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Abstract Several industrial applications involve rubber and rubber-like materials, and it is
important to be able to predict the constitutive response of these materials. In the present pa-
per, a new constitutive model for rubber-like solids is proposed. The model is based on the
8-chain concept introduced by Arruda and Boyce (J. Mech. Phys. Solids 41, 389–412, 1993)
to which two new components are added. Real polymer networks do not deform affinely,
and in the proposed model this is accounted for by the inclusion of an elastic spring, act-
ing in series with the representative polymer chain. Furthermore, real polymer chains are
not completely free to move, which is modelled by imposing a topological constraint on
the transverse motions of the representative polymer chain. The model contains five model
parameters and these need to be determined on the basis of experimental data. Three ex-
perimental studies from the literature were used to assess the proposed model. The model
was able to reproduce experimental data performed under conditions of uniaxial tension,
generalised plane deformation, and biaxial tension with an excellent accuracy. The strong
predictive abilities together with the numerically efficient structure of the model make it
suitable for implementation in a finite element context.
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1 Introduction

Rubber and rubber-like materials are used in a wide range of industrial applications, such
as tires, seals, conveyor belts, base isolations of buildings, bridge bearings, etc. To attain
appropriate designs of rubber components under different types of mechanical loading, it is
important to have access to accurate constitutive models for rubber that are applicable under
multiaxial loading conditions.
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Rubber-like materials are extremely deformable, and upon unloading, the initial config-
uration is almost completely recovered. Thus, these materials are often assumed to be fully
elastic. It is therefore convenient to formulate the constitutive behaviour in terms of a strain
energy function. The elasticity of rubbers is governed by the entropy of the long polymer
chains that constitute the rubber. By use of statistical mechanics, the elastic behaviour of
single chains can be analysed and predicted [1–6]. Based on these analyses, constitutive
models have been proposed in terms of a strain energy. The Gaussian treatment leads to the
so-called neo-Hookean model. If the finite extensibility of the polymer chains is taken into
account, the strain energy of the polymer chains can be approximated by use of Langevin
statistics. Several representative polymer chains may then be combined into a model to pre-
dict the 3D behaviour of rubber. In the so-called 3-chain model [5, 7], it is assumed that the
network of polymer chains can be represented by three chains, oriented in the three principal
directions of deformation. The 4-chain model [8, 9] instead models the polymer network by
use of four representative polymer chains, which are connected to the corners of a tetrahe-
dron and a central junction. In the 8-chain model by Arruda and Boyce [10], eight chains
are used to represent the polymer network. The representative chains are then attached to
the corners of a cube and a central junction. In the model by Elias-Zuniga and Beatty [11],
the 3-chain model and the 8-chain model are combined. Finally, if the representative chains
are taken to be distributed over all possible orientations, the full network model is attained
[12–16].

Most of the previous models of rubber elasticity were not able to fully account for the
stress-strain relations under multiaxial loading conditions. Models aiming at taking topolog-
ical constraint effects in the polymer networks into account were therefore developed. In the
constrained junction theories [17–21], the topological constraints around the junctions in a
polymer chain are modelled. The constrained segment theories (tube models) constitute an
alternative approach [22–26], where interaction effects along the chain contour are instead
modelled.

In addition to the statistical mechanics-based models mentioned above, there are also
a number of phenomenological models for rubber-like materials available in the literature,
see for example Horgan and Saccomandi [27] for a review. In the models by Mooney-Rivlin
[28, 29], Gent [30, 31], Yeoh [32], and Beda [33], the strain energy of the rubber material
is expressed by use of the invariants of the deformation state. In the models by Valanis
and Landel [34] and Ogden [35], the strain energy is instead expressed as a polynomial
of the principal stretches. The Mooney-Rivlin model may, however, be related to statistical
mechanics [36].

In the present paper, a new constitutive model for rubber-like materials is proposed. The
model is based on the 8-chain approach proposed by Arruda and Boyce [10], but is expanded
to account for non-affine polymer chain deformations and for topological constraints accord-
ing to the tube theory. The model contains five parameters that need to be determined on the
basis of experiments. The influence of the different parameters is illustrated, and the model
is compared to experimental results from the literature.

2 Model Description

2.1 Strain Energy of Representative Polymer Chain

We start by considering a single representative polymer chain, see Fig. 1. The chain is taken
to consist of n segments of equal length l. The distance between the end points of the chain
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Fig. 1 Geometry of the
representative polymer chain.
The distance between the end
points is denoted r and the radius
of the constraint cylinder is
denoted b

is r , and the maximum length of the chain is rmax = nl. According to random walk theory,
the root-mean-square value of r for an unstrained chain is r0 = √

nl. The stretch of the chain
is then defined as

λc = r

r0
. (1)

We assume that, due to the interaction with surrounding polymer chains, the geometry of
the representative polymer chain is confined to a tube with a radius b, see Fig. 1. In the
undeformed configuration, this radius is taken to be b0. Following Doi and Edwards [37]
and Miehe et al. [16], we introduce the variable ν, defined as

ν = (b0/b)2. (2)

The infinitesimal probability dP that the conformation of the chain falls in the geometry
range [λc, λc + dλc] and [ν, ν + dν] can be expressed as

dP (λc, ν) = p(λc, ν)dλcdν. (3)

The probability density p(λc, ν) is assumed to be of the form

p(λc, ν) = pλ(λc)pν(ν), (4)

where pλ(λc) and pν(ν) are two probability densities that independently describe the
stretching of the chain and the tube constraint, respectively. To account for the finite exten-
sibility of the chain, inverse Langevin statistics is employed. Thus, the probability density
pλ(λc) is expressed as

pλ(λc) = γλ exp

{
−n

(
λc√
n

β + ln
β

sinhβ

)}
, (5)

where γλ is a normalisation constant and β is defined by the Langevin function

cothβ − 1

β
= λc√

n
. (6)

The probability of the straight tube constraint is given the form

pν(ν) = γν exp

{
−α

(
r0

b0

)2

ν

}
(7)

[37], where γν is a normalisation constant and α is a material constant.
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The entropy s of this representative chain is now given by Boltzmann’s equation

s = kB · lnp, (8)

where kB is Boltzmann’s constant. For purely entropic elasticity, the change in strain energy
��c during deformation of the chain is given by

��c = −T �s, (9)

where �s is the associated change in entropy and T is the absolute temperature. The strain
energy �c of this chain may then be expressed as

�c = kBT n

{
λc√
n

β + ln
β

sinhβ
+ α

(
l

b0

)2

ν

}
+ �c0, (10)

where �c0 is a constant.
We now introduce the stretch λm, which is the macroscopic stretch imposed on the rub-

ber material in the direction of the polymer chain. If the polymer chain deforms affinely, the
relation λc = λm will hold. However, in a real polymer network, this is not the case. Instead,
when a polymer chain is stretched so that it approaches its maximum extensibility, it will de-
form less than the macroscopic stretch and will thus not deform affinely. As a consequence,
other chains in the surrounding polymer network will need to deform more than what is
predicted by the macroscopic stretch. In order to account for this effect, the macroscopic
stretch λm is decomposed according to

λm = λcλnc, (11)

where λnc is a stretch associated with the additional compliance from the surrounding poly-
mer network, see Fig. 2. Thus, λnc = 1 corresponds to a fully affine deformation of the rep-
resentative polymer chain. But in general, the surrounding polymer network will contribute
with some serial compliance, associated with a stretch λnc �= 1, and the representative poly-
mer chain will then deform non-affinely.

Fig. 2 Affine and non-affine deformation of the representative polymer chain
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Fig. 3 Arrangement of
representative chains in 8-chain
model. Directions 1, 2, and 3
denote the principal directions of
deformation, and a0 is the side
length of the undeformed cube
containing the 8 chains

2.2 Strain Energy of Polymer Network

We now consider the strain energy of a polymer network constituting the rubber material.
The position vectors in the reference and deformed states of the material are denoted by X
and x, respectively. The deformation gradient is computed as F = ∂x/∂X, and the Jacobian
is J = det F. The right Cauchy-Green deformation tensor is computed as C = FTF, and the
principal stretches λ1, λ2, and λ3 are related to the deformation invariants I1, I2, I3 of C
according to

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = λ2

1λ
2
2λ

2
3. (12)

Incompressibility is assumed, implying I3 = J 2 = 1.
In the 8-chain model by Arruda and Boyce [10], the polymer network constituting the

rubber material is represented by eight identical polymer chains, which are connected to
the corners of a cube and a central junction, see Fig. 3. During deformation of the material,
the sides of the cube remain parallel to the principal directions of deformation. For the
eight representative chains in the 8-chain model, the stretch λm is related to the multiaxial
deformation state according to

λm =
(

1

3

(
λ2

1 + λ2
2 + λ2

3

))1/2

=
(

I1

3

)1/2

. (13)

Nanson’s formula is employed to compute ν (cf. [37] and [16]). This formula relates
vector elements of infinitesimally small areas dS and ds in the reference and deformed states,
respectively, according to ds = J−1F−TdS. If the principal directions of the deformation in
the reference configuration are given by the unit vectors N1, N2, and N3, the 8 chains are
oriented in the directions M = (±N1 ± N2 ± N3)/

√
3. For the eight representative chains, ν

is related to the macroscopic deformation as

ν = ∣∣J−1F−TM
∣∣ = (

J−2MC−1M
)1/2

=
(

1

3J 2

(
1

λ2
1

+ 1

λ2
2

+ 1

λ2
3

))1/2

= 1

I3

(
I2

3

)1/2

=
(

I2

3

)1/2

, (14)

where the incompressibility condition I3 = 1 has been utilised.
It has been noted, that strain energy functions only including a dependence on I1 are

unable to accurately capture the constitutive behaviour of rubber at low to moderate strains
[38–40]. In the present model, the constraint parameter ν introduces an additional depen-
dence on the invariant I2 in a natural way. As mentioned above, a dependence on I2 may
also be motivated on the basis of statistical mechanics [36].
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Based on the expression for the strain energy of a single representative chain derived
in the previous subsection, the following strain energy � is now proposed for the rubber
material:

� = ccn

(
λc√
n

β + ln
β

sinhβ

)
+ cnc

(
λ2

nc − 1
)α + cconnν − p(J − 1). (15)

In the expression for � above, cc, cnc, α, and ccon are material constants, λc and λnc relate
through (11), β is defined through (6), λm is given by (13), and ν is given by (14). The first
term in (15) represents the strain energy of the representative polymer chains, the second
term penalises non-affine deformations, and the third term accounts for the tube constraint
on the polymer chains. To account for incompressibility, the strain energy function is also
supplied with a fourth term that penalises volumetric changes, where p is a Lagrange mul-
tiplier. Thus, in total there are five material constants in the proposed model: n, cc, cnc, α,
and ccon.

In principle, the strain energy in (15) depends on three independent deformation entities,
namely λm, λnc, and ν. For a given macroscopic deformation state F, the entities λm and ν

are directly defined by (13) and (14), but λnc remains to be determined. Thus, for a given
deformation state F (which sets λm and ν), λnc is taken to adjust so that the strain energy �

is minimised. Thus, the additional condition

∂�(λm, λnc, ν)

∂λnc

∣∣∣∣
λm,ν

= −cc
√

nβ
λm

λ2
nc

+ 2cncαλnc

(
λ2

nc − 1
)α−1 = 0 (16)

is applied. Note that β also depends on λnc through λc. Equation (16) is a non-linear relation
that needs to be solved for λnc.

2.3 Computation of Stress Tensors

The second Piola-Kirchhoff stress tensor S is obtained as

S = 2
∂�

∂C

= 2cc
√

nβ
∂λc

∂C
+ 4cncα

(
λ2

nc − 1
)α−1 ∂λnc

∂C
+ 2cconn

∂ν

∂C
− pC−1. (17)

We introduce the relations ∂I1/∂C = I, ∂I2/∂C = I1I − C, and ∂I3/∂C = I3C−1, where I is
the identity tensor. The partial derivatives in (17) may then be expressed as

∂λc

∂C
=

(
∂λc

∂λm
+ ∂λc

∂λnc

dλnc

dλm

)
∂λm

∂C
=

(
1

λnc
− λm

λ2
nc

dλnc

dλm

)
I

6λm
, (18)

∂λnc

∂C
= dλnc

dλm

∂λm

∂C
= dλnc

dλm

I
6λm

, (19)

∂ν

∂C
= ν

2I2I3

(
I3

∂I2

∂C
− 2I2

∂I3

∂C

)
= ν

2I2

(
I1I − C − 2I2C−1) . (20)

Differentiation of (16) yields the relation

(
η1

dβ

dλc
+ β

)
dλm +

(
η2

dβ

dλc
+ η3

)
dλnc = 0, (21)
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where the factors ηi take on the forms

η1 = −cc
√

n
λm

λnc
,

η2 = cc
√

n
λ2

m

λ2
nc

, (22)

η3 = 2cncα
(
(α − 1)λ3

nc(λ
2
nc − 1)α−2 + 3λ2

nc(λ
2
nc − 1)α−1

)
,

and the derivative dβ/dλc is obtained by differentiation of the Langevin function (6), yield-
ing

dβ

dλc
= 1√

n

1

1 − coth2 β + 1/β2
. (23)

Thus, by use of (22) and (23), the derivative dλnc/dλm may be computed from (21), the
partial derivatives in (18)–(20) may then be evaluated, which finally enables computation of
the stress tensor in (17).

Once the second Piola-Kirchhoff stress tensor is established, the first Piola-Kirchhoff
(nominal) stress tensor P and the Cauchy (true) stress tensors σ may be computed as

P = FS, (24)

σ = J−1PFT. (25)

3 Parameter Study

3.1 Prerequisites

In the present section, the influence of the five model parameters on the predicted stress-
stretch relations is illustrated. We assume deformation states on the form

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3, (26)

where the vectors ei denote basis vectors in a Cartesian coordinate system. In the following
parameter study, two types of load cases are considered, i.e., uniaxial and biaxial tension.
The deformation is parameterised by λ1, and the two load cases are associated with the
following deformation states:

• uniaxial tension: λ1, λ2 = λ3 = 1/
√

λ1,
• biaxial tension: λ1, λ2 = λ1, λ3 = 1/(λ1λ2) = 1/λ2

1.

By use of the boundary condition S33 = 0, the Lagrange multiplier p can be explicitly
expressed and determined. The principal nominal stress P1 is computed by use of (17)–
(24). Thus, for uniaxial tension, P1 �= 0, P2 = P3 = 0, and for biaxial tension, P1 = P2 �= 0,
P3 = 0.

For the model parameters cnc → ∞, α > 1 and ccon = 0, the model by Arruda and
Boyce [10] is restored. As illustrated in that paper [10], the parameter choice n = 26.5,
cc = 278 kPa enables a good fit to the uniaxial tension data from the experiments in Treloar
[41]. Thus, the model prediction for the parameter set n = 26.5, cc = 278 kPa, cnc → ∞,
and ccon = 0 will be used as a reference in the following.
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Two sets of experimental results from Treloar [41] will also be displayed as a reference.
Treloar performed tensile testing of a vulcanized natural rubber. Testing was performed un-
der conditions of uniaxial tension, pure shear, and biaxial tension. The experimental results
for uniaxial and biaxial tension are included in the following plots.

3.2 Influence of Model Parameters

The influence of the factor cc is trivial and is therefore left out of consideration. Thus, the
role of the number of units in the representative polymer chain, n, in the model behaviour
is first addressed. Figure 4 shows the model response in terms of P1 for n = 10, 15, and
40. The other model parameters used are cc = 278 kPa, cnc → ∞, α = 2, and ccon = 0. The
high stiffness assigned to cnc ensures that the additional compliance from the network is
negligible. It is clear from Fig. 4, that the stiffness of the material decreases with increasing
value of n, provided that all other model parameters remain constant. In the absence of any
additional compliance from the surrounding network, the force required to stretch a single
representative polymer chain approaches infinity as λc → √

n. In Fig. 4, this is reflected by
the fact that the steep rise in stress appears at lower and lower stretches as n decreases.

Next we consider the influence of the network compliance, cnc. Figure 5 shows solutions
for P1, and three values of cnc are investigated: 1 MPa, 10 MPa, and 100 MPa. The other

Fig. 4 Influence of model parameter n: (a) uniaxial tension; (b) biaxial tension. Symbols indicate experi-
mental results from Treloar [41]. Dashed lines denote reference solutions from the Arruda-Boyce model [10]
with n = 26.5 and cc = 278 kPa. Solid lines denote solutions for the new model with n = 10, 15, and 40
(cc = 278 kPa, cnc → ∞, α = 2, and ccon = 0)

Fig. 5 Influence of model parameter cnc: (a) uniaxial tension; (b) biaxial tension. Symbols indicate experi-
mental results from Treloar [41]. Dashed lines denote reference solutions from the Arruda-Boyce model [10]
with n = 26.5 and cc = 278 kPa. Solid lines denote solutions for the new model with cnc = 1 MPa, 10 MPa,
and 100 MPa (n = 26.5, cc = 278 kPa, α = 2, and ccon = 0)
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model parameters are n = 26.5, cc = 278 kPa, α = 2, and ccon = 0. It is clear from Fig. 5,
that an increasing value of cnc decreases the compliance from the network added to the
representative chain, and the material therefore stiffens with increasing cnc. As cnc → ∞,
the Arruda-Boyce model is restored (provided that ccon = 0).

The network compliance has two model parameters associated with it, and we now turn
to the second one, α. Figure 6 shows the predicted curves of P1 for α = 1, 2, and 6. The
other model parameters are n = 26.5, cc = 278 kPa, cnc = 10 MPa, and ccon = 0. In the
stretch range displayed in Fig. 6, the stress levels decrease with increasing α.

The last parameter to be considered is the stiffness ccon, associated with the tube con-
straint acting on the representative polymer chain. In Fig. 7, solutions of P1 are shown for
ccon = 2 kPa, 5 kPa, and 10 kPa (other parameters: n = 26.5, cc = 278 kPa, cnc → ∞, and
α = 2). The constraint stiffness has virtually no effect at all on the model behaviour in uni-
axial tension, as seen in Fig. 7(a). On the other hand, the behaviour in biaxial tension in
Fig. 7(b) is significantly affected by ccon, and an increasing value of ccon tends to increase
the material stiffness in biaxial tension.

Fig. 6 Influence of model parameter α: (a) uniaxial tension; (b) biaxial tension. Symbols indicate experimen-
tal results from Treloar [41]. Dashed lines denote reference solutions from the Arruda-Boyce model [10] with
n = 26.5 and cc = 278 kPa. Solid lines denote solutions for the new model with α = 1, 2, and 6 (n = 26.5,
cc = 278 kPa, cnc = 10 MPa, and ccon = 0)

Fig. 7 Influence of model parameter ccon: (a) uniaxial tension; (b) biaxial tension. Symbols indicate experi-
mental results from Treloar [41]. Dashed lines denote reference solutions from the Arruda-Boyce model [10]
with n = 26.5 and cc = 278 kPa. Solid lines denote solutions for the new model with ccon = 2 kPa, 5 kPa,
and 10 kPa (n = 26.5, cc = 278 kPa, cnc → ∞, and α = 2)
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4 Comparison with Experimental Data

4.1 Prerequisites

The purpose with the present section is to show that the proposed model correlates well
with experimental data found in the literature. We again assume deformation states that may
be described by principal stretches according to (26). When comparing with experimental
results, three load cases are considered: (a) uniaxial tension, (b) generalised plane defor-
mation, and (c) biaxial tension. The deformation is parameterised by λ1, and the three load
cases are associated with the following deformation states:

• uniaxial tension: λ1, λ2 = λ3 = 1/
√

λ1,
• generalised plane deformation: λ1, λ2 = constant, λ3 = 1/(λ1λ2),
• biaxial tension: λ1, λ2 = λ1, λ3 = 1/(λ1λ2) = 1/λ2

1.

The boundary condition S33 = 0 applies in all three load cases, and the Lagrange mul-
tiplier p can again be explicitly expressed. The principal nominal stresses P1 and P2 are
computed by use of (17)–(24). Thus, for uniaxial tension, P1 �= 0, P2 = P3 = 0, for gen-
eralised plane deformation, P1 �= 0, P2 �= 0, P3 = 0, and for biaxial tension, P1 = P2 �= 0,
P3 = 0.

The experimental data used to assess the model are given in terms of measurements of
λ1, λ2, P1, and P2 (P2 is not always available). The five model parameters are stored in a
vector q according to

q = (n cc cnc α ccon)
T. (27)

An error function χ2 is defined according to (cf. [42])

χ2 = 1

nexp

( nexp,1∑
i=1

(
P1(λ

i
1, λ

i
2,q) − P i

1

)2 +
nexp,2∑
i=1

(
P2(λ

i
1, λ

i
2,q) − P i

2

)2

)
, (28)

where λi
1, λi

2, P i
1 and P i

2 are experimental observations, P1(λ
i
1, λ

i
2,q) and P2(λ

i
1, λ

i
2,q) are

the model predictions of the nominal stress components, nexp,1 and nexp,2 are the number of
experimental observations of P1 and P2, respectively, and nexp = nexp,1 + nexp,2 is the total
number of terms included in the error function.

The error function χ2 was minimised with respect to the model parameter vector q by
use of the Levenberg-Marquardt algorithm [43], and in this way, an optimal set of material
parameters was determined.

As a start, the model parameters were varied manually, to get an overview of where
the minima appeared for the different sets of experimental data. It was concluded, that a
value α = 4 provided a good fit for all sets of data. To limit the number of unknowns in the
minimisation procedure, α = 4 was adopted throughout the analysis, and the error function
was then minimised with respect to the remaining four parameters n, cc, cnc, and ccon.

When comparing the new constitutive model to the experimental data, the corresponding
predictions by the Arruda-Boyce model [10] are also included for comparison. The curves
for the Arruda-Boyce model were obtained by putting cnc → ∞, α = 4 and ccon = 0, and
then fitting n and cc to the experimental data.

4.2 Comparison with Experimental Data from Treloar [41]

Treloar [41] performed tensile testing of a vulcanized natural rubber, and testing was per-
formed under conditions of uniaxial tension, pure shear, and biaxial tension. Some of these
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Fig. 8 The new model and the Arruda-Boyce model [10] compared with experimental data from Treloar
[41] (symbols): (a) uniaxial and biaxial tension; (b) pure shear. Dashed lines denote predictions for the Ar-
ruda-Boyce model with n = 26.9 and cc = 287 kPa. Solid lines denote predictions for the new model with
n = 7.38, cc = 492 kPa, cnc = 189 kPa, α = 4, and ccon = 16.9 kPa

data have already been shown in the parameter study in the previous section, but all sets of
data from that study are now utilised. The model parameters were fitted to the experimental
data, and the outcome is displayed in Fig. 8.

The predictions from the Arruda-Boyce model (dashed lines) are not too far from the
experimental data, but the model is not fully able to predict the discrepancy between the
cases of uniaxial and biaxial tension. Since it is the total error that is minimised (uniaxial,
pure shear, and biaxial), the two predicted curves fall in between the experimental data in
Fig. 8(a). On the other hand, the pure shear data in Fig. 8(b) are well predicted by the Arruda-
Boyce model. This inability of the Arruda-Boyce model to predict both uniaxial and biaxial
data was noted already in the original paper by Arruda and Boyce [10]. Note that since
we now fit the model to all three sets of data, the estimated model parameters (n = 26.9
and cc = 287 kPa) differ somewhat from the those obtained in that study (n = 26.5 and
cc = 278 kPa), where the model was only fitted to the uniaxial tension data.

The estimated model parameters in the new model are: n = 7.38, cc = 492 kPa, cnc =
189 kPa, α = 4, and ccon = 16.9 kPa. It is clear from Fig. 8, that the new model (solid lines)
is able to predict the three sets of data in a more accurate way than the Arruda-Boyce model.
This pertains especially to the difference in stress levels between the cases of uniaxial and
biaxial tension. The new model is able to predict the stress levels in all three load cases with
a high degree of accuracy. The minimum value of the error function χ is 105 kPa and 44.6
kPa for the Arruda-Boyce and the new model, respectively, i.e. the error for the new model
is about 58% lower than for the Arruda-Boyce model.

In the new model, two additions have been made to the Arruda-Boyce model (the elastic
spring and the topological constraint), and it is of interest to investigate the relative impor-
tance of these two. Thus, we also made one model fitting, where ccon = 0 and parameters
n, cc, and cnc were fitted to the experimental data. This yielded the estimates n = 9.41,
cc = 471 kPa, and cnc = 618 kPa, and a final error of χ = 102 kPa. In addition, we tried
to put cnc → ∞, and then n, cc, and ccon were fitted to the experiments. This yielded the
estimates n = 26.0, cc = 269 kPa, and ccon = 4.44 kPa, and the error χ = 58.8 kPa. Thus,
the topological constraint component of the model appears to be more important than the
serial spring, but both components improve the Arruda-Boyce model in a significant way.

4.3 Comparison with Experimental Data from James et al. [44]

James et al. [44] tested a vulcanized natural rubber material. Testing was performed under
conditions of generalised plane deformation, where λ2 was kept constant. As before, we
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Fig. 9 Experimental data from James et al. [44] (symbols) and predictions for the Arruda-Boyce model [10]
(solid lines) with n = 21.1 and cc = 446 kPa. The different series are associated with λ2 = 1.3, 1.5, 1.7, 2.0,
2.5, 3.0, and 3.5

start by considering the outcome when the Arruda-Boyce model is fitted to the experimental
results, see Fig. 9. Results for both P1 and P2 are reported by James et al. [44], and the
predictions of P1 and P2 are plotted separately for the sake of clarity. In Fig. 9, the data
points connected with dotted lines indicate test series with constant λ2. It is obvious from
Fig. 9, that when the Arruda-Boyce model is fitted to these experimental data for P1 and
P2, the mismatch between experiments and model predictions is significant. For these data,
the estimated model parameters are n = 21.1 and cc = 446 kPa. For low λ2 stretches, the
model predictions are relatively accurate, but for series with λ2 above 2, the model becomes
increasingly inaccurate for both P1 and P2.

The new model is also fitted to the data from James et al. [44], and the outcome is
shown in Fig. 10. When minimising the error function for the new model, it was difficult to
obtain a unique solution, and there appeared to be an interdependence between n and cnc.
In the data from James et al., the typical s-shaped character of the stress-stretch relation
(as seen in Fig. 8) is not fully developed, since the maximum λ1 stretch is 3.4. Thus, the
stiffening that takes place as λc approaches

√
n is never registered, and the fitting procedure

therefore becomes underdetermined. For this reason, n was given the same value as for
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Fig. 10 Experimental data from James et al. [44] (symbols) and predictions for the new model (solid lines)
with n = 7.38 and cc = 552 kPa, cnc = 998 kPa, α = 4, and ccon = 26.0 kPa. The different series are associ-
ated with λ2 = 1.3, 1.5, 1.7, 2.0, 2.5, 3.0, and 3.5

the Treloar data [41], i.e. n = 7.38, and the remaining parameters cc, cnc, and ccon were
adjusted to minimise the error function. This procedure rendered the estimates cc = 552 kPa,
cnc = 998 kPa, and ccon = 26.0 kPa. As can be seen from Fig. 10, the new model is able to
predict the experimental data from James et al. [44] in an excellent way. The curves for series
with constant λ2 are accurately predicted both for P1 and P2. The minimised error functions
for the Arruda-Boyce and the new model were χ = 104 kPa and 18.5 kPa, respectively,
implying a decrease of 82% of the error.

4.4 Comparison with Experimental Data from Kawabata et al. [45]

The third set of experiments to be used to assess the new model is from Kawabata et al.
[45], who also perform tensile tests on a natural rubber vulcanizate under conditions of
generalised plane deformation. Again we start by investigating to what extent the Arruda-
Boyce model is able to predict the experimental outcome. For this set of experiments, the
optimal set of model parameters was n = 131 and cc = 355 kPa, and the model predictions
are shown in Fig. 11. For the sake of clarity, results for P1 and P2 are shown separately,
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Fig. 11 Experimental data from Kawabata et al. [45] (symbols) and predictions for the Arruda-Boyce model
[10] with n = 131 and cc = 355 kPa (solid lines). Symbols connected with dotted lines denote series with
constant λ2. Lower figures: λ2 = 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.20, 1.24, and 1.30; upper figures:
λ2 = 1.60, 1.90, 2.20, 2.50, 2.80, 3.10, 3.40, and 3.70

and the series for different values of λ2 are also split into two parts. The tendency is the
same as before: for the test series with low λ2, the Arruda-Boyce model is able to predict the
experimental results reasonably well, but for higher values of λ2, the predictions are clearly
inaccurate.

When fitting the new model to the data from Kawabata et al. [45], we encountered the
same problem as with the data from James et al. [44], i.e., there was a clear interdependence
between n and cnc. The reason again is that the data in Kawabata et al. [45] cover a too nar-
row stretch range in λ1 to include the full s-shape of the material, rendering the minimisation
procedure underdetermined. The value of n was therefore set to n = 7.38 according to the
Treloar data, and the error function was then minimised with respect to the three remaining
parameters. This yielded the estimates cc = 994 kPa, cnc = 4.3 kPa, and ccon = 26.5 kPa,
and the associated model predictions are illustrated in Fig. 12. Again the model predic-
tions of the new model agree extremely well with the experimental data. When comparing
the Arruda-Boyce model with the new model, the error decreases from χ = 86.7 kPa to
9.58 kPa, corresponding to a decrease of 89%.

5 Discussion and Concluding Remarks

Several constitutive models for rubber materials have been proposed over the last decades,
but few of them have been able to accurately predict experimental results under multiaxial
loading. Models based on statistical mechanics are very attractive, because they offer pre-
dictive capabilities with a minimal number of material parameters. These parameters have a
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Fig. 12 Experimental data from Kawabata et al. [45] (symbols) and predictions for the new model with
n = 7.38, cc = 994 kPa, cnc = 4.3 kPa, α = 4, and ccon = 26.5 kPa. Symbols connected with dotted lines
denote series with constant λ2. Lower figures: λ2 = 1.04, 1.06, 1.08, 1.1, 1.12, 1.14, 1.16, 1.20, 1.24, and
1.30; upper figures: λ2 = 1.60, 1.90, 2.20, 2.50, 2.80, 3.10, 3.40, and 3.70

clear physical connection to the molecular microstructure, and another advantage is that the
stability of these parameters is never an issue in data fitting. In the new model proposed in
the present paper, we therefore start from the Arruda-Boyce model [10] and add two com-
ponents to this model: an elastic spring, acting in series with the polymer chain, and a tube
constraint, acting on the topology of the polymer chain. Compared with the Arruda-Boyce
model, the new model includes three more model parameters, and it requires the solving
of one additional non-linear equation, associated with the deformation of the serial elastic
spring.

Real polymer networks do not deform affinely, and the macroscopic deformation im-
posed on a polymer network causes different amounts of stretching on individual polymer
chains, depending on their relative length and stiffness. The introduction of a non-linear
elastic spring, acting in series with the representative polymer chain and representing the
additional compliance from the network surrounding, is therefore well motivated from a
physical point of view. The need to account for topological constraints acting on the poly-
mer chains is also well established, especially when multiaxial stress states are modelled.
When comparing with the experimental data from Treloar [41], the model improvements
(compared with the Arruda-Boyce model) were also quantified in terms of an error func-
tion. It was shown, that the introduction of the elastic spring and the topological constraint
both enabled a more accurate prediction of the experimental results.

It was noted, though, that a proper determination of all five model parameters requires
that tests are performed for a rather wide span in λ1 (including the up-swing in stress at high
stretches) and that multiaxial stress states are considered. Some problems were encountered
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when trying to fit the new model to the data from James et al. [44] and Kawabata et al. [45],
since it appeared that the minimisation procedure was underdetermined for these data.

The original Arruda-Boyce model was able to predict the constitutive behaviour of vul-
canized natural rubber in uniaxial tension [10], but in equibiaxial tension, there was a signif-
icant discrepancy between model and experimental data. Arruda and Boyce actually made
an attempt to improve the original model by adding the constrained network model of Flory
and Erman [21, 46]. In the model by Flory and Erman, the contribution of constraints to the
strain energy is somewhat more complicated than in the present model, and the contribution
is given in terms of a function of the principal stretches. Through this addition, the Arruda-
Boyce model behaviour was improved, but the experimental results for multiaxial loading
could still not be fully modelled.

The model proposed here appears to be able to predict the constitutive behaviour in equib-
iaxial tension as well. In the literature, there are other models available that also are able to
accurately predict the equibiaxial behaviour. One example is the model by Miehe et al. [16],
which is able to predict all three sets of data (uniaxial tension, pure shear, equibiaxial ten-
sion) from Treloar [41] will a very high degree of accuracy. This model is a full network
model, where non-affine chain deformations are allowed for and topological constraints on
polymer chains are imposed. One significant drawback with the model proposed by Miehe
et al. [16] is, however, that it requires a numerical evaluation of a surface integral. If the
model is incorporated in a finite element context, this becomes very expensive from a com-
putational point of view.

Another model that has successfully predicted the constitutive behaviour of rubber under
multiaxial loading conditions is the model by Elias-Zuniga and Beatty [11]. This model is
a combination of a 3-chain and an 8-chain model, and it is also able to account for all three
types of data from Treloar [41]. The model by Elias-Zuniga and Beatty [11] has the advan-
tage of only including three model parameters. It is not clear, though, to what extent this
model is able to predict other cases of, say, generalised plane deformation, which has been
accurately predicted by the model proposed by the present author. The model proposed here
appears to have a strong ability to predict the constitutive behaviour of rubber-like solids un-
der a wide variety of loading conditions, and it is relatively efficient from a numerical point
of view. This makes it particularly suitable for implementation in a finite element context.

In summary, a new constitutive model for rubber-like solids has been proposed. The
model is based on the 8-chain concept introduced by Arruda and Boyce [10], and a serial
elastic spring and a topological constraint are added to the representative polymer chain
characteristics. Both additions are well motivated from a physical point of view. The model
contains five model parameters and these were determined on the basis of experimental data.
The proposed model was able to reproduce experimental data performed under conditions
of uniaxial tension, generalised plane deformation, and biaxial tension with an excellent
accuracy. The strong predictive abilities together with the numerically efficient structure of
the model make it suitable for implementation in a finite element context.
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