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Abstract Considering a family of gradient-enhanced damage models and taking advantage
of its variational formulation, we study the stability of homogeneous states in a full three-
dimensional context. We show that gradient terms have a stabilizing effect, but also how
those terms induce structural effects. We emphasize the great importance of the type of
boundary conditions, the size and the shape of the body on the stability properties of such
states.
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1 Introduction

Before their failure, quasi-brittle materials exhibit a softening behavior in their mechanical
response under uniaxial tests [2]. The modeling of this ultimate stage of degradation within
the framework of damage theory is a complicated task. Indeed, the associated boundary-
value problem governing the evolution of damage in the sample ceases to be well-posed
with local models. Accordingly, regularization techniques must be introduced as those based
on the gradient of strain [20], on the gradient of damage [7, 9, 21, 23, 24] or on integral
laws [25]. Additional non-local terms remove some pathologies of local models such as
failure by localization without any dissipated energy or a part of numerical simulations
mesh-dependency. For instance, Pijaudier-Cabot and Benallal [26] and Peerlings et al. [19]
showed by means of a wave propagation analysis the benefits of their regularized damage
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model. However, none of these regularization methods have solved the issue of the non-
uniqueness of the response which turns out to be an intrinsic property of any softening law.
For instance, in the case of regularization by gradient damage terms, it was proved in [3] in
a simplified one-dimensional context that there exists a continuum set of branches which are
solutions of the damage evolution problem. Therefore, it has become necessary to introduce
additional criteria to select physically realistic solutions. In the spirit of Nguyen [18], recent
variational approaches [4–6, 13, 17] propose to reinforce usual stationary conditions with a
stability condition. Making a full use of the justification of such an energetic approach given
by Marigo [14, 15], see also DeSimone et al. [8], Pham and Marigo [22, 23] introduced
this stability criterion as one of the three principles (along with irreversibility and energy
balance) that governs the evolution of damage in a body. This allowed Pham et al. [24] to
study the stability of the homogeneous response1 of a bar whose displacements at the ends
are controlled by a hard device. The main goal of this paper is to generalize this analysis in a
full three-dimensional setting. For this purpose, we consider three-dimensional bodies under
boundary conditions that are compatible with a homogeneous state. Then, we study whether
such a homogeneous state is stable or not. The results depend on the type of boundary
conditions (soft or hard device), on the size of the body and on its shape. These results are in
agreement with what is commonly observed in the quasi-brittle materials, see [2]. Moreover,
we claim, as already shown in Pham et al. [24], that the study of the stability of these states
can be used for identifying the different constitutive functions of the model.

The paper is structured as follows. In Sect. 2, we set the main ingredients of the gradi-
ent damage model and introduce the stability criterion. In Sect. 3 we start the study of the
stability of homogeneous states. We distinguish stress-hardening from stress-softening be-
haviors, elastic homogeneous states from damaging homogeneous states and different types
of boundary conditions depending on whether those are prescribed by a soft device or a hard
device, including uniaxial test. Then, the stability of any homogeneous state in the case of
stress-hardening materials is obtained. We also prove that elastic homogeneous states are al-
ways stable. This allows us to focus on damaging states for stress-softening materials which
is the most common case in real-world applications. We easily prove that in such a case,
any damaging state is always unstable when the boundary is controlled by a soft device.
Section 4 is devoted to the case where the boundary is controlled by a hard device and we
show how this leads to the appearance of size effects. More specifically, we prove that a
damaging state is stable provided that the size of the body is less than a critical value which
depends in general both on the state and the shape of the body. However, it can happen that
this critical size becomes infinite which means that the state is stable independently of the
size of the body. Moreover, the finiteness of this critical size is conditional on the state and
the damage model, but not on the shape of the body. This is illustrated by some examples.
In Sect. 5, we consider the case of uniaxial tensile tests of cylinders and show that both size
and shape effects are present. In particular, we study the asymptotic case of slender cylin-
ders and obtain the closed-form expression of the critical size. The last section is devoted
to a comparison between our stability criterion and the strong ellipticity condition which is
generally used for studying the stability of homogeneous state in softening materials.

Throughout the paper, the following notation is used. The vectors and second order ten-
sors are denoted by boldface letters, like u for the displacement vector and ε for the strain
tensor, while their components are denoted by italic letters, like ui and εij . The fourth order
tensors are represented by sans serif letters, like A and S for the rigidity and the compli-
ance tensors. In general, intrinsic notation is used: for instance Aε denotes the second order

1The response for which both strain and damage fields are constant in space.
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tensor whose ij component is given by Aijklεkl (where here and henceforth the summation
convention is implicitly used). The inner product between vectors or between second order
tensors is indicated by a dot. Accordingly, one reads u · v = uivi , Aε · ε = Aijklεij εkl . The
space of n × n symmetric matrices is denoted by M

n
s . When v is a displacement field, i.e. a

vector field of R
n, its associated strain tensor field ε(v) is the symmetric part of the gradient

of v, i.e. 2ε(v) = ∇v + (∇v)T . In terms of components, we get 2εij (v) = vi,j + vj,i where
the comma denotes the partial derivative with respect to the concerned coordinate. L2(Ω)

denotes the Hilbert space of square integrable functions over the open set Ω of R
n, equipped

with its natural norm ‖ · ‖0; H 1(Ω) denotes the Hilbert space of functions f which are in
L2(Ω) and whose first weak derivatives f,i are also in L2(Ω), equipped with its natural
norm ‖ · ‖1:

‖f ‖2
0 =

∫
Ω

f (x)2dx, ‖f ‖2
1 = ‖f ‖2

0 +
n∑

i=1

‖f,i‖2
0.

For vector-valued or tensor-valued fields, the spaces L2(Ω,R
n), L2(Ω,M

n
s ), H 1(Ω,R

n)

are defined in similar way. For instance, for the vector field v and the tensor field ε we set:

‖v‖2
0 =

∫
Ω

v(x) · v(x)dx, ‖ε‖2
0 =

∫
Ω

ε(x) · ε(x)dx, ‖v‖2
1 = ‖v‖2

0 + ‖∇v‖2
0.

2 The Gradient Damage Model

2.1 The Non-local Form of the Strain Work

We assume that the damage state at a material point is characterized by a scalar internal
variable α growing from 0 to αm ≤ +∞, 0 corresponding to the undamaged state and αm

to the full damaged state. This scalar damage variable represents at a macroscale a measure
of the presence of defects at a microscale like microvoids or microcracks. But the precise
link between microdefects and the effective behavior of the material goes well beyond the
scope of this paper and we will follow a phenomenological procedure to set the constitutive
equations. More specifically, in our variational approach, we directly postulate the form of
the non-local strain work at a material point. In Pham and Marigo [23], it has been shown
that for an elastic isotropic material with a scalar damage variable, up to a change of damage
variable, the strain work can be written in the following form:

W(ε, α,∇α) = w1α + 1

2
A(α)ε · ε + 1

2
w1�(α)2∇α · ∇α. (1)

In (1), w1 is a material constant which has the dimension of a pressure (i.e., an energy
by volume unit) provided that α is dimensionless. A(α) denotes the stiffness tensor of the
material in the damage state α, ε is the strain tensor and hence 1

2 A(α)ε ·ε is the elastic energy
density. Because of the damage process, α �→ A(α) is a decreasing function, going from
A(0) = A0 to A(αm) = 0, A0 being the stiffness tensor of the sound material. We also use
the “damaged” compliance tensor α �→ S(α) defined as the inverse of A(α), S(α) = A(α)−1.
The last term in the right hand side of (1), i.e., 1

2w1�(α)2∇α · ∇α, corresponds to the non-
local contribution which contains the real-valued positive function α �→ �(α), �(α) having
the physical dimension of a length. Since the material is isotropic, the stiffness and the
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compliance tensors of the material in the damaged state α can read as

A(α)ijkl = λ(α)δij δkl + μ(α)(δikδjl + δilδjk),

S(α)ijkl = − ν(α)

E(α)
δij δkl + 1 + ν(α)

E(α)
(δikδjl + δilδjk)

(2)

where λ(α), μ(α), ν(α) and E(α) are respectively the Lamé coefficients, the Poisson’s ratio
and the Young modulus of the material in the damaged state α.

Throughout the paper we adopt the following assumptions on the constitutive functions:

Hypothesis 1 For all α ∈ [0, αm), A(α) > 0, A′(α) < 0, S(α) > 0, S′(α) > 0, �(α) > 0.

2.2 The Hardening and Softening Properties

Like in plasticity, hardening and softening properties play a keyrole in the well-posedness of
the problem. These properties deal with the local behavior of the material and only involve
the local part of the strain work

W0(ε, α) = w1α + 1

2
A(α)ε · ε. (3)

Following [14], the elastic domain E(α) in which strain is allowed to lie, when damage is
spatially locally uniform (∇α = 0) and equal to α, is given by

E(α) =
{
ε ∈ M

n
s : −1

2
A′(α)ε · ε ≤ w1

}
=

{
ε ∈ M

n
s : ∂W0

∂α
(ε, α) ≥ 0

}
. (4)

This corresponds to a critical elastic energy release rate criterion. The image of the elastic
domain in the space of stresses, namely E

∗(α), is obtained after introducing the Legendre
transform σ �→ W ∗

0 (σ , α) of ε �→ W0(ε, α),

W ∗
0 (σ , α) = sup

ε′∈M
n
s

{
σ · ε′ − W0

(
ε′, α

)} = 1

2
S(α)σ · σ − w1α. (5)

It follows that

E
∗(α) =

{
σ ∈ M

n
s : 1

2
S′(α)σ · σ ≤ w1

}
=

{
σ ∈ M

n
s : ∂W ∗

0

∂α
(σ , α) ≤ 0

}
. (6)

Definition 1 One says that the material behavior is strain-hardening when α �→ E(α) is
increasing, stress-hardening when α �→ E

∗(α) is increasing and stress-softening when α �→
E

∗(α) is decreasing.

These variations of the elastic domains must be understood in the sense of inclusion
between sets. For instance, the behavior strain hardening means that if α and α′ are such
that α < α′ then E(α) ⊂ E(α′). These intrinsic material properties can be deduced from
convexity properties of the constitutive function α �→ A(α) as it can be seen in the following

Proposition 1 The behavior is strain-hardening when α �→ A′(α) is an increasing function
with respect to α,

A′′(α) > 0. (7)
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The behavior is stress-hardening (resp., stress-softening) when α �→ S′(α) is decreasing with
respect to α,

S′′(α) < (resp. >)0. (8)

Hypothesis 2 From now on, we only consider brittle materials with a strain-hardening be-
havior.

2.3 The Stability Criterion

For rate-independent material behaviors, stability is a state property of a body at a given
time and not a property of the time-evolution problem. Accordingly, this latter is defined
by comparing the total energy of a body in the considered state with the total energy that
this body should have after a state perturbation, the loading being fixed. More specifically,
let us consider a homogeneous body whose reference configuration is the open connected
bounded set Ω ⊂ R

n. This body is made of a non-local damaging material characterized by
the state function (1). We suppose that the set of kinematically admissible displacement is
of the form CU = U + C0 where U is a given displacement field and C0 is a vectorial space.
The body is also subjected to a system of external forces whose potential is the linear form
We : CU �→ R. Considering only damage fields without failure, the convex set of admissible
damage field is given by

D =
{
α ∈ H 1(Ω,R) : α ≥ 0, sup

Ω

α < αm

}
,

and the convex cone of admissible damage direction fields by

D+ = {
α ∈ H 1(Ω,R) : α ≥ 0

}
.

The energy of the body in the admissible state (u, α) ∈ CU × D reads as

P(u, α) =
∫

Ω

W
(
ε(u)(x),α(x),∇α(x)

)
dx − We(u), (9)

where ε(u) stands for the symmetric part of the gradient of u. The stability property is then
given by

Definition 2 The state (u, α) ∈ CU × D is stable with respect to a perturbation in the di-
rection (u∗, α∗) ∈ C0 × D+, or, shortly, stable in the direction (u∗, α∗), if there exists h̄ > 0
such that for all h ∈ [0, h̄]

P
(
u + hu∗, α + hα∗) ≥ P(u, α). (10)

If (u, α) is stable in all directions of C0 × D+, then (u, α) is directionally stable.

Note that the stability criterion only requires to compare the energy of the tested state
(u, α) with the energy of more damaged states. Indeed, by virtue of the irreversibility of
damage, the structure can only evolve to more damaged configurations than its actual state.
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3 The Question of the Stability of Homogeneous States

3.1 Homogeneous States and the Different Types of Control of the Boundary Conditions

In order to identify the constitutive function α �→ A(α) and the material constant w1, one
often uses uni- or multi-axial tests on cylindrical samples by prescribing boundary condi-
tions compatible with a spatially homogeneous response. Then, the corresponding state of
the sample is the homogeneous one (u0, α0) = (ε0x,α0) with (ε0, α0) ∈ M

n
s ×[0, αm). (Note

that we assume that the gradient of u0 is symmetric. We could add a skew-symmetric part
which would correspond to a overall rotation, all the analysis would remain unchanged.)
However, the observability of such a state is possible only if this state is directionally stable.
The goal of the present section is to study under which conditions this stability property
holds. We first remark that the stability of the state generally depends on how one controls
the boundary conditions: the same homogeneous state can be stable under displacement
controlled (hard device) but unstable under force controlled (soft device). Accordingly, we
will discriminate between several types of boundary conditions:

1. Soft device. The boundary ∂Ω of the body is subjected to homogeneous surfaces forces
σ 0n where σ 0 ∈ M

n
s is a given stress tensor. The associated homogeneous state of the

body is then given by α(x) = α0 and u(x) = S(α0)σ 0x. The corresponding stress state
is σ 0 while the set C0 of kinematically admissible directions of perturbation and the
potential We of the given external forces are

C0 = H 1
(
Ω,R

n
)
, We(v) =

∫
∂Ω

σ 0n · vdS. (11)

2. Hard device. The boundary ∂Ω of the body is subjected to displacements ε0x where
ε0 ∈ M

n
s is a given strain tensor. The associated homogeneous state of the body is then

given by α(x) = α0 and u(x) = ε0x. The corresponding stress state is σ 0 = A(α0)ε0 while
the set C0 of kinematically admissible directions of perturbation and the potential We of
the given external forces read

C0 = H 1
0

(
Ω,R

n
)
, We(v) = 0 (12)

where H 1
0 (Ω) denotes the subspace of H 1(Ω) made of fields whose trace over ∂Ω van-

ishes.
3. Uniaxial tensile test. The body is the cylinder Ω = (0,L) × Σ with Σ its cross-section.

The lateral boundary (0,L) × ∂Σ is free (σn = 0). The ends x1 = 0 and x1 = L are
under mixed boundary conditions: there is no shear (σ21 = σ31 = 0) and the normal dis-
placement is fixed to a uniform value on each end (u1|x1=0 = 0, u1|x1=L = εL). Then,
the associated homogeneous state of the body is given by α(x) = α0 and u(x) = ε0x
with ε0 = εe1 ⊗ e1 − ν(α0)ε(e2 ⊗ e2 + e3 ⊗ e3). The corresponding stress state is
σ 0 = E(α0)εe1 ⊗ e1 while the set C0 of kinematically admissible directions of pertur-
bation and the potential We of the given external forces are

C0 = {
v ∈ H 1

(
Ω,R

n
) : v1 = 0 on {0,L} × Σ

}
, We(v) = 0. (13)

3.2 Non Damaging and Damaging Homogeneous States

Let us consider a homogeneous state (u0, α0) = (ε0x,α0) with (ε0, α0) ∈ M
n
s × [0, αm). Let

(v, β) ∈ C0 × D+ be an admissible direction and h be a small positive number. Expanding
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the total energy of the body in the state (u0 +hv,α0 +hβ) with respect to h up to the second
order leads to

P(u0 + hv, α0 + hβ) = P(u0, α0) + hP ′(u0, α0)(v, β)

+ h2

2
P ′′(u0, α0)(v, β) + o

(
h2

)
. (14)

In (14), the first order derivative is given by

P ′(u0, α0)(v, β) =
∫

Ω

σ 0 · ε(v)dx − We(v) +
∫

Ω

(
w1 − 1

2
S′(α0)σ 0 · σ 0

)
βdx, (15)

where we used the identity S′(α0)σ 0 · σ 0 = −A′(α0)ε0 · ε0 with σ 0 = A(α0)ε0. In (15) there
is no term involving the non local character of the damage model, i.e., no term containing
�(α0) or �′(α0) as the state α0 is assumed to be spatially homogeneous and hence ∇α0 = 0.
The second order derivative reads as

P ′′(u0, α0)(v, β) =
∫

Ω

(
A(α0)ε(v) · ε(v) + w1�(α0)

2∇β · ∇β + 2A′(α0)ε0 · ε(v)β
)
dx

+
∫

Ω

1

2
A′′(α0)ε0 · ε0β

2dx. (16)

Note that it contains terms with the gradient of the direction of damage. Then, a necessary
condition for (u0, α0) to be directionally stable is

0 ≤ lim
h→0

1

h

(
P(u0 + hv, α0 + hβ) − P(u0, α0)

)

= P ′(u0, α0)(v, β), ∀(v, β) ∈ C0 × D+. (17)

Taking β = 0 in (17) and recalling (15) leads to the variational formulation of the mechanical
equilibrium ∫

Ω

σ 0 · ε(v)dx = We(v), ∀v ∈ C0, (18)

which is automatically satisfied by virtue of the definitions of We and C0 and given the fact
that the stress field is uniform. Accordingly, the first order stability condition (17) becomes

P ′(u0, α0)(v, β) =
(

w1 − 1

2
S′(α0)σ 0 · σ 0

)∫
Ω

βdx ≥ 0, (19)

where the inequality must hold for any field β ≥ 0. Therefore, the homogeneous state is
stable only if the stress satisfies the damage criterion

S′(α0)σ 0 · σ 0 ≤ 2w1. (20)

This inequality can also be written in terms of the strain tensor and then reads as

−A′(α0)ε0 · ε0 ≤ 2w1. (21)

A state such that the inequality in (20) or (21) is strict should correspond in an evolution
problem to a state where the damage yield criterion is not reached and then for which the
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damage rate α̇ should vanish. We will call such a state a non damaging state. On the other
hand, a state such that (20) or (21) is an equality should correspond in an evolution problem
to a state where the damage yield criterion is reached. In this case, the damage rate could be
positive. We will call such a state a damaging state. For further references, this terminology
is recalled in the following definition

Definition 3 A homogeneous state (ε0x, α0) such that −A′(α0)ε0 · ε0 < 2w1 is called a non
damaging state, whereas a homogeneous state such that −A′(α0)ε0 · ε0 = 2w1 is called a
damaging state.

Let us first study the stability of non damaging states.

3.3 Stability of the Non Damaging States

In the case of a non damaging state, since S′(α0)σ 0 · σ 0 < 2w1, the first term in the
expansion of the perturbed energy (14) vanishes if and only if the damage direction is
β = 0 (everywhere in Ω). When β �= 0 (somewhere in Ω), then the first order term is
positive and the state is stable in this direction of perturbation. On the other hand, when
β = 0, then the first order term vanishes and the stability in this direction depends on the
sign of the second order term. Calculating the second order derivative for β = 0, we find
P ′′(u0, α0)(v,0) = ∫

Ω
A(α0)ε(v) · ε(v)dx. Accordingly, the second order term in the expan-

sion (14) is non negative. Moreover, it vanishes if and only if ε(v) = 0, i.e., if and only if
the perturbation corresponds to a rigid motion. Therefore, one can conclude

Proposition 2 Any non damaging state is directionally stable, independently of the type of
boundary conditions and the hardening properties of the material.

3.4 Damaging State for Stress-Hardening Behavior

Let us consider a damaging state. Since −A′(α0)ε0 · ε0 = 2w1, the first order term in (14)
vanishes. Moreover, by virtue of the strain hardening condition (7), with the strain tensor
ε0 ∈ M

n
s is associated a unique α0 ∈ [0, αm) such that (21) holds. In other words, the damage

state is given by the strain state. The stability of this homogeneous state depends on the sign
of the second derivative of the energy. Introducing the stress state σ 0 rather than the strain
state ε0, P ′′(u0, α0) can read as

P ′′(u0, α0)(v, β) =
∫

Ω

A(α0)
(
ε(v) − βS′(α0)σ 0

) · (ε(v) − βS′(α0)σ 0

)
dx

+ w1�(α0)
2
∫

Ω

∇β · ∇βdx − 1

2
S′′(α0)σ 0 · σ 0

∫
Ω

β2dx, (22)

where we used the identity

S′′(α0)σ 0 · σ 0 = 2A(α0)S
′(α0)σ 0 · S′(α0)σ 0 − A′′(α0)ε0 · ε0. (23)

Accordingly, if the material behavior is stress-hardening, then S′′(α0) < 0 and the second
order derivative of the total energy in (22) is the sum of three non negative terms. Moreover,
the three terms vanish simultaneously if and only if β = 0 and ε(v) = 0. Therefore, we can
conclude that
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Proposition 3 Any homogeneous state is directionally stable when the material behavior is
stress-hardening, independently of the type of boundary conditions.

It remains to study the stability of damaging states for stress-softening material and hence
we adopt the

Hypothesis 3 Throughout the remainder of the paper, the material behavior is with stress
softening and the homogeneous state is a damaging state.

In such a case, the type of boundary conditions becomes essential. Let us first remark that
damaging states are stable in all directions (v,0) where v ∈ C0. Indeed, for such directions,
the second derivative reads as P ′′(u0, α0)(v,0) = ∫

Ω
A(α0)ε(v) · ε(v)dx and hence is posi-

tive for any v which is not a rigid motion. Consequently, we only have to consider directions
of perturbation such that β �= 0. Let us now remark that if the material behavior is stress-
softening, then S′′(α0) > 0. Hence, to find the sign of the second order derivative is equiva-
lent to compare with 1 the infimum of the following Rayleigh ratio over C0 × (D+ \ {0}):

R(v, β)

=
∫

Ω
w1�(α0)

2∇β · ∇βdx + ∫
Ω

A(α0)(ε(v) − βS′(α0)σ 0) · (ε(v) − βS′(α0)σ 0)dx

1
2 S′′(α0)σ 0 · σ 0

∫
Ω

β2dx
.

(24)

More specifically, the state will be directionally stable if (resp., only if) infC0×(D+\{0}) R >

(resp. ≥)1. It is easy to conclude when the forces are controlled on the whole boundary,
whereas the other cases are more subtle and require a more detailed analysis.

3.5 Case of a Soft Device

The surface forces being σ 0n, the homogeneous state is (S(α0)σ 0x, α0) with α0 the unique
solution of S′(α0)σ 0 · σ 0 = w1. The set of admissible displacement directions is C0 =
H 1(Ω,R

3). Therefore, considering the direction (v, β) = (S′(α0)σ 0x,1) which belongs to
C0 × D+, one immediately obtains that the Rayleigh ratio vanishes:

R
(
S′(α0)σ 0x,1

) = 0. (25)

We can then conclude that

Proposition 4 Any damaging state in the case of a stress-softening material is unstable
when the boundary conditions are prescribed by a soft device.

4 Size Effects on the Stability of the Damaging States in the Case of a Hard Device

4.1 Setting of the Problem

At each point x of the boundary ∂Ω , the displacement is prescribed to ε0x. The homoge-
neous state is (ε0x, α0) with α0 given by (21) and the stress state is σ 0 = A(α0)ε0. Since
the displacements at the boundary are prescribed, the space of perturbation directions of the
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displacements is H 1
0 (Ω,R

n) and it does not contain the direction S(α0)σ 0x. Therefore, we
can not conclude as easily as in the case of a control by a soft device. In fact, we show that
the stability of the homogeneous state essentially depends on the size of the domain.

For studying these size effects, we consider families of domains such that all the mem-
bers of a given family share the same shape and only differ by their size. More precisely,
for a given domain Ω1 we associate the family of homothetic domains {ΩL = LΩ1}L>0.
To compare the Rayleigh ratio of the different members of the family, it is more conve-
nient to work with spaces of perturbation directions that are independent of the size of
the domain. From this perspective, one performs the change of coordinates x �→ y = x/L

which maps the domain ΩL into the domain Ω1. In the same way, one transports the di-
rections of perturbation (vL,βL) of H 1

0 (ΩL,R
n) × H 1(ΩL,R

+) into (v, β) of C0 × D+ =
H 1

0 (Ω1,R
n) × H 1(Ω1,R

+) by using

vL(x) = Lv(y), βL(x) = β(y). (26)

Accordingly, the Rayleigh ratio associated with the domain ΩL is denoted by RL and is
defined on the fixed space C0 × (D+ \ {0}) by

RL(v, β) = w1
�2

0
L2

∫
Ω1

∇β · ∇βdy + ∫
Ω1

A0(ε(v) − βe0) · (ε(v) − βe0)dy

1
2 S′′

0σ 0 · σ 0

∫
Ω1

β2dy
, (27)

where we have used the condensed notations

A0 = A(α0), S′′
0 = S′′(α0), σ 0 = A(α0)ε0,

�0 = �(α0), e0 = S′(α0)σ 0.
(28)

Note that the size of the domain appears explicitly in the definition of the Rayleigh ratio and
that for a given direction (v, β) the Rayleigh ratio is a decreasing function of L. Let us call

ρL(ε0,Ω1) = inf
C0×(D+\{0})

RL (29)

and let us first prove that the infimum is reached and positive.
It is clear that the infimum is non-negative and finite. Let (vn, βn) be a minimizing se-

quence. Owing to the homogeneity of the ratio, we can choose βn such that
∫

Ω1
β2

ndx = 1.

Since the numerator converges to the infimum, βn and vn are bounded in H 1(Ω1). Hence,
there exists a subsequence that weakly converges in H 1(Ω1) and strongly in L2(Ω1) to
(v∞, β∞) in C0 × D+ (which is weakly closed in H 1(Ω1,R

n) × H 1(Ω1)). We deduce that∫
Ω1

β2∞dx = 1. Then, by virtue of the weakly lower semi-continuity of the numerator of RL,
we obtain

RL(v∞, β∞) ≤ lim
n→∞ RL(vn, βn) = inf

C0×(D+\{0})
RL.

Therefore the infimum is a minimum. If the minimum was 0, β∞ should be a positive con-
stant and ε(v∞) should be equal to β∞e0. Integrating over Ω1 and taking into account that
v∞ = 0 on ∂Ω1 we should get 0 = e0

∫
Ω1

β∞dy which is impossible since e0 �= 0 and hence
ρL(ε0,Ω1) > 0.

For a given domain Ω1 and a given strain tensor ε0, it is clear from (27) that L �→
ρL(ε0,Ω1) is a decreasing function of L. Therefore, the homogeneous states have more
chance to be stable for small domains than for large ones. Let us first study the stability for
small domains before to consider the full range of sizes.
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4.2 Case of Small Domains

Let us prove the following fundamental result:

Proposition 5 Since limL→0 ρL(ε0,Ω1) = A(α0)S′(α0)σ 0·S′(α0)σ 0
1
2 S′′(α0)σ 0·σ 0

> 1, there exists for each

family of homothetic domains a positive (possibly infinite) critical size, say Lc(ε0,Ω1), be-
low which the damaging state (ε0x, α0) is directionally stable.

Proof To simplify the notation, we do not make explicit the dependence on ε0 and Ω1 of any
quantity. Let us call (vL,βL) the minimizer of RL and let us use the condensed notation (28).
Then the following relations hold:

ρL = RL(vL,βL), (30)

1 =
∫

Ω1

β2
Ldy, (31)

0 =
∫

Ω1

A0

(
ε(vL) − βLe0

) · ε(v)dy, ∀v ∈ C0, (32)

where the last equation is the stationary condition: R′
L(vL,βL)(v,0) = 0, ∀v ∈ C0. Taking

v = vL in (32) and inserting into (30) leads to

1

2
S′′

0σ 0 · σ 0 ρL = w1
�2

0

L2

∫
Ω1

∇βL · ∇βLdy + A0e0 · e0 −
∫

Ω1

βLA0e0 · ε(vL)dy. (33)

By virtue of the minimality of ρL, we have for any L > 0

0 < ρL ≤ RL(0,1) = A0e0 · e0
1
2 S′′

0σ 0 · σ 0
, (34)

hence the sequence L �→ ρL is bounded. Since ρL is a decreasing function of L, we deduce
that the sequence L �→ ρL converges to some ρ0 ≥ 0 when L goes to 0. From (34), we
deduce that the sequences L �→ vL and L �→ βL are bounded in H 1(Ω1). Therefore, (up to
extracting a subsequence) βL converges weakly in H 1(Ω1), strongly in L2(Ω1) and almost
everywhere to some β∗. Similarly, vL converges weakly in H 1(Ω1,R

n) and strongly in
L2(Ω1,R

n) to some v∗. Passing to the limit in (31) and (32) gives

1 =
∫

Ω1

β2
∗dy, (35)

0 =
∫

Ω1

A0

(
ε(v∗) − β∗e0

) · ε(v)dy, ∀v ∈ C0. (36)

Moreover, since for any L > 0, βL is non negative a.e., its limit β∗ is also non-negative
a.e. The inequality (34) shows in addition that ‖∇βL‖L2(Ω1) ≤ CL where C is a positive
constant (independent of L). By virtue of the lower semi-continuity of the norm, we get
‖∇β∗‖L2(Ω1) = 0 which means that β∗ is a positive constant over Ω1. Accordingly, (36)
reads ∫

Ω1

A0ε(v∗) · ε(v)dy = β∗A0e0 ·
∫

Ω1

ε(v)dy = 0, ∀v ∈ C0. (37)
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Taking v = v∗ and using the positivity of A0, we deduce that ε(v∗) = 0 and hence v∗ = 0.
Using (33) and (34) gives the following bounds for ρL

A0e0 · e0 −
∫

Ω1

βLA0e0 · ε(vL)dy ≤ 1

2
S′′

0σ 0 · σ 0 ρL ≤ A0e0 · e0. (38)

Since ε(vL) is bounded in L2(Ω1), ε(vL) converges weakly to ε(v∗) = 0 in L2(Ω1) and βL

converges strongly to β∗ in L2(Ω1). Hence, we have

lim
L→0

∫
Ω1

βLA0e0 · ε(vL)dy = 0.

Inserting into (38) gives the desired result

lim
L→0

ρL = ρ0 := A0e0 · e0
1
2 S′′

0σ 0 · σ 0
.

Note that this limit is independent of the shape of the family of domains. Now, making use
of the identity (23) we deduce from the strain hardening assumption 1

2 A′′(α0)ε0 · ε0 > 0
that ρ0 > 1. As L �→ ρL is a decreasing function, we conclude that there exists a critical size
Lc > 0 such that the state is stable if L < Lc and unstable if L > Lc . Of course, if Lc = +∞,
then the state is stable independently of the size of the domain. �

4.3 Case of Large Domains

We have shown in the previous subsection that a damaging state is directionally stable for
sufficiently “small” structures. It remains to see whether this stability property holds for the
full range of sizes or whether there exists a finite critical length beyond which the homoge-
neous state is no more stable. To answer this question it is sufficient to determine the limit
of ρL when L goes to ∞. Indeed, by virtue of Proposition 5, we have

Corollary 1 Depending on whether limL→∞ ρL(ε0,Ω1) is less or greater than 1, we are in
one of the two following situations:

1. If limL→∞ ρL(ε0,Ω1) ≥ 1, then the damaging homogeneous state is directionally stable,
independently of the size of the domain;

2. If limL→∞ ρL(ε0,Ω1) < 1, then the damaging homogeneous state is directionally stable
when the size of the domain is less than a (positive and finite) critical value Lc(ε0,Ω1)

and unstable otherwise.

Let us determine the asymptotic behavior of the Rayleigh ratio when the characteristic
size L of the structure goes to +∞. Note first that the limit exists because ρL is a decreasing
function of L bounded from below by 0. By definition, we have

ρL ≤ RL(v, β), ∀(v, β) ∈ C0 × D+. (39)

For a fixed direction (v, β), passing to the limit when L → +∞, we obtain

ρ∞ ≤ R∞(v, β), ∀(v, β) ∈ C0 × D+, (40)
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where R∞ is defined as the “limit” Rayleigh ratio

R∞(v, β) =
∫

Ω1
A0(ε(v) − βe0) · (ε(v) − βe0)dy

1
2 S′′

0σ 0 · σ 0

∫
Ω1

β2dy
, (41)

which involves no more gradient damage term. By taking the infimum over C0 × D+ in (40),
we deduce that ρ∞ ≤ infC0×D+ R∞. Moreover, since the contribution of gradient damage
terms to the Rayleigh ratio is non negative, we have conversely

ρL = RL(vL,βL) ≥ R∞(vL,βL) ≥ inf
C0×D+ R∞ (42)

and hence finally

ρ∞ = inf
C0×D+ R∞. (43)

Note that we are not ensured that the infimum is reached and we have to consider minimizing
sequences. The value of ρ∞ can be derived by following the method proposed by [12] to
calculate the relaxation of a double-well elastic potential. This requires the introduction of
some preliminary definitions.

Let S
n be the unit sphere of R

n, i.e. S
n = {k ∈ R

n : |k| = 1}. With k ∈ S
n we associate

the n-dimension subspace V (k) of M
n
s by

V (k) = {
k ⊗ v + v ⊗ k : v ∈ R

n
}
. (44)

Let δ(ε0) be the real number defined by

δ(ε0) = max
{k :|k|=1}

A0ξ(k) · ξ(k), (45)

where ξ(k) ∈ V (k) is obtained by solving the following minimization problem (which de-
pends only on ε0):

ξ(k) = argmin
ξ∈V (k)

A0(e0 − ξ) · (e0 − ξ). (46)

Following the method proposed by Kohn [12], let us prove the

Lemma 1 The infimum of R∞ over C0 × (D+ \ {0}) is independent of Ω1 and is given by

ρ∞(ε0) = A(α0)S′(α0)σ 0 · S′(α0)σ 0 − δ(ε0)
1
2 S′′(α0)σ 0 · σ 0

. (47)

Proof By homogeneity, we can assume that β is such that
∫

Ω1
β2dy = 1. Accordingly, set-

ting

Δ(v, β) =
∫

Ω1

(
A0ε(v) · ε(v) − 2βA0e0 · ε(v)

)
dy

one has to prove that

−δ(ε0) = inf
β≥0∫

Ω1
β2dy=1

{
min

v∈H 1
0 (Ω1,Rn)

Δ(v, β)
}
. (48)
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It is possible to prove directly that the infimum does not depend on Ω1 and hence to take for
Ω1 the cube (0,2π)n. Moreover, the Dirichlet conditions for v can be replaced by periodic
conditions without changing the infimum, see [12, Lemma 2.1]. By density, the infimum can
be approached by piecewise constant damage fields β . Accordingly, we consider β such that

β(y) =
N∑

i=1

βiχi(y), βi ≥ 0, χi(y) ∈ {0,1}, χi(y)χj (y) = 0 if j �= i,
∑

i

χi(y) = 1,

with
∫

Ω1

χidy = θi meas(Ω1),

N∑
i=1

β2
i θi meas(Ω1) = 1.

Thus, the χi ’s are characterization functions, the βi ’s are the corresponding constant values
of β and the θi ’s are the volume fractions of the domains where β is constant. Any β in
D+ can be approached by such piecewise constant functions and hence we can construct a
minimizing sequence by such functions. For such a β , Δ(v, β) becomes

Δ(v, β) =
∫

Ω1

(
A0ε(v) · ε(v) − 2

N∑
i=1

χiβiA0e0 · ε(v)

)
dy

and the problem is equivalent to finding the relaxation of an elastic potential which contains
N wells located at ξ i = βie0. In [12] the relaxation of a double-well potential is performed
by a procedure which cannot be extended in general to more than two wells. However, in our
case, since all the wells are proportional to e0, we can still follow the procedure proposed in
[12, Proposition 8.1] and based on Fourier analysis. Taking the Fourier transform of the N

periodic characteristic functions χi , i.e.,

χi(y) =
∑
k∈Zn

χ̂i(k) expik·y,

and minimizing Δ(v,
∑

i=1 βiχi) over all the periodic v, one gets

min
v

Δ

(
v,

∑
i=1

βiχi

)
= −

∑
k∈Zn\{0}

N∑
i,j=1

βiβj χ̂i(k)χ̂j (k)A0ξ(k) · ξ(k),

where z denotes the complex conjugate of z and ξ(k) is given by (46). Since

∑
k∈Zn\{0}

N∑
i,j=1

βiβj χ̂i(k)χ̂j (k) =
∫

Ω1

(
N∑

i=1

βi

(
χi(y) − θi

))2

dy

= 1 − 1

meas(Ω1)

(∫
Ω1

β(y)dy

)2

,

one immediately obtains

inf
β

min
v

Δ(v, β) ≥ − max
{k:|k|=1}

A0ξ(k) · ξ(k) = −δ(ε0).



Stability and Size Effects with Gradient Damage Models 77

To obtain the converse inequality, one first chooses k as a maximizer of A0ξ(k) · ξ(k) over
S

n and one then approaches k by k̃/‖k̃‖ with k̃ ∈ Z
n. For β we construct a minimizing

sequence {βm}m∈N such that

βm(y) = fm(k · y) with fm(θ) =
{ √

m

(2π)n/2 if 0 < θ < 2π
m

,

0 otherwise.

Accordingly,
∫

Ω1
β2

m(y)dy = 1 and limm→∞
∫

Ω1
βm(y)dy = 0. We finally obtain

lim
m→∞ min

v
Δ(v, βm) = −δ(ε0),

which completes the proof. �

Since ρ∞ does not depend on the shape of the reference domain Ω1 but only on ε0, we
get that, if ρ∞(ε0) ≥ 1, then Lc(ε0,Ω1) = +∞, ∀Ω1. Note, however, that if ρ∞(ε0) < 1,
then the critical length (is finite and) depends in general both on ε0 and Ω1. The following
Proposition gives the cases where ρ∞(ε0) = 0 and hence cases where the damaging state is
necessarily unstable for sufficiently large structures:

Proposition 6 When the damaging homogeneous state is such that one of the two following
properties holds

(i) e0 := S′(α0)A(α0)ε0 is a rank one tensor of M
n
s ,

(ii) e0 := S′(α0)A(α0)ε0 is a rank two tensor of M
n
s and its nonzero eigenvalues have oppo-

site signs,

then ρ∞(ε0) = 0 and hence 0 < Lc(ε0,Ω1) < +∞ for all Ω1. Conversely, ρ∞(ε0) = 0 only
if e0 satisfies (i) or (ii).

Proof It is clear from (45)–(47) that ρ∞(ε0) = 0 if and only if e0 belongs to V (k) for
some k.

If e0 is a rank one tensor of M
n
s , then it can be written e0 = γ k⊗k with k ∈ S

n and hence
e0 ∈ V (k).

If e0 is a rank-two tensor of M
n
s with its two non zero eigenvalues of opposite signs, then

e0 can read as e0 = γ1k1 ⊗ k1 − γ2k2 ⊗ k2 with γ1 > 0, γ2 > 0, k1 and k2 ∈ S
n, k1 · k2 = 0.

Setting

k =
√

γ1

γ1 + γ2
k1 +

√
γ2

γ1 + γ2
k2, v = √

γ1 + γ2

(√
γ1

2
k1 −

√
γ2

2
k2

)
,

one easily checks that e0 = k ⊗ v + v ⊗ k.
If e0 = k ⊗ v + v ⊗ k with k ∈ S

n and v ∈ R
n \ {0}, then e0 is a rank one or a rank two

tensor according to whether or not v is parallel to k. When v is not parallel to k, then v can
read as v = vk + v∗k∗ with v∗ �= 0 and k∗ ∈ S

n, k · k∗ = 0. Therefore, e0 can be represented
by the following matrix in the basis (k,k∗):

e0 =
(

2v v∗
v∗ 0

)
(k,k∗)

.

The product of its two eigenvalues being −v2∗ , these eigenvalues have opposite signs. �



78 K. Pham, J.-J. Marigo

When the damaging state does not satisfy one of the two cases above, one cannot con-
clude without giving more detailed information on the model. As an illustrative example,
we will consider in the next subsection the case of spherical homogeneous states with a
particular class of isotropic brittle materials.

4.4 Stability of Spherical Homogeneous States for a Class of Isotropic Brittle Materials

Let us consider the following damage law:

A(α) = a(α)A0 with A0
ijkl = λδij δkl + μ(δikδjl + δilδjk), (49)

S(α) = s(α)S0 with S0
ijkl = − ν

E
δij δkl + 1 + ν

2E
(δikδjl + δilδjk), (50)

where a : [0, αm) → R
+, α �→ a(α) is a decreasing twice differentiable dimensionless func-

tion such that a(0) = 1, a(αm) = 0 and a′ < 0. In (50), s denotes the compliance factor, i.e.,
s = 1/a. Accordingly, parameters (λ,μ) are the Lamé coefficients, ν the Poisson’s ratio and
E the Young modulus of the sound material. Moreover, the Poisson’s ratio does not change
when damage grows. We will only consider cases with spatial dimension n = 2 or 3. Hence,
the positivity of stiffness and compliance tensors is equivalent to

μ > 0, nλ + 2μ > 0, E > 0, −1 < ν <
1

n − 1
. (51)

Relations between stiffness and compliance coefficients read as

2μ = E

1 + ν
, λ = νE

(1 + ν)(1 − (n − 1)ν)
, (52)

while the strain-hardening and stress-softening conditions are equivalent to a′′ > 0 and
s ′′ > 0.

Displacements are prescribed at the boundary of the body so that the homogeneous strain
and stress states are spherical tensors:

ε0 = εI, σ 0 = (nλ + 2μ)a(α0)εI, (53)

where n is the spatial dimension, ε is a given real number such that the homogeneous state
be a damaging state, i.e., ε ≥ εc with

εc =
√

2w1

−(nλ + 2μ)a′(0)
. (54)

The damage state α0 depends only on ε and is given by

α0 = (
a′)−1

(
a′(0)

ε2
c

ε2

)
. (55)

The relation between spherical stress σ and the spherical strain ε is then

σ = (nλ + 2μ)a(α0)ε. (56)
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Fig. 1 Spherical stress versus
spherical strain response in the
case of a strongly brittle material
(left) or a weakly brittle material
(right)

Providing this choice of loading and damage law, a direct calculation gives

⎧⎪⎪⎨
⎪⎪⎩

A(α0)e0 · e0 = n(nλ + 2μ)s ′(α0)
2a(α0)

3ε2,

δ(ε0) = (nλ+2μ)2

λ+2μ
s ′(α0)

2a(α0)
3ε2,

1
2 S′′(α0)σ 0 · σ 0 = 1

2n(nλ + 2μ)s ′′(α0)a(α0)
2ε2.

(57)

The unique calculation which is not straightforward is that of δ(ε0). To obtain the expression
above, one starts from (45)–(46) and uses the special form (49) of A0. Then, introducing v(k)

as the optimal vector of R
n, i.e., such that ξ(k) = k ⊗ v(k) + v(k) ⊗ k, we get

v(k) = argmin
v∈Rn

(
(λ + μ)(v · k)2 + μv · v − (nλ + 2μ)s ′(α0)a(α0)εv · k

)
.

A direct calculation gives v(k) = nλ+2μ

2(λ+2μ)
s ′(α0)a(α0)εk, then it turns out that A0ξ(k) · ξ(k)

is independent of k and one finally gets the expression (57) for δ(ε0).
We deduce from (47) and (57) that ρ∞(ε) reads

ρ∞(ε0) = (n − 1)(1 − (n − 1)ν)

n(1 − (n − 2)ν)

2s ′(α0)
2

s(α0)s ′′(α0)
(58)

and the fact that it is greater or less than 1 depends on the strain state ε, the spatial dimension
n, the Poisson’s ratio ν and the compliance function s. Let us study these dependencies in
two examples.

Example 1 Let us first consider a family of strongly brittle materials in the sense of [24]
such that the maximal damage value αm and the stiffness function α �→ a(α) are given by

αm = 1, a(α) = (1 − α)q, q > 1, (59)

where the exponent q must be greater than 1 so that the strain hardening condition is sat-
isfied. The condition of stress softening is then automatically satisfied. Relations (55) and
(56) between α0, σ and ε for a damaging state read as

α0 = 1 −
(

εc

ε

) 2
q−1

, σ = σc

(
εc

ε

) q+1
q−1

, σc = (nλ + 2μ)εc,

see Fig. 1 (left). To compare ρ∞(ε0) with 1, let us discriminate according to the spatial
dimension n.
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Fig. 2 For a strongly brittle
material, the gray area depicts the
range of exponent q and
Poisson’s ratio ν for which
Lc(ε0,Ω1) < +∞, i.e., the
critical size of the domain below
which the damaging
homogeneous spherical state is
directionally stable is finite. Left:
n = 2; Right: n = 3

For dimension n = 2, we find that

ρ∞(ε0) = (1 − ν)q

q + 1

and hence Lc(ε0,Ω1) < +∞ when νq + 1 > 0. This situation corresponds to the gray area
in Fig. 2 (left).

For dimension n = 3, we find that

ρ∞(ε0) = 4(1 − 2ν)q

3(1 − ν)(q + 1)

and hence Lc(ε0,Ω1) < +∞ when (1 − 5ν)q < 3(1 − ν). This situation corresponds to the
gray area in Fig. 2 (right).

Example 2 Let us now consider a family of weakly brittle materials in the sense of [24]:

αm = +∞, a(α) = 1

(1 + α)p
, p > 1, (60)

where the maximal damage value is infinite and the exponent p must be greater than 1 so
that the behavior be with softening. The relations (55) and (56) between α0, σ and ε for a
damaging state read as

α0 =
(

ε

εc

) 2
p+1 − 1, σ = σc

(
εc

ε

) p−1
p+1

, σc = (nλ + 2μ)εc,

see Fig. 1 (right). To compare ρ∞(ε0) with 1, we discriminate again according to the spatial
dimension.

For dimension n = 2, we find that

ρ∞(ε0) = (1 − ν)p

p − 1

and thus Lc(ε0,Ω1) < +∞ when νp > 1. This situation corresponds to the gray area in
Fig. 3 (left).

For dimension n = 3, we find that

ρ∞(ε0) = 4(1 − 2ν)p

3(1 − ν)(p − 1)

and thus Lc(ε0,Ω1) < +∞ when (1 − 5ν)p + 3(1 − ν) < 0. This situation corresponds to
the gray area in Fig. 3 (right).
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Fig. 3 For a weakly brittle
material, the gray area depicts the
range of exponent q and
Poisson’s ratio ν for which
Lc(ε0,Ω1) < +∞, i.e., the
critical size of the domain below
which the damaging
homogeneous spherical state is
directionally stable is finite. Left:
n = 2; Right: n = 3

5 Size and Shape Effects in the Stability of the Homogeneous Damaging States in the
Case of a Uniaxial Tensile Test

5.1 Setting of the Problem

We consider now the third type of boundary conditions, i.e., those which corresponds to a
uniaxial tensile test (the most common experimental test), see Sect. 3. The reference domain
Ω1 is the three dimensional cylinder of length 1 and cross-section Σ1, i.e. Ω1 = (0,1) × Σ1.
Other domains are obtained by homothety, ΩL = LΩ1, L > 0. Using the change of coordi-
nates x �→ y = x/L and the mappings (26), we can consider that all perturbation fields are
defined on Ω1 and that the sets of kinematically admissible displacement perturbations and
admissible damage perturbations are independent of L and given by

C0 = {
v ∈ H 1

(
Ω1,R

3
) : v1 = 0 on {0,1} × Σ1

}
, D+ = {

β ∈ H 1(Ω1) : β ≥ 0
}
.

The constitutive property of the material is assumed to be isotropic and the damage law is
such that the Poisson’s ratio remains constant and equal to ν ∈ (−1,1/2). Thus the stiffness
and compliance tensors are given by (49)–(50):

A(α) = a(α)A0, S(α) = s(α)S0 with a > 0, a′ < 0, a′′ > 0, s = 1/a, s ′′ > 0.

Accordingly, the damaging homogeneous state is (ε0y, α0) where the strain tensor ε0 and
the damage state α0 are given by

ε0 = εe1 ⊗ e1 − νεe2 ⊗ e2 − νεe3 ⊗ e3, a′(α0) = a′(0)
ε2
c

ε2
, ε ≥ εc =

√
2w1

−a′(0)E
.

The associated homogeneous stress tensor is uniaxial and reads as

σ 0 = a(α0)Eεe1 ⊗ e1.

The Rayleigh ratio RL associated with the domain ΩL and defined on the fixed space C0 ×
(D+ \ {0}) is still given by (27) if we use the condensed notations (28). By virtue of the
particular forms of the damage law and of the specific properties of the uniaxial test, some
quantities can be easily calculated. Indeed, we have

e0 = −a′(α0)

a(α0)
ε0, A0e0 = −a′(α0)Eεe1 ⊗ e1,

A0e0 · e0 = a′(α0)
2

a(α0)
Eε2, S′′

0σ 0 · σ 0 = s ′′(α0)a(α0)
2Eε2.

(61)
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The minimum of RL over C0 × (D+ \ {0}) depends a priori on L, ε and Σ1. Thus, let us set

ρL(ε,Σ1) = min
C0×(D+\{0})

RL.

The homogeneous state is directionally stable depending on whether ρL(ε,Σ1) is less or
greater than 1. Since only a part of the displacements are controlled on the boundary, we
are in an intermediate situation between a soft device and a hard device. However, it turns
out that the present case is quite similar to a hard device as it is proved in the following
proposition.

5.2 Size Effects

Proposition 7 The minimum ρL(ε,Σ1) of the Rayleigh ratio is a decreasing function of L

such that

lim
L→0

ρL(ε,Σ1) = 1

1 − a(α0)a′′(α0)

2a′(α0)2

> 1. (62)

Therefore, the damaging homogeneous state is directionally stable provided that the size of
the cylinder is small enough.

Proof The proof is essentially the same as the one of Proposition 5 and we simply emphasize
the differences. The notations are unchanged, we still call (vL,βL) the minimizer of RL

which still satisfy (30)–(32). Note that in this case vL is not unique, but is determined up to a
rigid motion compatible with the boundary conditions, i.e. up to a transversal translation and
a rotation around the x1-axis. This indeterminacy can be fixed by considering the quotient
of C0 by these rigid motions. Then, we deduce that the sequences L �→ ρL, L �→ vL and
L �→ βL are bounded and converge (for the relevant topology) respectively to ρ0 ≥ 0, v∗ ∈ C0

and a positive constant β∗. Passing to the limit in (32) gives
∫

Ω1

A0ε(v∗) · ε(v)dy = β∗A0e0 ·
∫

Ω1

ε(v)dy, ∀v ∈ C0. (63)

Since A0e0 · ε(v) = −a′(α0)Eεv1,1, we still have A0e0 · ∫
Ω1

ε(v)dy = 0, ∀v ∈ C0, and hence
ε(v∗) = 0. The end of the proof is unchanged, one obtains

ρ0 = A0e0 · e0
1
2 S′′

0σ 0 · σ 0
.

By using (61), one finally gets (62). �

To know if the stability of the homogeneous state holds for any size of the cylinder, one
must compare ρ∞(ε,Σ1) := limL→∞ ρL(ε,Σ1) with 1. Following the same procedure as in
the previous section, one easily obtains

ρ∞(ε,Σ1) = inf
C0×(D+\{0})

R∞,

where R∞ is still given by (41) (provided that one uses (61) for the definition of the state de-
pendent quantities). However, since C0 ⊃ H 1

0 (Ω,R
3), one has merely infH 1

0 (Ω,R3)×(D+\{0}) ×
R∞ ≥ infC0×(D+\{0}) R∞ and one can only use Lemma 1 to obtain an upper bound for
ρ∞(ε,Σ1). More specifically, one gets
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Lemma 2 When the size L of the domain tends to ∞, the limit value ρ∞(ε,Σ1) of the
minimum of the Rayleigh ratio is bounded from above as follows:

ρ∞(ε,Σ1) ≤ 1 − (1+ν)(1−2ν)

1−ν

1 − a(α0)a′′(α0)

2a′(α0)2

if ν ≤ 0,

ρ∞(ε,Σ1) ≤ ν2

1 − a(α0)a′′(α0)

2a′(α0)2

if ν ≥ 0.

(64)

Proof By virtue of Lemma 1, one has

ρ∞(ε,Σ1) ≤ A0e0 · e0 − maxk∈S3 A0ξ(k) · ξ(k)
1
2 S′′

0σ 0 · σ 0
.

It remains to determine maxk∈S3 A0ξ(k) · ξ(k). Let us first determine ξ(k) for k ∈ S
3. By its

definition (46), ξ(k) is the element of V (k) which minimizes A0(e0 − ξ) · (e0 − ξ) over all
the ξ of V (k). Accordingly, ξ(k) can read as ξ(k) = k ⊗ v(k) + v(k) ⊗ k with v(k) ∈ R

3

given by

v(k) = argmin
v∈R3

{
(λ + μ)(v · k)2 + μv · v + a′(α0)

a(α0)
Eε k1v1

}
.

We immediately deduce that the condition of optimality for v(k) reads as

(λ + μ)v(k) · k k + μv(k) + a′(α0)

2a(α0)
Eε k1e1 = 0,

from which one easily obtains v(k)

v(k) = a′(α0)

a(α0)

Eε

2μ

(
λ + μ

λ + 2μ
k2

1 k − k1e1

)
.

Therefore, one gets the following expression of A0ξ(k) · ξ(k):

A0ξ(k) · ξ(k) = 2a′(α0)
2

a(α0)
Eε2(1 + ν)k2

1

(
1 − k2

1

2(1 − ν)

)
,

which is a strictly concave function of k2
1 that one has to maximize over the closed interval

[0,1]. The maximum is reached for k2
1 = 1 or k2

1 = 1−ν depending on whether ν is negative
or positive. After elementary calculations, one finally obtains (64). �

Note that, when ν = 0, Lemma 2 gives ρ∞(ε,Σ1) = 0, which a result is in agreement
with Proposition 6, e0 being then of rank one. Accordingly, when the Poisson’s ratio van-
ishes, the homogeneous state is stable if and only if the size of the cylinder is small enough,
the critical length Lc(ε,Σ1) depending a priori on the damage state and on the shape of the
cross section. Since ρ∞ depends continuously on the Poisson’s ratio, this property holds true
in some interval of ν = 0. The fact that ρ∞(ε,Σ1) < 1 (and hence that there exists a finite
critical size beyond which the homogeneous state is unstable) for any ν ∈ (−1,+1/2) can
depend on the damage model. Let us consider for instance the case of the family of strongly
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Fig. 4 For a strongly brittle
material, the gray area depicts the
range of exponent q and
Poisson’s ratio ν for which the
critical size of the domain below
which the damaging
homogeneous uniaxial state is
directionally stable is necessarily
finite

brittle materials of the example 1 above, see (59). Inserting into (64) gives

ρ∞(ε,Σ1) ≤ 4ν2q

(1 − ν)(q + 1)
if ν ≤ 0, ρ∞(ε,Σ1) ≤ 2ν2q

(q + 1)
if ν ≥ 0.

Accordingly, one necessarily has Lc(ε,Σ1) < +∞ (and that for every ε ≥ εc and every Σ1)
when the constitutive parameters q and ν satisfy the following inequalities

((
1 − ν − 4ν2

)
q + 1 − ν ≥ 0 and ν < 0

)
or ν ≥ 0.

This corresponds to the gray area in Fig. 4. It appears that the above estimate of ρ∞(ε,Σ1)

is not sufficient to ensure that Lc(ε,Σ1) < +∞ in the full range of material parameters. It
turns out that this property can depend on the shape of the cross-section as it is explained in
the next subsection.

5.3 Shape Effects

5.3.1 General Estimates

Throughout this subsection, Greek indices run from 2 to 3 whereas Latin indices run from 1
to 3. We propose here to study the influence of the slenderness of the family of cylinders on
the stability of the homogeneous state. The slenderness parameter η is defined as the ratio
of the diameter of the cross-section by the length of the cylinder, the diameter being defined
as the smallest disk which contains the cross-section. The inverse 1/η of the slenderness is
the thinness. The cylinder of unit length and slenderness η is denoted by Ω

η

1 and its cross-
section by Σ

η

1 instead of Ω1 and Σ1 as it was made in the previous sections. Accordingly,
Ω

η

1 = (0,1) × Σ
η

1 and Ω
η

L = LΩ
η

1 .
To study the influence of η we use the mapping y = (y1, y2, y3) �→ z = (y1, y2/η, y3/η)

which transforms the cross-section Σ
η

1 into its homothetic one Σ1
1 of diameter 1, and the

cylinder Ω
η

1 onto Ω1
1 = (0,1) × Σ1

1 . The origin of the coordinates is chosen so that (0,0)

is the center of Σ1
1 . The area of Σ1

1 and its geometrical second moments will be denoted by
|Σ1

1 | and I 1
αβ :

∣∣Σ1
1

∣∣ =
∫

Σ1
1

dz2dz3,

∫
Σ1

1

zαdz2dz3 = 0, I 1
αβ =

∫
Σ1

1

zαzβdz2dz3. (65)

Moreover, with the displacement field v̂ defined on Ω
η

1 we associate the “rescaled” dis-
placement field v defined on Ω1

1 by

v̂1(y) = a′(α0)

a(α0)
εv1(z), v̂α(y) = 1

η

a′(α0)

a(α0)
εvα(z), α ∈ {2,3}.
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Accordingly, the Rayleigh ratio which governs the stability of the homogeneous state of Ω
η

L

can be seen as the following functional Rη

L defined on the fixed set C1 × D+
1 by

Rη

L(v, β) = N η

L(v, β)

1 − a(α0)a′′(α0)

2a′(α0)2

, (66)

with

N η

L(v, β) = 1 +
∫

Ω1
1

(
d2

0

L2
β2

,1 + λ + 2μ

E
ε11(v)2 + 2βε11(v)

)
dz

+ 1

η2

∫
Ω1

1

(
d2

0

L2
β,αβ,α + 2λ

E
ε11(v)εαα(v) + 4μ

E
εα1(v)εα1(v)

)
dz

+ 1

η4

∫
Ω1

1

(
λ

E
εαα(v)εββ(v) + 2μ

E
εαβ(v)εαβ(v)

)
dz (67)

and

d2
0 = w1a(α0)�(α0)

2

Eε2a′(α0)2
. (68)

In the set C1 of admissible displacements, we introduce three integral constraints so that the
transversal translation and the axial rotation of the cylinder are fixed:

C1 =
{

v ∈ H 1
(
Ω1

1 ,R
3
) : v1 = 0 on {0,1} × Σ1

1 ,

∫
Ω1

1

v2dz =
∫

Ω1
1

v3dz =
∫

Ω1
1

(z3v2 − z2v3)dz = 0

}
.

The admissible damage fields are normalized and D+
1 reads as

D+
1 =

{
β ∈ H 1

(
Ω1

1

) : β ≥ 0,

∫
Ω1

1

β2dz = 1

}
.

Let (vη

L,β
η

L) be a minimizer of Rη

L and hence of N η

L over C1 × D+
1 (we know that such a

minimizer exists). The optimality condition (32) becomes

0 =
∫

Ω1
1

(
λ + 2μ

E
ε11

(
vη

L

) + β
η

L

)
ε11(v)dz

+ 1

η2

∫
Ω1

1

(
λ

E
ε11

(
vη

L

)
εαα(v) + λ

E
εαα

(
vη

L

)
ε11(v) + 4μ

E
εα1

(
vη

L

)
εα1(v)

)
dz

+ 1

η4

∫
Ω1

1

(
λ

E
εαα

(
vη

L

)
εββ(v) + 2μ

E
εαβ

(
vη

L

)
εαβ(v)

)
dz. (69)

After introducing the symmetric tensor field ε
η

L and the vector field gη

L,

ε
η

L =
(

ε11(v
η

L) 1
η
ε1β(vη

L)

1
η
εα1(v

η

L) 1
η2 εαβ(vη

L)

)
, gη

L =
(

β
η

L,1
1
η
β

η

L,α

)
, (70)
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the minimum N
η

L of N η

L can read as

N
η

L := N η

L

(
vη

L,β
η

L

) = 1 +
∫

Ω1
1

(
A0

E
ε

η

L · εη

L + d2
0

L2
gη

L · gη

L

)
dz + 2

∫
Ω1

1

β
η

Lε
η

L11dz, (71)

where A0 is the stiffness tensor of the sound material. Since N η

L(v = 0, β =
√

|Σ1
1 |) = 1,

we have N
η

L ≤ 1. Owing to the positivity of A0, there exists a positive constant κ (which
depends only on ν) such that A0ε · ε ≥ κEε · ε. By Cauchy-Schwarz inequality and using
the normalization of β

η

L, we get

∫
Ω1

1

β
η

Lε
η

L11dz ≥ −∥∥β
η

L

∥∥
0

∥∥ε
η

L11

∥∥
0
= −∥∥ε

η

L11

∥∥
0
.

Therefore, we have the inequalities

1 + κ
∥∥ε

η

L

∥∥2

0
+ d2

0

L2

∥∥gη

L

∥∥2

0
− 2

∥∥ε
η

L11

∥∥
0
≤ N

η

L ≤ 1,

from which we deduce the following estimates,

∥∥ε11

(
vη

L

)∥∥
0
≤ C,

∥∥εα1

(
vη

L

)∥∥
0
≤ Cη,

∥∥εαβ

(
vη

L

)∥∥
0
≤ Cη2,

∥∥β
η

L,1

∥∥
0
≤ CL,

∥∥β
η

L,α

∥∥
0
≤ CηL,

(72)

where C stands for a generic positive constant which depends only on ν. Since these esti-
mates hold in the whole range of L and η, they are useful to study the asymptotic cases of
very slender or very thin cylinders. However, we will consider here only slender cylinders.

5.3.2 Case of Slender Cylinders: η � 1

The length L is fixed and we study the behavior of (vη

L,β
η

L) when η goes to 0. Once this
asymptotic behavior will be found for any given L, we will study the dependence on L

and in particular the asymptotic behavior when L goes to infinity. Note that this procedure
is different from the one followed to study the size effects. Indeed, in this latter case, the
slenderness η was fixed and we studied the dependence of (vη

L,β
η

L) on L.
Let us prove the following:

Proposition 8 For a given L, when η goes to 0, the minimum of the Rayleigh ratio ρ
η

L tends
to a limit given by

lim
η→0

ρ
η

L = ρ0
L := N0

L

1 − a(α0)a′′(α0)

2a′(α0)2

,

N0
L = min

β∈(D+\{0})

d2
0

L2

∫ 1
0 β ′(ζ )2dζ + (

∫ 1
0 β(ζ )dζ )2

∫ 1
0 β(ζ )2dζ

,

(73)

where D+ = {β ∈ H 1(0,1) : β ≥ 0}.
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Proof The proof is divided into several steps.
1. Asymptotic behavior of β

η

L. We deduce from (72) that β
η

L is bounded in H 1(Ω1
1 )

and hence (up to extracting a subsequence) weakly converges in H 1(Ω1
1 ) and strongly in

L2(Ω1
1 ) to some β0

L ∈ D+
1 . Furthermore, since ‖βη

L,α‖0 ≤ CηL, β
η

L,α converges strongly to
0 in L2(Ω1

1 ) and hence β0
L is a non-negative function of only z1 which can be seen as an

element of D+ such that its L2(0,1) norm is equal to 1/|Σ1
1 |.

2. Asymptotic behavior of vη

L. To a large extent, this step roots at the basis of the con-
struction of the asymptotic theory of linearly elastic beams. Since this procedure is now well
known, we merely recall the main lines of the proofs and the interested reader is invited to
refer to Geymonat et al. [10, 11], Marigo and Meunier [16] for more details.

We deduce from (72) that vη

L is bounded in H 1(Ω1
1 ,R

3). Hence, one can extract a sub-
sequence which weakly converges to some v0

L ∈ C1. Furthermore, since ‖εα1(v
η

L)‖0 ≤ Cη

and ‖εαβ(vη

L)‖0 ≤ Cη2, v0
L satisfies εα1(v0

L) = εαβ(v0
L) = 0 and hence is a Bernoulli-Navier

displacement field. Accordingly, v0
L can read as

v0
L(z) = (

VL1(z1) − zαV
′
Lα(z1)

)
e1 + VLα(z1)eα. (74)

Moreover, in order that v0
L be in C1, the fields VLi must satisfy

VL1 ∈ H 1
0 (0,1), VLα ∈ H 2(0,1) with

V ′
Lα(0) = V ′

Lα(1) = 0,

∫ 1

0
VLα(ζ )dζ = 0.

(75)

From the estimates, we also get that εαβ(vη

L)/η2 weakly converges in L2(Ω1
1 ) to εαβ(v∗

L)

where v∗
L does not belong in general to C1 but merely to L2((0,1),H 1(Σ1

1 )), i.e., the space
of functions f which are in L2(Ω1

1 ) and whose tangential derivatives f,α are also in L2(Ω1
1 ).

Accordingly, v∗
L does not satisfy in general the boundary conditions at z1 = 0 and z1 = 1.

3. Determination of v0
L and v∗

L. Multiplying (69) by η2 and passing to the limit as η → 0
leads to

0 =
∫

Ω1
1

(
λ
(
ε11

(
v0

L

) + εαα

(
v∗

L

))
εββ(v) + 2μεαβ

(
v∗

L

)
εαβ(v)

)
dz, ∀v ∈ C1. (76)

This equation is nothing but the variational formulation of the de Saint Venant’s problems
of stretching and bending which give v∗

L in terms of v0
L. More specifically, one obtains that

the plane components of the stress must vanish, i.e.,

λ
(
ε11

(
v0

L

) + εγ γ

(
v∗

L

))
δαβ + 2μεαβ

(
v∗

L

) = 0 in Ω1
1 ,

which gives in particular

εαα

(
v∗

L

) = − λ

λ + μ
ε11

(
v0

L

)
in Ω1

1 . (77)

Taking for v in (69) a Bernoulli-Navier displacement field, i.e.,

v(z) = (
V1(z1) − zαV

′
α(z1)

)
e1 + Vα(z1)eα, (78)

and passing to the limit as η → 0 leads to
∫

Ω1
1

(
λ + 2μ

E
ε11

(
v0

L

) + λ

E
εαα

(
v∗

L

) + β0
L

)
ε11(v)dz = 0. (79)
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Inserting (77) into (79) and remarking that λ + 2μ − λ2/(λ + μ) = E, one finally obtains
the problem which gives v0

L in terms of β0
L:

∫
Ω1

1

(
ε11

(
v0

L

) + β0
L

)
ε11(v)dz = 0, (80)

where the equality holds for any Bernoulli-Navier displacement in C1. Using (65), (74), (78)
and the fact that β0

L depends only on z1, (80) becomes

∫ 1

0

∣∣Σ1
1

∣∣(V 0′
L1(z1) + β0

L(z1)
)
V ′

1(z1)dz1 +
∫ 1

0
I 1
αβV 0′′

Lα(z1)V
′′
β (z1)dz1 = 0

and holds for any V1 ∈ H 1
0 (0,1) and any Vα ∈ H 2(0,1) such that V ′

α(0) = V ′
α(1) = 0 and∫ 1

0 Vα(ζ )dζ = 0. One immediately deduces that VLα = 0 (no bending) and that V 0′
L1(z1) +

β0
L(z1) = constant = ∫ 1

0 β0
L(ζ )dζ . Finally one gets

v0
L(z) =

(
z1

∫ 1

0
β0

L(ζ )dζ −
∫ z1

0
β0

L(ζ )dζ

)
e1. (81)

4. Lower bound of lim infη→0 ρ
η

L. By virtue of (69), the minimum of N η

L can read as

N η

L

(
vη

L,β
η

L

) = 1 + d2
0

L2

∫
Ω1

1

β
η

L,1β
η

L,1dz + d2
0

η2L2

∫
Ω1

1

β
η

L,αβ
η

L,αdz +
∫

Ω1
1

β
η

Lε11

(
vη

L

)
dz. (82)

Let us examine the limit of each term in the right hand side of (82). By lower semi-continuity
of the L2(Ω1

1 ) norm, one has

lim
η→0

∫
Ω1

1

β
η

L,1β
η

L,1dz ≥
∫

Ω1
1

β0
L,1β

0
L,1dz = ∣∣Σ1

1

∣∣
∫ 1

0
β0′

L (ζ )2dζ.

By the positivity of the norm, one has

lim
η→0

1

η2

∫
Ω1

1

β
η

L,αβ
η

L,αdz ≥ 0.

By virtue of the weak convergence of ε11(v
η

L) and of the strong convergence of β
η

L in
L2(Ω1

1 ), after using (81) and recalling that |Σ1
1 | ∫ 1

0 β0
L(ζ )2dζ = 1, one gets

lim
η→0

∫
Ω1

1

β
η

Lε11

(
vη

L

)
dz =

∫
Ω1

1

β0
Lε11

(
v0

L

)
dz = ∣∣Σ1

1

∣∣
(∫ 1

0
β0

L(ζ )dζ

)2

− 1.

Since all these estimates hold for any convergent subsequence, one has obtained

lim inf
η→0

N η

L

(
vη

L,β
η

L

) ≥ |Σ1
1 | d

2
0

L2

∫ 1

0
β0′

L (ζ )2dζ + |Σ1
1 |

(∫ 1

0
β0

L(ζ )dζ

)2

.

Since β0
L is an element of D+ with a L2(0,1) norm equals to 1/

√
|Σ1

1 |, one concludes that

lim inf
η→0

ρ
η

L ≥ ρ0
L,

with ρ0
L given by (73).
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5. Upper bound of lim supη→0 ρ
η

L. Let β̄L be a minimizer (such a minimizer exists be-
cause one can prove that the infimum is reached in the same way as for N η

L ) giving N0
L in

(73). By homogeneity, for every k > 0, kβ̄L is also a minimizer and hence we can choose

k so that the L2(0,1) norm of Rη

L is equal to 1/

√
|Σ1

1 |. Therefore, β̄L can be seen as an

element of D+
1 . Let v̄η

L be the unique element of C1 which minimizes N η

L(., β̄L) over C1. It is
easy to check that v̄η

L satisfies the same estimates (72) as vη

L. Following the same steps as for
vη

L, one obtains that v̄η

L weakly converges to the Bernoulli-Navier displacement v̄0
L given by

v̄0
L(z) =

(
z1

∫ 1

0
β̄L(ζ )dζ −

∫ z1

0
β̄L(ζ )dζ

)
e1. (83)

Moreover, since the limit is unique (for a given minimizer β̄L), all the sequence v̄η

L con-
verges to v̄0

L. By virtue of the optimality of v̄η

L, N η

L(v̄η

L, β̄L) can read as

N η

L

(
v̄η

L, β̄L

) = 1 + ∣∣Σ1
1

∣∣ d2
0

L2

∫ 1

0
β̄ ′

L(ζ )2dζ +
∫

Ω1
1

β̄Lε11

(
v̄η

L

)
dz.

Passing to the limit in the last term in the right hand side above, one obtains

lim
η→0

∫
Ω1

1

β̄Lε11

(
vη

L

)
dz =

∫
Ω1

1

β̄Lε11

(
v̄0

L

)
dz = ∣∣Σ1

1

∣∣
(∫ 1

0
β̄L(ζ )dζ

)2

− 1

and hence

lim
η→0

N η

L

(
v̄η

L, β̄L

) = N0
L.

Since N η

L(vη

L,β
η

L) ≤ N η

L(v̄η

L, β̄L), by passing to the limit one gets limη→0 N η

L(vη

L,β
η

L) ≤ N0
L

for any convergent subsequence. Therefore, one has

lim sup
η→0

ρ
η

L ≤ ρ0
L.

Comparing with the lower bound, we obtain the desired result, limη→0 ρ
η

L = ρ0
L. The proof

is complete. �

Equipped with this characterization of the asymptotic behavior of the Rayleigh ratio, it
becomes easy to conclude on the stability of damaging states for slender cylinders.

Proposition 9 For very slender cylinders, the damaging state characterized by the axial
strain ε in a uniaxial tensile test is directionally stable if and only if the length L of the
cylinder is less than the critical value Lc(ε). This latter depends only on ε and is given by

Lc(ε) = s ′(α0)
5/2

s(α0)s ′′(α0)3/2
2π�(α0) with a′(α0) = −2w1

Eε2
. (84)

Proof It suffices to calculate ρ0
L and to compare it with 1. To obtain ρ0

L, we use [24, Propo-
sition A.2] where the minimization of the Rayleigh ratio involved in (73) is made. One gets

N0
L =

{
1 if 0 < L ≤ πd0,

(
πd0
L

)2/3 if L > πd0.
(85)

Then, using (68) and (73), the critical length is obtained by equaling ρ0
L to 1. �
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Remark 1 This result is consistent with the one obtained in [24, Proposition 3.4] in the
one dimensional setting. This means that, as expected, slender cylinders behave like one-
dimensional bars. Note however that we have obtained (73) and hence (84) by passing to
the limit as η goes to 0, at given L. Therefore, from the practical viewpoint, this result is
relevant only when the diameter of the cylinder is (much) smaller than the characteristic
length �(α0) of the material.

6 Comparison of Directional Stability with Strong Ellipticity

In this last section, we investigate the link between our definition of directional stability
and the strong ellipticity condition [1]. By essence, this latter one, which requires a strict
positivity condition for the second order derivative of the total strain work, makes sense
only for the underlying local damage model, i.e., for the model without the gradient damage
terms. More specifically, since the underlying local model is defined by

W0(ε, α) = w1α + 1

2
A(α)ε · ε, (86)

the condition of strong ellipticity is satisfied at the given state (ε0, α0) if and only if the
following inequality holds,

W ′′
0 (ε0, α0)(k � v, β) > 0, ∀k ∈ S

n, ∀(v, β) ∈ R
n × R \ {

(0,0)
}
, (SE)

where k�v = k⊗v+v⊗k. Using the condensed notation (28), the second order derivative
reads

W ′′
0 (ε0, α0)(ξ,β) = A0(ξ − βe0) · (ξ − βe0) − 1

2
S′′

0σ 0 · σ 0β
2. (87)

Therefore, we first deduce that if the material has a stress-hardening behavior, then the strong
ellipticity condition is automatically fulfilled for any state, because A0 > 0 and S′′

0 < 0.
Now let us consider a stress-softening behavior, i.e., the case S′′

0 > 0. Since by virtue of
the positivity of A0, the inequality (SE) is satisfied when β = 0, we can consider only the
cases β �= 0 and hence, by homogeneity, the cases β = 1. Accordingly, the strong ellipticity
condition (SE) is satisfied if and only if

min
(k,v)∈Sn×Rn

A0(k � v − e0) · (k � v − e0) >
1

2
S′′

0σ 0 · σ 0. (88)

Note that the minimization above admits a solution since it is performed over a compact set.
For a given k, let v(k) be the minimizer over v ∈ R

n. By virtue of the strict convexity of
v �→ A0(k � v − e0) · (k � v − e0), there exists a unique minimizer. The optimality condition
reads

A0
(
k � v(k) − e0

) · (k � v) = 0, ∀v ∈ R
n. (89)

Then, introducing ξ(k) = k � v(k) and setting v = v(k) in (89) lead to

A0
(
ξ(k) − e0

) · (ξ(k) − e0
) = A0e0 · e0 − A0ξ(k) · ξ(k).

Therefore, (88) becomes

A0e0 · e0 − max
k∈Sn

A0ξ(k) · ξ(k) >
1

2
S′′

0σ 0 · σ 0. (90)
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Comparing with Corollary 1 and Lemma 1, we have thus proved

Proposition 10 For a stress-softening behavior, a damaging state is directionally stable
under displacement controlled and independently of the size and the shape of the domain if
and only the strong ellipticity condition holds at this state.

It appears that the strong ellipticity condition (SE) is a particular case of directional
stability. Equation (SE) is made to study the stability of homogeneous states only in the cases
where the size of the domain is much larger than the characteristic length of the material.
(SE) is, by nature, unable to give the critical size under which the homogeneous is stable
(except, of course, in the case where this critical size is infinite). Moreover, (SE) is unable
to discriminate between the different types of boundary conditions. In conclusion, we can
affirm that our directional stability criterion is more general and richer.

7 Concluding Remarks

A stability analysis based on the selection of unilateral local minima of the total energy has
been carried out for a class of gradient damage models. We have studied in which situations
a homogeneous state can be stable and hence can be observed in experimental tests. Let us
see how such homogeneous tests can be useful in practice to identify the damage law of
a stress-softening material. Note that the measurement of homogeneous states gives only
access to a part of the damage law. Indeed, these states depend only on the parameter w1

and on the stiffness function α �→ A(α), but not on the state function α �→ �(α) involved
in the gradient damage terms. On the other hand, non-homogeneous states such as local-
ized damage response depend on all the damage law and are only accessible by numerical
computations.

We now first summarize how one can observe homogeneous responses. It turns out for
a stress-softening material that the stability of a damaging homogeneous state depends es-
sentially on how the boundary is controlled. When the surface forces are prescribed on the
whole boundary by a soft device, the state is necessarily unstable. Accordingly, to observe
such a state, one must control the displacements on all or a part of the boundary. It appears
that the more the displacements are controlled, the more the state has a chance to be sta-
ble. In the case where the displacements are controlled on the whole boundary by a hard
device, the state is necessarily stable for small enough samples. Moreover, the fact that the
stability holds for any size is independent of the shape of the sample and depends only on
the material (and on the state). As shown in the examples of Sect. 4, Poisson’s ratio seems
to have a significant influence on the stability. It also appears that spherical strain or stress
states have more chance to be stable than uniaxial ones, even though this property has to
be confirmed by a more thorough analysis. Regarding the shape effects, those latter play an
important role in uniaxial tests, but a better understanding of this dependency needs also
further investigations.

Finally, let us give more insights on how one can have access to the state function
α �→ �(α). As explained in Pham et al. [24] in a one-dimensional setting, detecting the
stability loss of the homogeneous state when one changes the size of the sample gives in-
formation on the state function α �→ �(α). More specifically, as shown in Sect. 5 for very
slender cylinders, the critical size beyond which the homogeneous state becomes unstable
involves all the damage law and is proportional to �(α). Accordingly, the measurement of
this critical size provides the expected complementary information. In fact, it was shown



92 K. Pham, J.-J. Marigo

in Pham et al. [24] that this measurement, together with the homogeneous stress-strain re-
sponse, is sufficient to identify all the constitutive functions and parameters, at least in a
one-dimensional setting. However, to extend this result to the three-dimensional case for
which the critical size Lc(ε0,Ω1) cannot be obtained in a closed form, such detection ex-
periments of the stability loss of homogeneous states should be coupled with numerical
computations.
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