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Abstract For the problem of torsion superimposed on extension of incompressible nonlin-
early elastic transversely isotropic circular cylinders, a simple asymptotic analysis is carried
out on using a small parameter that reflects the moderate twisting of slender cylinders, which
corresponds to a typical testing regime for biological soft tissue. The analysis is carried out
for a subclass of strain-energy densities that reflect transversely isotropic material response.
On using a four-parameter polynomial expression for the strain-energy density in terms of
certain classical invariants, this analysis is shown to be in excellent agreement with experi-
mental data obtained by other authors for rabbit papillary muscles. An explicit condition on
the strain-energy density is obtained that determines whether the stretched cylinder tends to
elongate or shorten on twisting. For the special case of pure torsion where no extension is
allowed, this condition determines whether the classical or reverse Poynting effect occurs.
For the rabbit papillary muscles, the theoretical results predict and the experimental results
confirm that a reverse Poynting-type effect occurs where the stretched rabbit muscle tends
to shorten on twisting.

Keywords Torsion superimposed on extension · Nonlinear theory of elasticity ·
Incompressible transversely isotropic materials · Asymptotic analysis · Papillary muscles
of the heart · Reverse Poynting effect
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1 Introduction

There has been significant recent renewed interest in the mechanics of anisotropic non-
linear hyperelastic materials motivated by applications in the modeling of soft biological
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tissue. As is often the case in the physical sciences, the theory has outpaced both the gather-
ing of reliable experimental data and the efficient interpretation of such data. The second of
these deficiencies will be addressed here for extension-torsion experiments of transversely
isotropic materials. Transversely isotropic materials will be considered here because of their
wide use in biomechanics (see, e.g., the books of Humphrey [9] and Taber [19]) and be-
cause transverse isotropy is the simplest form of anisotropy. Extension-torsion experiments
are important material characterization tests, given that the associated deformation is in-
homogeneous and combines both volumetric and deviatoric modes of deformation. Their
importance were recognized in the seminal work of Rivlin and Saunders [18] where these
tests were crucial in obtaining useful explicit forms of the isotropic strain-energy function
to model rubbers.

The main obstacle in the general analysis of the deformation of transversely isotropic
hyperelastic materials is the inherent complexity of the underlying system of equations of
equilibrium and boundary conditions. This is the case even when the simplifying assump-
tions of homogeneity and incompressibility are assumed. The problem of torsion superim-
posed on extension of a circular cylinder is a classic problem that has received considerable
attention in the literature on nonlinear elasticity for homogeneous incompressible isotropic
materials. A recent review has been carried out by Kanner and Horgan [11]. See also Horgan
and Murphy [6]. The corresponding problem for transversely isotropic materials is consid-
erably more complicated (see, e.g., Horgan and Murphy [8]). However, when the direction
of transverse anisotropy is aligned along the axis of the cylinder, it was shown by Humphrey
et al. [10] that major simplifications occur. The purpose of the present paper is to show that
further analytic progress can be made due to the presence of a naturally occurring small
dimensionless parameter τ̂ that suggests a simple asymptotic approach. Although the anal-
ysis presented here is standard, it will be shown that expanding the basic equations in a
Maclaurin series in τ̂ enables a large subclass of constitutive models to be included in the
modeling process. Thus one does not have to specify ab initio a particular form of the strain-
energy function. The usefulness of adopting this asymptotic approach does not seem to have
been recognized previously in the literature, even for isotropic materials. It will be shown
that small values of this parameter can be interpreted as describing twisting through mod-
erate angles of slender cylinders. Since physiological strains are themselves moderate (for
example, Pearson et al. [15] measured the diastolic diameter of the descending aorta in nor-
motensive men to be 2.11 cm and the systolic diameter to be 2.29 cm) and experimental
testing in extension-torsion tests typically requires slender specimens, the regime of small
values for τ̂ will be valid for the typical extension-torsion experiments for soft biological
tissue.

This is indeed the case for the experimental data considered here, which are data for rab-
bit papillary muscles obtained by Criscione et al. [3]. Papillary muscles are approximately
cylindrical extensions of the ventricle and play an essential role in the operation of both
the mitral and tricuspid valves in the heart. As noted in [3], papillary muscles are composite
structures comprised of a hyperelastic myocardial core and endocardial sheath. A commonly
used model for the mechanical behavior of papillary muscles is based on their being mod-
eled as incompressible homogeneous nonlinearly hyperelastic materials. The orientation of
the collagen fibres in papillary muscles is aligned with the longitudinal axis of the muscle,
which will be modeled here as a circular cylinder. This morphology of the muscles naturally
motivates the assumption of transverse isotropy. Particularly elegant expositions of this type
of modeling can be found in the books of Humphrey [9] and of Taber [19] and in the work of
Humphrey et al. [10]. These studies provided motivation for the approach presented here. To
demonstrate a predictive capability of the modeling process proposed here, a specific form
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of the strain-energy function is adopted. The simplest specification is a truncated Taylor se-
ries in the appropriate invariants. It will be shown that a good fit is obtained between the
data of Criscione et al. [3] and a four-term polynomial constitutive model.

Poynting [17] noted that under a pure torsional couple a solid cylinder of copper wire
experiences an elongation. It can be shown that under reasonable constitutive assumptions,
all homogeneous incompressible isotropic nonlinearly elastic materials display this classic
Poynting effect. An excellent discussion of the Poynting effect within the context of rubber
elasticity can be found in [1] and within the context of the passive response of papillary
muscles in [19]. It was shown recently by Horgan and Murphy [7] that the classic Poynting
effect is not necessarily observed for transversely isotropic cylinders. In fact, for sufficiently
large anisotropy, a reverse Poynting effect was predicted to occur where the cylinder short-
ens on twisting. In the present paper we develop an approximate theory for the problem of
torsion superimposed on extension of long slender cylinders for moderate angles of twist.
The leading-order term in the average axial stress required to maintain a constant stretch
in such cylinders is shown to be of O(τ̂ 2). The sign of this term determines whether the
stretched cylinder tends to elongate or shorten on twisting and an explicit condition on the
strain-energy density is obtained that determines which behavior occurs. For the special case
of pure torsion where no extension is allowed, this condition determines whether the classi-
cal or reverse Poynting effect occurs. For the rabbit papillary muscles, the theoretical results
predict and the experimental results confirm that a reverse Poynting-type effect occurs where
the stretched rabbit muscle tends to shorten on twisting.

2 Extension and Torsion of Transversely Isotropic Cylinders

The mechanical properties of elastomeric materials are described in continuum mechanics
in terms of a strain-energy density function W per unit undeformed volume. For our pur-
poses here, it is sufficient to consider the subclass of incompressible transversely-isotropic
materials for which W = W(I1, I4) where I1 = trB = trFF T and F is the gradient of the
deformation. On denoting the unit vector defining the direction of anisotropy in the unde-
formed configuration by A, we have I4 = FA · FA and the Cauchy stress T is given by

T = −pI + 2W1B + 2W4a ⊗ a, (2.1)

where a = FA, Wi ≡ ∂W/∂Ii (i = 1,4), ⊗ denotes the tensor product with Cartesian com-
ponents aiaj and p is a hydrostatic pressure term associated with the incompressibility
constraint detB = 1. For detailed accounts of the theory of hyperelasticity for anisotropic
materials see, e.g., Holzapfel [5] and Ogden [12].

Consider a long solid circular cylinder of radius A and length L composed of an in-
compressible transversely-isotropic hyperelastic material subjected to a stretch in the axial
direction and then to a twist at its ends. On using cylindrical coordinates (R,�,Z) in the
undeformed configuration and (r, θ, z) in the current configuration, we may thus write

r = γ −1/2R, θ = � + τγZ, z = γZ, (2.2)

where τ denotes the twist per unit length of the stretched rod and γ denotes the given axial
stretch. The coefficient γ −1/2 appears in (2.2)1 in order to maintain incompressibility, so that
for extension (γ > 1), the cylinder necessarily contracts laterally. The deformed radius a is
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given by a = γ −1/2A. Corresponding to (2.2), one has the left Cauchy-Green tensor B

B =
⎡
⎣

γ −1 0 0
0 γ −1 + γ τ 2R2 γ 3/2τR

0 γ 3/2τR γ 2

⎤
⎦ , (2.3)

and so the relevant invariants are

I1 = γ 2 + 2γ −1 + γ τ 2R2, I3 = 1. (2.4)

To describe the anisotropy of concern here, we write the unit vector A in the undeformed
configuration as A = (0, cosψ, sinψ) where ψ denotes a pitch angle. Thus the fibers are
considered to be helically wound throughout the cylinder. On using the notation c ≡ cosψ ,
s ≡ sinψ , we find that

I4 = γ −1c2 + 2τRsc + (
1 + γ −1τ 2R2

)
γ 2s2. (2.5)

General expressions for the physical components of the Cauchy stresses for the case
where W = W(I1, I4) are given in [9] and [10]. We confine attention here to the resultant
applied moment M and the average axial stress N necessary to maintain the deformation.
On using the results of [10] and on converting to the notation of the present paper we obtain

M ≡
∫ 2π

0

∫ a

0
Tzθ r

2drdθ = 4π

∫ A

0

[
τRW1 + (

γ −1sc + s2τR
)
W4

]
R2dR, (2.6)

and

N = 1

πA2

∫ 2π

0

∫ a

0
Tzzrdrdθ

= A−2
∫ A

0

[
4

(
γ − γ −2 − τ 2R2

2

)
W1

+ 2
(
2γ s2 − γ −2c2 − 2γ −1scτR − s2τ 2R2

)
W4

]
RdR, (2.7)

respectively, where the subscript on W denotes differentiation with respect to the corre-
sponding invariant and these derivatives are evaluated at (2.4), (2.5).

The purpose of this paper is to exploit the simplicity in the analysis of the foregoing
problem when the intrinsic non-dimensional parameter τ̂ = τA is small. This simplicity is
especially enhanced if the resultant moment and force are either even or odd in τ̂ . In general
this is not the case. However in the important special case of transverse isotropy along the
longitudinal axis of the cylinder where ψ = π/2, equations (2.6), (2.7) simplify to

M = 4πτ

∫ A

0
(W1 + W4)R

3dR, (2.8)

N = 2A−2
∫ A

0

[
2

(
γ − γ −2 − τ 2R2

2

)
W1 + (

2γ − τ 2R2
)
W4

]
RdR, (2.9)

with I4 now given by

I4 = γ 2 + γ τ 2R2. (2.10)
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It follows immediately that in this special case, the quantities M , N are odd and even func-
tions of τ̂ respectively. Consequently attention will be focused on this special case.

Note that on setting τ = 0 in (2.2) we have the deformation of simple extension. It follows
immediately from (2.8), (2.9) on setting τ = 0 that

M = 0, N0 ≡ N |τ=0 = 2
(
γ − γ −2

)
W 0

1 + 2γW 0
4 , (2.11)

where the superscript ‘0’ attached to partial derivatives of the strain-energy function denote
evaluation when their arguments have the values

I1 = γ 2 + 2γ −1, I4 = γ 2. (2.12)

Therefore

dN0

dγ
= 2

(
1 + 2γ −3

)
W 0

1 + 2W 0
4 + 4

(
γ − γ −2

)2
W 0

11

+ 8γ
(
γ − γ −2

)
W 0

14 + 4γ 2W 0
44, (2.13)

and, in particular,

dN0

dγ

∣∣∣∣
γ=1

= 6W1(3,1) + 2W4(3,1) + 4W44(3,1). (2.14)

It will be required that N0 = 0 when γ = 1 and hence from (2.11) we obtain

W4(3,1) = 0. (2.15)

We note that this restriction can also be motivated more generally from (2.1) on assuming
that the stress be purely hydrostatic in the undeformed state (cf. [16]). On using (2.15),
(2.14) thus simplifies to

dN0

dγ

∣∣∣∣
γ=1

= 6W1(3,1) + 4W44(3,1). (2.16)

On physical grounds, one expects the axial force required to produce a simple extension to
be a monotone increasing function of γ and so we require that

3W1(3,1) + 2W44(3,1) > 0. (2.17)

3 The Resultant Boundary Conditions

The resultants (2.8), (2.9) can be rewritten in a non-dimensional form on using the following
non-dimensional variables:

ρ = R

A
, τ̂ = τA. (3.1)

The quantity τ̂ is the total angle of twist. In terms of these variables, (2.9) becomes

N = 2
∫ 1

0

[(
2
(
γ − γ −2

) − τ̂ 2ρ2
)
W1 + (

2γ − τ̂ 2ρ2
)
W4

]
ρdρ, (3.2)
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where now

I1 = γ 2 + 2γ −1 + γ τ̂ 2ρ2, I4 = γ 2 + γ τ̂ 2ρ2. (3.3)

This relation will next be expanded in a Maclaurin series about τ̂ = 0 and truncated after a
finite number of terms. This should yield good fits with experimental data when τ̂ � 1. It is
worthwhile noting that τ̂ is not an easily measured physical parameter and consequently, it
is not immediately obvious when these asymptotic forms apply. However

τ̂ = τA = τL · A

L
≡ τ̃
. (3.4)

Both of the quantities τ̃ , 
 have an obvious physical interpretation: τ̃ is the relative twist
of the planar ends of the cylinder and is the strain measure typically measured in torsion
experiments and 
 is the aspect ratio of the cylinder. Thus infinitesimal values of τ̂ can be
identified with the twisting of slender cylinders, provided, of course, that the relative twist
is not too large. This is the interpretation adopted here although we note that the asymptotic
forms obtained in the sequel are likely to be valid in other contexts such as moderate relative
twists and moderate aspect ratios whose product is infinitesimal. In particular, we note that
the asymptotic forms obtained here are likely to be valid for the testing of biological soft
tissue since the range of strains of physiological interest is small. This view is validated in
the next section where it is shown that experimental data for the twisting of papillary muscles
from rabbits are matched extremely well by such expansions. This match is facilitated by
the fact that papillary muscles from rabbits were found by Pagani and Julian [14] to have
aspect ratios of the order of 0.1, which will be assumed typical.

On expanding N(τ̂ ) in a Maclaurin series, and exploiting the fact that N(τ̂ ) is an even
function in τ̂ , we obtain

N(τ̂ ) = N0 + N2τ̂
2 + O(τ̂ 4), (3.5)

where N0 is defined in (2.11) and

N2 = −1

2

(
W 0

1 + W 0
4

) + (
γ 2 − γ −1

)
W 0

11 + (
2γ 2 − γ −1

)
W 0

14 + γ 2W 0
44. (3.6)

From a modeling perspective, the advantage of this expansion is that truncation after just
two terms yields an expression that is valid up to O(τ̂ 4) and is therefore likely to be valid
for even moderate values of the parameter τ̂ . For pure torsion, the coefficient of the second-
order term, henceforth denoted by NPT

2 , is therefore given by

NPT
2 = −1

2
W1(3,1) + W14(3,1) + W44(3,1), (3.7)

where we have used (2.15).
If the axial stretch is held constant, it follows from (3.5) that the sign of dN/dτ̂ up to

O(τ̂ 3) is determined by the sign of (3.6). Thus we have shown that dN/dτ̂ < 0 if and only
if

2
(
γ 2 − γ −1

)
W 0

11 + 2
(
2γ 2 − γ −1

)
W 0

14 + 2γ 2W 0
44 < W 0

1 + W 0
4 . (3.8)

Thus in order to keep the length of the cylinder constant upon twisting, the axial force needs
to be decreased with increasing twist. For the important special case of pure torsion for
which no extension is allowed, (3.8) simplifies to

2(W14(3,1) + W44(3,1)) < W1(3,1), (3.9)
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where again we have used (2.15). Thus the condition (3.9) ensures that the axial force re-
quired to maintain pure torsion is compressive. In the absence of such a force, the cylinder
would elongate on twisting reflecting the classic Poynting effect. However, if the inequal-
ity sign in (3.9) is reversed, then the leading term in (3.5) given by (3.7) is positive and so
to within the order of τ̂ under consideration the axial force is tensile and in the absence
of such a force, the cylinder would shorten on twisting. This reverse-Poynting effect has
been discussed recently by Horgan and Murphy [7] for the exact theory of pure torsion for
transversely isotropic materials modeled by (2.1).

In terms of the non-dimensional variables defined in (3.1), the resultant moment rela-
tion (2.8) becomes

M = 4πA3τ̂

∫ 1

0
(W1 + W4)ρ

3dρ, (3.10)

where the invariants have the form (3.3). Expanding in a Maclaurin series in τ̂ yields

M = M1τ̂ + M3τ̂
3 + O

(
τ̂ 5

)
, (3.11)

where

M1 ≡ πA3
(
W 0

1 + W 0
4

)
, M3 ≡ 2πA3γ

3

(
W 0

11 + 2W 0
14 + W 0

44

)
. (3.12)

For pure torsion, these coefficients simplify to

MPT
1 = πA3W1(3,1), MPT

3 = 2πA3

3
[W11(3,1) + 2W14(3,1) + W44(3,1)]. (3.13)

It is now proposed that the two relations (3.5) and (3.11) should be sufficient to model ex-
periments where slender transversely isotropic cylinders with the direction of anisotropy
aligned along the longitudinal axis are first axially stretched and then moderately twisted
while maintaining the length of the cylinder. Note that this theory is essentially a five-
constant theory: four of the constants are coefficients of the powers of τ̂ in (3.5), (3.11)
and the fifth is necessary to satisfy (2.15). Once again, we would like to emphasise the fact
that (3.5) and (3.11) are valid for all forms of the strain-energy function W = W(I1, I4). In
order to obtain a predictive capability, a specific form of the strain-energy function must be
specified.

The simplest five-constant strain-energy density of the form W = W(I1, I4) is the fol-
lowing five-term polynomial expansion in I1 − 3, I4 − 1:

W 5c = c10(I1 − 3) + c01(I4 − 1) + c20(I1 − 3)2

+ c02(I4 − 1)2 + c11(I1 − 3)(I4 − 1). (3.14)

Polynomial forms of this type have been used to model myocardial tissue (see, e.g.
Humphrey [9] and references cited therein). Of course, another well-known alternative is
to use exponential forms. The restriction (2.15) is satisfied if and only if c01 = 0. Thus the
strain-energy is actually a four-parameter model of the form

W 4c = c10(I1 − 3) + c20(I1 − 3)2 + c02(I4 − 1)2 + c11(I1 − 3)(I4 − 1). (3.15)

The restriction (2.17) requires that

3c10 + 4c02 > 0. (3.16)
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The general Poynting criterion (3.8) for this material model reduces to

2γ 3(c20 + c02 + c11) + γ (6c20 + 2c02 + 4c11 − c10) − 4(c11 + 2c20) < 0, (3.17)

which simplifies in the case of pure torsion to

4c02 + 2c11 − c10 < 0. (3.18)

For this quadratic model, the coefficients in (3.5) and (3.11) are given by

N0 = 2c10

(
γ − γ −2

) + 4c20

(
γ − γ −2

)(
γ 2 + 2γ −1 − 3

) + 4c02γ
(
γ 2 − 1

)

+ 2c11

[(
γ − γ −2

)(
γ 2 − 1

) + γ 3 − 3γ + 2
]
,

N2 = −1

2
c10 + c20

(
γ 2 − 4γ −1 + 3

) + c02

(
γ 2 + 1

) + c11

(
γ 2 − 2γ −1 + 2

)
,

M1 = πA3
[
c10 + 2c20

(
γ 2 + 2γ −1 − 3

) + 2c02

(
γ 2 − 1

) + 2c11

(
γ 2 + γ −1 − 2

)]
,

M3 = 4πA3γ

3
(c20 + c02 + c11).

(3.19)

In the important special case of pure torsion, these coefficients simplify to

NPT
0 = 0, NPT

2 = −1

2
c10 + 2c02 + c11,

MPT
1 = πA3c10, MPT

3 = 4πA3

3
(c20 + c02 + c11).

(3.20)

It will be shown in the next section that (3.5), (3.11) fit the data from torsion superimposed
on extension experiments on rabbit papillary muscles extremely well and the least squares
fit of the constitutive model (3.15) with this data will be obtained.

4 Experimental Data for Rabbit Papillary Muscles

The passive response of intact papillary muscles was carefully measured in a series of ele-
gant experiments by Criscione et al. [3]. Five right ventricular papillary muscles from New
Zealand white rabbits were selected, with care taken to ensure that the specimens had an
essentially cylindrical geometry. The muscles were first extended in the axial direction with
γ = 1.04 and then twisted while maintaining their lengths constant. The required moment
and axial forces necessary to sustain the deformation at different levels of twist, both positive
and negative, were measured. Only the results from one muscle were given, with A = 0.6
mm, these being representative of all five tests. The results were reported in graphical form.
These data points were digitized and the results are given in the Appendix.

The central thesis of this paper is that, for moderate twisting of slender cylinders, the
response in torsion superimposed on extension of transversely isotopic cylinders, with the
direction of anisotropy along the axis of the cylinder, is essentially described by the follow-
ing relations for the applied average axial stress and moment respectively:

N = N0 + N2τ
2A2, M = M1τA + M3τ

3A3, (4.1)
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Fig. 1 Fit of model (4.2) with
the experimental data from
Table 2. The units for the average
stress are mN mm−2 while the
units for τ are rad mm−1

where N0, N2, M1, M3 are given by (2.11), (3.6), (3.12), A is the initial radius of the cylinder
and τ is the twist per unit deformed length. To test this hypothesis, experimental data for
papillary muscles from rabbits will be compared to the predictions from (4.1).

The average axial stress data, given in Table 2 in the Appendix, are modeled first. Note
that when the twist is zero, the average axial stress is 0.21 mN mm−2 and so, motivated by
(4.1)1, an empirical model of the form N = 0.21 + cτ 2 (constant c) is fitted to the data on
using a least-squares error minimization technique. The units for τ are rad/mm. The result
is

N = 0.21 + 1.54τ 2. (4.2)

The predictions from this empirical model are plotted together with the experimental data in
Fig. 1. An excellent fit of the model with the data is obtained.

Similarly, motivated by (4.1)2, on fitting the empirical model M = c1τ + c3τ
3, c1, c2

constants, with the data from Table 1 using a least-squares approach we obtain

M = 0.08τ + 0.45τ 3. (4.3)

The fit of this model with the corresponding experimental data from Table 1 is shown in
Fig. 2.

Although still quite good, the same excellent fit as previously achieved is not obtained.
From a pure model-fitting perspective, the problem is that the experimental data is not an
odd function of the twist. Physically, this is because the symmetry assumptions that are the
basis of models of the form (4.1)2 are idealizations that are never likely to be valid in practice
and certainly do not seem to hold here. The main symmetry assumptions used as the basis
of the mathematical model are that the papillary muscle is perfectly cylindrical, the muscle
is homogeneous and that the transverse isotropy is aligned perfectly in the axial direction.
Despite the fact that the experimental data are not perfectly odd in the twist, nonetheless
expressions of the form (4.1)2 yield predictions that agree at least qualitatively with the ex-
perimental data and, indeed, for one direction of twist, there is also excellent quantitative
agreement. These observations and the excellent fit achieved with the average axial stress
data suggest that expansions of the form (4.1) show considerable promise for the modeling
of papillary muscles and are likely to be useful also in the modeling of moderate twisting of
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Fig. 2 Comparison of model
predictions and experimental data
from Table 1. The units for the
resultant moment are mN mm

other nonlinearly elastic slender cylindrical bodies. Of course, to carry out a complete anal-
ysis of the accuracy of the above models to match experimental data, it would be desirable
to obtain estimates for the relative errors introduced in the fitting process (cf. the work of
Ogden et al. [13] for isotropic natural rubber) but we shall not pursue this here.

The determination of the constants in the strain-energy density (3.15) is now straightfor-
ward. On comparing the first of (4.1) with (4.2) and using the first of (3.19) we get

0.21 = 0.23c10 + 0.34c02 + 0.03c11, (4.4)

where we recall that γ = 1.04 and this and subsequent calculations are rounded to two
decimal places. It also follows from (4.1)1 and (4.2) that A2N2 = 1.54. Since A = 0.6, we
find from (3.19)2 that

4.28 = −0.5c10 + 0.24c20 + 2.08c02 + 1.16c11. (4.5)

Similarly, on comparing (4.1)2 with (4.3) and using the last two of (3.19) we obtain

0.20 = c10 + 0.01c20 + 0.16c02 + 0.08c11, 2.21 = c20 + c02 + c11. (4.6)

On solving the four linear equations (4.4)–(4.6) we find that

c10 = 0.06, c20 = −1.44, c02 = 0.43, c11 = 3.22, (4.7)

where the units are mN mm−2 or kPa. These are the values of the constants in the strain-
energy (3.15).

It is easily verified that the restriction (3.16) is satisfied for this choice of material pa-
rameters. Since we also have 4c02 + 2c11 − c10 > 0, it follows from (3.18) that for the pure
torsion of the rabbit papillary muscles a reverse Poynting effect is predicted to hold with a
tensile axial force necessary to maintain γ = 1. Indeed, it follows easily from (3.17) that
this reverse Poynting-type effect is predicted to hold for all γ ≥ 1 for the material modeled
by (3.15) with constants given in (4.7). This is reflected by both the experimental and theo-
retical results shown in Fig. 1 where the extension ratio is held constant (γ = 1.04) and the
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average axial stress is seen to be monotonic increasing in the twist. The torsion experiments
of Criscione et al. [3] were performed while maintaining a stretch of γ = 1.04. We suspect
that this very small pre-stretch was implemented to keep the muscle taut and thus the results
shown in Fig. 1 should be very close to those that occur for pure torsion.

5 Concluding Remarks

For the problem of torsion superimposed on extension of incompressible nonlinearly elastic
transversely isotropic cylinders, an asymptotic analysis has been carried out on using a small
parameter that reflects the moderate twisting of slender cylinders. On using a four-parameter
polynomial expression for the strain-energy density in terms of classical invariants, this
analysis has been shown to be in excellent agreement with experimental data of Criscione
et al. [3] for rabbit papillary muscles. The theoretical results predict and the experimental
results confirm that a reverse Poynting-type effect occurs where the stretched rabbit muscle
tends to shorten on twisting.

It has been pointed out by Criscione [2] that the classical invariants give rise to a covari-
ance between the response functions in the constitutive law for the stresses. An alternative
set of invariants which form an orthogonal invariant basis has been proposed in [2]. For the
case of biaxial testing of incompressible materials, the new invariants have been shown to
have some advantages over the usual invariants. It remains to be seen, however, whether
such invariants will attract widespread use. For example, it has been shown by Ogden et al.
[13] in a study of fitting isotropic hyperelastic models to experimental data for natural rub-
ber that strain-energy functions of the type proposed in [2] for incompressible materials do
not always lead to smaller residual error than classical strain-energies. While it would be of
interest to investigate the use of alternative invariants for the transversely isotropic materials
of concern here, such a study is beyond the scope of the present work. Yet another alterna-
tive to modeling soft biological tissues would be to employ a theory of weakly nonlinear
elasticity involving third or fourth-order elastic constants (see, e.g., Destrade et al. [4] for a
discussion) but we prefer to use the exact nonlinear theory presented here.
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Appendix

Criscione et al. [3] reported graphically the results of twisting an intact cylindrical papillary
muscle taken from a New Zealand white rabbit. The specimen was held at an extension
ratio of 1.04. The first plot of their Fig. 3 shows twisting moment (mN mm) versus twist
(rad mm−1). The digitized data points are given below in Table 1. The second of the plots in
Fig. 3 of [3] details the average axial stress (mN mm−2) versus twist (rad mm−1) necessary
to maintain the given extension ratio. The results of digitizing the graphical data are given
in Table 2.
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Table 1 Digitized data for the
intact muscle from the upper
Fig. 3 of [3]

Twist Twisting
moment

−0.96 −0.43

−0.91 −0.33

−0.8 −0.2

−0.74 −0.17

−0.63 −0.13

−0.57 −0.12

−0.44 −0.1

−0.37 −0.08

−0.24 −0.06

Twist Twisting
moment

−0.16 −0.05

0 0

0.05 0.01

0.29 0.04

0.5 0.1

0.67 0.2

0.8 0.37

0.95 0.61

Table 2 Digitized data for the
intact muscle from the lower
Fig. 3 of [3]

Twist Average axial
stress

−0.97 1.66

−0.91 1.38

−0.80 1.02

−0.74 0.81

−0.63 0.69

−0.56 0.62

−0.44 0.48

−0.36 0.44

−0.24 0.31

Twist Average axial
stress

−0.16 0.28

0 0.21

0.05 0.21

0.28 0.30

0.50 0.55

0.67 0.86

0.80 1.35

0.95 1.96
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