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Abstract It is often declared in the literature that the seven classical invariants used to char-
acterize the strain energy of a compressible orthotropic elastic solid are independent. In this
paper, we show that only six of the seven classical invariants are independent, and a syzygy
exists between the classical invariants. Consequently, all other sets of seven invariants, pro-
posed in the literature, that are uniquely related to the set of classical invariants, have only
six independent invariants.
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1 Introduction

Following the work of Spencer [1], a strain energy function We of a compressible elastic
solid with two preferred orthogonal directions a and b can be expressed as

We = W(C,a ⊗ a,b ⊗ b), (1)

where C is the right Cauchy-Green deformation tensor and ⊗ denotes the dyadic product.
W is an isotropic invariant C, a ⊗ a and b ⊗ b, i.e.,

W(C,a ⊗ a,b ⊗ b) = W
(
QCQT ,Q(a ⊗ a)QT ,Q(b ⊗ b)QT

)
(2)

for all proper orthogonal tensors Q. It follows that the strain energy function We can be
expressed as

We = Ŵ (I1, I2, I3, I4, I5, I6, I7), (3)
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where

I1 = tr(C), I2 = I 2
1 − tr(C2)

2
, I3 = det(C), I4 = a • Ca,

I5 = a • C2a, I6 = b • Cb, I7 = b • C2b

(4)

and tr denotes the trace of a second order tensor. These commonly used classical invariants
were proposed by Spencer [1], but he did not mention in his paper [1], that the seven in-
variants are independent. However, in the past, several authors have declared that the seven
invariants are independent (see for example references [2, 3]). In Sect. 2, we show that only
six of the classical invariants are independent. In Sect. 3 we show that a syzygy exist between
the classical invariants and between a set of invariants recently proposed by Shariff [4]. For
various reasons, other sets of seven invariants (see for example reference [5]) have been pro-
posed in the literature to characterize orthotropic elastic solids. Since the classical invariants
can be expressed in terms of these sets of seven invariants, hence, only six of the seven
invariants in these sets of seven invariants are independent.

2 Non-independent

For a compressible anisotropic elastic material with two non-perpendicular preferred direc-
tions a and b, the classical invariant set {I1, I2, I3, I4, I5, I6, I7, I8, I9} is commonly used to
characterize the strain energy function of an anisotropic elastic solid (see Spencer [1, 6]),
where

I8 = cos(2φ)a • Cb, I9 = (a • b)2 = cos2(2φ) (5)

and 2φ is the angle between the vectors a and b. The invariants I1−9 are independent [6] with
respect to the tensor C and, unit vectors a and b. If we consider the components of C, a and
b relative to a fixed Cartesian coordinate system, then there are ten independent components
(six from C and four from a and b) on the right hand-side of (4) and (5). For the set {I1−9} to
be independent the rank of the corresponding ten by nine “Jacobian” matrix should be nine.
The set {I1−9} is a minimal integrity basis [1, 6], hence all other polynomial invariants can
be generated from this set. Since I9 is fixed for an arbitrary deformation, the strain energy
function is generally written in terms of the invariants I1−8. When the directions of a and b

are orthogonal, then cos(2φ) = 0, and the strain energy can be characterized using only the
seven invariants I1−7. If, for arbitrary a and b, we choose the directions of the Cartesian X1

and X2 axes to be parallel to a and b, respectively, we then have, from (4)

I1 = tr(C), I2 = I 2
1 − tr(C2)

2
, I3 = det(C), I4 = C11, I5 = C1rCr1,

I6 = C22, I7 = C2rCr2,

(6)

where Cij are the Cartesian components of C. In this communication all subscripts i and j

take the values 1, 2 and 3, unless stated otherwise. Since C has six independent components,
there is a relation among the invariants I1−7, which indicates that only six of the seven
invariants are independent. We can also show that the seven invariants are not independent
without resorting to the Cartesian components of C. We do this by writing C in the form

C =
3∑

i=1

λ2
i ei ⊗ ei , (7)
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(λi and ei are the principal value and the principal direction of the right stretch tensor U ,
respectively) and substitute (7) in (4) to obtain the expressions

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = (λ1λ2λ3)

2,

I4 = λ2
1ζ1 + λ2

2ζ2 + λ2
3ζ3, I5 = λ4

1ζ1 + λ4
2ζ2 + λ4

3ζ3,

I6 = λ2
1ξ1 + λ2

2ξ2 + λ2
3ξ3, I7 = λ4

1ξ1 + λ4
2ξ2 + λ4

3ξ3,

(8)

where ζi = (a • ei )
2, ξi = (b • ei )

2,

ζ3 = 1 − ζ1 − ζ2 and ξ3 = 1 − ξ1 − ξ2. (9)

The invariant set SH = {λ1, λ2, λ3, ζ1, ζ2, ξ1, ξ2} has been used by Shariff [4] to characterize
the strain energy of an orthotropic elastic solid. However, there exists a relation between
four of the invariants in the set SH, in particular the orthogonal relation,

a • b =
3∑

i=1

(a • ei )(b • ei ) = 0, (10)

taking note that,

a • e1 = ±√
ζ1, a • e2 = ±√

ζ2, b • e1 = ±√
ξ1, b • e2 = ±√

ξ2,

a • e3 = ±√
1 − ζ1 − ζ2, b • e3 = ±√

1 − ξ1 − ξ2.
(11)

In view of (10) and (11), only three of the invariants, say, ζ1, ζ2 and ξ1 are independent.
Hence, from (8), the seven classical invariants depend on six independent variables (invari-
ants), which suggests that there exists a relationship among the seven invariants. In the next
section, we show syzygies exist between the seven classical invariants and between the in-
variants proposed by Shariff [4].

3 Syzygy

Before we prove there is a syzygy between the seven classical invariants, we review a few
preliminary concepts given in [6] to facilitate our analysis. In reference [6, p. 246] Spencer
stated that:

1. A polynomial invariant is said to be reducible if it can expressed as a polynomial in other
invariants; otherwise, it is said to be irreducible.

2. A set of polynomial invariants which has the property that any polynomial invariant can
be expressed as a polynomial in members of the given set is called an integrity basis.

3. An integrity basis is minimal if contains the smallest possible number of members.
Clearly, all members of a minimal integrity basis are irreducible.

4. It frequently happens that polynomial relations exist between invariants which do not
permit any one invariant to be expressed as a polynomial in the remainder. Such relations
are called syzygies.

Consider the right-handed set of vectors {a,b,n}. Note that

Ca = (a • Ca)a + (b • Ca)b + (n • Ca)n. (12)

Hence

a • C2a = (a • Ca)2 + (b • Ca)2 + (n • Ca)2. (13)
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For simplicity of notations, we let Iab = a • Cb, Ian = a • Cn, Ibn = b • Cn, In = n • Cn

and Inn = n • C2n. From (13), we have

I 2
an = I5 − I 2

4 − I 2
ab. (14)

Similarly, it can be easily shown that

I 2
bn = I7 − I 2

6 − I 2
ab (15)

and

Inn = I 2
an + I 2

bn + I 2
n . (16)

From the relation

I1 = tr(C) = a • Ca + b • Cb + n • Cn, (17)

we have

In = I1 − I4 − I6. (18)

From the above equations, we have

Inn = I5 + I7 − 2I 2
ab + I 2

1 − 2I1(I4 + I6) + 2I4I6. (19)

From the relation

tr
(
C2

) = a • C2a + b • C2b + n • C2n (20)

we get

I 2
1 − 2I2 = tr

(
C2

) = I5 + I7 + Inn. (21)

Substituting equation (19) into (21) we have the relation

I 2
ab = I2 + I4I6 + I5 + I7 − I1(I4 + I6). (22)

We note that relation (22) was also obtained by Merodio & Ogden [3]. Holzapfel & Og-
den [2] showed that

I4I6In − I4I
2
bn − I6I

2
an − InI

2
ab + 2IabIanIbn = I3. (23)

We then have
(
I3 − I4I6In + I4I

2
bn + I6I

2
an + InI

2
ab

)2 = 4I 2
abI

2
anI

2
bn. (24)

In view of (14), (15), (18) and (22), it is clear that (24) shows a syzygy between the classical
invariants I1−7.

In view of (8), we can easily show from (24) that a syzygy exists between the invariants
λ1, λ2, λ3, ζ1, ζ2, ξ1 and ξ2. If we let λ1 = λ2 = λ3 = 1 a syzygy exist between the invariants
ζ1, ζ2, ξ1 and ξ2. Alternatively, we can also show that a syzygy exists among the invariants
ζ1, ζ2, ξ1 and ξ2 from (10), where we have

2(a • e1)(b • e1)(a • e2)(b • e2) = ζ3ξ3 − ζ1ξ1 − ζ2ξ2. (25)

Hence, we have

4ζ1ξ1ζ2ξ2 = ([1 − ζ1 − ζ2][1 − ξ1 − ξ2] − ζ1ξ1 − ζ2ξ2

)2
(26)

which shows a syzygy between the invariants ζ1, ζ2, ξ1 and ξ2.
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