curvature tensor on the deformed surface. In terms of surface coordinates,

κ = −bαβAα ⊗ Aβ; bαβ = n · r,αβ . (94)

From Rtn = N it then follows that

Rt∇d̄ + B = −ρ + N ⊗ ∇ϕ and Rt ḡ = − λ

λ + 2μ
(trρ)N − ∇ϕ, (95)

where

ρ = −(κ + B), (96)

which is given in terms of components by Koiter’s expression [1, 2]

ρ = ραβAα ⊗ Aβ with ραβ = bαβ − Bαβ. (97)

This combines with (52) and (92) to give

RtK = ρ − λ

λ + 2μ
(trρ)N ⊗ N + N ⊗ ∇ϕ − ∇ϕ ⊗ N, (98)
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and (81) then gives the classical bending energy

C(0)
[
RtK

] · RtK = 2λμ

λ + 2μ
(trρ)2 + 2μ|ρ|2, (99)

in precise agreement with the result obtained by the method of gamma convergence [22] or
asymptotic analysis [17].

To reduce the stretching term we invoke (61)1 and (63), obtaining

E = ε − λ

λ + 2μ
(tr ε)N ⊗ N and C(0)[E] · E = 2λμ

λ + 2μ
(tr ε)2 + 2μ|ε|2, (100)

apart from errors of order o(h) and o(h2), respectively, arriving finally at Koiter’s energy
(1), in which ε = O(h) and D = Dαβγ δAα ⊗ Aβ ⊗ Aγ ⊗ Aδ , with

Dαβγ δ = 2λμ

λ + 2μ
AαβAγδ + μ

(
Aαγ Aβδ + AαδAβγ

)
. (101)

Acknowledgement This note was inspired by a course on Shell Theory delivered by the writer at the
University of California.
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