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Abstract By potential theory, elastic problems with linear boundary conditions are con-
verted into boundary integral equations (BIEs) with logarithmic and Cauchy singularity. In
this paper, a mechanical quadrature method (MQMs) is presented to deal with the loga-
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asymptotical compact theory. Furthermore, an asymptotic expansion with odd powers of er-
rors is presented, which possesses high accuracy order O(h3). Using h3−Richardson extrap-
olation algorithms (EAs), the accuracy order of the approximation can be greatly improved
to O(h5), and an a posteriori error estimate can be obtained for constructing a self-adaptive
algorithm. The efficiency of the algorithm is illustrated by examples.
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1 Introduction

Consider elastic equations with linear boundary conditions: to find a non-zero displacement
ū = (ū1, ū2)

T in the domain � and on the boundary � satisfying

{
σij,j = μ�ū + (λ + μ)graddiv ū = 0, in �,

p = (σ1j nj , σ2j nj )
T = −cū + ḡ, on �, i, j = 1,2,

(1)

where � ⊂ R2 is a bounded, simply connected domain with a smooth boundary �, σij is the
stress tensor, λ and μ are Láme constants, p = (p1,p2)

T is a traction vector, n = (n1, n2)

is a unit outward normal on �, c = diag(c11, c22) is a constant matrix with cii > 0, i = 1,2,
and the function ḡ = (ḡ1, ḡ2)

T is assumed given and continuous on �. Following vector
computational rules, the repeated subscripts imply the summation from 1 to 2.

By means of potential theory, (1) are converted into the following boundary integral
equations [2, 4] (BIEs):

γij (y)ūj (y) +
∫

�

k∗
ij (y, x)ūj (x)dsx =

∫
�

h∗
ij (y, x)pj (x)dsx, (2)

where γij (y) = δij /2 when y = (y1, y2) is on a smooth part of the boundary � with the
Kronecker delta δij , and

⎧⎪⎨
⎪⎩

h∗
ij = 1

8πμ(1−ν)
[−(3 − 4ν)δij ln r + r·i r·j ],

k∗
ij = 1

4π(1−ν)r
[ ∂r

∂n
((1 − 2ν)δij + 2r·i r·j )

+ (1 − 2ν)(nir·j − nj r·i )],

are Kelvin’s fundamental solutions [2, 25], ν = λ/[2(λ + μ)] is the Poisson ratio , r·i is
the derivative with respect to xi , and r = √

(y1 − x1)2 + (y2 − x2)2 is the distance between
x and y. (2) are obvious singular integral equations. In particular, the second term of the
equations represents a Cauchy singularity and the third term is a logarithmic singularity.

A similar setup has been proposed for Laplace [26] equations and for Helmholtz [14]
equations in order to obtain high accuracy order O(h3). The difficulty in solving the integral
equations (2) is in dealing with the Cauchy singularity and the logarithmic singularity simul-
taneously. The elastic equations have been wildly applied in many physical circumstances,
such as for cantilever beams, plates with edge notch, edge crack, and so on [3].

After solving (2) for ū on �, the displacement vector and stress tensor in � can be
calculated [4, 19]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ūi (y) = ∫
�
h∗

ij (y, x)pj (x)dsx

− ∫
�
k∗

ij (y, x)ūj (x)dsx, ∀y ∈ �,

σij (y) = ∫
�
h∗

ij l(y, x)pl(x)dsx

− ∫
�
k∗

ij l(y, x)ūl(x)dsx, ∀y ∈ �,

(3)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∗
ij l = (1−2ν)(r.j δli+r.i δlj −r. l δij )+2r.i r.j r. l

4π(1−ν)r
,

h∗
ij l = μ

2π(1−ν)r2 {2 ∂r
∂n

[(1 − 2ν)r. lδij + ν(r.j δil

+ r.iδj l) − 4r.ir.j r. l] + 2ν(nir.j r. l + nj r.ir. l)

+ (1 − 2ν)(2nlr.j r.i + nj δil + niδjl)

− (1 − 4ν)nlδij }.

Some numerical methods, such as Galerkin methods, collocation methods, Least-squares
methods and boundary element methods, often have been applied to solve the differential
equations system. The convergent rates of these methods are usually O(h) and O(h2). Hu
and Shi [15] established rectangular nonconforming mixed finite element methods for lin-
ear elasticity. Talbot and Crampton [24] approached 2D vibrational problems by a pseudo-
spectral method and they transformed the governing partial differential equations into a
matrix eigenvalue problem, which is solved by a collocation method. Cai et al. [5] intro-
duced a least-square method for obtaining the solution of linear elastic problems. Chen
and Hong [6, 10] reviewed the dual boundary element methods especially for hypersin-
gular integrals, and dealt with dual boundary integral equations in elasticity characterized
by geometry degeneracy. Kuo, Chen and Huang [16] used dual boundary element methods
to solve true and spurious eigensolutions of a circular cavity problem. Helsing [9] solved
mixed boundary conditions elliptic problems by integral equation methods. Li and Nie [17]
considered boundary integral methods for solving stressed axisymmetric rod problems. Sidi
[22] showed the priority of the quadrature formulas [21] for weakly singular integral equa-
tions.

Extrapolation algorithms (EAs) based on asymptotic expansion about errors are effective
parallel algorithms, which possesses high accuracy degree, good stability and almost optimal
computational complexity. Cheng, Huang and Zeng [7, 8] used extrapolation algorithms to
obtain high accuracy order for the Steklov eigenvalue for the Laplace equation. Xu and Zhao
[26] established an extrapolation method for solving BIEs related to the Laplace equation of
the third kind boundary condition. Huang and Lü established extrapolation algorithms for
solving the Steklov eigenvalue problem [12], the Helmholtz equation [14] and the Laplace
equation [19].

We firstly use the Sidi quadrature rules [13, 20, 21] to approximate the logarithmic and
Cauchy singular operators in (2). Secondly, by Anselone’s collective compact and asymptot-
ically compact theory [1], we prove the convergence rate with O(h3). Finally, based on the
asymptotic expansion of errors with odd powers, we establish EAs. After h3−extrapolation,
we obtain the convergence rate with O(h5). So we not only greatly improve the accuracy of
the approximation, but also derive a posteriori error estimate for constructing self-adaptive
algorithms. Numerical examples support our algorithms and show that the MQMs are fit for
practice.

This paper is organized as follows: in Sect. 2 we construct the MQMs to deal with the
logarithmic and Cauchy singularity and give the proof about convergence; in Sect. 3 we
obtain an asymptotic expansion of the errors to construct EAs; in Sect. 4 numerical examples
show the significance of the algorithms.
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2 Mechanical Quadrature Methods

We define boundary integral operators on � as follows:

{
(Kijw)(y) = ∫

�
k∗

ij (y, x)w(x)dsx, y ∈ �, i, j = 1,2,

(Hijw)(y) = ∫
�
h∗

ij (y, x)w(x)dsx, y ∈ �, i, j = 1,2.

Also, we convert (2) into the following operator equations:

W

[
ū1

ū2

]
=

[
g1

g2

]
, (4)

where

W =
[ 1

2 I0 + K11 + c11H11 K12 + c11H12

K21 + c22H21
1
2 I0 + K22 + c22H22

]
,

gi = Hij ḡj , i, j = 1,2, and I0 is an identity operator.
Assume that � is a smooth closed curve described by a regular parameter mapping x(s) =

(x1(s), x2(s)) : [0,2π] → �, satisfying |x ′(s)|2 = |x ′
1(s)|2 + |x ′

2(s)|2 > 0. Let C2m[0,2π]
denote the set of 2m times differentiable periodic functions with the periodic 2π and xi(s) ∈
C2m[0,2π], i = 1,2. Define the following integral operators on C2m[0,2π]:

(A0ω)(t) =
∫ 2π

0
a0(t, τ )ω(τ)|x ′(τ )|dτ,

with a0(t, τ ) = c̄0 ln |2e−1/2 sin t−τ
2 |, c̄0 = −(3 − 4ν)/[8πμ(1 − ν)] and

(B0ω)(t) =
∫ 2π

0
b0(t, τ )ω(τ)|x ′(τ )|dτ,

with b0(t, τ ) = c̄0[ln |x(t) − x(τ)| − ln |2e−1/2 sin t−τ
2 |], and

(Bijω)(t) =
∫ 2π

0
bij (t, τ )ω(τ)|x ′(τ )|dτ,

with bij (t, τ ) = c1r·i r·j , c1 = 1/[8πμ(1 − ν)], and

(C0ω)(t) =
∫ 2π

0
c0(t, τ )ω(τ)|x ′(τ )|dτ,

with c0(t, τ ) = c2(n1r·2 − n2r·1)/r , c2 = −(1 − 2ν)/[4π(1 − ν)], and

(Miiω)(t) =
∫ 2π

0
mii(t, τ )ω(τ)|x ′(τ )|dτ, i = 1,2,

with mii(t, τ ) = c3
∂r
∂n

[(1−2v)+2r·i r·i]/r , c3 = −1/[4π(1 − ν)], and

(Mijω)(t) =
∫ 2π

0
mij (t, τ )ω(τ)|x ′(τ )|dτ, i, j = 1,2, i �= j,
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with mij (t, τ ) = c3
∂r
∂n

(2r·i r·j )/r .
Then (4) is equivalent to (

1

2
I + C + A + B + M

)
u = f, (5)

where u(t) = ū(x(t)), f (t) = (f1(t), f2(t))
T = g(x(t)) and

I =
[

I0 0
0 I0

]
, C =

[
0 C0

−C0 0

]
, A = c

[
A0 0
0 A0

]
,

B = c

[
B0 + B11 B12

B21 B0 + B22

]
, M =

[
M11 M12

M21 M22

]
.

As t → s, depending on the properties of the kernel a0(t, τ ) and using a Taylor expan-
sion, we know that A0 is a logarithmic singular operator. Because

nir·j − nj r·i
r

= (−1)i 1 + O(t − s)

(t − s) + O(t − s)
, i �= j,

we see that C0 is a Cauchy singularity operator. Moreover, B0, Bij , Mij are smooth opera-
tors.

2.1 Nyström’s Approximation

Let h = π/n, (n ∈ N) be the mesh width and tj = τj = jh, (j = 0,1, . . . ,2n − 1) be the
nodes. Since B0, Bij , Mij are smooth integral operators with the period 2π , we obtain high
accuracy Nyström’s approximations by the trapezoidal rule [2, 21, 23]. For example, the
Nyström approximation operator Bh

0 of B0 is defined as:

(Bh
0 ω)(t) = h

2n−1∑
j=0

b0(t, τj )ω(τj ), (6)

and the error is

(B0ω)(t) − (Bh
0 ω)(t) = O(h2m). (7)

The Nyström approximation Bh
ij of Bij and Mh

ij of Mij can be defined similarly.
The continuous approximation kernel an(t, τ ) of the logarithmic singular operator A0 is

defined as:

an(t, τ ) =
{

a0(t, τ ), for |t − τ | ≥ h,

c̄0h ln |e−1/2 h
2π

|, for |t − τ | < h.

By Sidi’s quadrature rules [21, 23], its Nyström approximation operator can be defined as:

(Ah
0ω)(t) = h

2n−1∑
j=0

an(t, τj )ω(τj )|x ′(τj )|, (8)

which has the following error estimate

(A0ω)(t) − (Ah
0ω)(t) = 2

m−1∑
μ=1

ς
′
(−2μ)

(2μ)! ω(2μ)(t)h2μ+1 + O(h2m), (9)
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where ς ′(t) is the derivative of the Riemann zeta function.
Because C0 is a Cauchy singular operator, its Nyström’s approximation operator Ch

0 can
be defined [20] as:

(Ch
0 ω)(ti) = 2c2a1(ti , ti )h

2n−1∑
j=0

cot((tj − ti )/2)ω(tj )|x ′(tj )|εij , (10)

where a1(t, s) = 2[(t − s) + O(t − s)]−1tan((t − s)/2) when s → t , and

εij =
{

1, if |i − j | is odd number,
0, if |i − j | is even number.

The error estimate of the operator is [20]

(C0ω)(ti) − (Ch
0 ω)(ti) = O(h2m). (11)

Thus we obtain the numerical approximation of (5):(
1

2
I + Ch + Ah + Bh + Mh

)
uh = fh, (12)

where Ah, Bh, Ch and Mh are discrete matrices of order 4n corresponding to the operators
A, B , C and M , respectively.

2.2 The Asymptotically Compact Convergence

Since the approximate operators are no longer in the field of projection theory, the ex-
istence and convergence about the numerical approximations have to be studied by col-
lectively compact convergent [1] and asymptotically compact convergent theory. Define
Dh

1 = diag(a1(t0, t0), . . . , a1(t2n−1, t2n−1)), and define the circulant matrix Ch
1 as:

Ch
1 = 2h circulant

(
0,− cot

π

2n
,0, . . . ,0,− cot

(2n − 1)π

2n

)
.

Then let

Dh = diag(Dh
1 ,Dh

1 ), Ch
2 =

(
0 Ch

1
−Ch

1 0

)
,

and so

Ch = c2D
hCh

2 =
(

0 c2D
h
1 Ch

1
−c2D

h
1 Ch

1 0

)
.

Lemma 1 [14] The eigenvalues of the matrix Ch
1 consist of

ρk =
⎧⎨
⎩

0, if k = 0, n;
2πi, if 1 ≤ k ≤ n − 1;
−2πi, if n + 1 ≤ k ≤ 2n − 1;

where i = √−1.
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Corollary 1 The eigenvalues of Ch
2 consist of 0 and ±2π .

Corollary 2 (1/2)I + Ch
2 is invertible, and ((1/2)I + Ch

2 )−1 is uniformly bounded.

Lemma 2 [11] Let Y,Z be regular matrices of order m, and X = Y + Z. Then

|λ(X) − λj (Z)| ≤ max
1≤j≤m

|λj (Y )|, 1 ≤ j ≤ m,

where λ(X),λ(Z) and λ(Y ) are the eigenvalues of matrices X,Z and Y , respectively. Espe-
cially, if a complex number β cannot satisfy

|β − λj (Z)| ≤ max
1≤j≤m

|λj (Y )|, 1 ≤ j ≤ m, (13)

then β is not the eigenvalue of matrix X.

Corollary 3 (1/2)I + Ch is invertible and ((1/2)I + Ch)−1 is uniformly bounded.

Proof First, we have the property

1

2
I + Ch = 1

2
(I + 2c2D

hCh
2 ) = 1

2
Dh((Dh)−1 + 2c2C

h
2 ).

Next, we discuss the eigenvalues of (Dh)−1 + 2c2C
h
2 . Since

1

a1(t, t)
= 1 >

1 − 2ν

1 − ν
≥ 2c2 max

1≤j≤4n
|λj (C

h
2 )|,

then for any real number α ∈ (0, ν/(1 − ν)), we have∣∣∣∣ 1

a1(t, t)
− α

∣∣∣∣ ≥ 1 − α >
1 − 2ν

1 − ν
≥ 2c2 max

1≤j≤4n
|λj (C

h
2 )|.

From Lemma 2 we obtain ρ((Dh)−1 + 2c2C
h
2 ) > ν/(1 − ν). This means that ‖((Dh)−1 +

2c2C
h
2 )−1‖ ≤ (1 − ν)/ν. Also since Dh is invertible and uniformly bounded, (1/2)I +Ch is

invertible and uniformly bounded. �

Then (5) and (12) can be rewritten as follows: find u ∈ V (0) which satisfies

(I + L)u = f̄ , (14)

and find uh which satisfies

(I + Lh)uh = f̄h, (15)

where f̄ = ( 1
2 I + C)−1f , f̄h = ( 1

2 I + Ch)−1fh, L = ( 1
2 I + C)−1(A + B + M), Lh = ( 1

2 I +
Ch)−1(Ah + Bh + Mh), and the space V (m) = C(m)[0,2π] × C(m)[0,2π], m = 0,1,2, . . . .

Theorem 1 The approximate operator sequence {Lh} is an asymptotically compact se-
quence and convergent to L in V (0), i.e.,

Lh a.c→ L, (16)

where
a.c→ denotes asymptotically compact convergence.
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Proof Since the kernels of B0 Bij and Mij (i, j = 1,2) are continuous functions, we have
the collectively compact convergence [19, 21, 23]

Bh
0

c.c→ B0, Bh
ij

c.c→ Bij , and Mh
ij

c.c→ Mij in C[0,2π], as n → ∞.

Also since an(t, τ ) is a continuous approximate of a(t, τ ), the approximate operator {Ah
0} is

an asymptotically compact sequence, convergent to A0 (see [26]), i.e., Ah
0

a.c→ A0 in C[0,2π],
as n → ∞. Then in V (0) we have

Ah a.c→ A,

and

Bh + Mh c.c→ B + M.

This implies that for any bounded sequence {ym ∈ V (0)} there exists a convergent sub-
sequence in { (Ah + Bh + Mh)ym}. Without loss of generality, we assume (Ah + Bh +
Mh)ym → z, as m → ∞. From the properties of asymptotically compact convergence and
quadrature rules [19, 21, 23], we have

∥∥∥∥Lhym −
(

1

2
I + C

)−1

z

∥∥∥∥ ≤
∥∥∥∥
(

1

2
I + Ch

)−1∥∥∥∥ ‖(Ah + Bh + Mh)ym − z‖

+
∥∥∥∥
(

1

2
I + Ch

)−1

(C − Ch)

(
1

2
I + C

)−1

z

∥∥∥∥ → 0,

as m → ∞ and h → 0,

where ‖ · ‖ is the norm of $(V (0), V (0)). This shows that {Lh : V (0) → V (0)} is an asymptot-
ically compact operator sequence.

Moreover, we will show that {Lh} is pointwise convergent to L, as n → ∞. In fact, since
Ah + Bh + Mh a,c→ A + B + M for ∀y ∈ V (0), we obtain

‖(Ah + Bh + Mh)y − (A + B + M)y‖ → 0, as h → 0.

From Corollary 3 and quadrature rules [19, 21, 23], we derive

‖Lhy − Ly‖ ≤
∥∥∥∥
(

1

2
I + Ch

)−1∥∥∥∥ · ‖(Ah + Bh + Mh)y − (A + B + M)y‖

+
∥∥∥∥
(

1

2
I + Ch

)−1

(Ch − C)

(
1

2
I + C

)−1

(A + B + M)y

∥∥∥∥ → 0,

as h → 0.

Since the {Lh} is an asymptotically compact sequence and pointwise convergent to L,
the proof of Theorem 1 is completed. �

Corollary 4 [14] Under the assumption of Theorem 1, we have

‖(Lh − L)L‖ → 0 and ‖(Lh − L)Lh‖ → 0, as h → 0.
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Corollary 5 [14] Assume that h is sufficiently small, then there exists a unique solution uh

in (29). Under the norm of V (2m)[0,2π ], we have the following error bound:

‖uh − u‖ ≤ ‖(I + L)−1‖‖(Lh − L)f̄ ‖ + ‖(Lh − L)Lhu‖
1 − ‖(I + Lh)−1(Lh − L)Lh‖ .

3 Asymptotic Expansions of Errors and Extrapolation Algorithms

3.1 Asymptotic Expansions

Theorem 2 Suppose u(s) ∈ V (2m), then we have the following asymptotic expansion

(Lh − L)u(s) =
m−1∑
j=1

ψj(s)h
2j+1 + O(h2m), (17)

where ψj(s) ∈ V (2m−2j), j = 1, . . . ,m − 1, are functions independent of h.

Proof By Sidi’s quadrature rules [21, 23], there exist ω(2μ) ∈ V (2m−2μ), μ = 1, . . . ,m − 1
satisfying the error expansion for the logarithmic singular operator A:

(Aω)(t) − (Ahω)(t) = 2
m−1∑
μ=1

ς
′
(−2μ)

(2μ)! ω(2μ)(t)h2μ+1 + O(h2m). (18)

Since B and M are smooth operators, following (7) and (18), we derive

(A + B + M)u(t) − (Ah + Bh + Mh)u(t) =
m−1∑
j=1

ϕj (t)h
2j+1 + O(h2m), (19)

where ϕj (t) = ς
′
(−2j)

(2j)! u(2j)(t) ∈ V (2m−2j), j = 1, . . . ,m − 1, are functions independent of h.
We also have an error estimate according to the trapezoidal rule for Cauchy singular

operator

max
0≤s≤2π

|(C − Ch)φ(s)| = ‖(C − Ch)φ‖ = O(h2m), ∀φ ∈ V (2m), (20)

and the identity

Lhu − Lu =
(

1

2
I + C

)−1

·
(
(Ah + Bh + Mh)u − (A + B + M)u

)

+
(

1

2
I + Ch

)−1

(C − Ch)

(
1

2
I + C

)−1

×
(
(Ah + Bh + Mh)u − (A + B + M)u

)

+
(

1

2
I + Ch

)−1

(C − Ch)

(
1

2
I + C

)−1

· (A + B + M)u.

Substituting (19), (20) into the above equation, and letting ψj(s) = ( 1
2 I +C)−1ϕj (s), we

complete the proof of Theorem 2. �



202 P. Cheng et al.

Theorem 3 Suppose the hypothesis of Theorem 2 holds and x(t), g(t) ∈ V 2m[0,2π], Then
there exists functions ω̄l ∈ V 2m−2l[0,2π ], l = 1, . . . ,m independent of h, such that

(u − uh)|t=tj =
m−1∑
l=1

h2l+1ω̄l |t=tj + O(h2l ). (21)

Proof Because ((1/2)I +Ch)−1 is uniformly bounded, and Ah a.c→ A, Bh c.c→ B in V (0), then
there exists the asymptotic expansion

(f̄ − f̄h)|t=tj = h3ω1|t=tj + h5ω2|t=tj + . . . + O(h2m), (22)

where ωl ∈ V 2m−2l[0,2π ], l = 1, . . . ,m − 1 and f̄ = ( 1
2 I + C)−1(A + B)ḡ(x(t)).

Because u and uh satisfy (14) and (15), respectively, we obtain

(I + Lh)(uh − u)|t=tj =
[
(I + Lh)uh − (I + L)u + (I + L)u − (I + Lh)u

]∣∣∣
t=tj

= (f̄h − f̄ )|t=tj + (L − Lh)u|t=tj

= h3φ1|t=tj + h5φ2|t=tj + . . . + O(h2m), (23)

where φl ∈ V 2m−2l[0,2π ].
Define an auxiliary equation

(I + L)ω̄l = φl, l = 1, . . . ,m − 1, (24)

and its approximate equation

(I + Lh)ω̄h
l = φh

l , l = 1, . . . ,m − 1. (25)

Substituting (25) into (23) we find

(I + Lh)

(
uh − u −

m−1∑
l=1

h2l+1ω̄h
l

)∣∣∣∣
t=tj

= O(h2m). (26)

Noticing ω̄h
l ∈ V 2m−2l[0,2π ], we obtain

(ω̄l − ω̄h
l )(ti ) = O(h2m−2l ). (27)

Then, substituting ω̄h
l with ω̄l and following Theorem 1, we have

[
uh − u −

m−1∑
l=1

h2l+1ω̄l

]∣∣∣∣
t=tj

= O(h2m), (28)

and we complete the proof. �

3.2 Extrapolation Algorithms

The asymptotic expansion (21) implies that the extrapolation algorithms can be applied to
the solution of (2) to improve the approximate order. Moreover, the high accuracy order
O(h5) can be obtained by computing some coarse grids on � in parallel. The EAs are de-
scribed as follows:
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Taking h and h/2, and solving (12) in parallel, we obtain that uh(ti), uh/2(ti) are the
solutions on �.

Compute the solution at coarse grid points, so the EAs [14, 18] are given by

u∗
h(ti) = 1

7
(8uh/2(ti) − uh(ti)), (29)

and the error is |u∗
h(ti) − u(ti)| = O(h5);

Following (21), a higher accuracy order also can be achieved by EAs:

ū∗
h(ti) = 1

31
(32u∗

h/2(ti) − u∗
h(ti)), (30)

and the error is |ū∗
h(ti) − u(ti)| = O(h7).

Moreover, using |u∗(ti) − u(ti)| = O(h5), we obtain the a posteriori error estimate

|u(ti) − uh/2(ti)|

≤ |u(ti) − 1

7
(8uh/2(ti) − uh(ti))|

+ 1

7
|uh/2(ti) − uh(ti)|

≤ 1

7
|uh/2(ti) − uh(ti)| + O(h5).

Note that this can be used to construct self-adaptive algorithms.

4 Numerical Examples

We first introduce some notation for i = 1,2: eh
i (P ) = |uih(P ) − ui(P )| is the error of

the displacement; rh
i (P ) = eh

i (P )/e
h/2
i (P ) is the error ratio; ēh

i (P ) = |u∗
ih(P ) − u∗

i (P )| is
the error after one-step EAs; and ph

i (P ) = 1
7 |uih/2(P ) − uih(P )| is the a posteriori error

estimate.

Example 1 Consider a circular isotropic elastic body � with radius a = 1 in plane strain
deformation. Its boundary � is described as x = cos(t), y = sin(t), t ∈ [0,2π]. Let λ =
μ = 2.5, ν = 1/4, the coefficient matrix c = diag(1,1), and g1 = cos(t), g2 = 2 sin(t), t ∈
[0,2π].

We calculate the boundary numerical solutions uh = (u1h, u2h)
T on � following (12).

Table 1 lists the approximate values of u1h(P ) at points P1 = (cos 0, sin 0) and P2 =
(cos π

4 , sin π
4 ). Table 2 lists the approximate values of u2h(P ) at points P2 = (cos π

4 , sin π
4 )

and P3 = (cos π
2 , sin π

2 ).
From Tables 1–2, we can numerically see:

log2 rh
i (P ) ≈ 3,

and

log2 r̄h
i (P ) ≈ 5,
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Table 1 The errors, errors ratio of u1h(P ) at points P = P1,P2

n 4 8 16 32 64 128

eh
1 (P1) 1.033E-3 1.278E-4 1.594E-5 1.991E-6 2.488E-7 3.110E-8

rh
1 (P1) 8.081 8.020 8.005 8.001 8.000

ēh
1 (P1) 1.48E-06 4.59E-08 1.43E-09 4.48E-11 1.40E-12

ph
1 (P1) 1.293E-4 1.598E-5 1.992E-6 2.488E-7 3.110E-8

eh
1 (P2) 7.303E-4 9.037E-5 1.127E-5 1.408E-6 1.759E-7 2.199E-8

rh
1 (P2) 8.081 8.020 8.005 8.001 8.000

ēh
1 (P2) 1.04E-06 3.24E-08 1.01E-09 3.17E-11 9.94E-13

ph
1 (P2) 9.141E-5 1.130E-5 1.409E-6 1.760E-7 2.199E-8

Table 2 The errors, errors ratio of u2h(P ) at points P = P2,P3

n 4 8 16 32 64 128

eh
2 (P2) 1.476E-3 1.829E-4 2.281E-5 2.849E-6 3.561E-7 4.451E-8

rh
2 (P2) 8.070 8.019 8.005 8.001 8.000

ēh
2 (P2) 1.83E-06 6.13E-08 1.98E-09 6.31E-11 1.99E-12

ph
2 (P2) 1.847E-4 2.287E-5 2.851E-6 3.561E-7 4.451E-8

eh
2 (P3) 2.087E-3 2.586E-4 3.225E-5 4.029E-6 5.036E-7 6.294E-8

rh
2 (P3) 8.070 8.019 8.005 8.001 8.000

ēh
2 (P3) 2.59E-06 8.67E-08 2.81E-09 8.93E-11 2.81E-12

ph
2 (P3) 2.612E-4 3.234E-5 4.032E-6 5.036E-7 6.294E-8

Table 3 The errors, errors ratio of (u1h,u2h)T at points P = P0

n 4 8 16 32 64 128

eh
1 (P0) 9.132E-5 4.774E-6 5.953E-7 7.437E-8 9.295E-9 1.162E-9

rh
1 (P0) 19.13 8.019 8.005 8.001 8.000

ēh
1 (P0) 7.59E-06 1.60E-09 5.15E-11 1.64E-12 5.20E-14

ph
1 (P0) 1.236E-5 5.969E-7 7.442E-8 9.296E-9 1.162E-9

eh
2 (P0) 1.074E-4 1.592E-6 1.984E-7 2.479E-8 3.098E-9 3.872E-10

rh
2 (P0) 67.50 8.022 8.005 8.001 8.000

ēh
2 (P0) 1.35E-05 6.18E-10 1.91E-11 5.77E-13 1.73E-14

ph
2 (P0) 1.512E-5 1.990E-7 2.481E-8 3.098E-9 3.872E-10

which shows that the convergent rate of the approximation solution is O(h3), and is O(h5)

after EAs.
Substituting the displacement uh = (u1h, u2h)

T on � into the boundary condition of (1),
we’ll obtain the normal derivative ph = (p1h,p2h)

T on �. So following (3), we can obtain
the displacement uh = (u1h, u2h)

T in �. Table 3 shows approximate values of the displace-
ment (u1h(P0), u2h(P0))

T at a inner point P0 = (
√

2/8)(cos π
3 , sin π

3 ) in �.
From Tables 1–3, we can numerically see that although the h3−Richardson extrapolation

algorithms are not very complex, they are effective to obtain high accuracy approximate
solutions.
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Table 4 The errors, errors ratio of u1h(P ) at points P = P4,P5

n 16 32 64 128 256 512

eh
1 (P4) 1.851E-5 2.267E-6 2.820E-7 3.521E-8 4.401E-9 5.500E-10

rh
1 (P4) 8.166 8.039 8.009 8.000 8.000

ēh
1 (P4) 5.37E-08 1.57E-09 4.87E-11 1.43E-12 9.89E-14

ph
1 (P4) 2.321E-6 2.836E-7 3.526E-8 4.401E-9 5.500E-10

eh
1 (P5) 4.537E-5 5.649E-6 7.055E-7 8.816E-8 1.102E-8 1.377E-9

rh
1 (P5) 8.031 8.008 8.002 8.000 8.000

ēh
1 (P5) 2.48E-08 8.18E-10 2.58E-11 8.24E-13 4.16E-14

ph
1 (P5) 5.674E-6 7.063E-7 8.819E-8 1.102E-8 1.377E-9

Table 5 The errors, errors ratio of u2h(P ) at points P = P6,P7

n 16 32 64 128 256 512

eh
2 (P6) 3.466E-5 4.278E-6 5.330E-7 6.657E-8 8.320E-9 1.040E-9

rh
2 (P6) 8.101 8.026 8.008 8.002 8.000

ēh
2 (P6) 6.20E-08 2.00E-09 6.39E-11 2.08E-12 1.06E-13

r̄h
2 (P6) 31.02 31.29 32.37 18.56

ph
2 (P6) 4.340E-6 5.350E-7 6.664E-8 8.322E-9 1.040E-9

eh
2 (P7) 1.012E-4 1.263E-5 1.578E-6 1.972E-7 2.465E-8 3.081E-9

rh
2 (P7) 8.012 8.003 8.001 8.000 8.000

ēh
2 (P7) 2.18E-08 7.50E-10 2.40E-11 7.53E-13 2.40E-14

r̄h
2 (P7) 29.00 31.22 30.93 32.40

ph
2 (P7) 1.265E-5 1.579E-6 1.972E-7 2.465E-8 3.081E-9

Example 2 Consider an isotropic elliptical body � with a = 3, b = 2 in plane strain de-
formation. The boundary � is described as x = 3 cos(t), y = 2 sin(t), t ∈ [0,2π]. We also
let λ = μ = 2.5, ν = 1/4, the coefficient matrix c = diag(1,1), and g1 = cos(t), g2 =
2 sin(t), t ∈ [0,2π].

We calculate the boundary numerical solutions uh = (u1h, u2h)
T on � following (12).

Table 4 lists the approximate values of u1h(P ) at points P4 = (a cos 0, b sin 0) and
P5 = (a cos π

4 , b sin π
4 ). Table 5 lists the approximate values of u2h(P ) at points P6 =

(a cos π
8 , b sin π

8 ) and P7 = (a cos π
2 , b sin π

2 ).
From Tables 4–5, we can numerically see that log2(r

h
i (P )) ≈ 3, and log2(r̄

h
i (P )) ≈ 5,

which agree with Theorem 3.

5 Conclusion

The following conclusions can be drawn concerning the mechanical quadrature method:

(a) Computing entry of discrete matrices is simple and straightforward, without any singular
integrals. The mechanical quadrature method involves a high accuracy algorithm with
convergent rate O(h3). However, the analysis of the mechanical quadrature method is
no longer within the framework of projection theory.
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(b) The larger the scale of the problem, the more precise are the results that can be obtained
according to the numerical results. The extrapolation algorithm is not very complex, but
it is very effective.

(c) In this paper we only discuss the mechanical quadrature method and the EAs for prob-
lems with smooth boundary conditions. It can be viewed as the first step toward general
singular problems such as those for notches, cracks, and so on.
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